WO2015194366A1 - 銅ペーストの焼成方法 - Google Patents

銅ペーストの焼成方法 Download PDF

Info

Publication number
WO2015194366A1
WO2015194366A1 PCT/JP2015/065933 JP2015065933W WO2015194366A1 WO 2015194366 A1 WO2015194366 A1 WO 2015194366A1 JP 2015065933 W JP2015065933 W JP 2015065933W WO 2015194366 A1 WO2015194366 A1 WO 2015194366A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
heating step
firing
heating
oxide
Prior art date
Application number
PCT/JP2015/065933
Other languages
English (en)
French (fr)
Inventor
小池 淳一
須藤 祐司
大輔 安藤
Original Assignee
株式会社マテリアル・コンセプト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マテリアル・コンセプト filed Critical 株式会社マテリアル・コンセプト
Priority to EP15810529.6A priority Critical patent/EP3153254B1/en
Priority to KR1020177001035A priority patent/KR101748112B1/ko
Priority to US15/319,549 priority patent/US10433427B2/en
Priority to CN201580032307.2A priority patent/CN106457390B/zh
Publication of WO2015194366A1 publication Critical patent/WO2015194366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning

Definitions

  • the present invention relates to a method for firing a copper paste applied on a substrate.
  • Conductive paste is used to form wiring on electronic components such as chip resistors, chip capacitors, solar cells, and printed circuit boards and substrates on which through holes are formed. Further, it can be used for an electrode or a wiring connected to a transistor for controlling pixel switching of a display.
  • Many of the current conductive pastes use silver pastes with excellent oxidation resistance, but silver is expensive and has a problem that migration defects are likely to occur in fine pitch wiring. Studies have been made to produce an alternative copper paste and to obtain a wiring structure having low resistance and excellent reliability by firing the copper paste.
  • the binder resin reacts with the air, so that the amount of resin remaining in the fired wiring can be reduced as much as possible, and an increase in wiring resistance due to the resin remaining can be suppressed.
  • the conductive copper paste needs to be fired in an inert gas or in a vacuum. In that case, the binder resin component remains in the wiring due to the lack of oxygen, so that the sinterability deteriorates and the wiring resistance increases. Further, even when firing in an inert gas or in a vacuum, it is difficult to properly suppress the oxidation of the copper particles, and the copper particles tend to be oxidized during firing, resulting in an increase in wiring resistance.
  • Patent Document 1 As a method using an inexpensive conductive paste by replacing expensive silver particles with copper particles, for example, in Patent Document 1, heating is performed at a temperature higher than the temperature at which the resin decomposes and disappears in the atmosphere, and copper oxide formed at that time A method is disclosed in which the powder is sintered while being reduced to copper.
  • Patent Document 2 discloses a method in which a binder removal step is performed in a non-oxidizing atmosphere, copper is oxidized while the temperature is lowered in an oxidizing atmosphere, and further reduced to produce a sintered body.
  • Patent Document 3 discloses a method in which oxidation treatment is performed at a temperature exceeding the oxidation start temperature, and reduction treatment is performed at a temperature equal to or higher than the reduction start temperature.
  • Patent Document 4 discloses a method in which drying is performed at a temperature of less than 150 ° C., and then pressurization, heating, and reduction treatment steps are performed.
  • an object of the present invention is to provide a method for firing a copper paste that improves the sinterability of copper particles in order to form a copper wiring with reduced electrical resistivity.
  • the present inventors apply a first heating step of heating in a specific oxidizing gas atmosphere and a second heating step of heating in a specific reducing gas atmosphere to the substrate coated with the copper paste. After forming a dense oxide sintered body made of copper oxide, it was reduced to form a dense copper sintered body, and it was found that the electrical resistivity could be reduced, and the present invention was completed. Specifically, the present invention provides the following.
  • An application step of applying a copper paste on a substrate and after the application step, the substrate is heated in a nitrogen gas atmosphere containing an oxidizing gas having a volume ratio of 500 ppm or more and 2000 ppm or less in the copper paste.
  • the substrate is heated in a nitrogen gas atmosphere containing a reducing gas having a volume ratio of 1% or more, and the oxidation firing is performed.
  • a second heating step of reducing the bonded copper oxide is performed.
  • the flow rate of the continuously flowing gas is 0.05 liter or more and 0.5 liter or less per minute with respect to the volume of the firing furnace of 1 ⁇ 10 ⁇ 6 m 3 . Firing method.
  • the oxide of the copper particles formed in the first heating step includes cuprous oxide and cupric oxide, and is heated so that the cuprous oxide is contained more than the cupric oxide.
  • the firing method according to any one of (1) to (5) above.
  • the electrical resistivity of the copper wiring on the substrate can be reduced.
  • FIG. 3 is a diagram showing a cross-sectional structure of the test body after the first heating step with respect to Example 1.
  • FIG. 3 is a diagram showing a cross-sectional structure of the test body after the second heating step with respect to Example 1.
  • the present invention includes a step of applying a copper paste on a substrate, and heating the applied substrate in a nitrogen gas or inert gas atmosphere containing an oxidizing gas having a volume ratio of 500 ppm or more and 2000 ppm or less. After the first heating step of oxidizing and sintering the copper particles therein, and after the first heating step, the substrate is heated in a nitrogen gas or inert gas atmosphere containing a reducing gas of 1% or more by volume. And a second heating step for reducing the oxidized and sintered copper oxide.
  • the firing method of the present invention is applied to a substrate for forming a copper wiring.
  • the substrate include a substrate on which an electronic mounting product is mounted, a printed wiring board, and a substrate having a through hole.
  • the substrate material silicon substrates, oxide substrates such as silicate glass, alumina and quartz, nitride substrates such as silicon nitride and aluminum nitride, carbide substrates such as silicon carbide and titanium carbide, and resin substrates can be used.
  • the copper paste is prepared by mixing copper particles, a binder resin, a solvent, and the like.
  • the copper particles contained in the copper paste have an oxygen concentration in the particles of 0.05% by mass or more and 2.0% by mass or less. More preferably, the upper limit concentration may be 1.0% by mass or less.
  • the oxygen concentration exceeds 2.0% by mass, the degree of oxidation of the metal particles becomes remarkable, the tendency to aggregate in the copper paste becomes strong, and the printability deteriorates. Further, the metal resistance is not sufficiently reduced by subsequent firing, and the wiring resistance after firing increases. On the other hand, it is desirable that the oxygen concentration is as low as possible.
  • the total concentration of metal elements other than copper contained in the particles is suppressed to 1.0% by mass or less, more preferably 0.8% by mass or less.
  • the copper particles are preferably particles produced by a method such as a gas atomization method or a water atomization method.
  • the average value of the aspect ratio (dmax / dmin) defined by the ratio of the maximum diameter (dmax) and the minimum diameter (dmin) of the particles should be 1.0 or more and smaller than 2.2. The following is preferable.
  • the average aspect ratio of the copper particles exceeds 2.2, the particle shape becomes flat flaky or acicular particles, and clogging occurs during screen printing.
  • the filling rate of the copper particles in the printed wiring is deteriorated to induce the drooping of the wiring shape, and the porosity is increased, thereby causing the sintering property to deteriorate and increasing the wiring resistance after firing. .
  • Binder resin The mass% of the binder resin in the organic vehicle contained in the conductive paste is preferably larger than 0.05% and smaller than 17.0%. Binder resin should just be resin decomposed
  • the solvent contained in the conductive paste is not particularly limited as long as it has an appropriate boiling point, vapor pressure, and viscosity.
  • hydrocarbon solvents chlorinated hydrocarbon solvents, cyclic ether solvents, amide solvents, sulfoxide solvents, ketone solvents, alcohol compounds, polyhydric alcohol ester solvents, polyhydric alcohol ether solvents , Terpene solvents, and mixtures thereof.
  • a binder resin and a solvent are mixed, copper particles are further added, and the mixture is kneaded using an apparatus such as a planetary mixer. Moreover, you may add the glass frit of 10% or less of mass ratio with respect to the mass of a copper particle. Further, if necessary, a method of increasing the dispersibility of the particles using a three-roll mill may be used.
  • This conductive paste is printed on a substrate using a method such as a screen printing method to produce a wiring shape. Thereafter, firing is performed in a gas atmosphere to sinter the copper particles to form wiring.
  • the substrate coated with the copper paste is heated in a nitrogen gas atmosphere containing an oxidizing gas.
  • This heating is a process for evaporating the solvent, burning out the resin, and oxidizing and sintering the copper particles.
  • oxygen can be used, and the concentration is preferably 500 ppm or more and 2000 ppm or less by volume ratio. If the concentration of the oxidizing gas is less than 500 ppm, the resin is not sufficiently combusted, and the resin component remains to deteriorate the sinterability. When it exceeds 2000 ppm, a reaction occurs rapidly only in the vicinity of the surface of the copper paste to form a dense sintered coating layer and inhibit the internal reaction.
  • An oxygen concentration of 500 ppm or more and 2000 ppm or less is preferable in order to allow the combustion and extinction of the resin and the oxidation and sintering of the copper particles to proceed with good balance throughout the paste.
  • the heating temperature is preferably 350 ° C. or higher and 500 ° C. or lower. If it is less than 350 ° C., the resin remains, and if it exceeds 500 ° C., a coating layer is formed and the internal reaction is inhibited.
  • the sintered body made of the copper oxide formed in the first heating step is heated in a nitrogen gas atmosphere containing a reducing gas to perform a reduction treatment, and made of copper.
  • a reducing gas As the reducing gas, hydrogen, carbon monoxide, formic acid, ammonia or the like can be used. If the reducing gas concentration is less than 1% by volume, the copper oxide in the sintered body is not sufficiently reduced, and the copper oxide remains, so the copper wiring after firing has a high electrical resistivity. Present. Therefore, the reducing gas concentration is preferably 1% or more by volume ratio.
  • the heating temperature is preferably 400 ° C. or higher and 550 ° C. or lower. When the temperature is lower than 400 ° C., copper oxide remains, and when the temperature exceeds 550 ° C., a reaction occurs between the sintered body and the substrate, and thus the copper wiring after firing exhibits high electrical resistivity.
  • the substrate coated with the copper paste is heated while being held in a predetermined gas atmosphere.
  • the substrate can be placed in a baking furnace and heated.
  • the gas atmosphere in the firing furnace may be heated in a sealed state after introducing a gas having a predetermined composition, or may be heated while continuously introducing and flowing the gas into the firing furnace. Good.
  • a gas prepared by mixing oxygen gas or reducing gas with nitrogen gas to have a predetermined concentration can be used.
  • the resin contained in the copper paste burns and disappears. If the combustion gas generated at this time stays around the substrate, the combustion reaction is hindered and the resin remains.
  • the reduction of the copper oxide may stop at the surface portion of the sintered body due to the staying combustion gas.
  • the gas flow rate is preferably 0.05 liter or more and 0.5 liter or less per minute with respect to the volume of the firing furnace of 1 ⁇ 10 ⁇ 6 m 3 . If it is less than 0.05 liters per minute, the combustion reaction does not proceed sufficiently. If it exceeds 0.5 liters per minute, the substrate temperature is changed, so that it is difficult to control the heating temperature.
  • the copper particles in the copper paste are oxidized, and cuprous oxide (Cu 2 O) is formed in a continuous form so as to cover the copper particle surface.
  • cuprous oxide Cu 2 O
  • the volume expansion is about 60%, so that adjacent particles can be in close contact and sintered. Therefore, a sintered structure in which adjacent particles are connected is obtained without applying pressure at a high temperature, and good sinterability is realized.
  • the sintered structure is reduced in the second heating step to become a dense sintered structure in which copper particles are connected. As a result, a copper wiring having a low electrical resistivity can be obtained.
  • the cuprous oxide contained in the particles in the sintered structure after the first heating step is preferably more than cupric oxide, and preferably accounts for 65% or more of the copper oxide.
  • Example 1 A test in which a glass substrate having a length of 20 mm ⁇ 20 mm and a thickness of 0.6 mm was used, a copper paste was printed on the surface in a wiring shape by a screen printing method, and a copper paste having a thickness of about 20 ⁇ m was applied on the substrate. Got the body. After placing this test body in a firing furnace, a heat treatment was performed at 400 ° C. for 5 minutes as a first heating step. In this heat treatment, a nitrogen gas atmosphere with various oxygen content ratios and an air atmosphere were used as the gas atmosphere in the firing furnace. Then, the heat processing for 500 degreeC and 5 minutes were performed as a 2nd heating process.
  • the electrical resistivity of the copper wiring of the test body was determined by the direct current four probe method.
  • Four needle-shaped electrodes (probes) arranged at a distance of 1 mm in the longitudinal direction of the copper wiring surface are brought into pressure contact, and current (I) is caused to flow between the two outer probes, and between the two inner probes.
  • I current
  • electrical resistivity
  • C is a correction coefficient related to the shape of the copper wiring
  • C 4.532.
  • the cross-sectional height (S) of the wiring was obtained by observing the wiring cross-section with a scanning electron microscope. An electrical resistivity of 6 ⁇ m or less was determined to be acceptable. Table 1 shows the measurement results of electrical resistivity.
  • a copper wiring having a low electric resistivity of 6 ⁇ cm or less was obtained in the gas atmosphere in the first heating step when the oxygen concentration was 500 ppm or more and 2000 ppm or less by volume.
  • the oxygen concentration was less than 500 ppm or more than 2000 ppm, the electrical resistivity exceeded 6 ⁇ cm. If the oxygen concentration is too low, the resin does not burn sufficiently and the resin component remains, and if the oxygen concentration is too high, a rapid reaction proceeds and a coating layer is formed, resulting in a decrease in sinterability. In either case, it was difficult to form a dense sintered body, and the electrical resistivity increased.
  • the oxygen concentration was low, such as 100 ppm or less, or when the oxygen concentration was high as in the atmosphere, a high electrical resistivity exceeding 10 ⁇ cm was exhibited.
  • FIG. 1 shows a photograph of the cross-sectional structure of the specimen after heating in the first heating step.
  • a dense sintered structure in which particles containing copper oxide are in close contact with each other was formed by the oxidation treatment in the gas atmosphere.
  • a copper oxide containing cuprous oxide was formed on the surface of the copper particles.
  • FIG. 2 shows a photograph of the cross-sectional structure of the specimen after heating in the second heating step. As shown in FIG. 2, the sintered structure of FIG. 1 was reduced to form a dense sintered structure in which copper particles were connected.
  • the sintered structure contained copper oxide by observing the structure by SEM and analyzing the composition using an X-ray energy dispersive spectrometer attached to the SEM. Moreover, the ratio containing copper and copper oxide and the ratio of cuprous oxide and cupric oxide in the copper oxide could be confirmed by structural analysis by X-ray diffraction method. The proportion of copper oxide was 87% by volume. The ratio of cuprous oxide in the copper oxide was 91%.
  • Example 2 Except for the point that the heating temperature (T1) in the first heating process was changed variously, the same procedure as in Example 1 was performed to perform the heat treatment in the first and second heating processes to produce a test specimen, The electrical resistivity was measured. The oxygen concentration in the first heating step was 1000 ppm. Table 2 shows the measurement results.
  • Example 3 Except for the point that the heating temperature (T2) in the second heating step was changed variously, by performing the same procedures as in Example 1, heat treatments of the first and second heating steps were performed to prepare a test specimen, The electrical resistivity was measured. The oxygen concentration in the first heating step was 1000 ppm. Table 3 shows the measurement results.
  • Example 4 Except that the gas flow rates in the first and second heating steps were variously changed, a heat treatment of the first and second heating steps was performed according to the same procedure as in Example 1 to produce a test specimen. The resistivity was measured. The oxygen concentration in the first heating step was 1000 ppm. Table 4 shows the measurement results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 電気伝導率を低減した銅配線を形成するために、銅粒子の焼結性を向上させる銅ペーストの焼成方法を提供すること。 基板上に銅ペーストを塗布する塗布工程と、前記塗布工程の後、体積比で500ppm以上、2000ppm以下の酸化性ガスを含有する窒素ガス雰囲気において前記基板を加熱し、前記銅ペースト中の銅粒子を酸化焼結する第一の加熱工程と、前記第一の加熱工程の後、体積比で1%以上の還元性ガスを含有する窒素ガス雰囲気において前記基板を加熱し、前記酸化焼結された銅酸化物を還元する第二の加熱工程と、を含む銅ペーストの焼成方法。

Description

銅ペーストの焼成方法
 本発明は、基板上に塗布された銅ペーストを焼成する方法に関する。
 導電性ペーストは、チップ抵抗器、チップコンデンサ、太陽電池などの電子部品、ならびにプリント配線基板、スルーホールが形成された基板などの電子実装品に配線を形成するために用いられる。また、ディスプレイの画素スイッチングを制御するためのトランジスタに接続する電極や配線に用いることができる。現状の導電性ペーストの多くは、耐酸化性に優れた銀ペーストが用いられているが、銀は高価であるとともにファインピッチ配線においてマイグレーション不良が発生しやすいという課題があるため、銀を銅で代替した銅ペーストを作製し、銅ペーストを焼成して低抵抗で信頼性に優れた配線構造を得るための検討がなされている。
 銀ペーストを大気焼成する場合には、バインダー樹脂が大気と反応することにより、焼成後の配線中に残留する樹脂量を極力低減し、樹脂の残留による配線抵抗の上昇を抑制することができる。これに対して、銅は、酸素を含む雰囲気において容易に酸化するため、導電性銅ペーストは、不活性ガス中あるいは真空中で焼成する必要がある。その場合、酸素不足のためバインダー樹脂成分が配線中に残留して焼結性が悪化し、配線抵抗が上昇してしまうという問題点を有していた。また、不活性ガス中あるいは真空中で焼成していても、銅粒子の酸化を適正に抑制することは困難であり、焼成時に銅粒子が酸化され、配線抵抗が増加する傾向にあった。
 高価な銀粒子を銅粒子に替えて安価な導電性ペーストによる方法としては、例えば、特許文献1では、大気中で樹脂が分解、消失する温度以上で加熱し、その際に形成される酸化銅粉末を銅に還元しながら焼結させる方法を開示している。特許文献2では、非酸化性雰囲気で脱バインダー工程を実施し、酸化雰囲気で降温しながら銅を酸化し、さらに還元して焼結体を作る方法を開示している。特許文献3では、酸化開始温度を超える温度で酸化処理を行い、還元開始温度以上の温度で還元処理を行う方法を開示している。特許文献4では、150℃未満の温度で乾燥し、その後加圧、加熱、還元処理工程を行う方法を開示している。
特開平7-45931号公報 特開2002-43747号公報 特開2009-231755号公報 特開2012-204466号公報
 しかし、上記した従来の方法では、銅ペーストの焼成により銅粒子が焼結されて緻密化する程度が十分でなく、低い電気抵抗率の銅配線が得られなかった。そのため、銅粒子の焼結性をさらに向上させる焼成方法が求められていた。
 本発明は、このような状況に鑑みて、電気抵抗率を低減した銅配線を形成するために、銅粒子の焼結性を向上させる銅ペーストの焼成方法を提供することを目的とする。
 本発明者らは、銅ペーストを塗布した基板に対して、特定の酸化性ガス雰囲気で加熱する第一の加熱工程、特定の還元性ガス雰囲気で加熱する第二の加熱工程を適用することにより、銅酸化物からなる緻密な酸化焼結体を形成した後、還元して緻密な銅焼結体を形成し、電気抵抗率が低減できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。
(1) 基板上に銅ペーストを塗布する塗布工程と、前記塗布工程の後、体積比で500ppm以上、2000ppm以下の酸化性ガスを含有する窒素ガス雰囲気において前記基板を加熱し、前記銅ペースト中の銅粒子を酸化焼結する第一の加熱工程と、前記第一の加熱工程の後、体積比で1%以上の還元性ガスを含有する窒素ガス雰囲気において前記基板を加熱し、前記酸化焼結された銅酸化物を還元する第二の加熱工程と、を含む、銅ペーストの焼成方法。
(2) 前記第一の加熱工程は、350℃以上、500℃以下で行う、上記(1)に記載の焼成方法。
(3) 前記第二の加熱工程は、400℃以上、550℃以下で行う、上記)(1)または(2)に記載の焼成方法。
(4) 前記第一および第二の加熱工程は、焼成炉内でガスを連続的に流すことにより、前記ガス雰囲気を維持する、上記(1)~(3)のいずれかに記載の焼成方法。
(5) 前記連続的に流すガスの流量は、焼成炉の容積1×10-6に対して、毎分0.05リットル以上、0.5リットル以下である、上記(4)に記載の焼成方法。
(6) 前記第一の加熱工程で形成される銅粒子の酸化物は、酸化第一銅および酸化第二銅を含み、前記酸化第一銅が前記酸化第二銅より多く含まれるよう加熱される、上記(1)~(5)のいずれかに記載の焼成方法。
(7) 上記(1)~(6)のいずれかに記載の焼成方法により形成される焼結構造体であって、前記第一の加熱工程の後には、酸化時の体積膨張によって隣接する粒子間が接続した組織を備えている焼結構造体。
(8) 上記(1)~(6)のいずれかに記載の焼成方法により形成される焼結構造体であって、前記第二の加熱工程において酸化第一銅および酸化第二銅が還元されて銅粒子が連結した組織を備えている焼結構造体。
 本発明によれば、基板上に塗布された銅ペーストの銅粒子を緻密に焼結する焼成方法が提供されるので、基板上の銅配線として電気抵抗率を低減させることができる。
実施例1に関して第一の加熱工程後の試験体の断面組織を示す図である。 実施例1に関して第二の加熱工程後の試験体の断面組織を示す図である。
 以下、本発明の実施形態について説明する。本発明は、これらの記載により限定されるものではない。
 本発明は、基板上に銅ペーストを塗布する工程と、体積比で500ppm以上、2000ppm以下の酸化性ガスを含有する窒素ガスまたは不活性ガス雰囲気において前記塗布された基板を加熱し、前記銅ペースト中の銅粒子を酸化焼結する第一の加熱工程と、前記第一の加熱工程の後、体積比で1%以上の還元ガスを含有する窒素ガスまたは不活性ガス雰囲気において前記基板を加熱し、前記酸化焼結された銅酸化物を還元する第二の加熱工程と、を含む銅ペーストの焼成方法である。
(基板)
 本発明の焼成方法は、銅配線を形成するための基板に適用される。当該基板としては、電子実装品を搭載する基板、プリント配線基板、スルーホールを有する基板などが挙げられる。基板材料としては、シリコン基板、珪酸ガラス、アルミナ、クォーツなどの酸化物基板、シリコン窒化物、アルミニウム窒化物などの窒化物基板、シリコン炭化物、チタン炭化物などの炭化物基板、樹脂基板などを使用できる。
(銅粒子)
 銅ペーストは、銅粒子、バインダー樹脂、溶剤等を混合して調製されている。
 銅ペーストに含まれる銅粒子は、粒子中の酸素濃度を0.05質量%以上、2.0質量%以下とする。より好ましくは、上限濃度が1.0質量%以下であれば良い。酸素濃度が2.0質量%を超えると金属粒子の酸化の程度が顕著となり、銅ペースト中において凝集する傾向が強くなり、印刷性が悪化する。また、その後の焼成によっても酸化金属が十分に還元されずに焼成後の配線抵抗が増加する。一方、酸素濃度は可能な限り低いことが望ましいが、アトマイズ法などで作製された金属粒子中の酸素濃度を0.05質量%未満とするためには、還元ガス中での処理が必要となるため、コスト高となり好ましくない。
 粒子中に含有される銅以外の金属元素の総量濃度は、1.0質量%以下、より好ましく
は0.8質量%以下に抑制する。
 銅粒子は、ガスアトマイズ法、または水アトマイズ法などの方法で製造された粒子が好ましい。粒子の最大直径(dmax)と最少直径(dmin)の比で定義されるアスペクト比(dmax/dmin)の平均値が1.0以上、2.2より小さければよく、1.0以上2.0以下であることが好ましい。銅粒子の平均アスペクト比が2.2を超える場合は、粒子形状が扁平なフレーク状や針状粒子となり、スクリーン印刷の際に目詰まりが発生する。また、印刷後の配線における銅粒子の充填率が悪化して配線形状の垂れを誘発するとともに、空隙率が増加することによって焼結性が悪化して焼成後の配線抵抗を上昇させる原因となる。
 (バインダー樹脂)
 導電性ペーストに含有される有機ビヒクル中のバインダー樹脂の質量%は、0.05%より大きく、17.0%より小さいことが好ましい。バインダー樹脂は、焼成によって分解される樹脂であれば良い。例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロースなどのセルロース樹脂、アクリル樹脂、ブチラール樹脂、アルキド樹脂、エポキシ樹脂、フェノール樹脂などがある。これらの中で、焼成雰囲気に含まれる微量酸素あるいは微量一酸化炭素と反応してペースト中から容易に消失する傾向があるセルロース系樹脂を用いると良い。さらに好ましくは、セルロース系樹脂の中で、エチルセルロースを用いると良い。
 (溶剤)
 導電性ペーストに含有される溶剤は、適正な沸点、蒸気圧、粘性を有するものであれば、特に制限はない。例えば、炭化水素系溶剤、塩素化炭化水素系溶剤、環状エーテル系溶剤、アミド系溶剤、スルホキシド系溶剤、ケトン系溶剤、アルコール系化合物、多価アルコールのエステル系溶剤、多価アルコールのエーテル系溶剤、テルペン系溶剤、およびこれらの混合物が挙げられる。これらの中で、沸点が200℃近傍にあるテキサノール、ブチルカルビトール、ブチルカルビトールアセテート、テルピネオールを用いることが好ましい。
(塗布方法)
 バインダー樹脂と溶媒を混合し、さらに銅粒子を添加して、遊星ミキサーなどの装置を用いて混練する。また、銅粒子の質量に対して10%以下の質量比のガラスフリットを添加しても良い。さらに、必要に応じて三本ロールミルを用いて粒子の分散性を高める方法をとっても良い。
 この導電性ペーストを、スクリーン印刷法などの方法を用いて基板上に印刷して配線形状を作製する。その後、ガス雰囲気中で焼成して、銅粒子を焼結させて配線とする。
(第一の加熱工程)
 第一の加熱工程では、銅ペーストを塗布した前記基板に対して酸化性ガスを含有する窒素ガス雰囲気中で加熱する。この加熱により、溶媒の蒸発、樹脂の燃焼消滅、銅粒子の酸化焼結を行うプロセスである。上記の酸化性ガスとしては、酸素を用いることができ、その濃度は、体積比で500ppm以上、2000ppm以下が好ましい。酸化性ガスの濃度が500ppm未満であると樹脂の燃焼が充分に行われず、樹脂成分が残存して焼結性を悪化する。2000ppmを超えると銅ペーストの表面近傍でのみ急速に反応が生じて緻密な焼結被膜層を形成し、内部の反応を阻害する。ペースト全体で樹脂の燃焼消滅と銅粒子の酸化焼結をバランス良く進行させるためには、500ppm以上、2000ppm以下の酸素濃度が好ましい。
 加熱温度は、350℃以上、500℃以下が好ましい。350℃未満では樹脂が残存し、500℃を超えると被覆層が形成され、内部の反応を阻害する。
(第二の加熱工程)
 第二の加熱工程では、第一の加熱工程で形成された銅酸化物からなる焼結体に対して、還元性ガスを含有する窒素ガス雰囲気中で加熱して還元処理を行い、銅からなる焼結体とするプロセスである。上記の還元性ガスとしては、水素、一酸化炭素、ギ酸、アンモニアなどを使用できる。還元性ガス濃度が体積比で1%未満であると、焼結体における銅酸化物の還元が充分に行われず、銅酸化物が残存するため、焼成後の銅配線は、高い電気抵抗率を呈する。そのため、還元性ガス濃度は、体積比で1%以上が好ましい。
 加熱温度は、400℃以上、550℃以下が好ましい。400℃未満であると銅酸化物が残存し、550℃を超えると焼結体と基板との反応が生じるため、焼成後の銅配線は、高い電気抵抗率を呈する。
(ガス雰囲気)
 第一および第二の各加熱工程は、銅ペーストを塗布した基板を所定のガス雰囲気に保持して加熱する。例えば、焼成炉内に基板を配置して加熱することができる。焼成炉内のガス雰囲気は、所定の組成からなるガスを導入した後、封止した状態で加熱してもよく、あるいは、焼成炉内にガスを連続的に導入して流しながら加熱してもよい。導入するガスは、酸素ガスまたは還元性ガスを窒素ガスに所定濃度となるよう混合して調製したものを使用できる。
 第一の加熱工程では、銅ペーストに含有される樹脂が燃焼して消失する。その際に発生する燃焼ガスが基板周辺に滞留すると、燃焼反応が妨げられて樹脂の残存を招く。また、第二の加熱工程では、滞留した燃焼ガスにより、銅酸化物の還元が焼結体の表面部に止まる可能性がある。このような発生する燃焼ガスを排除するために、連続的に雰囲気用ガスを通流してガス雰囲気を維持することが好ましい。そのガス流量は、焼成炉の容積1×10-6に対して、毎分0.05リットル以上、0.5リットル以下が好ましい。毎分0.05リットル未満であると燃焼反応が十分に進行しない。毎分0.5リットルを超えると基板温度を変化させるので加熱温度の制御が困難となる。
 (焼結構造体)
 第一の加熱工程の酸化により、銅ペースト中の銅粒子が酸化されて酸化第一銅(CuO)が銅粒子表面を覆うように連続体状の形態で形成される。銅粒子が酸化第一銅に変化すると、約60%の体積膨張を伴うので、隣接する粒子が密着して焼結することができる。そのため、高温で加圧をしなくても、隣接する粒子間が接続した焼結構造体が得られ、良好な焼結性が実現される。その後、前記焼結構造体は、第二の加熱工程で還元することにより、銅粒子が連結した緻密な焼結構造体となる。そのことにより、低い電気抵抗率の銅配線が得られる。酸化物の割合としては、銅粒子の体積の70%以上が酸化すれば緻密な焼結構造が形成されるので、その程度まで酸化させることが好ましい。
 他方、酸化がさらに進行して酸化第二銅(CuO)が形成されると、当該酸化第二銅が針状形態を呈することから緻密な焼結体の形成を阻害する傾向を生じる。そのため、過度の酸化により酸化第二銅が増加することは好ましくない。第一の加熱工程後の焼結構造体において粒子に含まれる酸化第一銅は、酸化第二銅より多いことが好ましく、銅酸化物のうち65%以上を占めることが好ましい。
 以下、実施例を示して本発明をさらに詳細に説明するが、本発明は、これらの実施例により制限されるものではない。
<実施例1>
 長さ20mm×20mm、厚さ0.6mmのガラス基板を用いて、その表面に銅ペーストをスクリーン印刷法で配線形状に印刷し、当該基板上に厚さ約20μmの銅ペーストが塗布された試験体を得た。この試験体を焼成炉内に配置した後、第一の加熱工程として、400℃で5分間の加熱処理を行った。この加熱処理では、焼成炉内のガス雰囲気として、酸素含有割合を種々に変えた窒素ガス雰囲気と、大気雰囲気を用いた。その後、第二の加熱工程として、500℃、5分間の加熱処理を行った。この加熱処理では、焼成炉内のガス雰囲気に体積比で5%の水素ガスを含有する窒素ガス雰囲気を用いた。第一および第二の加熱工程は、いずれも焼成炉の容積1×10-6に対して毎分0.1リットルの流量で所定のガスを流しながら加熱処理を行った。加熱処理した後、室温に冷却し、焼成炉から取り出して、電気抵抗率の測定、断面組織の観察を行った。
(電気抵抗率)
試験体の銅配線の電気抵抗率を直流四探針法で求めた。銅配線表面の長手方向に距離1mmの間隔で配置した4本の針状電極(探針)を加圧接触させ、外側の2探針間に電流(I)を流し、内側の2探針間の電位差(V)を測定し、ρ=(V/I)×S×Cにより、電気抵抗率(ρ)を算出した。ここでCは銅配線の形状に関する補正係数であり、C=4.532とした。配線の断面高さ(S)は、配線断面を走査型電子顕微鏡により観察して求めた。電気抵抗率が6μΩm以下を合格と判定した。表1に電気抵抗率の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第一の加熱工程におけるガス雰囲気は、酸素濃度が体積比で500ppm以上、2000ppm以下において、6μΩcm以下の低い電気抵抗率を有する銅配線が得られた。それに対し、500ppm未満または2000ppm超の酸素濃度では、6μΩcmを超える電気抵抗率を示した。酸素濃度が過小であると樹脂の燃焼が十分に行われず樹脂成分が残存し、また、酸素濃度が過大であると急速な反応が進行して被覆層が形成され、焼結性が低下したため、いずれも緻密な焼結体の形成が困難であり、電気抵抗率が増大した。特に、100ppm以下のような酸素濃度が低い場合や大気のように酸素濃度が高い場合は、10μΩcmを超える高い電気抵抗率を示した。
(断面組織)
 表1の酸素濃度1000ppmのガス雰囲気で加熱した試験体を用いて、走査型電子顕微鏡(SEM)により試験体の断面組織を観察した。図1は、第一の加熱工程による加熱後の試験体の断面組織写真を示す。図1に示すように、上記のガス雰囲気での酸化処理によって銅酸化物を含む粒子同志が密着した緻密な焼結組織が形成されていた。銅粒子表面に酸化第一銅を含む銅酸化物が形成されていた。
 図2は、第二の加熱工程による加熱後の試験体の断面組織写真を示す。図2に示すように、図1の焼結組織が還元されて銅粒子が連結した緻密な焼結組織が形成されていた。このような焼結組織の形成により低い電気抵抗率が得られたと推測される。
 ここで、焼結組織が銅酸化物を含むことは、SEMによる組織観察およびSEMに付属して装着されたX線エネルギー分散分光器を用いて組成分析をすることによって確認できた。また、銅と銅酸化物を含む割合、銅酸化物における酸化第一銅と酸化第二銅の割合はX線回折法による構造解析することによっても確認できた。銅酸化物の割合は、体積比で87%であった。銅酸化物のうち酸化第一銅の割合は、91%であった。
<実施例2>
 第一の加熱工程における加熱温度(T1)を種々変化させた点を除いて、実施例1と同様の手順により、第一および第二の加熱工程の加熱処理を行って試験体を作製し、電気抵抗率を測定した。第一の加熱工程の酸素濃度は、1000ppmで行った。表2に測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第一の加熱工程における加熱温度は、350℃~500℃であると、6μΩcm以下の低い電気抵抗率を有する銅配線が得られた。それに対し、350℃未満または500℃超では、6μΩcmを超える高い電気抵抗率を示した。加熱温度が過小であると樹脂が残存し、また、加熱温度が過大であると被覆層が形成されて内部の反応を阻害し、焼結性が低下したため、いずれも緻密な焼結体の形成が困難であり、銅配線の電気抵抗率が増加した。
<実施例3>
 第二の加熱工程における加熱温度(T2)を種々変化させた点を除いて、実施例1と同様の手順により、第一および第二の加熱工程の加熱処理を行って試験体を作製し、電気抵抗率を測定した。第一の加熱工程の酸素濃度は、1000ppmで行った。表3に測定結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、第二の加熱工程における加熱温度は、400℃~550℃であると、6μΩcm以下の低い電気抵抗率を有する銅配線が得られた。それに対し、400℃未満または550℃超では6μΩcmを超える高い電気抵抗率を示した。加熱温度が過小であると銅酸化物が残存し、また、加熱温度が過大になると、結体と基板との反応が生じたため、銅配線の電気抵抗率が増加した。
<実施例4>
 第一および二の加熱工程におけるガス流量を種々変化させた点を除いて、実施例1と同様の手順により、第一および第二の加熱工程の加熱処理を行って試験体を作製し、電気抵抗率を測定した。第一の加熱工程の酸素濃度は、1000ppmで行った。表4に測定結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、ガス流量は、焼成炉の容積1×10-6に対して毎分0.05リットル~0.5リットルであると、6μΩcm以下の低い電気抵抗率を有する銅配線が得られた。毎分0.05リットル未満または0.5リットル超では、6μΩcmを超える高い電気抵抗率を示した。ガス流量が過小であると燃焼反応の進行が十分でなく、また、ガス流量が過大であると温度変動が大きくなったため、緻密な焼結組織の形成が困難となり、銅配線の電気抵抗率が増加した。

Claims (8)

  1.  基板上に銅ペーストを塗布する塗布工程と、
     前記塗布工程の後、体積比で500ppm以上、2000ppm以下の酸化性ガスを含有する窒素ガス雰囲気において前記基板を加熱し、前記銅ペースト中の銅粒子を酸化焼結する第一の加熱工程と、
     前記第一の加熱工程の後、体積比で1%以上の還元性ガスを含有する窒素ガス雰囲気において前記基板を加熱し、前記酸化焼結された銅酸化物を還元する第二の加熱工程と、を含む、銅ペーストの焼成方法。
  2.  前記第一の加熱工程は、350℃以上、500℃以下で行う、請求項1に記載の焼成方法。
  3.  前記第二の加熱工程は、400℃以上、550℃以下で行う、請求項1または2に記載の焼成方法。
  4.  前記第一および第二の加熱工程は、焼成炉内でガスを連続的に流すことにより、前記ガス雰囲気を維持する、請求項1~3のいずれかに記載の焼成方法。
  5.  前記連続的に流すガスの流量は、焼成炉の容積1×10-6に対して、毎分0.05リットル以上、0.5リットル以下である、請求項4に記載の焼成方法。
  6.  前記第一の加熱工程で形成される銅粒子の酸化物は、酸化第一銅および酸化第二銅を含み、前記酸化第一銅が前記酸化第二銅より多く含まれるよう加熱される、請求項1~5のいずれかに記載の焼成方法。
  7.  請求項1~6のいずれかに記載の焼成方法により形成される焼結構造体であって、
     前記第一の加熱工程の後には、酸化時の体積膨張によって隣接する粒子間が接続した組織を備えている焼結構造体。
  8.  請求項1~6のいずれかに記載の焼成方法により形成される焼結構造体であって、
     前記第二の加熱工程において酸化第一銅および酸化第二銅が還元されて銅粒子が連結した組織を備えている焼結構造体。
PCT/JP2015/065933 2014-06-16 2015-06-02 銅ペーストの焼成方法 WO2015194366A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15810529.6A EP3153254B1 (en) 2014-06-16 2015-06-02 Method for firing copper paste
KR1020177001035A KR101748112B1 (ko) 2014-06-16 2015-06-02 구리 페이스트의 소성 방법
US15/319,549 US10433427B2 (en) 2014-06-16 2015-06-02 Method for firing copper paste
CN201580032307.2A CN106457390B (zh) 2014-06-16 2015-06-02 铜糊剂的烧成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014123799A JP5766336B1 (ja) 2014-06-16 2014-06-16 銅ペーストの焼成方法
JP2014-123799 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194366A1 true WO2015194366A1 (ja) 2015-12-23

Family

ID=53888008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065933 WO2015194366A1 (ja) 2014-06-16 2015-06-02 銅ペーストの焼成方法

Country Status (7)

Country Link
US (1) US10433427B2 (ja)
EP (1) EP3153254B1 (ja)
JP (1) JP5766336B1 (ja)
KR (1) KR101748112B1 (ja)
CN (1) CN106457390B (ja)
TW (1) TWI566259B (ja)
WO (1) WO2015194366A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021060503A1 (ja) * 2019-09-27 2021-04-01
TWI789698B (zh) * 2021-02-02 2023-01-11 日商材料概念股份有限公司 氧化銅糊料及電子零件之製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130616B1 (ja) * 2017-02-07 2017-05-17 大陽日酸株式会社 銅微粒子及びその製造方法、並びに焼結体
TWI661087B (zh) * 2017-07-06 2019-06-01 National Chung-Hsing University 非鍍式銅及銅合金表面改質的方法
KR102514945B1 (ko) * 2018-01-26 2023-03-27 닛신 엔지니어링 가부시키가이샤 구리 미립자
JP7099867B2 (ja) * 2018-05-16 2022-07-12 日本化学工業株式会社 光焼結型組成物及びそれを用いた導電膜の形成方法
JP7332128B2 (ja) * 2019-01-10 2023-08-23 株式会社マテリアル・コンセプト 電子部品及びその製造方法
CN110202136B (zh) * 2019-05-21 2021-09-03 深圳第三代半导体研究院 一种低温烧结铜膏及其烧结工艺
CN112444152B (zh) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 一种链状铜金属毛细结构及其制作方法
CN112718435A (zh) * 2020-12-22 2021-04-30 深圳市百柔新材料技术有限公司 无机导电基板的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043747A (ja) * 2000-07-28 2002-02-08 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP2009231755A (ja) * 2008-03-25 2009-10-08 Hiroshima Univ 微細配線作製方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249493A (en) 1967-11-02 1971-10-13 Glyco Metall Werke Method and apparatus for sintering a metallic powder onto a metal band
US4140817A (en) * 1977-11-04 1979-02-20 Bell Telephone Laboratories, Incorporated Thick film resistor circuits
US4316920A (en) 1980-07-03 1982-02-23 Bell Telephone Laboratories, Incorporated Thick film resistor circuits
JPS60167069A (ja) * 1984-02-09 1985-08-30 Omron Tateisi Electronics Co 図形認識装置
US4879261A (en) * 1987-01-13 1989-11-07 E. I. Du Pont De Nemours And Company Low Dielectric constant compositions
JP2788510B2 (ja) * 1989-10-27 1998-08-20 第一工業製薬株式会社 銅ペースト組成物
US5682018A (en) * 1991-10-18 1997-10-28 International Business Machines Corporation Interface regions between metal and ceramic in a metal/ceramic substrate
JPH0722737A (ja) 1993-06-30 1995-01-24 Sumitomo Metal Ind Ltd 配線パターンの形成方法
JPH0745931A (ja) 1993-07-29 1995-02-14 Sumitomo Metal Ind Ltd 微細配線の形成方法及び該方法に用いられる導体ペースト
JP2004164876A (ja) 2002-11-11 2004-06-10 Asahi Kasei Corp 金属被膜の製造方法
JP3939735B2 (ja) 2003-05-16 2007-07-04 ハリマ化成株式会社 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
CN100488339C (zh) 2003-05-16 2009-05-13 播磨化成株式会社 形成微细铜颗粒烧结产物类的微细形状导电体的方法
JP4569358B2 (ja) 2005-04-04 2010-10-27 Jfeスチール株式会社 熱間圧延用鋳造ロール材および熱間圧延用ロール
CN101041898A (zh) * 2006-02-23 2007-09-26 气体产品与化学公司 电子附着辅助的导电体的形成
JP5011225B2 (ja) * 2008-07-09 2012-08-29 ニホンハンダ株式会社 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体、および電気回路接続用バンプの製造方法
JP5544323B2 (ja) * 2011-03-24 2014-07-09 富士フイルム株式会社 銅配線の形成方法および配線基板の製造方法
JP2012227183A (ja) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd 電極用ペースト組成物及び太陽電池素子
JP5768455B2 (ja) * 2011-04-14 2015-08-26 日立化成株式会社 電極用ペースト組成物及び太陽電池素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043747A (ja) * 2000-07-28 2002-02-08 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP2009231755A (ja) * 2008-03-25 2009-10-08 Hiroshima Univ 微細配線作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153254A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021060503A1 (ja) * 2019-09-27 2021-04-01
WO2021060503A1 (ja) * 2019-09-27 2021-04-01 株式会社マテリアル・コンセプト 酸化銅ペースト及び電子部品の製造方法
JP7317397B2 (ja) 2019-09-27 2023-07-31 株式会社マテリアル・コンセプト 酸化銅ペースト及び電子部品の製造方法
TWI789698B (zh) * 2021-02-02 2023-01-11 日商材料概念股份有限公司 氧化銅糊料及電子零件之製造方法

Also Published As

Publication number Publication date
EP3153254A1 (en) 2017-04-12
US20170135221A1 (en) 2017-05-11
JP5766336B1 (ja) 2015-08-19
CN106457390B (zh) 2018-05-11
TW201606807A (zh) 2016-02-16
KR101748112B1 (ko) 2017-06-15
EP3153254B1 (en) 2021-01-13
JP2016004671A (ja) 2016-01-12
TWI566259B (zh) 2017-01-11
KR20170010067A (ko) 2017-01-25
EP3153254A4 (en) 2017-07-19
CN106457390A (zh) 2017-02-22
US10433427B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP5766336B1 (ja) 銅ペーストの焼成方法
JP5972317B2 (ja) 電子部品およびその製造方法
JP5492191B2 (ja) メタライズド基板を製造する方法、メタライズド基板
CN100565713C (zh) 镍粉、导电膏、以及使用它们的多层电子元件
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
JP2006009120A (ja) 金属微粒子分散体
JP2008108716A (ja) 低温焼成用導電性ペースト組成物
CN114521271B (zh) 氧化铜糊剂及电子部件的制造方法
JP6851810B2 (ja) 加熱接合材及び電気電子機器の製造方法
JP2007087735A (ja) 金属酸化物分散体
JP6564024B2 (ja) 銅電極を有する太陽電池を製造する方法
JP4248944B2 (ja) 導電性ペースト、回路パターンの形成方法、突起電極の形成方法
JP6060225B1 (ja) 銅粉及びその製造方法
JP2010225627A (ja) 抵抗体膜の製造方法、抵抗体膜、及び抵抗器
JP6393243B2 (ja) 電子部品およびその製造方法
JP2006278936A (ja) 金属層を備えた基板の製造方法。
WO2017179524A1 (ja) 銀被覆銅粉およびその製造方法
JP7332128B2 (ja) 電子部品及びその製造方法
JP7208619B2 (ja) 電子部品の製造方法
WO2020262345A1 (ja) 配線基板の製造方法及び電子部品の製造方法
TW202231398A (zh) 氧化銅糊料及電子零件之製造方法
KR830001482B1 (ko) 전기도체 형성용 니켈합금 페이스트
WO2014109154A1 (ja) 接合体の製造方法およびオーブン
JP2020122175A (ja) ナノ銀粒子を用いた接合材料及び接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15319549

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015810529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810529

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177001035

Country of ref document: KR

Kind code of ref document: A