WO2015194490A1 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
WO2015194490A1
WO2015194490A1 PCT/JP2015/067117 JP2015067117W WO2015194490A1 WO 2015194490 A1 WO2015194490 A1 WO 2015194490A1 JP 2015067117 W JP2015067117 W JP 2015067117W WO 2015194490 A1 WO2015194490 A1 WO 2015194490A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrode
gas
length
heat generating
Prior art date
Application number
PCT/JP2015/067117
Other languages
English (en)
French (fr)
Inventor
祐輔 河本
祐介 藤堂
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/319,128 priority Critical patent/US10261045B2/en
Priority to DE112015002843.9T priority patent/DE112015002843B4/de
Publication of WO2015194490A1 publication Critical patent/WO2015194490A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Definitions

  • the present invention relates to a gas sensor for detecting a specific gas concentration in exhaust gas.
  • the gas sensor is disposed in the exhaust pipe of the internal combustion engine and is used for detecting a specific gas concentration in the exhaust gas flowing through the exhaust pipe.
  • a sensor structure in which a heater is stacked on a sensor element is held by a holding body, a tip portion of the sensor structure is protruded from the holding body, and the tip portion is exposed to a gas to be measured.
  • the heater is provided to heat the solid electrolyte body and the electrode provided thereon to the sensor activation temperature.
  • the heater is formed by providing a conductive layer that generates heat upon energization on a ceramic substrate.
  • the sensor element includes a pump cell for adjusting the oxygen concentration of exhaust gas as the gas to be measured, a sensor cell for detecting the specific gas concentration of the gas to be measured after the oxygen concentration is adjusted by the pump cell, and the like. Yes.
  • the gas sensor element disclosed in Patent Document 1 has a heater portion including a heating element that generates heat when energized.
  • Patent Document 1 discloses that the temperature of the gas sensor element is controlled by adjusting the heater voltage so that the relationship between the heater resistance and the heater power satisfies the heater control function.
  • Patent Document 1 aims to control the temperature of a gas sensor element (sensor element).
  • the functions required for the pump cell and the sensor cell are different, and the materials of the electrodes constituting them are different from each other. Therefore, the optimum temperature (electrode activation temperature) for controlling the pump cell and the sensor cell is different. Therefore, in order to control a plurality of cells such as pump cells and sensor cells to the optimum temperature, the structural arrangement relationship of the sensor elements is also important. Specifically, it has been found that the relationship between the length of the heat generating portion forming region in the conductor layer of the heater and the length at which the tip of the sensor structure protrudes from the holding body is important.
  • the heat of the sensor structure heated by the heater escapes to the holding body whose temperature is lower than that of the sensor structure, and the length at which the tip of the sensor structure protrudes from the holding body must be set appropriately.
  • the temperature of the pump cell and the sensor cell cannot be appropriately controlled.
  • the present invention has been made in view of such a background, and an object thereof is to provide a gas sensor capable of appropriately controlling the temperatures of the pump cell and the sensor cell.
  • the gas sensor according to the present invention includes a sensor structure in which a sensor element and a heater are stacked, and a holding body that holds the sensor structure, and protrudes from the holding body toward the distal end side.
  • the sensor element includes a solid electrolyte body having oxygen ion conductivity; A gas space to be measured formed on one side of the solid electrolyte body and into which the gas to be measured is introduced through the diffusion resistor; A reference gas space formed on the other side of the solid electrolyte body and into which a reference gas is introduced; A pump electrode provided on the surface of the solid electrolyte body on the measured gas space side, and a voltage between the pump electrode and a reference electrode provided on the surface of the solid electrolyte body on the reference gas space side; A pump cell for adjusting the oxygen concentration in the measured gas space, A surface of the solid electrolyte body on the gas space to be measured side having a sensor electrode provided on the base end side with respect to the
  • the whole of the heat generating part is disposed on the sensor protruding part,
  • the heat generating center of the heat generating part is located on the tip side from the center of the sensor electrode,
  • the distance E from the tip of the sensor protrusion to the center of the sensor electrode is within a range of 0.7 to 1.3D.
  • the distance F from the tip of the sensor protrusion to the center of the pump electrode is in the range of 0.3 to 0.7D
  • the length L (mm) of the region where the heat generating part is formed and the length H (mm) of the sensor protruding part in the longitudinal direction in which the sensor protruding part protrudes from the holding body are the length L and H, respectively.
  • an appropriate range of the length L (mm) of the heat generating portion forming region and the length H (mm) of the sensor protruding portion in the direction in which the sensor protruding portion protrudes from the holding body is defined.
  • the length L (mm) of the heat generating portion forming region and the length H (mm) of the sensor protruding portion are determined on a two-dimensional coordinate plane with the lengths L and H as the horizontal axis and the vertical axis, respectively.
  • the temperature of the pump cell is kept within an appropriate range of 740 ° C.
  • the temperature of the pump cell here refers to the temperature of the pump electrode in the measured gas space
  • the temperature of the sensor cell here refers to the temperature of the sensor electrode in the measured gas space.
  • the gas sensor can appropriately control the temperature of the pump cell and the sensor cell.
  • the pump cell When the temperature of the pump cell is lower than 740 ° C., the pump cell cannot sufficiently discharge oxygen, and the detection accuracy of the specific gas concentration in the gas to be measured is deteriorated. When the temperature of the sensor cell exceeds 830 ° C., the sensor cell detects moisture in the measurement gas, and the detection accuracy of the specific gas concentration in the measurement gas is deteriorated.
  • FIG. 3 is a cross-sectional view taken along line II in FIG. 2. Sectional drawing of the whole gas sensor which concerns on an Example.
  • the graph which shows the relationship between the length L of the formation area of a heat generating part, and the temperature of a sensor electrode in the gas sensor which concerns on an Example.
  • the graph which shows the relationship between the length L of the formation area of a heat generating part, and the length H of a sensor protrusion part in the gas sensor which concerns on an Example.
  • change_quantity of the temperature of a pump electrode in the gas sensor which concerns on an Example The graph which shows the relationship between the temperature of a pump electrode, and the offset current of a sensor cell in the gas sensor which concerns on an Example.
  • the graph which shows the relationship between the temperature of a sensor electrode, and the offset current of a sensor cell in the gas sensor which concerns on an Example The graph which shows the relationship between the length L of the formation area of a heat generating part, and the length H of a sensor protrusion part in the gas sensor which concerns on an Example.
  • the gas sensor may include a monitor cell that measures a residual oxygen concentration after the oxygen concentration is adjusted by the pump cell.
  • the monitor cell has a monitor electrode provided on the surface of the solid electrolyte body on the side of the gas space to be measured and arranged in the width direction perpendicular to the longitudinal direction with respect to the sensor electrode. An oxygen ion current flowing between the reference electrode and the reference electrode can be measured.
  • the distance E When the distance E is less than 0.7D, the length of the heat generating portion formation region becomes too long, and the efficiency of heating the sensor element by the heater decreases. On the other hand, when the distance E exceeds 1.3D, the length of the heat generating portion forming region becomes too short, and the temperature of the sensor electrode cannot be controlled appropriately.
  • the distance F is less than 0.3D, the efficiency of heating the sensor element by the heater decreases.
  • the distance F exceeds 0.7D, the temperature of the pump electrode cannot be properly controlled.
  • the “tip side” is one side in the longitudinal direction of the gas sensor (longitudinal direction in which the sensor protruding portion protrudes from the holding body) and refers to the side where the gas sensor is exposed to the gas to be measured. Further, the “base end side” refers to the side opposite to the tip end side.
  • the gas sensor 1 includes a sensor structure 10 in which a sensor element 11 and a heater 6 are stacked, and a holding body 12 that holds the sensor structure 10. ing.
  • the front end in the longitudinal direction M of the sensor structure 10 forms a sensor protrusion 100 that protrudes from the holding body 12 toward the front end.
  • the sensor protrusion 100 is a portion exposed to the gas G to be measured.
  • the sensor element 11 includes a solid electrolyte body 2 having oxygen ion conductivity, a measured gas space 51, a reference gas space 52, a pump cell 41, a monitor cell 42, and a sensor cell 43.
  • the measured gas space 51 is formed on one side of the solid electrolyte body 2 as a space into which exhaust gas as the measured gas G is introduced through the diffusion resistor 32.
  • the reference gas space 52 is formed as a space into which the reference gas A is introduced on the other side of the solid electrolyte body 2.
  • the pump cell 41 has a pump electrode 21 provided on the surface 201 of the solid electrolyte body 2 on the measured gas space 51 side.
  • the pump cell 41 applies a voltage between the pump electrode 21 and the reference electrode 25 provided on the surface 202 of the solid electrolyte body 2 on the reference gas space 52 side, and adjusts the oxygen concentration in the measured gas space 51. It is configured as follows.
  • the monitor cell 42 is a surface 201 of the solid electrolyte body 2 on the measured gas space 51 side, and has the monitor electrode 22 provided side by side in the width direction orthogonal to the longitudinal direction M with respect to the sensor electrode 23. .
  • the monitor cell 42 is configured to measure an oxygen ion current flowing between the monitor electrode 22 and the reference electrode 25 and measure a residual oxygen concentration after the oxygen concentration is adjusted by the pump cell 41.
  • the sensor cell 43 has a sensor electrode 23 that is provided on the surface 201 of the solid electrolyte body 2 on the measurement gas space 51 side and on the base end side of the position where the pump electrode 21 is disposed.
  • the sensor cell 43 is configured to measure an oxygen ion current flowing between the sensor electrode 23 and the reference electrode 25 and measure a specific gas concentration based on a difference between the oxygen ion current and the oxygen ion current in the monitor cell 42. Has been.
  • the heater 6 includes a heat generating portion 62 that generates heat when energized, and a pair of lead portions 63 respectively connected to a pair of end portions 622 of the heat generating portion 62.
  • the entire heat generating portion 62 is disposed on the sensor protrusion 100.
  • the heat generation center 601 of the heat generation part 62 is located on the front end side in the longitudinal direction M with respect to the center 231 of the sensor electrode 23.
  • the distance E from the tip 101 of the sensor protrusion 100 to the center 231 of the sensor electrode 23 is 0.7 to 1. Within the 3D range.
  • the distance F from the tip 101 of the sensor protrusion 100 to the center 211 of the pump electrode 21 is in the range of 0.3 to 0.7D.
  • the length L (mm) of the region where the heat generating part 62 is formed and the length H (mm) of the sensor protruding part 100 in the longitudinal direction M in which the sensor protruding part 100 protrudes from the holding body 12 are:
  • H
  • the base end 621 of the heat generating portion 62 refers to a boundary position where the heat generating portion 62 is connected to the pair of lead portions 63.
  • the center 231 of the sensor electrode 23 refers to the centroid when the sensor electrode 23 is viewed in plan.
  • the center 211 of the pump electrode 21 refers to the centroid when the pump electrode 21 is viewed in plan.
  • the gas sensor 1 has a cover 13 that accommodates the sensor protrusion 100 of the sensor structure 10, and the sensor protrusion of the sensor structure 10 from a through hole 131 provided in the cover 13.
  • the exhaust gas as the gas G to be measured is introduced into 100.
  • the gas sensor 1 is used by being disposed in an exhaust pipe of an automobile.
  • the gas to be measured G is exhaust gas that passes through the exhaust pipe, and the gas sensor 1 is used to detect the concentration of NOx (nitrogen oxide) as a specific gas in the exhaust gas.
  • the holding body 12 is composed of an insulator for holding the sensor structure 10 in the housing 14 of the gas sensor 1. A proximal end portion in the longitudinal direction M of the sensor structure 10 is embedded in the holding body 12.
  • the pump electrode 21, the monitor electrode 22, the sensor electrode 23, and the reference electrode 25 are provided for one solid electrolyte body 2.
  • an insulator 31 for forming the measurement gas space 51 is laminated via an insulating first spacer 311.
  • a heater 6 for heating the solid electrolyte body 2 via an insulating second spacer 33 is laminated.
  • the heat generating part 62 and the pair of lead parts 63 in the heater 6 are sandwiched between a pair of insulating ceramic substrates 61.
  • the heat generating portion 62 has a shape meandering in the longitudinal direction M of the sensor structure 10.
  • the cross-sectional area of the heat generating part 62 is smaller than the cross-sectional area of each lead part 63.
  • the cross-sectional area of the heat generating part 62 and the lead part 63 is an area of a cross section orthogonal to the direction of current flow in the heat generating part 62 and the lead part 63.
  • the cross-sectional area of the heat generating portion 62 is substantially constant over the entire length formed by the heat generating portion 62 meandering.
  • the heat generation center 601 of the heat generation part 62 is the center position in the width direction of the heat generation part 62 and the sensor element 11 and is substantially at the center position in the longitudinal direction M of the heat generation part 62.
  • the heat generating portion 62 and the lead portion 63 are formed by separately printing on the ceramic substrate 61. Therefore, the heat generating part 62 and the lead part 63 are partially overlapped.
  • the sensor structure 10 has a long shape and is configured to introduce the gas G to be measured from the front end side in the longitudinal direction M.
  • the diffusion resistor 32 is embedded in the introduction port 312 of the gas G to be measured formed at the distal end portion in the longitudinal direction M of the first spacer 311.
  • the diffusion resistor 32 is made of a porous material having a gas-permeating property, and allows the measurement gas G to be introduced into the measurement gas space 51 at a predetermined diffusion rate.
  • the flow direction N of the gas G to be measured in the sensor element 11 is a direction from the distal end side to the proximal end side in the longitudinal direction M.
  • the pump cell 41 has voltage applying means for applying a voltage between the pump electrode 21 and the reference electrode 25.
  • the monitor cell 42 has current measuring means for measuring the current flowing between the monitor electrode 22 and the reference electrode 25.
  • the sensor cell 43 has current measuring means for measuring a current flowing between the sensor electrode 23 and the reference electrode 25.
  • the solid electrolyte body 2 is a zirconia substrate having oxygen ion conductivity.
  • the reference electrode 25 is provided in common to these electrodes 21, 22, and 23 at a position overlapping the pump electrode 21, the monitor electrode 22, and the sensor electrode 23 in the thickness direction of the solid electrolyte body 2. It has been.
  • the reference electrode 25 can also be provided separately from each of the pump electrode 21, the monitor electrode 22, and the sensor electrode 23.
  • the pump electrode 21 is configured using a Pt—Au alloy as a material having oxygen decomposition performance
  • the monitor electrode 22 and the reference electrode 25 are configured using Pt as a material having oxygen decomposition performance.
  • the sensor electrode 23 is made of a Pt—Rh alloy as a material having NOx decomposition performance.
  • Each of the electrodes 21, 22, 23, 25 contains zirconia as a co-material with the solid electrolyte body 2.
  • the content of Au in the Pt—Au alloy in the pump electrode 21 can be 20% by mass or less.
  • the content of Rh in the Pt—Rh alloy in the sensor electrode 23 can be 80% by mass or less.
  • a portion of the holding body 12 that holds the sensor structure 10 is formed in a cylindrical shape having a diameter ⁇ d of 5 to 12 mm.
  • the diameter ⁇ d of the portion of the holding body 12 that holds the sensor structure 10 can be determined in relation to the width of the sensor structure 10.
  • FIG. 7 shows the relationship between the diameter ⁇ d (mm) of the holding body 12 and the change amount (° C.) of the temperature (average temperature) of the pump electrode 21 in the sensor element 11.
  • the amount of change in the temperature of the pump electrode 21 is expressed as 0 (° C.) with the temperature of the pump electrode 21 when the diameter ⁇ d of the holding body 12 is 7.5 mm as a reference temperature, and the diameter ⁇ d of the holding body 12 is 7. This is expressed as a temperature difference (° C.) obtained by subtracting the reference temperature from the temperature of the pump electrode 21 when changing from 5 mm.
  • the influence of the size of the holding body 12 on the temperature of the pump electrode 21 can be reduced by setting the diameter ⁇ d of the holding body 12 within the range of 5 to 12 mm. It should be noted that the characteristics shown in the figure are also observed in the sensor electrode 23 other than the pump electrode 21. Therefore, by setting the diameter ⁇ d of the holding body 12 within the range of 5 to 12 mm, the influence of the size of the holding body 12 on the temperature of the pump cell 41 and the sensor cell 43 can be reduced.
  • the temperature of the pump electrode 21 is maintained within a range of 740 to 920 ° C.
  • the temperature of the sensor electrode 23 is within a range of 650 to 830 ° C. Configured to keep on.
  • the temperature of the pump electrode 21 and the temperature of the sensor electrode 23 are determined by the temperature of the heater 6.
  • the temperature of the heater 6 can be set to 710 to 890 ° C.
  • the distance from the center 211 of the pump electrode 21 to the heat generation center 601 of the heater 6 is shorter than the distance from the center 231 of the sensor electrode 23 to the heat generation center 601 of the heater 6. Further, the distance from the center 221 of the monitor electrode 22 to the heat generation center 601 of the heater 6 is substantially equal to the distance from the center 231 of the sensor electrode 23 to the heat generation center 601 of the heater 6.
  • the pump electrode 21 is heated to a temperature higher than that of the monitor electrode 22 and the sensor electrode 23.
  • the temperature of the pump cell 41 constituted by the pump electrode 21, the solid electrolyte body 2 and the reference electrode 25 is assumed to be equal to the temperature of the pump electrode 21.
  • the monitor cell 42 and the sensor cell 43 are assumed to be equal in temperature to the monitor electrode 22 or the sensor electrode 23, respectively.
  • FIG. 8 shows the relationship between the temperature (° C.) of the pump electrode 21 and the offset current ( ⁇ A) flowing through the sensor cell 43.
  • the offset current flowing in the sensor cell 43 refers to an oxygen ion current flowing in the sensor cell 43 even though the NOx concentration in the measured gas space 51 is zero.
  • the offset current in the sensor cell 43 increases as the temperature of the pump electrode 21 falls below 740 ° C. This is because when the temperature of the pump electrode 21 is lowered, the pump cell 41 cannot sufficiently discharge oxygen, and the residual oxygen in the measured gas space 51 is increased.
  • FIG. 9 shows the relationship between the temperature (° C.) of the pump electrode 21 and the oxygen ion current ( ⁇ A) that flows when detecting a predetermined concentration of NOx in the sensor cell 43.
  • the detection accuracy of the NOx concentration by the gas sensor 1 can be maintained high by maintaining the temperature of the pump electrode 21 within the range of 740 to 920 ° C. Furthermore, as will be described later, it has been found that the temperature of the pump electrode 21 is preferably maintained within a range of 740 to 850 ° C. in order not to cause the poisoning of Au in the sensor electrode 23.
  • FIG. 10 shows the relationship between the temperature (° C.) of the sensor electrode 23 and the NOx concentration detection error (ppm) by the sensor cell 43.
  • FIG. 11 shows the relationship between the temperature (° C.) of the sensor electrode 23 and the offset current ( ⁇ A) flowing through the sensor cell 43.
  • the offset current flowing in the sensor cell 43 refers to an oxygen ion current flowing in the sensor cell 43 even though the NOx concentration in the measured gas space 51 is zero.
  • the temperature of the sensor electrode 23 is preferably maintained within the range of 650 to 760 ° C. in order not to cause Au poisoning in the sensor electrode 23.
  • the length relationship between the heat generating part 62 and the sensor protruding part 100 in the gas sensor 1 is determined as follows.
  • the length L (mm) of the region where the heat generating portion 62 is formed and the length H (mm) of the sensor protrusion 100 are determined so as to satisfy the relational expression L ⁇ H ⁇ 20.
  • the relational expression of L ⁇ H is a relational expression derived from a configuration in which the entire heat generating part 62 is disposed on the sensor protruding part 100. That is, the entire length L (mm) of the formation region of the heat generating portion 62 is equal to or shorter than the length H (mm) of the sensor protruding portion 100.
  • H ⁇ 20 the relational expression of H ⁇ 20 is that if the length H (mm) of the sensor protrusion 100 is too long, the sensor protrusion 100 is not likely to be broken because the sensor protrusion 100 is likely to be broken. It becomes a condition.
  • the length L (mm) of the region where the heat generating part 62 is formed and the temperature T (° C.) of the sensor electrode 23 are proportional to each other, and the length L (mm) of the region where the heat generating part 62 is formed increases.
  • the temperature T (° C.) of the sensor electrode 23 has increased. This result is simply based on the fact that the heat generation amount increases as the heat generating portion 62 becomes longer.
  • the temperature of the pump electrode 21 is maintained within an appropriate range of 740 ° C. or higher, and the temperature of the sensor electrode 23 is set to 650 to 830 ° C. Can be kept within the proper range.
  • the sensor cell 43 if the positional relationship between the length L (mm) of the region where the heat generating portion 62 is formed and the length H (mm) of the sensor protruding portion 100 is within the range on the left side of the third reference line X3, the sensor cell 43. This temperature cannot be maintained at 650 ° C. or higher. Further, if the positional relationship between the length L (mm) of the region where the heat generating portion 62 is formed and the length H (mm) of the sensor protruding portion 100 is within the range on the right side of the fourth reference line X4, the sensor cell 43. The temperature cannot be kept below 830 ° C.
  • the temperature of the pump electrode 21 and the temperature of the sensor electrode 23 both rise in proportion to the heating amount of the heater 6.
  • the temperature of the pump electrode 21 is proportional to the temperature of the sensor cell 43. Specifically, the temperature of the pump electrode 21 when the sensor electrode 23 becomes 650 ° C. is about 740 ° C., and the temperature of the pump electrode 21 when the temperature of the sensor electrode 23 becomes 830 ° C. is about 920 ° C. .
  • the length L (mm) of the region where the heat generating portion 62 is formed and the length H (mm) of the sensor protruding portion 100 are set so that the temperature of the sensor electrode 23 falls within the range of 650 to 830 ° C.
  • the temperature of the pump electrode 21 can be in the range of 740 to 920 ° C.
  • the gas sensor 1 according to the present embodiment can appropriately control the temperatures of the pump cell 41 and the sensor cell 43.
  • the length L (mm) of the region where the heat generating portion 62 is formed and the length H (mm) of the sensor protrusion 100 are represented by the horizontal axis and the vertical axis, respectively.
  • the first reference line X1 indicating the relationship of H L
  • the second reference line X2 indicating the relationship of H 20
  • H ⁇ 4.24L + 58.53
  • the setting is within a range surrounded by the fifth reference line X5 indicating the relationship.
  • the temperature of the pump electrode 21 is proportional to the temperature of the sensor cell 43, and the temperature of the pump electrode 21 when the sensor electrode 23 reaches 760 ° C is about 850 ° C.
  • the temperature of the pump electrode 21 can be maintained within an appropriate range of 740 to 850 ° C.
  • the temperature of the sensor electrode 23 can be maintained within an appropriate range of 650 to 760 ° C. Then, it is possible to prevent the Au in the Pt—Au alloy constituting the pump electrode 21 from poisoning the sensor electrode 23.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 センサ素子及びヒータが積層されてなるセンサ構造体は、保持体から先端側に突出するセンサ突出部を有している。センサ素子は、固体電解質体、被測定ガス空間、基準ガス空間、ポンプセル、モニタセル及びセンサセルを備えている。ヒータの発熱部の全体は、センサ突出部に配置されている。センサ突出部が保持体から突出する長手方向における、発熱部の形成領域の長さL(mm)及びセンサ突出部の長さH(mm)は、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、H=L、H=20、H=-4.24L+42.71、H=-4.24L+68.6の関係をそれぞれ示す第1、第2、第3、第4基準線X1,X2,X3,X4によって囲まれる範囲内にあるよう設定されている。

Description

ガスセンサ
 本発明は、排気ガス中の特定ガス濃度を検出するガスセンサに関する。
 ガスセンサは、内燃機関の排気管に配置され、排気管を流れる排気ガス中の特定ガス濃度を検出するために用いられる。ガスセンサにおいては、センサ素子にヒータが積層されてなるセンサ構造体を保持体に保持し、センサ構造体の先端部を保持体から突出させ、この先端部が被測定ガスに晒されるようにしている。ヒータは、固体電解質体及びこれに設けられた電極を、センサ活性化温度に加熱するために設けられている。具体的に、ヒータは、セラミック基板に、通電によって発熱する導体層を設けて形成されている。また、センサ素子には、被測定ガスとしての排気ガスの酸素濃度を調整するポンプセル、ポンプセルによって酸素濃度が調整された後の被測定ガスの特定ガス濃度を検出するためのセンサセル等が形成されている。
 例えば、特許文献1に開示されたガスセンサ素子は、通電により発熱する発熱体を備えたヒータ部を有している。特許文献1においては、ヒータ抵抗とヒータ電力との関係がヒータ制御関数を満たすように、ヒータ電圧を調整して、ガスセンサ素子の温度を制御することが開示されている。
特開2003-65999号公報
 特許文献1においては、ガスセンサ素子(センサ素子)の温度を制御することを目的としている。ポンプセル及びセンサセルに必要な機能はそれぞれ異なり、それらを構成する電極の材料が互いに異なる。そのため、ポンプセル及びセンサセルを制御する最適温度(電極の活性化温度)がそれぞれ異なる。したがって、ポンプセル、センサセル等の複数のセルを最適温度に制御するためには、センサ素子の構造的な配置関係も重要である。具体的には、ヒータの導体層における発熱部の形成領域の長さと、センサ構造体の先端部が保持体から突出する長さとの関係が重要であることがわかった。すなわち、ヒータによって加熱されるセンサ構造体の熱は、センサ構造体よりも温度が低い保持体へと逃げており、センサ構造体の先端部が保持体から突出する長さを適切に設定しなければ、ポンプセル及びセンサセルの温度を適切に制御できないことがわかった。
 本発明は、かかる背景に鑑みてなされたもので、ポンプセル及びセンサセルの温度を適切に制御できるガスセンサを提供することを目的としている。
 本発明に係るガスセンサは、センサ素子及びヒータが積層されてなるセンサ構造体と、該センサ構造体を保持する保持体とを有し、該保持体から先端側に突出する、上記センサ構造体におけるセンサ突出部が被測定ガスに晒されるよう構成されたガスセンサにおいて、
 上記センサ素子は、酸素イオン伝導性を有する固体電解質体と、
 該固体電解質体の一方側に形成され、被測定ガスが拡散抵抗体を通過して導入される被測定ガス空間と、
 上記固体電解質体の他方側に形成され、基準ガスが導入される基準ガス空間と、
 上記固体電解質体の上記被測定ガス空間側の表面に設けられたポンプ電極を有し、該ポンプ電極と上記固体電解質体の上記基準ガス空間側の表面に設けられた基準電極との間に電圧を印加して、上記被測定ガス空間における酸素濃度を調整するポンプセルと、
 上記固体電解質体の上記被測定ガス空間側の表面であって、上記ポンプ電極の配置位置よりも基端側に設けられたセンサ電極を有し、該センサ電極と上記基準電極との間に流れる酸素イオン電流を測定するセンサセルと、を備えており、
 上記ヒータは、通電によって発熱する発熱部と、該発熱部の一対の端部にそれぞれ繋がる一対のリード部とを備えており、
 上記発熱部の全体は、上記センサ突出部に配置されており、
 上記発熱部の発熱中心は、上記センサ電極の中心よりも先端側に位置しており、
 上記センサ突出部の先端から上記発熱部の基端までの距離をDとしたとき、上記センサ突出部の先端から上記センサ電極の中心までの距離Eは、0.7~1.3Dの範囲内にあり、上記センサ突出部の先端から上記ポンプ電極の中心までの距離Fは、0.3~0.7Dの範囲内にあり、
 上記センサ突出部が上記保持体から突出する長手方向における、上記発熱部の形成領域の長さL(mm)及び上記センサ突出部の長さH(mm)は、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、H=L、H=20、H=-4.24L+42.71、H=-4.24L+68.6の関係をそれぞれ示す第1、第2、第3、第4基準線によって囲まれる範囲内にあるよう設定されていることを特徴とする。
 上記ガスセンサにおいては、センサ突出部が保持体から突出する方向における、発熱部の形成領域の長さL(mm)及びセンサ突出部の長さH(mm)の適切な範囲を規定している。
 具体的には、発熱部の形成領域の長さL(mm)及びセンサ突出部の長さH(mm)は、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、H=L、H=20、H=-4.24L+42.71、H=-4.24L+68.6の関係をそれぞれ示す第1、第2、第3、第4基準線によって囲まれる範囲内にあるよう設定されている。これにより、ヒータによって固体電解質体、ポンプ電極、センサ電極、基準電極を加熱する際に、ポンプセルの温度を740℃以上の適切な範囲内に保ち、センサセルの温度を650~830℃の適切な範囲内に保つことができる。なお、ここでいうポンプセルの温度とは、被測定ガス空間内のポンプ電極の温度のことをいい、ここでいうセンサセルの温度とは、被測定ガス空間内のセンサ電極の温度のことをいう。
 それ故、上記ガスセンサは、ポンプセル及びセンサセルの温度を適切に制御できる。
 なお、ポンプセルの温度が740℃未満になると、ポンプセルが酸素を十分に排出することができず、被測定ガス中の特定ガス濃度の検出精度が悪化する。また、センサセルの温度が830℃を超えると、センサセルが被測定ガス中の水分を検知して、被測定ガス中の特定ガス濃度の検出精度が悪化する。
実施例に係るガスセンサの先端部を示す説明図。 実施例に係るガスセンサのセンサ構造体におけるセンサ突出部を示す断面図。 図2におけるI-I線矢視断面図。 実施例に係るガスセンサ全体の断面図。 実施例に係るガスセンサにおける、発熱部の形成領域の長さLとセンサ電極の温度との関係を示すグラフ。 実施例に係るガスセンサにおける、発熱部の形成領域の長さLとセンサ突出部の長さHとの関係を示すグラフ。 実施例に係るガスセンサにおける、保持体の直径とポンプ電極の温度の変化量との関係を示すグラフ。 実施例に係るガスセンサにおける、ポンプ電極の温度とセンサセルのオフセット電流との関係を示すグラフ。 実施例に係るガスセンサにおける、ポンプ電極の温度とセンサセルの酸素イオン電流との関係を示すグラフ。 実施例に係るガスセンサにおける、センサ電極の温度とセンサセルの検出誤差との関係を示すグラフ。 実施例に係るガスセンサにおける、センサ電極の温度とセンサセルのオフセット電流との関係を示すグラフ。 実施例に係るガスセンサにおける、発熱部の形成領域の長さLとセンサ突出部の長さHとの関係を示すグラフ。
 上述したガスセンサにおける好ましい実施の形態について説明する。
 上記ガスセンサは、上記ポンプセルによって酸素濃度が調整された後の残留酸素濃度を測定するモニタセルを備えていてもよい。モニタセルは、上記固体電解質体の被測定ガス空間側の表面であって、上記センサ電極に対して上記長手方向に直交する幅方向に並んで設けられたモニタ電極を有しており、モニタ電極と上記基準電極との間に流れる酸素イオン電流を測定するよう構成することができる。
 上記距離Eが0.7D未満になると、上記発熱部の形成領域の長さが長くなり過ぎて、上記ヒータによって上記センサ素子を加熱する効率が低下する。一方、上記距離Eが1.3D超過になると、上記発熱部の形成領域の長さが短くなり過ぎて、上記センサ電極の温度を適切に制御できなくなる。
 上記距離Fが0.3D未満になると、上記ヒータによって上記センサ素子を加熱する効率が低下する。一方、上記距離Fが0.7D超過になると、上記ポンプ電極の温度を適切に制御できなくなる。
 なお、上述したガスセンサにおいて、「先端側」とは、ガスセンサの長手方向(センサ突出部が保持体から突出する長手方向)の一方側であり、ガスセンサが被測定ガスに晒される側をいう。また、「基端側」とは、先端側の反対側をいう。
 以下に、一実施例に係るガスセンサ1について、図1~図12を参照して説明する。
 本実施例に係るガスセンサ1は、図1、図4に示すように、センサ素子11及びヒータ6が積層されてなるセンサ構造体10と、センサ構造体10を保持する保持体12とを有している。センサ構造体10の長手方向Mにおける先端部は、保持体12から先端側に突出するセンサ突出部100を形成している。センサ突出部100は、被測定ガスGに晒される部分である。
 センサ素子11は、図2、図3に示すように、酸素イオン伝導性を有する固体電解質体2、被測定ガス空間51、基準ガス空間52、ポンプセル41、モニタセル42及びセンサセル43を備えている。被測定ガス空間51は、固体電解質体2の一方側において、被測定ガスGとしての排気ガスが拡散抵抗体32を通過して導入される空間として形成されている。基準ガス空間52は、固体電解質体2の他方側において、基準ガスAが導入される空間として形成されている。ポンプセル41は、固体電解質体2の被測定ガス空間51側の表面201に設けられたポンプ電極21を有している。ポンプセル41は、ポンプ電極21と、固体電解質体2の基準ガス空間52側の表面202に設けられた基準電極25との間に電圧を印加して、被測定ガス空間51における酸素濃度を調整するよう構成されている。
 モニタセル42は、固体電解質体2の被測定ガス空間51側の表面201であって、センサ電極23に対して長手方向Mに直交する幅方向に並んで設けられたモニタ電極22を有している。モニタセル42は、モニタ電極22と基準電極25との間に流れる酸素イオン電流を測定し、ポンプセル41によって酸素濃度が調整された後の残留酸素濃度を測定するよう構成されている。センサセル43は、固体電解質体2の被測定ガス空間51側の表面201であって、ポンプ電極21の配置位置よりも基端側に設けられたセンサ電極23を有している。センサセル43は、センサ電極23と基準電極25との間に流れる酸素イオン電流を測定し、この酸素イオン電流と、モニタセル42における酸素イオン電流との差分に基づいて、特定ガス濃度を測定するよう構成されている。
 図1に示すように、ヒータ6は、通電によって発熱する発熱部62と、発熱部62の一対の端部622にそれぞれ繋がる一対のリード部63とを備えている。発熱部62の全体は、センサ突出部100に配置されている。発熱部62の発熱中心601は、センサ電極23の中心231よりも長手方向Mの先端側に位置している。センサ突出部100の先端101から、発熱部62の基端621までの距離をDとしたとき、センサ突出部100の先端101からセンサ電極23の中心231までの距離Eは、0.7~1.3Dの範囲内にある。センサ突出部100の先端101からポンプ電極21の中心211までの距離Fは、0.3~0.7Dの範囲内にある。
 図6に示すように、センサ突出部100が保持体12から突出する長手方向Mにおける、発熱部62の形成領域の長さL(mm)及びセンサ突出部100の長さH(mm)は、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、H=Lの関係を示す第1基準線X1、H=20の関係を示す第2基準線X2、H=-4.24L+42.71の関係を示す第3基準線X3、H=-4.24L+68.6の関係を示す第4基準線X4によって囲まれる範囲内にあるよう設定されている。ここで、発熱部62の基端621は、発熱部62が一対のリード部63に繋がる境界位置のことをいう。また、センサ電極23の中心231とは、センサ電極23を平面視したときの図心のことをいう。また、ポンプ電極21の中心211とは、ポンプ電極21を平面視したときの図心のことをいう。
 以下に、本実施例に係るガスセンサ1の構成について、さらに詳説する。
 ガスセンサ1は、図4に示すように、センサ構造体10のセンサ突出部100を収容するカバー13を有しており、カバー13に設けられた貫通孔131から、センサ構造体10のセンサ突出部100に、被測定ガスGとしての排気ガスを導入するよう構成されている。ガスセンサ1は、自動車の排気管内に配置されて使用される。被測定ガスGは排気管を通過する排気ガスであり、ガスセンサ1は、排気ガス中の特定ガスとしてのNOx(窒素酸化物)の濃度を検出するために用いられる。
 保持体12は、センサ構造体10をガスセンサ1のハウジング14に保持するための絶縁碍子から構成されている。センサ構造体10の長手方向Mにおける基端側部分は、保持体12の内部に埋設されている。
 図2、図3に示すように、ポンプ電極21、モニタ電極22、センサ電極23及び基準電極25は、1つの固体電解質体2に対して設けられている。固体電解質体2の被測定ガス空間51側の表面201には、絶縁性の第1スペーサ311を介して被測定ガス空間51を形成するための絶縁体31が積層されている。固体電解質体2の基準ガス空間52側の表面202には、絶縁性の第2スペーサ33を介して固体電解質体2を加熱するためのヒータ6が積層されている。
 ヒータ6における発熱部62及び一対のリード部63は、絶縁性を有する一対のセラミック基板61の間に挟持されている。図1に示すように、発熱部62は、センサ構造体10の長手方向Mに蛇行する形状を有している。発熱部62の断面積は、各リード部63の断面積よりも小さい。ここで、発熱部62とリード部63の断面積は、発熱部62及びリード部63において電流が流れる方向に直交する断面の面積である。また、発熱部62の断面積は、発熱部62が蛇行して形成される全長においてほぼ一定である。一対のリード部63に通電を行う際には、発熱部62が発熱してジュール熱を発生させる。発熱部62の発熱中心601は、発熱部62及びセンサ素子11の幅方向の中心位置であって、発熱部62の長手方向Mの略中心位置にある。
 また、発熱部62とリード部63とは、セラミック基板61に別々に印刷されて形成される。そのため、発熱部62とリード部63とは、一部が重なりあう。
 図2に示すように、センサ構造体10は、長尺形状を有しており、長手方向Mの先端側から被測定ガスGを導入するよう構成されている。拡散抵抗体32は、第1スペーサ311における長手方向Mの先端部に形成された被測定ガスGの導入口312に埋設されている。拡散抵抗体32は、ガスを透過させる性質を有する多孔質体によって構成されており、被測定ガスGが所定の拡散速度で被測定ガス空間51に導入されるようにする。センサ素子11における被測定ガスGの流れ方向Nは、長手方向Mの先端側から基端側に向けた方向となる。
 ポンプセル41は、ポンプ電極21と基準電極25との間に電圧を印加するための電圧印加手段を有している。モニタセル42は、モニタ電極22と基準電極25との間に流れる電流を測定するための電流測定手段を有している。センサセル43は、センサ電極23と基準電極25との間に流れる電流を測定するための電流測定手段を有している。
 図2、図3に示すように、固体電解質体2は、酸素イオン伝導性を有するジルコニアの基板である。本実施例において、基準電極25は、ポンプ電極21、モニタ電極22及びセンサ電極23に対して、固体電解質体2の厚み方向に重なる位置において、これらの電極21,22,23に共通して設けられている。なお、基準電極25は、ポンプ電極21、モニタ電極22及びセンサ電極23のそれぞれに対して分離して設けることもできる。
 ポンプ電極21は、酸素分解性能を有する材料としてのPt-Au合金を用いて構成されており、モニタ電極22及び基準電極25は、酸素分解性能を有する材料としてのPtを用いて構成されている。また、センサ電極23は、NOx分解性能を有する材料としてのPt-Rh合金を用いて構成されている。また、各電極21,22,23,25には、固体電解質体2との共材としてのジルコニアを含有している。
 ポンプ電極21におけるPt-Au合金中のAuの含有量は、20質量%以下とすることができる。センサ電極23におけるPt-Rh合金中のRhの含有量は、80質量%以下とすることができる。
 また、図1に示すように、保持体12における、センサ構造体10を保持する部分は、直径φdが5~12mmである円柱形状に形成されている。保持体12における、センサ構造体10を保持する部分の直径φdは、センサ構造体10の幅との関係で決定することができる。
 図7には、保持体12の直径φd(mm)と、センサ素子11におけるポンプ電極21の温度(平均温度)の変化量(℃)との関係を示す。ポンプ電極21の温度の変化量は、保持体12の直径φdが7.5mmであるときのポンプ電極21の温度を基準温度として0(℃)で表すとともに、保持体12の直径φdが7.5mmから変化したときのポンプ電極21の温度から、基準温度を差し引いた温度差(℃)として表す。
 同図から分かるように、保持体12の直径φdが5~12mmである範囲においては、ポンプ電極21の温度に大きな変化は生じなかった。これに対し、保持体12の直径φdが12mmよりも大きくなる場合には、センサ構造体10から保持体12への伝熱が多くなって、ポンプ電極21の温度が低下する。一方、保持体12の直径φdが5mmよりも小さくなる場合には、センサ構造体10から保持体12への伝熱が少なくなって、ポンプ電極21の温度が上昇する。
 以上の結果より、保持体12の直径φdを5~12mmの範囲内に設定することにより、保持体12のサイズがポンプ電極21の温度に与える影響を小さくすることができることが分かる。なお、同図の特性は、ポンプ電極21以外のセンサ電極23等においても同様に見られる。従って、保持体12の直径φdを5~12mmの範囲内に設定することにより、保持体12のサイズがポンプセル41及びセンサセル43の温度に与える影響を小さくすることができる。
 本実施例に係るガスセンサ1は、ヒータ6によってセンサ素子11を加熱する際に、ポンプ電極21の温度を740~920℃の範囲内に保ち、センサ電極23の温度を650~830℃の範囲内に保つよう構成されている。ポンプ電極21の温度及びセンサ電極23の温度は、ヒータ6の温度によって決定される。ポンプ電極21の温度を740~920℃の範囲内に保ち、センサ電極23の温度を650~830℃の範囲内に保つために、ヒータ6の温度は、710~890℃とすることができる。
 ポンプ電極21の中心211からヒータ6の発熱中心601までの距離は、センサ電極23の中心231からヒータ6の発熱中心601までの距離よりも短い。また、モニタ電極22の中心221からヒータ6の発熱中心601までの距離は、センサ電極23の中心231からヒータ6の発熱中心601までの距離とほぼ等しい。そして、ポンプ電極21は、モニタ電極22及びセンサ電極23よりも高い温度に加熱される。
 なお、ポンプ電極21、固体電解質体2及び基準電極25によって構成されるポンプセル41の温度はポンプ電極21の温度に等しいとする。また、モニタセル42及びセンサセル43についても同様に、それぞれモニタ電極22又はセンサ電極23の温度に等しいとする。
 図8には、ポンプ電極21の温度(℃)と、センサセル43に流れるオフセット電流(μA)との関係を示す。センサセル43に流れるオフセット電流は、被測定ガス空間51内のNOx濃度がゼロであるにも拘らず、センサセル43に流れる酸素イオン電流のことをいう。
 同図において、ポンプ電極21の温度が740℃よりも低下していくと、センサセル43におけるオフセット電流が増加していくことが分かる。この理由は、ポンプ電極21の温度が低下すると、ポンプセル41が酸素を十分に排出することができず、被測定ガス空間51内の残存酸素が増加したためである。
 図9には、ポンプ電極21の温度(℃)と、センサセル43において、所定濃度のNOxを検出する際に流れる酸素イオン電流(μA)との関係を示す。
 同図において、ポンプ電極21の温度が920℃よりも上昇していくと、センサセル43における酸素イオン電流が減少することが分かる。この理由は、ポンプ電極21の温度が上昇すると、ポンプセル41においてNOxが分解され、被測定ガス空間51内のNOxが減少したためである。
 従って、ポンプ電極21の温度を740~920℃の範囲内に維持することにより、ガスセンサ1によるNOx濃度の検出精度を高く維持できることが分かった。さらに、後述するように、センサ電極23におけるAuの被毒を生じさせないためには、ポンプ電極21の温度は740~850℃の範囲内に維持することが好ましいことが分かった。
 図10には、センサ電極23の温度(℃)と、センサセル43によるNOx濃度の検出誤差(ppm)との関係を示す。
 同図において、センサ電極23の温度が650~760℃の範囲内にある場合には、センサセル43によるNOx濃度の検出精度にほとんど誤差は生じていないことが分かる。これに対し、センサ電極23の温度が760℃よりも上昇していくと、ポンプ電極21を構成するPt-Au合金中のAuが飛散して、センサ電極23を被毒することにより、センサセル43におけるNOx活性が低下し、NOx濃度の検出誤差が大きくなる。一方、センサ電極23の温度が650℃よりも低下していくと、センサセル43がNOx活性を示す温度に加熱されず、NOx濃度の検出誤差が大きくなる。
 図11には、センサ電極23の温度(℃)と、センサセル43に流れるオフセット電流(μA)との関係を示す。センサセル43に流れるオフセット電流は、被測定ガス空間51内のNOx濃度がゼロであるにも拘らず、センサセル43に流れる酸素イオン電流のことをいう。
 同図において、センサ電極23の温度が830℃よりも上昇していくと、センサセル43におけるオフセット電流が増加していくことが分かる。この理由は、センサ電極23の温度が上昇すると、センサセル43において被測定ガス空間51内の水分が分解されたためである。
 従って、センサ電極23の温度を650~830℃の範囲内に維持することにより、ガスセンサ1によるNOx濃度の検出精度を高く維持できることが分かる。さらに、センサ電極23におけるAuの被毒を生じさせないためには、センサ電極23の温度は650~760℃の範囲内に維持することが好ましいことが分かる。
 ガスセンサ1における発熱部62とセンサ突出部100との長さ関係は、次のように決定される。
 図6に示すように、発熱部62の形成領域の長さL(mm)及びセンサ突出部100の長さH(mm)は、L≦H≦20の関係式を満たすよう決定される。L≦Hの関係式は、発熱部62の全体がセンサ突出部100に配置されている構成から導き出される関係式である。つまり、発熱部62の形成領域の長さL(mm)の全体は、センサ突出部100の長さH(mm)以下となる。
 また、H≦20の関係式は、センサ突出部100の長さH(mm)が長すぎると、このセンサ突出部100が折れる可能性が高くなることより、センサ突出部100が折れないための条件となる。
 H=-4.24L+42.71の関係を示す第3基準線X3、及びH=-4.24L+68.6の関係を示す第4基準線X4は、次のようにして求めた。
 まず、図5に示すように、ポンプ電極21の温度を740℃としたときの、発熱部62の形成領域の長さL(mm)とセンサ電極23の温度T(℃)との関係を求めた。また、この関係は、センサ突出部100の長さH(mm)を15.3mm、13.3mm、11.3mmと変化させて求めた。これにより、センサ突出部100の長さH(mm)が15.3mm、13.3mm、11.3mmの各場合について直線回帰を行い、各関係直線Y1,Y2,Y3を求めた。
 その結果、発熱部62の形成領域の長さL(mm)とセンサ電極23の温度T(℃)とは比例関係にあり、発熱部62の形成領域の長さL(mm)が長くなるほど、センサ電極23の温度T(℃)が高くなった。この結果は単純に、発熱部62が長くなれば、その発熱量が多くなったことに基づく。また、センサ突出部100の長さH(mm)を長くするほど、センサ電極23の温度が高くなった。この結果は、センサ突出部100の長さHが長くなれば、センサ構造体10から保持体12への伝熱が少なくなることに基づく。
 そして、センサ突出部100の長さH(mm)が15.3mm、13.3mm、11.3mmの各場合について、センサ電極23の温度が650℃となるときの、発熱部62の形成領域の長さL(mm)を上記各関係直線Y1,Y2,Y3に代入し、H=-4.24L+42.17の関係を示す第3基準線X3を求めた。また、センサ突出部100の長さH(mm)が15.3mm、13.3mm、11.3mmの各場合について、センサ電極23の温度が830℃となるときの、発熱部62の形成領域の長さL(mm)を上記各関係直線Y1,Y2,Y3に代入し、H=-4.24L+68.6の関係を示す第4基準線X4を求めた。
 こうして、ガスセンサ1における発熱部62の形成領域の長さL(mm)とセンサ突出部100の長さH(mm)との関係は、H=L、H=20、H=-4.24L+42.71、H=-4.24L+68.6の関係をそれぞれ示す第1~第4基準線X1,X2,X3,X4によって求められる。つまり、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、これらの基準線X1,X2,X3,X4によって囲まれる範囲内において、発熱部62の形成領域の長さL(mm)とセンサ突出部100の長さH(mm)とを設定することにより、ポンプ電極21の温度を740℃以上の適切な範囲内に保ち、センサ電極23の温度を650~830℃の適切な範囲内に保つことができる。
 なお、発熱部62の形成領域の長さL(mm)とセンサ突出部100の長さH(mm)との位置関係が、第3基準線X3よりも左側の範囲内にあると、センサセル43の温度を650℃以上に保つことができなくなる。また、発熱部62の形成領域の長さL(mm)とセンサ突出部100の長さH(mm)との位置関係が、第4基準線X4よりも右側の範囲内にあると、センサセル43の温度を830℃以下に保つことができなくなる。
 また、ヒータ6による加熱を行う際に、ポンプ電極21の温度とセンサ電極23の温度とは、ヒータ6の加熱量に比例して、ともに上昇する。ポンプ電極21の温度はセンサセル43の温度に比例する。具体的には、センサ電極23が650℃になるときのポンプ電極21の温度は約740℃であり、センサ電極23の温度が830℃になるときのポンプ電極21の温度は約920℃である。
 そのため、センサ電極23の温度が650~830℃の範囲内になるよう、発熱部62の形成領域の長さL(mm)とセンサ突出部100の長さH(mm)とを設定すれば、ポンプ電極21の温度を740~920℃の範囲内にすることができる。
 それ故、本実施例に係るガスセンサ1は、ポンプセル41及びセンサセル43の温度を適切に制御できる。
 また、図12に示すように、発熱部62の形成領域の長さL(mm)及びセンサ突出部100の長さH(mm)は、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、H=Lの関係を示す第1基準線X1、H=20の関係を示す第2基準線X2、H=-4.24L+42.71の関係を示す第3基準線X3、H=-4.24L+58.53の関係を示す第5基準線X5によって囲まれる範囲内にあるよう設定されることがさらに好ましい。
 H=-4.24L+58.53の関係を示す第5基準線X5は、第3基準線X3及び第4基準線X4と同様にして、センサ突出部100の長さH(mm)が15.3mm、13.3mm、11.3mmの各場合について、センサ電極23の温度が760℃となるときの、発熱部62の形成領域の長さL(mm)を上記各関係直線Y1,Y2,Y3に代入して求めた。また、ポンプ電極21の温度はセンサセル43の温度に比例し、センサ電極23が760℃になるときのポンプ電極21の温度は約850℃である。
 この場合には、ポンプ電極21の温度を740~850℃の適切な範囲内に保ち、センサ電極23の温度を650~760℃の適切な範囲内に保つことができる。そして、ポンプ電極21を構成するPt-Au合金中のAuが、センサ電極23を被毒することを防止することができる。
 1 ガスセンサ
 10 センサ構造体
 100 センサ突出部
 11 センサ素子
 12 保持体
 2 固体電解質体
 21 ポンプ電極
 23 センサ電極
 25 基準電極
 32 拡散抵抗体
 41 ポンプセル
 43 センサセル
 51 被測定ガス空間
 52 基準ガス空間
 6 ヒータ
 62 発熱部
 63 リード部
 G 被測定ガス
 A 基準ガス
 M 長手方向

Claims (4)

  1.  センサ素子(11)及びヒータ(6)が積層されてなるセンサ構造体(10)と、該センサ構造体(10)を保持する保持体(12)とを有し、該保持体(12)から先端側に突出する、上記センサ構造体(10)におけるセンサ突出部(100)が被測定ガス(G)に晒されるよう構成されたガスセンサ(1)において、
     上記センサ素子(11)は、酸素イオン伝導性を有する固体電解質体(2)と、
     該固体電解質体(2)の一方側に形成され、被測定ガス(G)が拡散抵抗体(32)を通過して導入される被測定ガス空間(51)と、
     上記固体電解質体(2)の他方側に形成され、基準ガス(A)が導入される基準ガス空間(52)と、
     上記固体電解質体(2)の上記被測定ガス空間(51)側の表面(201)に設けられたポンプ電極(21)を有し、該ポンプ電極(21)と上記固体電解質体(2)の上記基準ガス空間(52)側の表面(202)に設けられた基準電極(25)との間に電圧を印加して、上記被測定ガス空間(51)における酸素濃度を調整するポンプセル(41)と、
     上記固体電解質体(2)の上記被測定ガス空間(51)側の表面(201)であって、上記ポンプ電極(21)の配置位置よりも基端側に設けられたセンサ電極(23)を有し、該センサ電極(23)と上記基準電極(25)との間に流れる酸素イオン電流を測定するセンサセル(43)と、を備えており、
     上記ヒータ(6)は、通電によって発熱する発熱部(62)と、該発熱部(62)の一対の端部(622)にそれぞれ繋がる一対のリード部(63)とを備えており、
     上記発熱部(62)の全体は、上記センサ突出部(100)に配置されており、
     上記発熱部(62)の発熱中心(601)は、上記センサ電極(23)の中心(231)よりも先端側に位置しており、
     上記センサ突出部(100)の先端(101)から上記発熱部(62)の基端(621)までの距離をDとしたとき、上記センサ突出部(100)の先端(101)から上記センサ電極(23)の中心(231)までの距離Eは、0.7~1.3Dの範囲内にあり、上記センサ突出部(100)の先端(101)から上記ポンプ電極(21)の中心(211)までの距離Fは、0.3~0.7Dの範囲内にあり、
     上記センサ突出部(100)が上記保持体(12)から突出する長手方向(M)における、上記発熱部(62)の形成領域の長さL(mm)及び上記センサ突出部(100)の長さH(mm)は、該長さLとHをそれぞれ横軸と縦軸とする2次元座標面において、H=L、H=20、H=-4.24L+42.71、H=-4.24L+68.6の関係をそれぞれ示す第1、第2、第3、第4基準線(X1,X2,X3,X4)によって囲まれる範囲内にあるよう設定されていることを特徴とするガスセンサ(1)。
  2.  上記センサ突出部(100)が上記保持体(12)から突出する長手方向(M)における、上記発熱部(62)の形成領域の長さL(mm)及び上記センサ突出部(100)の長さH(mm)は、上記2次元座標面において、H=L、H=20、H=-4.24L+42.71、H=-4.24L+58.53の関係をそれぞれ示す第1、第2、第3、第5基準線(X1,X2,X3,X5)によって囲まれる範囲内にあるよう設定されていることを特徴とする請求項1に記載のガスセンサ(1)。
  3.  上記ポンプ電極(21)は、Pt-Au合金を含有し、上記センサ電極(23)は、Pt-Rh合金を含有することを特徴とする請求項1又は2に記載のガスセンサ(1)。
  4.  上記保持体(12)における、上記センサ構造体(10)を保持する部分は、直径(φd)が5~12mmである円柱形状に形成されていることを特徴とする請求項1~3のいずれか一項に記載のガスセンサ(1)。
     
PCT/JP2015/067117 2014-06-16 2015-06-15 ガスセンサ WO2015194490A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/319,128 US10261045B2 (en) 2014-06-16 2015-06-15 Gas sensor
DE112015002843.9T DE112015002843B4 (de) 2014-06-16 2015-06-15 Gassensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-123454 2014-06-16
JP2014123454 2014-06-16
JP2015-064273 2015-03-26
JP2015064273A JP6350359B2 (ja) 2014-06-16 2015-03-26 ガスセンサ

Publications (1)

Publication Number Publication Date
WO2015194490A1 true WO2015194490A1 (ja) 2015-12-23

Family

ID=54935477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067117 WO2015194490A1 (ja) 2014-06-16 2015-06-15 ガスセンサ

Country Status (4)

Country Link
US (1) US10261045B2 (ja)
JP (1) JP6350359B2 (ja)
DE (1) DE112015002843B4 (ja)
WO (1) WO2015194490A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6561719B2 (ja) * 2014-10-30 2019-08-21 株式会社デンソー ガスセンサ
JP6696418B2 (ja) * 2016-12-21 2020-05-20 株式会社デンソー ガスセンサ素子及びガスセンサユニット
JP7149166B2 (ja) * 2018-11-15 2022-10-06 株式会社Soken ガスセンサ
JP7294178B2 (ja) * 2020-02-17 2023-06-20 株式会社デンソー ガスセンサ素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321238A (ja) * 1996-09-17 2000-11-24 Riken Corp ガスセンサ
JP2003149199A (ja) * 2001-11-16 2003-05-21 Nissan Motor Co Ltd ガスセンサ
JP2009265085A (ja) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd ガスセンサ
JP2009287939A (ja) * 2008-05-27 2009-12-10 Denso Corp NOxセンサ素子
JP2010271283A (ja) * 2009-05-25 2010-12-02 Ngk Spark Plug Co Ltd NOxセンサ
WO2015025924A1 (ja) * 2013-08-21 2015-02-26 株式会社デンソー ガスセンサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2913633C2 (de) 1979-04-05 1986-01-23 Robert Bosch Gmbh, 7000 Stuttgart Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen von Verbrennungsmotoren sowie Verfahren zur Herstellung desselben
JP3488591B2 (ja) * 1996-03-28 2004-01-19 日本碍子株式会社 酸化物センサ
US6068747A (en) 1997-03-10 2000-05-30 Denso Corporation Solid electrolyte gas sensor
JP3878339B2 (ja) 1997-11-14 2007-02-07 株式会社リケン 窒素酸化物センサ
JP4681170B2 (ja) 2001-08-28 2011-05-11 株式会社デンソー ガスセンサ素子の温度制御装置及び温度制御方法
DE102004013545A1 (de) * 2004-03-19 2005-10-06 Robert Bosch Gmbh Sensorelement
DE102006014248A1 (de) 2006-03-28 2007-10-04 Robert Bosch Gmbh Sensorelement zur Bestimmung eines Gasanteils mit verbesserten thermischen Eigenschaften

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321238A (ja) * 1996-09-17 2000-11-24 Riken Corp ガスセンサ
JP2003149199A (ja) * 2001-11-16 2003-05-21 Nissan Motor Co Ltd ガスセンサ
JP2009265085A (ja) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd ガスセンサ
JP2009287939A (ja) * 2008-05-27 2009-12-10 Denso Corp NOxセンサ素子
JP2010271283A (ja) * 2009-05-25 2010-12-02 Ngk Spark Plug Co Ltd NOxセンサ
WO2015025924A1 (ja) * 2013-08-21 2015-02-26 株式会社デンソー ガスセンサ

Also Published As

Publication number Publication date
DE112015002843T5 (de) 2017-03-02
JP2016020894A (ja) 2016-02-04
DE112015002843B4 (de) 2023-06-15
JP6350359B2 (ja) 2018-07-04
US10261045B2 (en) 2019-04-16
US20170122897A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
JP6321968B2 (ja) ガスセンサ素子
WO2015194490A1 (ja) ガスセンサ
JP6561719B2 (ja) ガスセンサ
JP6596535B2 (ja) ガスセンサ
JP2009222561A (ja) ガスセンサ素子
JP6203650B2 (ja) ガスセンサ素子及びガスセンサ
JP2008008665A (ja) 限界電流式酸素センサ
US10866210B2 (en) Gas sensor
US10895553B2 (en) Gas sensor
JP6305832B2 (ja) 特定ガス濃度検出方法
JP2015068820A (ja) ガスセンサ装置
US20170219517A1 (en) Gas sensor unit
WO2016129661A1 (ja) ガスセンサ
JP6511405B2 (ja) ガスセンサ
JP6382178B2 (ja) ガスセンサ
JP6410398B2 (ja) ガスセンサ素子
JP2021032812A (ja) センサ素子
JP2009287939A (ja) NOxセンサ素子
JP2017049051A (ja) ガスセンサ
JP2017194285A (ja) ガスセンサ
JP4897369B2 (ja) 限界電流式酸素センサ及びこれを用いた酸素濃度の検知測定方法
KR20210083564A (ko) 산소센서의 감지소자
JP2010066218A (ja) セラミックヒータ、これを有するセンサ素子、及びセンサ
WO2016067975A1 (ja) ガスセンサ
JP2009156608A (ja) ガスセンサ素子およびガスセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15319128

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002843

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809819

Country of ref document: EP

Kind code of ref document: A1