WO2016002755A1 - 微粒子酸化チタン及びその製造方法 - Google Patents

微粒子酸化チタン及びその製造方法 Download PDF

Info

Publication number
WO2016002755A1
WO2016002755A1 PCT/JP2015/068781 JP2015068781W WO2016002755A1 WO 2016002755 A1 WO2016002755 A1 WO 2016002755A1 JP 2015068781 W JP2015068781 W JP 2015068781W WO 2016002755 A1 WO2016002755 A1 WO 2016002755A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxy
titanium
titanium chloride
aqueous solvent
titanium oxide
Prior art date
Application number
PCT/JP2015/068781
Other languages
English (en)
French (fr)
Inventor
誠司 梶
博謙 下井田
由里絵 大森
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20152430.3A priority Critical patent/EP3656740B1/en
Priority to EP20171720.4A priority patent/EP3705455B1/en
Priority to US15/323,248 priority patent/US10787369B2/en
Priority to KR1020177002629A priority patent/KR102372694B1/ko
Priority to EP15814239.8A priority patent/EP3165509B1/en
Priority to EP18157072.2A priority patent/EP3339249B1/en
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to CA2953901A priority patent/CA2953901C/en
Priority to CN201580040581.4A priority patent/CN106536415B/zh
Priority to EP18157065.6A priority patent/EP3339248B1/en
Priority to JP2016531382A priority patent/JP6607407B2/ja
Publication of WO2016002755A1 publication Critical patent/WO2016002755A1/ja
Priority to HK17105893.8A priority patent/HK1232205A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to fine particle titanium oxide and a method for producing the same.
  • Titanium oxide with an average primary particle size of 0.1 ⁇ m or less is called fine particle titanium oxide, which is transparent to visible light and has a shielding ability against ultraviolet rays. It is used as a cosmetic and UV shielding paint. In addition, because of its high specific surface area, it is used for catalyst carriers such as denitration catalysts and dioxin decomposition catalysts, and is excited by irradiation with ultraviolet rays to exhibit photocatalytic action, hydrophilic action, and antifogging action. Used for electrodes and the like. Furthermore, it is used as a raw material for producing titanium composite oxides such as barium titanate, strontium titanate, and lithium titanate.
  • Patent Document 1 describes performing hydrolysis while suppressing escape of hydrogen chloride generated by hydrolysis of an aqueous solution of titanium tetrachloride from a reaction tank.
  • Patent Document 2 describes titanium tetrachloride, It describes that water and polyvalent carboxylic acid are mixed at a temperature of less than 50 ° C., and then the mixed solution is heated to perform a hydrolysis reaction to produce titanium oxide.
  • Patent Document 3 while maintaining a titanium tetrachloride aqueous solution at 5 to 30 ° C., it is neutralized and hydrolyzed with an alkaline solution to precipitate colloidal amorphous titanium hydroxide, which is heated to a temperature of 60 to 80 ° C. And aging for 1 to 10 hours to obtain a fine titania sol having an average crystallite diameter of 5 to 13 nm.
  • Patent Document 4 1 to 5% by mass of titanium tetrachloride and hydrochloric acid are mixed with 65 to 90 ° C. water, respectively, and water is added while maintaining the temperature of the mixed solution within the temperature range of 65 ° C. to the boiling point of the mixed solution.
  • Patent Document 5 discloses a dispersion in which anatase-type titanium oxide fine particles are dispersed in advance in an aqueous medium in a step of hydrolyzing a titanium compound by mixing and reacting a titanium compound aqueous solution such as titanium tetrachloride aqueous solution with a base. It is described that a titanium compound aqueous solution and a base are mixed and reacted with the dispersion to hydrolyze the titanium compound.
  • (oxy) titanium chloride means titanium chloride or titanium oxychloride
  • the pH range and temperature range when hydrolyzing titanium in an aqueous solvent are important. By controlling these, it is possible to produce finely divided titanium oxide with a small primary particle size and a relatively small aggregated particle size.
  • (oxy) titanium chloride is hydrolyzed in an aqueous solvent, and then (oxy) titanium chloride and alkali are simultaneously added to the aqueous solvent for hydrolysis.
  • the present invention Fine particle titanium oxide having a BET diameter of 1 to 50 nm, an aggregated particle diameter of 1 to 200 nm, and a ratio thereof (aggregated particle diameter / BET diameter) of 1 to 40, 2.
  • a method for producing fine-particle titanium oxide wherein the pH of an aqueous solvent containing (oxy) titanium chloride is adjusted to a range of 1 or less and then the aqueous solvent is heated to a temperature of 50 to 110 ° C. to hydrolyze (oxy) titanium chloride. , 4). Fine particles of titanium oxide that hydrolyzes (oxy) titanium chloride by mixing alkali so that the pH of the aqueous solvent containing (oxy) titanium chloride is in the range of 0 to 9 and then heating to 50 to 110 ° C. Manufacturing method, 5.
  • the first hydrolysis is performed by the above methods 2 to 4 and then the second hydrolysis is performed again by performing each of the methods 2 to 4, respectively. More specifically, the present invention is as follows.
  • Fine particle titanium oxide having a BET diameter of 1 to 50 nm, an agglomerated particle diameter of 1 to 200 nm, and a ratio thereof (aggregated particle diameter / BET diameter) of 1 to 40, (2) Fine particle titanium oxide according to (1), which has anatase and / or rutile crystal form, (3) Fine particle titanium oxide according to (1) or (2), wherein the pore volume in the pore diameter range of 1 to 100 nm is 0.2 to 0.7 ml / g, (4) It includes hydrolyzing (oxy) titanium chloride by mixing (oxy) titanium chloride and alkali so that the pH of the aqueous solvent heated to a temperature of 50 to 110 ° C. is in the range of 0 to 12.
  • Fine particle oxidation comprising adjusting the pH of an aqueous solvent containing (oxy) titanium chloride to a range of 1 or less and then heating to a temperature of 50 to 110 ° C. to hydrolyze (oxy) titanium chloride.
  • Titanium production method (6)
  • Alkali is mixed so that the pH of the aqueous solvent containing (oxy) titanium chloride is in the range of 0 to 9, and then heated to a temperature of 50 to 110 ° C. to hydrolyze (oxy) titanium chloride.
  • a method for producing fine particle titanium oxide, (7) (oxy) titanium chloride and alkali are mixed so that the pH of the aqueous solvent heated to a temperature of 50 to 110 ° C.
  • (oxy) titanium chloride is first hydrolyzed, Next, (oxy) chloride is mixed by mixing (oxy) titanium chloride and alkali so that the pH of the aqueous solvent containing the first hydrolyzed product and adjusted to a temperature of 50 to 110 ° C. is in the range of 0 to 12.
  • a method for producing particulate titanium oxide, comprising second hydrolysis of titanium, (8) (oxy) titanium chloride and alkali are mixed so that the pH of the aqueous solvent heated to a temperature of 50 to 110 ° C.
  • (oxy) titanium chloride is in the range of 0 to 12
  • (oxy) titanium chloride is first hydrolyzed
  • (oxy) titanium chloride is mixed with an aqueous solvent containing the first hydrolyzed product to adjust the pH to a range of 1 or less, and then adjusted to a temperature of 50 to 110 ° C. to obtain (oxy) titanium chloride.
  • a method for producing fine-particle titanium oxide comprising second hydrolysis of (9) (oxy) titanium chloride and alkali are mixed so that the pH of the aqueous solvent heated to a temperature of 50 to 110 ° C.
  • a method for producing fine-particle titanium oxide comprising adjusting the temperature to secondly hydrolyze (oxy) titanium chloride, (10) After adjusting the pH of the aqueous solvent containing (oxy) titanium chloride to a range of 1 or less, the mixture is heated to a temperature of 50 to 110 ° C.
  • (Oxy) titanium chloride is mixed with (oxy) titanium chloride so that the pH of the aqueous solvent containing the hydrolyzed product and adjusted to a temperature of 50 to 110 ° C. is in the range of 0 to 12.
  • (Oxy) titanium chloride is mixed with an aqueous solvent containing the monohydrolyzed product to adjust the pH to a range of 1 or less, and then adjusted to a temperature of 50 to 110 ° C.
  • (Oxy) titanium chloride is mixed with the aqueous solvent containing the monohydrolyzed product, then mixed with alkali so that the pH of the aqueous solvent is in the range of 0-9, and then adjusted to a temperature of 50-110 ° C.
  • (oxy) titanium chloride and alkali are mixed so that the pH of the aqueous solvent containing the first hydrolyzed product and adjusted to a temperature of 50 to 110 ° C. is in the range of 0 to 12,
  • Alkali is mixed so that the pH of the aqueous solvent containing (oxy) titanium chloride is in the range of 0 to 9, and then heated to a temperature of 50 to 110 ° C.
  • (oxy) titanium chloride is mixed with an aqueous solvent containing the first hydrolyzed product to adjust the pH to a range of 1 or less, and then adjusted to a temperature of 50 to 110 ° C.
  • a method for producing fine-particle titanium oxide comprising second hydrolysis of titanium chloride;
  • An alkali is mixed so that the pH of the aqueous solvent containing (oxy) titanium chloride is in the range of 0 to 9, and then the aqueous solvent is heated to a temperature of 50 to 110 ° C.
  • (oxy) titanium chloride was mixed with the aqueous solvent containing the first hydrolyzed product, and then the alkali was mixed so that the pH of the aqueous solvent was in the range of 0-9. And then adjusting the temperature to 50 to 110 ° C.
  • a method for producing a fine particle titanium oxide powder comprising firing the fine particle titanium oxide produced by the method according to any one of (4) to (19), (21) A composite oxide comprising a reaction product of the fine particle titanium oxide according to any one of the above (1) to (3) and at least one metal element (excluding titanium).
  • the fine particle titanium oxide of the present invention has a small primary particle diameter, a small aggregate particle diameter, and a low degree of aggregation. For this reason, the reactivity with barium, lithium, etc. is good, and it is suitable as a raw material for manufacturing a titanium complex oxide. Further, since it has a high specific surface area, it is easy to disperse and support the catalyst component, and the adsorptivity of the component to be treated is good.
  • the method for producing fine particle titanium oxide of the present invention is a simple method of controlling the pH range and temperature range when hydrolyzing (oxy) titanium chloride in an aqueous solvent.
  • (oxy) titanium chloride is first hydrolyzed in an aqueous solvent while maintaining the above pH range and temperature range, and then (oxy) titanium chloride is added to perform second hydrolysis.
  • This is a simple method of performing stage hydrolysis, and can also be carried out in a single reaction tank, which is advantageous in terms of equipment.
  • titanium oxide includes, in addition to titanium dioxide and titanium monoxide, hydrous titanium oxide, hydrated titanium oxide, metatitanic acid, orthotitanic acid, and the like, and anatase and / or rutile crystal forms. May be amorphous, may be amorphous (amorphous), or may be appropriately mixed.
  • the crystal form of titanium oxide can be identified by X-ray diffraction.
  • the purity of titanium oxide is preferably 99% by mass or more, and more preferably 99.9% by mass or more, particularly from the viewpoint of use as a raw material for titanium composite oxides such as barium and lithium.
  • Impurities contained in titanium oxide are chlorine, sulfur, alkali metals, alkaline earth metals, etc., and impurities present in titanium oxide are measured by fluorescent X-ray analysis, ICP analysis, or the like.
  • the titanium oxide of the present invention has a BET diameter of 1 to 50 nm, an aggregated particle diameter of 1 to 200 nm, and a ratio thereof (aggregated particle diameter / BET diameter) of 1 to 40.
  • the primary particle diameter of the fine particle titanium oxide is expressed by the following BET diameter, and the value is 1 to 50 nm, preferably 5 to 30 nm, more preferably 5 to 15 nm, and the finer one is barium, lithium, etc. The reactivity with is good.
  • the BET diameter of the fine particle titanium oxide is obtained by the following formula using a specific surface area a (m 2 / g) by a nitrogen adsorption method (BET method).
  • d 6 / ( ⁇ ⁇ a)
  • d is a primary particle diameter (BET diameter) (micrometer)
  • rho is specific gravity (g / cm ⁇ 3 >) of a titanium oxide.
  • the specific surface area a of the fine particles of titanium oxide is preferably so BET diameter as larger decreases, in particular preferably 50 ⁇ 400m 2 / g, more preferably 100 ⁇ 300m 2 / g.
  • the specific gravity of anatase-type titanium oxide is 3.9 and the specific gravity of rutile type is 4.2, when the specific surface area a is 50 m 2 / g, the BET diameter is about 30 nm, and 100 m 2 / g If it is about 15 nm and 300 m 2 / g, it will be about 5 nm.
  • the agglomerated particle diameter of the fine particle titanium oxide is prepared by adding 3% by mass of pure water 30 ml and a polycarboxylic acid-based dispersant to 3 g of titanium oxide to 3 g of dry titanium oxide powder.
  • a slurry and media 60 g of 0.09 ⁇ mm zircon beads are placed in a 70 ml mayonnaise bottle and dispersed for 60 minutes with a paint shaker. Measure the particle size distribution.
  • the 50% cumulative mass particle size distribution diameter (D50) in the particle size distribution thus measured is defined as the aggregate particle diameter.
  • a smaller agglomerated particle size indicates that the degree of agglomeration is low, so a smaller agglomerated particle size is preferred, specifically 1 to 200 nm, preferably 10 to 150 nm, more preferably 10 to 120 nm, more preferably 10 to 100 nm. Is more preferable.
  • the ratio between the aggregated particle diameter and the BET diameter represents the degree of aggregation. When this ratio is small, the degree of aggregation is small, specifically 1 to 40, 3 To 30 is preferable, and 5 to 15 is more preferable.
  • the gaps between the primary particles can be considered as pores, and the pore volume is the ratio of the nitrogen adsorption method (BET method) described above. It can be measured with a surface area measuring device.
  • BET method nitrogen adsorption method
  • the pore volume in the range of pore diameter (diameter) of 1 to 100 nm is preferably in the range of 0.2 to 0.7 ml / g, and preferably in the range of 0.3 to 0.5 ml / g. More preferred.
  • the crystallite diameter can be calculated from the X-ray diffraction peak of the (110) plane using the following Scherrer formula, for example, 20 to 250 mm, preferably 20 to 150 mm, more preferably 50 to 100 mm. preferable.
  • DHKL average crystallite diameter ( ⁇ )
  • wavelength of X-ray
  • half width of diffraction peak
  • Bragg's angle
  • K constant.
  • the method for producing fine particle titanium oxide according to the present invention includes a method of hydrolyzing (oxy) titanium chloride in one stage and a first hydrolysis (that is, first stage hydrolysis) by the above method, and then again.
  • There is a method of performing the second hydrolysis that is, the hydrolysis of the second stage) (that is, a method of performing the hydrolysis in the second stage).
  • the third hydrolysis ie, the third stage hydrolysis
  • the fourth hydrolysis ie, the fourth stage hydrolysis
  • (oxy) titanium chloride and alkali are mixed so that the pH of the aqueous solvent heated to a temperature of 50 to 110 ° C. is in the range of 0 to 12, and (oxy ) Method of hydrolyzing titanium chloride (hereinafter sometimes referred to as simultaneous neutralization hydrolysis method), (2) After adjusting the pH of the aqueous solvent containing (oxy) titanium chloride to a range of 1 or less, 50 to 110 A method of hydrolyzing (oxy) titanium chloride by heating to a temperature of 0 ° C.
  • the pH of the aqueous solvent containing (oxy) titanium chloride is 0 to
  • There is a method of hydrolyzing (oxy) titanium chloride by mixing alkali so as to be in the range of 9 and then heating to a temperature of 50 to 110 ° C. (hereinafter sometimes referred to as alkali addition hydrolysis method).
  • alkali addition hydrolysis method As the raw material (oxy) titanium chloride, titanium tetrachloride, titanium trichloride, titanium oxychloride and the like can be used, and titanium tetrachloride is preferable.
  • the aqueous solvent is a solvent obtained by mixing water or water with an organic solvent such as alcohol, and the content of the organic solvent is preferably about 10% by mass or less.
  • Any alkali can be used as long as it is a compound exhibiting alkalinity, but alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, ammonium compounds such as ammonia water and ammonia gas, alkylamines and ethanolamines. Ammonium compounds and amine compounds that do not remain as impurities in the fine particle titanium oxide are preferable.
  • mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid can be used, and hydrochloric acid and organic acids which do not remain as impurities in the fine titanium oxide are preferable.
  • (oxy) titanium chloride by mixing (oxy) titanium chloride with alkali and at least one selected from carboxylic acid, polyvalent carboxylic acid and salts thereof in an aqueous solvent. After mixing at least one selected from acids, polycarboxylic acids and salts thereof in an aqueous solvent, (oxy) titanium chloride may be mixed, (oxy) titanium chloride and alkali may be mixed, Oxy) titanium chloride, alkali, carboxylic acid, polyvalent carboxylic acid and salts thereof may be mixed simultaneously in parallel.
  • the carboxylic acid and polyvalent carboxylic acid are compounds having a carboxyl group and can be used without limitation.
  • any salt can be used without limitation.
  • alkali metal salts such as sodium and potassium, ammonium salts and the like can be used.
  • the amount of the carboxylic acid, polyvalent carboxylic acid and salt thereof is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, expressed as mass% with respect to the fine particle titanium oxide.
  • titanium oxide produced by the addition of carboxylic acid or the like can be easily controlled to an arbitrary crystal form, and the particle shape tends to be granular. Even if it exceeds the said range, the effect by addition of further carboxylic acid etc. is hard to be acquired.
  • (1) Simultaneous neutralization hydrolysis method In this method, an aqueous solvent heated to a temperature of 50 to 110 ° C. is prepared, and (oxy) titanium chloride and an alkali are mixed so that the pH is in the range of 0 to 12. And (oxy) titanium chloride is hydrolyzed. (Oxy) titanium chloride and alkali are preferably added in parallel, but may be added intermittently. The addition time can be appropriately set, and about 10 minutes to 5 hours is appropriate.
  • the pH is preferably selected from the range of 0 to 2, 2 to 7, 7 to 9, or 9 to 12 in that the degree of aggregation can be lowered.
  • Acidic hydrolysis method In this method, an aqueous solvent containing (oxy) titanium chloride is prepared, the pH is adjusted to a range of 1 or less, and then heated to a temperature of 50 to 110 ° C. ) A method of hydrolyzing titanium chloride. The pH adjustment can be controlled by the amount of (oxy) titanium chloride, and the above acid may be added. The preferred pH range is ⁇ 1 to 1, and may be 0 or less, which cannot be measured with a normal pH meter. The heating time can be appropriately set, and about 10 minutes to 5 hours is appropriate.
  • Alkaline addition hydrolysis method In this method, an aqueous solvent containing (oxy) titanium chloride is prepared, and alkali is mixed so that the pH is in the range of 0 to 9, and then the temperature is adjusted to 50 to 110 ° C.
  • This is a method of hydrolyzing (oxy) titanium chloride by heating.
  • the adjustment of pH 0 to 9 is performed by mixing alkali, and the pH is selected from 0 to 2, 2 to 7, or 7 to 9 in terms of reducing the degree of aggregation. preferable.
  • the heating time can be appropriately set, and about 10 minutes to 5 hours is appropriate.
  • the hydrolysis is performed in two stages. Specifically, after the first hydrolysis is performed by the above methods (1) to (3), each of (1) to (3) is performed again.
  • Each hydrolysis condition such as temperature, time, pH, and addition of carboxylic acid or the like can be performed in accordance with the above conditions.
  • the mass ratio of the first hydrolyzed product and the second hydrolyzed product is preferably in the range of 1:99 to 99: 1, more preferably in the range of 2:98 to 90:10.
  • the range of 3:97 to 70:30 is more preferable, and the range of 5:95 to 50:50 is still more preferable.
  • the second hydrolysis is performed after the first hydrolysis reaction, and the first hydrolysis and the second hydrolysis are performed in one reaction tank.
  • the product is filtered, washed as necessary, repulped into an aqueous solvent, and then subjected to the second hydrolysis reaction.
  • two reaction tanks are used. It will be.
  • the second hydrolyzed product is deposited and grown on the particle surface of the first hydrolyzed product, and the formation of aggregated particles can be suppressed by growing the particles.
  • the first hydrolysis product and the second hydrolysis product may form separate products.
  • Simultaneous neutralization hydrolysis method an aqueous solvent heated to a temperature of 50 to 110 ° C. is prepared, and the pH is adjusted to be in the range of 0 to 12 (oxy). Titanium chloride and alkali are mixed to hydrolyze (oxy) titanium chloride. Next, an aqueous solvent containing the first hydrolyzed product and adjusted to a temperature of 50 to 110 ° C. is prepared, and (oxy) titanium chloride and an alkali are mixed so that the pH is in the range of 0 to 12, Secondly hydrolyze (oxy) titanium chloride.
  • the first hydrolyzed product (the product obtained by hydrolysis of the first stage (oxy) titanium chloride) is included in the aqueous solvent adjusted to a temperature of 50 to 110 ° C. (Oxy) titanium chloride and alkali are mixed again while maintaining the pH in the range of 0 to 12, to hydrolyze the second stage (oxy) titanium chloride.
  • Simultaneous neutralization hydrolysis method ⁇ acidic hydrolysis method
  • an aqueous solvent heated to a temperature of 50 to 110 ° C. is prepared, and (oxy) chloride is adjusted so that the pH is in the range of 0 to 12. Titanium and alkali are mixed to hydrolyze (oxy) titanium chloride.
  • an aqueous solvent containing the first hydrolyzed product is prepared, and (oxy) titanium chloride is mixed with this to adjust the pH to 1 or less, and then adjusted to a temperature of 50 to 110 ° C., Secondly hydrolyze (oxy) titanium chloride.
  • Simultaneous neutralization hydrolysis method ⁇ alkali addition hydrolysis method
  • an aqueous solvent heated to a temperature of 50 to 110 ° C. is prepared, and (oxy) chloride is adjusted so that the pH is in the range of 0 to 12. Titanium and alkali are mixed to hydrolyze (oxy) titanium chloride.
  • an aqueous solvent containing the first hydrolyzed product is prepared, mixed with (oxy) titanium chloride, and then mixed with alkali so that the pH of the aqueous solvent is in the range of 0 to 9, The temperature is adjusted to 50 to 110 ° C., and (oxy) titanium chloride is subjected to second hydrolysis.
  • Alkaline addition hydrolysis method ⁇ acidic hydrolysis method
  • an aqueous solvent containing (oxy) titanium chloride is prepared and mixed with an alkali so that the pH is in the range of 0 to 9, followed by 50 Heat to a temperature of ⁇ 110 ° C. to first hydrolyze (oxy) titanium chloride.
  • an aqueous solvent containing the first hydrolyzed product is prepared, and (oxy) titanium chloride is mixed with this to adjust the pH to 1 or less, and then adjusted to a temperature of 50 to 110 ° C., Secondly hydrolyze (oxy) titanium chloride.
  • Alkaline addition hydrolysis method ⁇ Alkaline addition hydrolysis method
  • an aqueous solvent containing (oxy) titanium chloride is prepared, and an alkali is mixed so that the pH is in the range of 0 to 9, and then The aqueous solvent is heated to a temperature of 50 to 110 ° C. to hydrolyze the (oxy) titanium chloride.
  • an aqueous solvent containing the first hydrolyzed product is prepared, mixed with (oxy) titanium chloride, and then mixed with alkali so that the pH of the aqueous solvent is in the range of 0 to 9, The temperature is adjusted to 50 to 110 ° C., and (oxy) titanium chloride is subjected to second hydrolysis.
  • Alkaline or acid is added to the aqueous solvent containing fine particle titanium oxide produced by any of the above methods to adjust the pH to the range of 0 to 9, and the aqueous solvent is kept at 50 to 90 ° C. for aging. May be.
  • the aging time is about 10 minutes to 5 hours.
  • BET diameter primary particle diameter
  • the firing temperature is preferably about 150 to 800 ° C., and the range of 150 to 600 ° C. is more preferred because it has good reactivity with barium, lithium and the like, and the specific surface area is hardly lowered.
  • the firing time can be appropriately set, and about 1 to 10 hours is appropriate.
  • the firing atmosphere can be performed in an atmosphere containing oxygen gas such as air or an inert gas atmosphere such as nitrogen.
  • the obtained fine particle titanium oxide may be subjected to wet pulverization and sizing according to a known method, if necessary, and then the same as that conventionally performed with conventional titanium dioxide for pigments and fine particle titanium oxide. Then, the particle surface may be coated with at least one hydrated oxide, hydroxide or oxide selected from the group consisting of aluminum, silicon, zirconium, tin, titanium, and zinc. The total coating amount is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, based on the fine particle titanium oxide of the substrate.
  • a catalyst component for example, a metal or a compound such as platinum, tungsten, copper, silver, or gold may be supported by a usual method. Good.
  • the surface of the fine particle titanium oxide may be coated with an organic compound such as a fatty acid or a salt thereof, an alcohol, an alkoxysilane compound, or an aminoalkoxysilane compound.
  • the alkoxysilane compound and / or aminoalkoxysilane compound may be coated in a hydrolyzed state.
  • the coating amount of the organic compound is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass, based on the fine particle titanium oxide of the substrate. In this range, if the coating amount is too small, such as less than 1% by mass, desired effects such as light resistance cannot be obtained. Conversely, if the coating amount is too large such that the coating amount exceeds 50% by mass, not only aggregation occurs.
  • Two or more organic compounds to be coated may be used in combination depending on the purpose and purpose.
  • alkoxysilane compounds include vinyltrimethoxysilane, methyltrimethoxysilane, propyltrimethoxysilane, i-butyltrimethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, octyltrimethoxysilane, octyl Examples include triethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane and the like.
  • aminoalkoxysilane compounds include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, and the like.
  • To coat fine titanium oxide with an organic compound for example, (1) While stirring fine particle titanium oxide in a high-speed stirrer such as a Henschel mixer, the organic compound, or a water or alcohol solution thereof is dropped or sprayed. Add, agitate to homogeneity and then dry, (2) Add organic compound, or water or alcohol solution of these to a slurry of fine particle titanium oxide dispersed in water while stirring Any of a wet method of filtration, washing, and drying can be used after stirring.
  • a high-speed stirrer such as a Henschel mixer
  • the composite oxide containing a reaction product of the fine particle titanium oxide of the present invention and at least one metal element (excluding titanium) is fine and has good crystallinity.
  • Metal elements include typical metal elements (alkali metal elements (Group 1 elements), alkaline earth metal elements (Group 2 elements), Group 12 elements, Group 13 elements, Group 14 elements, Group 15 elements ) And at least one selected from transition metal elements (excluding titanium).
  • lithium titanate is useful as a negative electrode active material for lithium secondary batteries
  • sodium titanate is useful as a raw material / intermediate for producing various titanate compounds
  • potassium titanate is useful as a filler.
  • calcium titanate, strontium titanate, and barium titanate are useful as dielectrics.
  • aluminum titanate and magnesium aluminum titanate are useful as heat-resistant materials, and lead titanate and the like are useful as piezoelectric materials.
  • These composite oxides can be produced by mixing the fine particle titanium oxide of the present invention and at least one metal compound and firing as necessary.
  • Example 2 The titanium oxide powder of Example 1 was baked in an electric furnace at a temperature of 500 ° C. for 2 hours to obtain a high-purity fine particle titanium oxide powder (Sample B).
  • Example 5 The titanium oxide powder of Example 4 was baked in an electric furnace at a temperature of 400 ° C. for 2 hours to obtain a high-purity fine particle titanium oxide powder (Sample E).
  • Example 6 In 1 liter of ion-exchanged water heated to 60 ° C., 100 g of titanium tetrachloride aqueous solution and aqueous ammonia as TiO 2 were added simultaneously over 60 minutes, respectively, and the pH was kept at 5.8 to 6.2. Disassembled. The obtained titanium oxide-containing slurry was filtered, washed, and dried to obtain high-purity fine particle titanium oxide powder (Sample F).
  • Example 7 The titanium oxide powder of Example 6 was baked in an electric furnace at a temperature of 370 ° C. for 2 hours to obtain a high purity fine particle titanium oxide powder (sample G).
  • Example 8 The titanium oxide powder of Example 6 was baked in an electric furnace at a temperature of 410 ° C. for 2 hours to obtain a high purity fine particle titanium oxide powder (Sample H).
  • Example 9 The titanium oxide powder of Example 6 was baked in an electric furnace at a temperature of 530 ° C. for 2 hours to obtain a high-purity fine particle titanium oxide powder (Sample I).
  • Example 15 The titanium oxide powder of Example 14 was baked in an electric furnace at a temperature of 400 ° C. for 2 hours to obtain a high-purity fine particle titanium oxide powder (sample O).
  • Example 21 While maintaining 1 liter of a titanium tetrachloride aqueous solution of 50 g / liter as TiO 2 at room temperature, 3% by mass of anhydrous citric acid was added to TiO 2 and stirred for 30 minutes (pH was 0 or less). This was heated to 92 ° C. and stirred for 30 minutes for first hydrolysis. Subsequently, 50 g of titanium tetrachloride aqueous solution as TiO 2 was added and mixed to adjust the pH to 1 or less. Next, this was heated to 92 ° C. and stirred for 30 minutes for second hydrolysis.
  • Example 23 Ammonia water was added to the titanium tetrachloride aqueous solution to adjust the pH to 7.0, and this was heated to 70 ° C., stirred and maintained for 30 minutes, then heated to 90 ° C. and stirred for 120 minutes. The obtained titanium oxide-containing slurry was filtered, washed, and dried to obtain a high-purity fine particle titanium oxide powder (Sample W).
  • Comparative Example 2 In 1 liter of ion-exchanged water heated to 30 ° C., 100 g of titanium tetrachloride aqueous solution and aqueous ammonia as TiO 2 were added simultaneously over 60 minutes, respectively, and the pH was kept at 5.8 to 6.2. Disassembled. The obtained titanium oxide-containing slurry was washed by filtration and dried to obtain a high-purity fine particle titanium oxide powder (sample b).
  • a slurry is prepared by adding 30% of pure water and 3% by mass of a polycarboxylic acid dispersant to titanium oxide to 3 g of titanium oxide dry powder.
  • As a slurry and a medium 60 g of 0.09 ⁇ mm zircon beads were placed in a 70 ml mayonnaise bottle and dispersed for 60 minutes with a paint shaker.
  • Aggregated particle size (nm) Measured using a laser diffraction / scattering particle size distribution analyzer (NanotracUPA manufactured by Nikkiso Co., Ltd.). The 50% cumulative mass particle size distribution diameter (D50) in the measured particle size distribution was defined as the aggregate particle size.
  • FIGS. 1 to 16 show electron micrographs of the samples (A to I and K to Q) of the examples.
  • Samples A to W produced in Examples 1 to 23 had a small primary particle diameter, a small aggregate particle diameter, and a small ratio (aggregated particle diameter / BET diameter). Further, it was found that the purity of TiO 2 was 99.9% by mass or more, and was sufficiently high, and the pore volume was relatively large. The impurity contained in the fine particle titanium oxide was measured by ICP analysis.
  • A represents anatase type crystal and R represents rutile type crystal.
  • a / r indicates anatase rich.
  • R / A indicates that anatase and rutile are comparable.
  • R / a indicates rutile rich.
  • the rutile% is calculated from the following formula by estimating the respective contents from the rutile peak and the anatase peak of X-ray diffraction.
  • Rutile% rutile content / (rutile content + anatase content) * 100 The blank part represents unmeasured, and “-” indicates that measurement is not possible.
  • Li / Ti ratio Production of lithium titanate Li / Ti ratio is set to 0.81, a predetermined amount of LiOH.H 2 O is weighed into a SUS container, and pure water is poured into an aqueous solution so that the concentration becomes 4.5 mol / L. did. Thereafter, the powders of Samples A to W were added so that the slurry solid content was 60 g / L at room temperature, and the mixture was stirred and dispersed for about 30 minutes. Thereafter, spray drying was performed by spray drying (manufactured by Yamato: nozzle type) to obtain a dry powder.
  • barium hydroxide Ba (OH) 2 .8H 2 O)
  • each sample was a compound having good crystallinity and a small primary particle diameter, and its reactivity with barium. I found it good.
  • the fine particle titanium oxide of the present invention is a high-purity titanium oxide and has a low degree of aggregation, so it has good reactivity with barium, lithium, etc., and is a raw material, catalyst carrier, catalyst, Suitable as a photocatalyst, an adsorbent and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cosmetics (AREA)

Abstract

 一次粒子径が小さく、しかも、凝集粒子径が小さい、微粒子酸化チタンとその製造方法を提供する。 微粒子酸化チタンのBET径が1~50nmであり、凝集粒子径が1~200nmであり、それらの比(凝集粒子径/BET径)が1~40である。(オキシ)塩化チタンを水系溶媒中でpH範囲、温度範囲を制御して加水分解を行う。更に好ましくは、(オキシ)塩化チタンを水系溶媒中で第一加水分解を行い、次いで、(オキシ)塩化チタンを添加し第二加水分解を行う。

Description

微粒子酸化チタン及びその製造方法
 本発明は、微粒子酸化チタン及びその製造方法に関する。
 平均一次粒子径が0.1μm以下の酸化チタンは微粒子酸化チタンと呼ばれ、可視光に対して透明性を有し、紫外線に対しては遮蔽能を有するため、この特性を利用して日焼け止め化粧料や紫外線遮蔽塗料として利用されている。また、高比表面積であることから脱硝触媒やダイオキシン分解触媒等の触媒担体に用いられ、紫外線の照射により励起して光触媒作用や、親水性作用や、防曇作用を発現し、光触媒や太陽電池用電極等に用いられる。更に、チタン酸バリウムや、チタン酸ストロンチウムや、チタン酸リチウム等のチタン複合酸化物を製造するための原料に用いられる。
 微粒子酸化チタンを製造する方法として、四塩化チタン水溶液を液相で加水分解する方法が知られている。例えば、特許文献1には、四塩化チタン水溶液の加水分解により発生する塩化水素の反応槽からの逸出を抑制しながら加水分解を行うことが記載され、特許文献2には、四塩化チタン、水及び多価カルボン酸を50℃未満の温度で混合し、次いでその混合溶液を加熱して加水分解反応を行い、酸化チタンを生成させることを記載している。特許文献3には、四塩化チタン水溶液を5~30℃に保持しながら、アルカリ溶液で中和加水分解してコロイド状の非晶質水酸化チタンを析出させ、これを60~80℃の温度で1~10時間熟成して、平均結晶子径が5~13nmである微小チタニアゾルを得ることを記載している。特許文献4には、65~90℃の水に対し、四塩化チタン及び塩酸を各々1~5質量%混合し、65℃~混合液の沸点の温度範囲に混合液の温度を保持しながら加水分解して、ルチル含有率が50~99.9質量%であり、BET比表面積が50m2/g超300m2/g以下であり、一次粒子の平均粒子径は、5~100nmの範囲内である酸化チタン粒子を製造することを記載している。更に、特許文献5には、四塩化チタン水溶液等のチタン化合物水溶液と塩基を混合・反応させてチタン化合物を加水分解する工程において、予め水性媒体中にアナターゼ型酸化チタン微粒子を分散された分散液を調製し、前記分散液に、チタン化合物水溶液と塩基を混合・反応させてチタン化合物を加水分解することを記載している。
特開平9-67125号公報 特開平9-278443号公報 特開2001-26423公報 特開2006-335619公報 特開2009-120422公報
 前記の従来技術の方法では、四塩化チタンを出発物質としているためにTiOの純度が高く、一次粒子径の小さい微粒子酸化チタンが製造できる。しかしながら、湿式法(液相法)であるため、一次粒子が多数凝集した凝集粒子を形成し、その凝集粒子径は著しく大きくなり易い。そのため、透明性、紫外線遮蔽能等が低下し易く、チタン酸バリウム、チタン酸リチウム等のチタン複合酸化物を製造する際のバリウムやリチウム等との反応性が低くなったり、触媒成分を分散して担持し難く、被処理成分の吸着性が低下して触媒、光触媒、吸着剤等の活性が低くなったりするなどの問題がある。
 本発明者らは、(オキシ)塩化チタン(本願において、「(オキシ)塩化チタン」とは、塩化チタン又はオキシ塩化チタンという意である。)の加水分解条件を見直した結果、(オキシ)塩化チタンを水系溶媒中で加水分解する際のpH範囲と温度範囲が重要であり、それらを制御することにより一次粒子径が小さく、しかも、凝集粒子径も比較的小さい微粒子酸化チタンを製造することができること、更に、前記のpH範囲と温度範囲を保持しながら、(オキシ)塩化チタンを水系溶媒中で加水分解し、次いで、該水系溶媒に(オキシ)塩化チタンとアルカリを同時に添加し加水分解する方法などの二回の加水分解を行うことにより、より一層所望される微粒子酸化チタンを製造することができることを見出し、本発明を完成した。
 すなわち、本発明は、
 1. BET径が1~50nmであり、凝集粒子径が1~200nmであり、しかも、それらの比(凝集粒子径/BET径)が1~40である、微粒子酸化チタン、
 2. 50~110℃の温度に加熱した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを加水分解する微粒子酸化チタンの製造方法、
 3. (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、水系溶媒を50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解する微粒子酸化チタンの製造方法、
 4. (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解する微粒子酸化チタンの製造方法、
 5. 前記の2~4の方法で第一加水分解を行った後に、再度2~4のそれぞれ一の方法を行って第二加水分解を行う、微粒子酸化チタンの製造方法、などである。
 本発明は、より具体的には、以下の通りである。
(1) BET径が1~50nmであり、凝集粒子径が1~200nmであり、しかも、それらの比(凝集粒子径/BET径)が1~40である、微粒子酸化チタン、
(2) アナタース形及び/又はルチル形の結晶形を有する、(1)に記載の微粒子酸化チタン、
(3) 細孔径1~100nmの範囲の細孔容積が0.2~0.7ml/gである、(1)又は(2)に記載の微粒子酸化チタン、
(4) 50~110℃の温度に加熱した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを加水分解することを含む、微粒子酸化チタンの製造方法、
(5) (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解することを含む、微粒子酸化チタンの製造方法、
(6) (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解することを含む、微粒子酸化チタンの製造方法、
(7) 50~110℃の温度に加熱した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(8) 50~110℃の温度に加熱した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(9) 50~110℃の温度に加熱した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(10) (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリとを混合して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(11) (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(12) (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(13) (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリとを混合して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(14) (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(15) (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合し、次いで、水系溶媒を50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法、
(16) 第一加水分解した生成物と第二加水分解した生成物との質量比が3:97~70:30の範囲である、(7)~(15)のいずれかに記載の微粒子酸化チタンの製造方法、
(17) 第一加水分解と第二加水分解の反応を一つの反応槽内で行う、(7)~(16)のいずれかに記載の微粒子酸化チタンの製造方法、
(18) 第一加水分解した生成物の粒子表面に、第二加水分解した生成物が析出し成長する、(7)~(17)のいずれかに記載の微粒子酸化チタンの製造方法、
(19) 前記の(4)~(18)のいずれかに記載の方法で製造した微粒子酸化チタンを含む水系溶媒にアルカリ又は酸を添加してpHを6.0~8.0の範囲に調整し、次いで、ろ過し、乾燥することを含む、微粒子酸化チタン粉末の製造方法、
(20) 前記の(4)~(19)のいずれかに記載の方法で製造した微粒子酸化チタンを焼成することを含む、微粒子酸化チタン粉末の製造方法、
(21) 前記の(1)~(3)のいずれかに記載の微粒子酸化チタンと少なくとも一種の金属元素(チタンを除く)との反応生成物を含む、複合酸化物。
 本発明の微粒子酸化チタンは、一次粒子径が小さく、しかも、凝集粒子径も小さく、凝集程度が低いものである。このため、バリウム、リチウム等との反応性がよく、チタン複合酸化物を製造するための原料として適している。また、高比表面積であるため触媒成分の分散担持がし易く、被処理成分の吸着性がよいことから、触媒担体、触媒、光触媒、吸着剤等にも好適に用いられる。
 本発明の微粒子酸化チタンの製造方法は、(オキシ)塩化チタンを水系溶媒中で加水分解する際のpH範囲と温度範囲を制御するという簡便な方法である。更に、前記のpH範囲と温度範囲を保持しながら、(オキシ)塩化チタンを水系溶媒中で第一加水分解を行い、次いで、(オキシ)塩化チタンを添加し第二加水分解を行うなど、二段の加水分解を行うという簡便な方法であり、また、一つの反応槽でも行えることから設備面でも利点がある。
実施例1の試料Aの電子顕微鏡写真である。 実施例2の試料Bの電子顕微鏡写真である。 実施例3の試料Cの電子顕微鏡写真である。 実施例4の試料Dの電子顕微鏡写真である。 実施例5の試料Eの電子顕微鏡写真である。 実施例6の試料Fの電子顕微鏡写真である。 実施例7の試料Gの電子顕微鏡写真である。 実施例8の試料Hの電子顕微鏡写真である。 実施例9の試料Iの電子顕微鏡写真である。 実施例11の試料Kの電子顕微鏡写真である。 実施例12の試料Lの電子顕微鏡写真である。 実施例13の試料Mの電子顕微鏡写真である。 実施例14の試料Nの電子顕微鏡写真である。 実施例15の試料Oの電子顕微鏡写真である。 実施例16の試料Pの電子顕微鏡写真である。 実施例17の試料Qの電子顕微鏡写真である。
 本発明において酸化チタンとは、二酸化チタン、一酸化チタンのほかに、含水酸化チタン、水和酸化チタン、メタチタン酸、オルトチタン酸等といわれるものを含み、アナタース形及び/又はルチル形の結晶形を有してもよく、アモルファス(無定形)であってもよく、それらが適宜混合したものであってもよい。酸化チタンの結晶形はX線回折により同定することができる。酸化チタンの純度は、特にバリウム、リチウム等とのチタン複合酸化物の原料に用いるとの観点から99質量%以上が好ましく、99.9質量%以上がより好ましい。酸化チタンに含まれる不純物は、塩素、硫黄、アルカリ金属、アルカリ土類金属等であり、酸化チタンに存在する不純物を蛍光X線分析、ICP分析等で測定する。
 本発明の酸化チタンは、BET径が1~50nmであり、凝集粒子径が1~200nmであり、しかも、それらの比(凝集粒子径/BET径)が1~40である。微粒子酸化チタンの一次粒子径は下記のBET径で表し、その値は、1~50nmであり、好ましくは5~30nmであり、より好ましくは5~15nmであり、微細なものほどバリウム、リチウム等との反応性がよい。微粒子酸化チタンのBET径は、窒素吸着法(BET法)による比表面積a(m/g)を用いて、下記式により求める。
  式:d=6/(ρ・a)
ただし、dは一次粒子径(BET径)(μm)、ρは酸化チタンの比重(g/cm)である。微粒子酸化チタンの比表面積aは、大きいものほどBET径が小さくなるので好ましく、具体的には50~400m/gが好ましく、100~300m/gがより好ましい。アナタース形酸化チタンの比重は3.9であり、ルチル形の比重は4.2であるので、比表面積aが50m/gであるとBET径は約30nm程度であり、100m/gであると約15nm、300m/gであると約5nm程度となる。
 微粒子酸化チタンの凝集粒子径は、酸化チタン乾燥粉末3gに純水30ml及びポリカルボン酸系分散剤を酸化チタンに対して3質量%を加えたスラリーを作製する。このスラリーとメディアとして0.09φmmのジルコンビーズ60gを、容積70mlのマヨネーズ瓶に入れ、ペイントシェーカーで60分間分散させた後、レーザー回折・散乱式粒子径分布測定装置(日機装社製NanotracUPA)にかけて、粒度分布を測定する。このようにして測定された粒度分布における50%累積質量粒度分布径(D50)を凝集粒子径とする。この凝集粒子径が小さいと凝集程度が低いことを示すため、より小さい凝集粒子径が好ましく、具体的には1~200nmであり、10~150nmが好ましく、10~120nmがより好ましく、10~100nmが更に好ましい。この凝集粒子径と上記のBET径との比(凝集粒子径/BET径)は凝集程度を表し、この比が小さいと凝集程度が小さいことを表し、具体的には1~40であり、3~30が好ましく、5~15がより好ましい。
 微粒子酸化チタンは一次粒子がある程度凝集して凝集粒子を形成しているため、その一次粒子同士の隙間を細孔として考えることができ、細孔容積を上記の窒素吸着法(BET法)の比表面積測定装置で測定することができる。細孔容積量が大きいとバリウム、リチウム等との接触面積が大きく反応性がよい。具体的には、細孔径(直径)1~100nmの範囲の細孔容積が0.2~0.7ml/gの範囲であることが好ましく、0.3~0.5ml/gであることがより好ましい。
 微粒子酸化チタンの一次粒子径は、結晶子が集合して構成されているため、一次粒子径をより微細にするにはこの結晶子径をより小さくするのが好ましい。この結晶子径は、(110)面等のX線回折ピークより下記のシェラーの公式を用いて算出することができ、例えば、20~250Åであり、20~150Åが好ましく、50~100Åがより好ましい。
シェラ-の公式:DHKL=K*λ/βcosθ
ここで、DHKL:平均結晶子径(Å)、λ:X線の波長、β:回折ピークの半価幅、θ:Bragg’s角、K:定数を表す。
 本発明の微粒子酸化チタンの製造方法は、(オキシ)塩化チタンの加水分解を1段で行う方法と、前記の方法で第一加水分解(即ち、一段目の加水分解)を行った後に、再度第二加水分解(即ち、二段目の加水分解)を行う方法(即ち、2段で加水分解を行う方法)がある。第二加水分解後に、再度第三加水分解(即ち、三段目の加水分解)を行ったり、第三加水分解後に再度第四加水分解(即ち、四段目の加水分解)等を行ったりしても差し支えない。1段で加水分解を行うには、(1)50~110℃の温度に加熱した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを加水分解する方法(以下、同時中和加水分解法という場合がある)、(2)(オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解する方法(以下、酸性下加熱加水分解法という場合がある)、(3)(オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解する方法(以下、アルカリ添加加水分解法という場合がある)がある。
 原料の(オキシ)塩化チタンは、四塩化チタン、三塩化チタン、オキシ塩化チタン等を用いることができ、四塩化チタンが好ましい。
 また、水系溶媒とは、水又は水にアルコール等の有機溶媒を混合した溶媒であり、有機溶媒の含有量は10質量%以下程度が好ましい。
 アルカリとしては、アルカリ性を呈する化合物であればどのようなものでも使えるが、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、アンモニア水、アンモニアガス等のアンモニウム化合物、アルキルアミン、エタノールアミン等のアミン化合物等が挙げられ、微粒子酸化チタンに不純物として残留しないアンモニウム化合物やアミン化合物が好ましい。また、pH調整に用いる酸としては、塩酸、硫酸、硝酸等の鉱酸、酢酸等の有機酸を用いることができ、微粒子酸化チタンに不純物として残留しない塩酸や有機酸が好ましい。
 また、水系溶媒に、(オキシ)塩化チタンとアルカリとカルボン酸、多価カルボン酸及びそれらの塩から選ばれる少なくとも一種とを混合して、(オキシ)塩化チタンを加水分解するのが好ましく、カルボン酸、多価カルボン酸及びそれらの塩から選ばれる少なくとも一種を水系溶媒に混合した後に、(オキシ)塩化チタンを混合してもよいし(オキシ)塩化チタンとアルカリを混合してもよく、(オキシ)塩化チタンとアルカリとカルボン酸、多価カルボン酸及びそれらの塩から選ばれる少なくとも一種とを同時並行的に混合してもよい。前記のカルボン酸、多価カルボン酸はカルボキシル基を有する化合物であり、制限なく用いることができるが、例えば、次のようなものを用いることができ、特にクエン酸及び/又はその塩を用いるのが好ましい。
(a)カルボン酸、例えば、ギ酸、酢酸、プロピオン酸。
(b)ポリ(多価)カルボン酸、特にジカルボン酸、トリカルボン酸、例えば、シュウ酸、フマル酸。
(c)ヒドロキシポリ(多価)カルボン酸、特にヒドロキシジ-又はヒドロキシトリ-カルボン酸、例えばリンゴ酸、クエン酸又はタルトロン酸。
(d)(ポリヒドロキシ)モノカルボン酸、例えばグルコヘプトン酸又はグルコン酸。
(e)ポリ(多価)(ヒドロキシカルボン酸)、例えば酒石酸。
(f)ジカルボキシルアミノ酸及びその対応するアミド、例えばアスパラギン酸、アスパラギン又はグルタミン酸。
(g)ヒドロキシル化され又はヒドロキシル化されていないモノカルボキシルアミノ酸、例えばリジン、セリン又はトレオニン。
 カルボン酸塩としては、どのような塩でも制限なく用いることができるが、例えばナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩等を用いることができる。カルボン酸、多価カルボン酸及びその塩の量は、微粒子酸化チタンに対する質量%で表して、0.5~10質量%が好ましく、1~5質量%がより好ましい。上記範囲であるとカルボン酸等の添加により生成した酸化チタンを任意の結晶形にコントロールし易く、粒子形状が粒状になり易い。上記範囲より多くしても、更なるカルボン酸等の添加による効果が得られ難い。
(1)同時中和加水分解法
 この方法は、50~110℃の温度に加熱した水系溶媒を用意し、これにpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを加水分解する方法である。(オキシ)塩化チタンとアルカリは同時並行的に添加するのが好ましいが、断続的に添加してもよい。添加時間は適宜設定することができ、10分~5時間程度が適当である。pHとしては、凝集程度を低くすることができるという点で、0~2あるいは2~7あるいは7~9あるいは9~12から一の範囲を選択するのが好ましい。
(2)酸性下加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解する方法である。pH調整には、(オキシ)塩化チタンの量で制御することができ、また、上記の酸を添加してもよい。好ましいpH範囲は-1~1であり、通常のpH計では測定できない0以下であってもよい。加熱時間は適宜設定することができ、10分~5時間程度が適当である。
(3)アルカリ添加加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解する方法である。pH0~9の調整は、アルカリを混合して行い、pHとしては、凝集程度を低くすることができるという点で、0~2あるいは2~7あるいは7~9から一の範囲を選択するのが好ましい。加熱時間は適宜設定することができ、10分~5時間程度が適当である。
 次に2段で加水分解を行う方法であるが、具体的には、前記の(1)~(3)の方法で第一加水分解を行った後に、再度(1)~(3)のそれぞれ一の方法を行って第二加水分解を行う方法である。温度、時間、pHや、カルボン酸等の添加などのそれぞれの加水分解条件は、前記の条件に沿って行うことができる。第一加水分解した生成物と第二加水分解した生成物との質量比が1:99~99:1の範囲であることが好ましく、2:98~90:10の範囲であることがより好ましく、3:97~70:30の範囲であることがより好ましく、5:95~50:50の範囲であることが更に好ましい。
 また、第一加水分解反応後に続いて第二加水分解を行って、第一加水分解と第二加水分解の反応を一つの反応槽内で行うのが好ましい。一方、第一加水分解反応後に生成物をろ過し、必要に応じて洗浄した後に、水系溶媒にレパルプし、次いで第二加水分解反応を行うこともでき、この場合、反応槽は二槽使用することになる。
 更に、第一加水分解した生成物の粒子表面に、第二加水分解した生成物が析出し成長させるのが好ましく、粒子成長させることにより凝集粒子の形成を抑制することができる。しかしながら、第一加水分解の生成物と第二加水分解の生成物とは別々の生成物を形成しても差し支えない。
(4)同時中和加水分解法→同時中和加水分解法
 この方法は、50~110℃の温度に加熱した水系溶媒を用意し、このpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒を準備し、このpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第二加水分解する。つまり、第二加水分解では、前記第一加水分解した生成物(一段目の(オキシ)塩化チタンの加水分解で得られる生成物)を含み50~110℃の温度に調整した水系溶媒に対して(オキシ)塩化チタンとアルカリを再度、pHを0~12の範囲に維持しながら混合して、二段目の(オキシ)塩化チタンの加水分解を行う。
(5)同時中和加水分解法→酸性下加水分解法
 この方法は、50~110℃の温度に加熱した水系溶媒を用意し、このpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含む水系溶媒を準備し、これに(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解する。
(6)同時中和加水分解法→アルカリ添加加水分解法
 この方法は、50~110℃の温度に加熱した水系溶媒を用意し、このpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含む水系溶媒を準備し、これに(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解する。
(7)酸性下加水分解法→同時中和加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒を準備し、このpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリとを混合して、(オキシ)塩化チタンを第二加水分解する。
(8)酸性下加水分解法→酸性下加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含む水系溶媒を準備し、これに(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解する。
(9)酸性下加水分解法→アルカリ添加加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含む水系溶媒を準備し、これに(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解する。
(10)アルカリ添加加水分解法→同時中和加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒を用意し、このpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリとを混合して、(オキシ)塩化チタンを第二加水分解する。
(11)アルカリ添加加水分解法→酸性下加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含む水系溶媒を準備し、これに(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解する。
(12)アルカリ添加加水分解法→アルカリ添加加水分解法
 この方法は、(オキシ)塩化チタンを含む水系溶媒を用意し、このpHが0~9の範囲になるようにアルカリを混合し、次いで、水系溶媒を50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解する。次いで、第一加水分解した生成物を含む水系溶媒を準備し、これに(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解する。
 前記のいずれかの方法で製造した微粒子酸化チタンを含む水系溶媒にアルカリ又は酸を添加してpHを0~9の範囲に調整し、水系溶媒の温度を50~90℃に保持して熟成してもよい。熟成時間は10分~5時間程度である。熟成することにより微粒子酸化チタンの結晶性を高め、凝集程度を抑制したり、一次粒子径(BET径)を適当な範囲に調整したりすることもできる。また、前記のいずれかの方法で製造した微粒子酸化チタンを含む水系溶媒にアルカリ又は酸を添加してpHを6.0~8.0の範囲に調整し、次いで、ろ過し、乾燥することにより、微粒子酸化チタン粉末を製造することができる。
 また、前記のいずれかの方法で製造した微粒子酸化チタンを焼成してもよい。焼成温度は150~800℃程度が好ましく、バリウム、リチウム等との反応性がよく比表面積の低下が生じ難いことから150~600℃の範囲がより好ましい。焼成時間は適宜設定することができ、1~10時間程度が適当である。焼成の雰囲気は、大気等の酸素ガス含有雰囲気下、窒素等の不活性ガス雰囲気下で行うことができる。
 また、得られた微粒子酸化チタンを、必要に応じて公知の方法により湿式粉砕、整粒を行ってもよく、その後更に従来の顔料用二酸化チタンや微粒子酸化チタンで通常行われているのと同様にして、粒子表面をアルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、亜鉛から成る群より選ばれた少なくとも1種の含水酸化物、水酸化物や酸化物等で被覆してもよい。被覆処理量としては、基体の微粒子酸化チタンに対して全量で1~50質量%が好ましく、より好ましくは5~30質量%である。また、得られた微粒子酸化チタンを触媒担体、触媒、光触媒、吸着剤として用いる場合、通常の方法により触媒成分、例えば、白金、タングステン、銅、銀、金等の金属や化合物を担持してもよい。
 また、微粒子酸化チタンの表面に、脂肪酸やその塩、アルコール、アルコキシシラン化合物、アミノアルコキシシラン化合物等の有機化合物を被覆処理してもよい。アルコキシシラン化合物及び/又はアミノアルコキシシラン化合物等は、加水分解された状態で被覆されてもよい。有機化合物の被覆処理量としては、基体の微粒子酸化チタンに対して全量で1~50質量%好ましく、より好ましくは5~30質量%である。この範囲は、被覆処理量が1質量%未満と少なすぎると所望の耐光性などの効果が得られず、逆に被覆処理量が50質量%を超えるように多すぎると凝集が生じるばかりでなく、経済的にも不利であるという問題を避けることができる点で好ましい。なお、被覆処理する有機化合物は用途、目的に応じて二種類以上を併用してもよい。アルコキシシラン化合物の例としては、ビニルトリメトキシシラン、メチルトリメトキシシラン、プロピルトリメトキシシラン、i-ブチルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン等を挙げることができる。アミノアルコキシシラン化合物の例としてγ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等を挙げることができる。
 微粒子酸化チタンに有機化合物を被覆するには、例えば(1)微粒子酸化チタンをヘンシェルミキサーなどの高速撹拌機に入れて撹拌しながら、有機化合物、またはこれらの水あるいはアルコール溶液を滴下、あるいはスプレーにより添加し、均一になるように撹拌した後、乾燥する乾式法、(2)微粒子酸化チタンを水中に分散させたスラリーに、撹拌しながら有機化合物、またはこれらの水あるいはアルコール溶液を添加し、充分に撹拌した後、ろ過、洗浄、乾燥する湿式方法、のいずれを用いることができる。
 本発明の微粒子酸化チタンと少なくとも一種の金属元素(チタンを除く)との反応生成物を含む複合酸化物は、微細であって結晶性がよい。金属元素には、典型金属元素(アルカリ金属元素(第1族元素)、アルカリ土類金属元素(第2族元素)、第12族元素、第13族元素、第14族元素、第15族元素)、遷移金属元素(チタンをのぞく)から選ばれる少なくとも一種が挙げられる。例えば、チタン酸リチウムはリチウム二次電池の負極活物質として、チタン酸ナトリウムは各種チタン酸化合物製造用の原料・中間体として、チタン酸カリウムはフィラーとして有用である。また、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムは誘電体等として有用である。そのほか、例えば、チタン酸アルミニウム、チタン酸アルミニウムマグネシウム等は耐熱性材料として、チタン酸鉛等は圧電体として有用である。これらの複合酸化物は、本発明の微粒子酸化チタンと少なくとも一種の金属化合物とを混合し、必要に応じて焼成して製造することができる。
 以下に本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。
実施例1
 TiOとして100g/リットルの四塩化チタン水溶液を室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して加水分解した。その後、70℃まで冷却し、アンモニア水でpH=6.5まで中和した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料A)を得た。
実施例2
 実施例1の酸化チタン粉末を電気炉で500℃の温度で2時間焼成して、高純度微粒子酸化チタン粉末(試料B)を得た。
実施例3
 四塩化チタン水溶液にアンモニア水を添加してpH=3.4とし、これを65℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、質量比で、TiOとして第一加水分解した生成物:TiOとして第二加水分解した生成物=5:95となるように四塩化チタン水溶液を添加し、混合した。次いで、70℃に昇温し、アンモニア水を添加してpH=6.7とし、30分間撹拌保持して第二加水分解した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料C)を得た。
実施例4
 70℃に加熱したイオン交換水1リットル中に、TiOとして100g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=0.8~1.2を保持して加水分解した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料D)を得た。
実施例5
 実施例4の酸化チタン粉末を電気炉で400℃の温度で2時間焼成して高純度微粒子酸化チタン粉末(試料E)を得た。
実施例6
 60℃に加熱したイオン交換水1リットル中に、TiOとして100g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=5.8~6.2を保持して加水分解した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料F)を得た。
実施例7
 実施例6の酸化チタン粉末を電気炉で370℃の温度で2時間焼成して、高純度微粒子酸化チタン粉末(試料G)を得た。
実施例8
 実施例6の酸化チタン粉末を電気炉で410℃の温度で2時間焼成して、高純度微粒子酸化チタン粉末(試料H)を得た。
実施例9
 実施例6の酸化チタン粉末を電気炉で530℃の温度で2時間焼成して、高純度微粒子酸化チタン粉末(試料I)を得た。
実施例10
 60℃に加熱したイオン交換水1リットル中に、TiOとして100g分の四塩化チタン水溶液と水酸化ナトリウム水溶液をそれぞれ60分かけて同時に添加し、pH=10.8~11.2を保持して加水分解した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して微粒子酸化チタン粉末(試料J)を得た。
実施例11
 60℃に加熱したイオン交換水1リットル中に、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=0.8~1.2を保持して第一加水分解した。次いで、TiOとして50g分の四塩化チタン水溶液を添加混合し、pH1以下に調整した。次いで、これを92℃に昇温し、30分間撹拌保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料K)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例12
 60℃に加熱したイオン交換水1リットル中に、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=5.8~6.2を保持して第一加水分解した。次いで、TiOとして50g分の四塩化チタン水溶液を添加混合し、pH1以下に調整した。次いで、これを92℃に昇温し、30分間撹拌保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料L)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例13
 60℃に加熱したイオン交換水1リットル中に、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=7.8~8.2を保持して第一加水分解した。次いで、TiOとして50g分の四塩化チタン水溶液を添加混合し、pH1以下に調整した。次いで、これを92℃に昇温し、30分間撹拌保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料M)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例14
 TiOとして30g/リットルの四塩化チタン水溶液1リットルを室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、92℃の温度下TiOとして70g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=0.8~1.2を保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、濾過洗浄し、乾燥して高純度微粒子酸化チタン粉末(試料N)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例15
 実施例14の酸化チタン粉末を電気炉で400℃の温度で2時間焼成して高純度微粒子酸化チタン粉末(試料O)を得た。
実施例16
 TiOとして50g/リットルの四塩化チタン水溶液1リットルを室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、92℃の温度下TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=0.8~1.2を保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して高純度微粒子酸化チタン粉末(試料P)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例17
 TiOとして70g/リットルの四塩化チタン水溶液1リットルを室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、92℃の温度下TiOとして30g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=0.8~1.2を保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して高純度微粒子酸化チタン粉末(試料Q)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例18
 TiOとして50g/リットルの四塩化チタン水溶液1リットルを室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、92℃の温度下TiOとして50g分の四塩化チタン水溶液と水酸化ナトリウム水溶液をそれぞれ60分かけて同時に添加し、pH=10.8~11.2を保持して第二加水分解した。得られた酸化チタン含有スラリーを塩酸でpH=6.5まで中和後、ろ過洗浄し、乾燥して高純度微粒子酸化チタン粉末(試料R)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例19
 60℃に加熱したイオン交換水1リットル中に、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ30分かけて同時に添加し、pH=5.8~6.2を保持して第一加水分解した。次いで、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ30分かけて同時に添加し、pH=0.8~1.2を保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料S)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例20
 60℃に加熱したイオン交換水1リットル中に、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ30分かけて同時に添加し、pH=0.8~1.2を保持して第一加水分解した。次いで、TiOとして50g分の四塩化チタン水溶液とアンモニア水をそれぞれ30分かけて同時に添加し、pH=5.8~6.2を保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料T)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例21
 TiOとして50g/リットルの四塩化チタン水溶液1リットルを室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、TiOとして50g分の四塩化チタン水溶液を添加混合し、pH1以下に調整した。次いで、これを92℃に昇温し、30分間撹拌保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料U)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例22
 TiOとして30g/リットルの四塩化チタン水溶液1リットルを室温に保持しながら、TiOに対して3質量%の無水クエン酸を添加し、30分間撹拌した(pHは0以下であった)。これを92℃に昇温し、30分間撹拌保持して第一加水分解した。次いで、TiOとして70g分の四塩化チタン水溶液を添加混合し、pH1以下に調整した。次いで、これを92℃に昇温し、30分間撹拌保持して第二加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料V)を得た。この反応は、すべて一つの反応槽内で実施した。
実施例23
 四塩化チタン水溶液にアンモニア水を添加してpH=7.0とし、これを70℃に昇温し、30分間撹拌保持後、90℃に昇温し、120分間撹拌保持した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して、高純度微粒子酸化チタン粉末(試料W)を得た。
比較例1
 室温に保持したアンモニア水中に、60分かけて四塩化チタン水溶液を加え、pH=6.5として加水分解した。得られた酸化チタン含有スラリーをアンモニア水でpH=6.5まで中和後、ろ過洗浄し、乾燥して高純度微粒子酸化チタン粉末(試料a)を得た。
比較例2
 30℃に加熱したイオン交換水1リットル中に、TiOとして100g分の四塩化チタン水溶液とアンモニア水をそれぞれ60分かけて同時に添加し、pH=5.8~6.2を保持して加水分解した。得られた酸化チタン含有スラリーをろ過洗浄し、乾燥して高純度微粒子酸化チタン粉末(試料b)を得た。
評価1
 BET比表面積(m/g):流動式比表面積自動測定装置(商品名FlowSorbII 2300、島津製作所社製)を用いて、窒素吸着法により求めた。このとき、脱離は窒素ガス流通下、室温の温度条件で行い、吸着は77Kの温度条件で行った。このBET比表面積から式:d=6/(ρ・a)より、一次粒子径(BET径)を算出した。
評価2
 結晶形及び結晶子径:X線回折装置(商品名UltimaIV、リガク社製)を用いて、X線管球:Cu、管電圧:40kV、管電流:40mA、発散スリット:1/2°、散乱スリット:8mm、受光スリット:開放、サンプリング幅:0.020度、走査速度:10.00度/分の条件でX線回折スペクトルを測定し、このスペクトルから結晶形及び結晶子径を求めた。
評価3
 細孔容積(ml/g):自動比表面積/細孔分布測定装置(商品名BELSORP-miniII、日本ベル社製)を用いて、BJH法により細孔径1~100nmの範囲について求めた。
評価4
 評価用スラリー作製:酸化チタン乾燥粉末3gに純水30ml及びポリカルボン酸系分散剤を酸化チタンに対して、3質量%を加えたスラリーを作製する。このスラリー及びメディアとして0.09φmmジルコンビーズ60gを容積70mlのマヨネーズ瓶に入れ、ペイントシェーカーで60分間分散させた。
 凝集粒子径(nm):レーザー回折・散乱式粒子径分布測定装置(日機装社製NanotracUPA)を用いて測定した。測定された粒度分布における50%累積質量粒度分布径(D50)を凝集粒子径とした。
 評価1~4の結果を表1に示す。また、実施例の試料(A~I、K~Q)の電子顕微鏡写真を図1~図16に示す。実施例1~23で製造した試料A~Wは、一次粒子径が小さく、凝集粒子径も小さく、それらの比(凝集粒子径/BET径)が小さいものであった。また、TiOの純度も99.9質量%以上であり、十分高いこと、細孔容積も比較的大きいことがわかった。なお、微粒子酸化チタンに含まれる不純物の測定は、ICP分析で行った。
Figure JPOXMLDOC01-appb-T000001

注)表中、Aはアナタース形結晶を示し、Rはルチル形結晶を示す。A/rはアナタースリッチであることを示す。R/Aはアナタース及びルチルが同程度であることを示す。R/aはルチルリッチであることを示す。ルチル%は、X線回折のルチルピークとアナタースピークからそれぞれの含有量を推定し、次の式から算出する。
ルチル%=ルチル含有量/(ルチル含有量+アナタース含有量)*100
なお、空白部分は未測定を表し、「-」は測定不可のものを示す。
 チタン酸リチウムの製造
 Li/Ti比を0.81に設定し、SUS製容器に所定量のLiOH・HOを秤量し、濃度が4.5mol/Lとなるように純水を張り込み水溶液とした。その後、常温にてスラリー固形分が60g/Lとなるよう試料A~Wのそれぞれの粉末を投入し、30分程撹拌させて分散させた。その後、スプレードライ(Yamato社製:ノズル式)で噴霧乾燥を行い、乾燥粉を得た。(噴霧条件:入口温度190℃、出口温度85℃、Air圧0.25MPa) 
 得られた乾燥粉を所定量るつぼに仕込み、マッフル炉にて400~600℃の範囲で焼成を行った。得られた試料をX線回折、及びTG-DTA熱分析などの評価を行った結果、比較的低い温度域でLiTi12への相変化・結晶化が始まり、リチウムとの反応性がよいことがわかった。
 チタン酸バリウムの製造
 試料A~Wのそれぞれの微粒子酸化チタン粉末100gとイオン交換水1リットルとをビーカーに入れ、水性懸濁液とした。次いで、この水性懸濁液と市販の水酸化バリウム(Ba(OH)・8HO)(Ba/Tiモル比=1.5)を3リットルのオートクレーブに入れた後、加熱し、150℃の温度で1時間保持して飽和水蒸気圧下で水熱処理を行った。次いで、得られた生成物を吸引濾過器で濾過し、洗浄し、105℃の温度で乾燥してチタン酸バリウム粉末を得た。
 更に、前記の方法で得た乾燥物10gを550℃の温度で1時間焼成してチタン酸バリウム粉末を得た。
 得られたチタン酸バリウム試料をX線回折、及びTG-DTA熱分析などの評価を行った結果、それぞれの試料は結晶性がよく、一次粒子径が小さい化合物であって、バリウムとの反応性がよいことがわかった。
 本発明の微粒子酸化チタンは、高純度の酸化チタンであり、凝集程度も小さいことから、バリウム、リチウム等との反応性がよく、チタン複合酸化物を製造するための原料、触媒担体、触媒、光触媒、吸着剤等として好適である。
 

Claims (21)

  1.  BET径が1~50nmであり、凝集粒子径が1~200nmであり、しかも、それらの比(凝集粒子径/BET径)が1~40である、微粒子酸化チタン。
  2.  アナタース形及び/又はルチル形の結晶形を有する、請求項1に記載の微粒子酸化チタン。
  3.  細孔径1~100nmの範囲の細孔容積が0.2~0.7ml/gである、請求項1又は2に記載の微粒子酸化チタン。
  4.  50~110℃の温度に加熱した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを加水分解することを含む、微粒子酸化チタンの製造方法。
  5.  (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解することを含む、微粒子酸化チタンの製造方法。
  6.  (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを加水分解することを含む、微粒子酸化チタンの製造方法。
  7.  50~110℃の温度に加熱した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  8.  50~110℃の温度に加熱した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  9.  50~110℃の温度に加熱した水系溶媒のpHを0~12の範囲になるように(オキシ)塩化チタンとアルカリを混合して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  10.  (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリとを混合して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  11.  (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  12.  (オキシ)塩化チタンを含む水系溶媒のpHを1以下の範囲に調整した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  13.  (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含み50~110℃の温度に調整した水系溶媒のpHが0~12の範囲になるように(オキシ)塩化チタンとアルカリとを混合して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  14.  (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合してpHを1以下の範囲に調整した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  15.  (オキシ)塩化チタンを含む水系溶媒のpHが0~9の範囲になるようにアルカリを混合し、次いで、水系溶媒を50~110℃の温度に加熱して、(オキシ)塩化チタンを第一加水分解し、次いで、第一加水分解した生成物を含む水系溶媒に(オキシ)塩化チタンを混合し、次いで、水系溶媒のpHを0~9の範囲になるようにアルカリを混合した後、50~110℃の温度に調整して、(オキシ)塩化チタンを第二加水分解することを含む、微粒子酸化チタンの製造方法。
  16.  第一加水分解した生成物と第二加水分解した生成物との質量比が3:97~70:30の範囲である、請求項7~15のいずれか一項に記載の微粒子酸化チタンの製造方法。
  17.  第一加水分解と第二加水分解の反応を一つの反応槽内で行う、請求項7~16のいずれか一項に記載の微粒子酸化チタンの製造方法。
  18.  第一加水分解した生成物の粒子表面に、第二加水分解した生成物が析出し成長する、請求項7~17のいずれか一項に記載の微粒子酸化チタンの製造方法。
  19.  前記の請求項4~18のいずれか一項に記載の方法で製造した微粒子酸化チタンを含む水系溶媒にアルカリ又は酸を添加してpHを6.0~8.0の範囲に調整し、次いで、ろ過し、乾燥することを含む、微粒子酸化チタン粉末の製造方法。
  20.  前記の請求項4~19のいずれか一項に記載の方法で製造した微粒子酸化チタンを焼成することを含む、微粒子酸化チタン粉末の製造方法。
  21.  前記の請求項1~3のいずれか一項に記載の微粒子酸化チタンと少なくとも一種の金属元素(チタンを除く)との反応生成物を含む、複合酸化物。
     
     
PCT/JP2015/068781 2014-07-02 2015-06-30 微粒子酸化チタン及びその製造方法 WO2016002755A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP20171720.4A EP3705455B1 (en) 2014-07-02 2015-06-30 Method for producing titanium oxide fine particles
US15/323,248 US10787369B2 (en) 2014-07-02 2015-06-30 Titanium oxide fine particles and method for producing same
KR1020177002629A KR102372694B1 (ko) 2014-07-02 2015-06-30 미립자 산화티탄 및 이의 제조 방법
EP15814239.8A EP3165509B1 (en) 2014-07-02 2015-06-30 Method for producing titanium oxide fine particles
EP18157072.2A EP3339249B1 (en) 2014-07-02 2015-06-30 Method for producing titanium oxide fine particles
EP20152430.3A EP3656740B1 (en) 2014-07-02 2015-06-30 Method for producing titanium oxide fine particles
CA2953901A CA2953901C (en) 2014-07-02 2015-06-30 Titanium oxide fine particles and method for producing same
CN201580040581.4A CN106536415B (zh) 2014-07-02 2015-06-30 氧化钛细粒及其制备方法
EP18157065.6A EP3339248B1 (en) 2014-07-02 2015-06-30 Method for producing titanium oxide fine particles
JP2016531382A JP6607407B2 (ja) 2014-07-02 2015-06-30 微粒子酸化チタン及びその製造方法
HK17105893.8A HK1232205A1 (zh) 2014-07-02 2017-06-14 氧化鈦細粒及其製備方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136810 2014-07-02
JP2014136810 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002755A1 true WO2016002755A1 (ja) 2016-01-07

Family

ID=55019287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068781 WO2016002755A1 (ja) 2014-07-02 2015-06-30 微粒子酸化チタン及びその製造方法

Country Status (9)

Country Link
US (1) US10787369B2 (ja)
EP (5) EP3339248B1 (ja)
JP (1) JP6607407B2 (ja)
KR (1) KR102372694B1 (ja)
CN (2) CN106536415B (ja)
CA (1) CA2953901C (ja)
HK (1) HK1232205A1 (ja)
TW (1) TWI703091B (ja)
WO (1) WO2016002755A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658439A (zh) * 2017-08-30 2018-02-02 格林美(无锡)能源材料有限公司 一种钨钛共包覆的锂离子三元正极材料及其制备方法
WO2019088017A1 (ja) * 2017-11-02 2019-05-09 堺化学工業株式会社 水酸化チタンの製造方法
WO2019189307A1 (ja) 2018-03-28 2019-10-03 石原産業株式会社 酸化チタン粒子及びその製造方法
WO2020170918A1 (ja) 2019-02-19 2020-08-27 昭和電工株式会社 酸化チタンの製造方法
WO2021117568A1 (ja) 2019-12-12 2021-06-17 昭和電工株式会社 高耐熱性アナターゼ型酸化チタン及びその製造方法
WO2023277127A1 (ja) * 2021-07-02 2023-01-05 石原産業株式会社 酸化チタン粒子及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111137916B (zh) * 2019-12-30 2022-05-06 江苏众钠能源科技有限公司 一种自活性钛酸锂材料的制备方法
CN111115680B (zh) * 2019-12-30 2022-05-06 江苏众钠能源科技有限公司 一种钛酸锂材料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638218A (ja) * 1986-06-26 1988-01-14 Mitsubishi Metal Corp 球状二酸化チタン粉末の製造方法
JP2003286011A (ja) * 2002-03-29 2003-10-07 Chiyoda Corp 多孔質無機酸化物の製造方法
JP2006273646A (ja) * 2005-03-29 2006-10-12 Sumitomo Chemical Co Ltd 酸化チタン前駆体の製造方法
JP2006290680A (ja) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology ナノ球状粒子多孔体及びその合成方法
JP2007190514A (ja) * 2006-01-20 2007-08-02 Sumitomo Chemical Co Ltd 光触媒酸化チタンの製造方法
JP2010120841A (ja) * 2008-10-20 2010-06-03 Toho Titanium Co Ltd 酸化チタン粉末の製造方法、酸化チタン粉末および酸化チタン粉末分散液
WO2012017752A1 (ja) * 2010-08-02 2012-02-09 昭和電工株式会社 酸化チタンゾル、その製造方法、超微粒子状酸化チタン、その製造方法及び用途
JP2012144399A (ja) * 2011-01-13 2012-08-02 Sakai Chem Ind Co Ltd シリカ含有含水酸化チタン及びシリカ含有アナターゼ型酸化チタンの製造方法
JP2013203929A (ja) * 2012-03-29 2013-10-07 Ishihara Sangyo Kaisha Ltd 無機物粒子分散体及びその製造方法
JP2014015340A (ja) * 2012-07-06 2014-01-30 Daito Kasei Kogyo Kk 球状二酸化チタン及び表面被覆球状二酸化チタン並びにそれを含有する化粧料

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528773A (en) 1967-12-28 1970-09-15 Dow Chemical Co Method of preparing titanium dioxide pigment
ATE110699T1 (de) * 1988-03-30 1994-09-15 Rhone Poulenc Chimie Verfahren zur herstellung von titanoxid.
FR2633605B1 (fr) * 1988-07-01 1991-07-12 Rhone Poulenc Chimie Procede de preparation d'oxyde de titane et d'articles a base d'oxyde de titane
SU1646992A1 (ru) 1988-08-04 1991-05-07 Институт катализа СО АН СССР Способ получени диоксида титана
DE68919665T2 (de) 1988-12-28 1995-05-18 Ishihara Sangyo Kaisha Titandioxidaggregate, Verfahren zu ihrer Herstellung und elektrophotographisches, photosensibles Material, das diese Aggregate enthält.
JPH0694371B2 (ja) 1988-12-28 1994-11-24 石原産業株式会社 凝結二酸化チタン及びその製造方法
JPH06293519A (ja) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd 酸化チタンの粒子と膜の製造方法
JP3198238B2 (ja) 1995-08-30 2001-08-13 昭和電工株式会社 酸化チタン微粉末及びその製造法
JP3708216B2 (ja) 1996-04-12 2005-10-19 昭和電工株式会社 酸化チタン微粒子及びその製造法
WO2000035811A1 (fr) * 1998-12-11 2000-06-22 Showa Denko K.K. Oxyde composite de type perovskite renfermant du titane
JP4495801B2 (ja) 1999-07-14 2010-07-07 石原産業株式会社 ルチル型超微粒子二酸化チタンの製造方法
FR2824846B1 (fr) * 2001-05-16 2004-04-02 Saint Gobain Substrat a revetement photocatalytique
JP4014406B2 (ja) 2001-12-28 2007-11-28 千代田化工建設株式会社 多孔質酸化チタンおよびその製造方法
JP3781417B2 (ja) 2002-06-28 2006-05-31 千代田化工建設株式会社 多孔質酸化チタン担持体およびこれを用いた触媒、並びに、多孔質酸化チタン担持体の製造方法
JP4105971B2 (ja) * 2003-03-27 2008-06-25 株式会社資生堂 多孔質酸化チタン粉体及びその製造方法
JP5241994B2 (ja) * 2004-11-05 2013-07-17 戸田工業株式会社 酸化チタン粒子粉末及び光触媒
US20060110318A1 (en) * 2004-11-23 2006-05-25 Carmine Torardi Mesoporous oxide of titanium
JP2006335619A (ja) 2005-06-03 2006-12-14 Showa Denko Kk 酸化チタン粒子、その製造方法及び応用
JP2009120422A (ja) 2007-11-13 2009-06-04 Sumitomo Chemical Co Ltd 酸化チタンの製造方法
JP5223828B2 (ja) 2009-09-18 2013-06-26 堺化学工業株式会社 アナタース型超微粒子酸化チタン、アナタース型超微粒子酸化チタンを含有する分散体、及び該酸化チタンの製造方法
GB0922552D0 (en) 2009-12-23 2010-02-10 Croda Int Plc Particulate titanium dioxide
JP3198238U (ja) 2015-02-27 2015-06-25 佐々木 正之 自在巾2・2突起指圧器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638218A (ja) * 1986-06-26 1988-01-14 Mitsubishi Metal Corp 球状二酸化チタン粉末の製造方法
JP2003286011A (ja) * 2002-03-29 2003-10-07 Chiyoda Corp 多孔質無機酸化物の製造方法
JP2006273646A (ja) * 2005-03-29 2006-10-12 Sumitomo Chemical Co Ltd 酸化チタン前駆体の製造方法
JP2006290680A (ja) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology ナノ球状粒子多孔体及びその合成方法
JP2007190514A (ja) * 2006-01-20 2007-08-02 Sumitomo Chemical Co Ltd 光触媒酸化チタンの製造方法
JP2010120841A (ja) * 2008-10-20 2010-06-03 Toho Titanium Co Ltd 酸化チタン粉末の製造方法、酸化チタン粉末および酸化チタン粉末分散液
WO2012017752A1 (ja) * 2010-08-02 2012-02-09 昭和電工株式会社 酸化チタンゾル、その製造方法、超微粒子状酸化チタン、その製造方法及び用途
JP2012144399A (ja) * 2011-01-13 2012-08-02 Sakai Chem Ind Co Ltd シリカ含有含水酸化チタン及びシリカ含有アナターゼ型酸化チタンの製造方法
JP2013203929A (ja) * 2012-03-29 2013-10-07 Ishihara Sangyo Kaisha Ltd 無機物粒子分散体及びその製造方法
JP2014015340A (ja) * 2012-07-06 2014-01-30 Daito Kasei Kogyo Kk 球状二酸化チタン及び表面被覆球状二酸化チタン並びにそれを含有する化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165509A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658439B (zh) * 2017-08-30 2020-05-26 格林美(无锡)能源材料有限公司 一种钨钛共包覆的锂离子三元正极材料及其制备方法
CN107658439A (zh) * 2017-08-30 2018-02-02 格林美(无锡)能源材料有限公司 一种钨钛共包覆的锂离子三元正极材料及其制备方法
WO2019088017A1 (ja) * 2017-11-02 2019-05-09 堺化学工業株式会社 水酸化チタンの製造方法
JP2019085282A (ja) * 2017-11-02 2019-06-06 堺化学工業株式会社 水酸化チタンの製造方法
CN111902364A (zh) * 2018-03-28 2020-11-06 石原产业株式会社 氧化钛粒子及其制造方法
WO2019189307A1 (ja) 2018-03-28 2019-10-03 石原産業株式会社 酸化チタン粒子及びその製造方法
KR20200136461A (ko) 2018-03-28 2020-12-07 이시하라 산교 가부시끼가이샤 산화 티타늄 입자 및 그의 제조 방법
CN111902364B (zh) * 2018-03-28 2023-05-02 石原产业株式会社 氧化钛粒子及其制造方法
WO2020170918A1 (ja) 2019-02-19 2020-08-27 昭和電工株式会社 酸化チタンの製造方法
KR20210096194A (ko) 2019-02-19 2021-08-04 쇼와 덴코 가부시키가이샤 산화티타늄의 제조 방법
CN113260594A (zh) * 2019-02-19 2021-08-13 昭和电工株式会社 氧化钛的制造方法
JPWO2020170918A1 (ja) * 2019-02-19 2021-09-13 昭和電工株式会社 酸化チタンの製造方法
KR102483558B1 (ko) 2019-02-19 2023-01-02 쇼와 덴코 가부시키가이샤 산화티타늄의 제조 방법
WO2021117568A1 (ja) 2019-12-12 2021-06-17 昭和電工株式会社 高耐熱性アナターゼ型酸化チタン及びその製造方法
WO2023277127A1 (ja) * 2021-07-02 2023-01-05 石原産業株式会社 酸化チタン粒子及びその製造方法

Also Published As

Publication number Publication date
EP3656740B1 (en) 2023-04-12
US20170137301A1 (en) 2017-05-18
KR102372694B1 (ko) 2022-03-08
TW201615553A (zh) 2016-05-01
EP3339249A1 (en) 2018-06-27
CN106536415B (zh) 2019-10-15
TWI703091B (zh) 2020-09-01
KR20170024073A (ko) 2017-03-06
HK1232205A1 (zh) 2018-01-05
EP3165509B1 (en) 2020-05-20
EP3656740A2 (en) 2020-05-27
CA2953901C (en) 2023-07-04
CA2953901A1 (en) 2016-01-07
EP3656740A3 (en) 2020-06-17
JP6607407B2 (ja) 2019-11-20
CN106536415A (zh) 2017-03-22
CN110526288A (zh) 2019-12-03
EP3339249B1 (en) 2020-02-26
EP3705455A1 (en) 2020-09-09
EP3165509A1 (en) 2017-05-10
EP3165509A4 (en) 2018-06-27
EP3339248A1 (en) 2018-06-27
US10787369B2 (en) 2020-09-29
JPWO2016002755A1 (ja) 2017-04-27
EP3705455B1 (en) 2022-02-09
EP3339248B1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6607407B2 (ja) 微粒子酸化チタン及びその製造方法
Yin et al. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2
Kominami et al. Synthesis of brookite-type titanium oxide nano-crystals in organic media
Zhao et al. Surfactant-free synthesis uniform Ti1− xSnxO2 nanocrystal colloids and their photocatalytic performance
JPH1095617A (ja) 板状酸化チタンおよびその製造方法ならびにそれを含有してなる日焼け止め化粧料、樹脂組成物、塗料組成物、吸着剤、イオン交換剤、複合酸化物前駆体
JP7186362B2 (ja) 酸化チタン粒子及びその製造方法
JP4800914B2 (ja) 金属酸化物膜の製造方法
Das et al. Design of nanostructured cadmium tantalate and niobate and their photocatalytic properties
WO2023277127A1 (ja) 酸化チタン粒子及びその製造方法
WO2012046493A1 (ja) ルチル型酸化チタン微粒子分散液、その製造方法及び該ルチル型酸化チタン薄膜を表面に有する部材
KR100500305B1 (ko) 글리콜 공정을 이용한 나노 크기의 아나타제형 이산화티타늄 분말 및 졸 제조방법
Qi Synthesis of hightemperature stable titania nanoparticles for photocatalytic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531382

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2953901

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15323248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015814239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814239

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177002629

Country of ref document: KR

Kind code of ref document: A