WO2014109154A1 - 接合体の製造方法およびオーブン - Google Patents

接合体の製造方法およびオーブン Download PDF

Info

Publication number
WO2014109154A1
WO2014109154A1 PCT/JP2013/082855 JP2013082855W WO2014109154A1 WO 2014109154 A1 WO2014109154 A1 WO 2014109154A1 JP 2013082855 W JP2013082855 W JP 2013082855W WO 2014109154 A1 WO2014109154 A1 WO 2014109154A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
joined body
mixed gas
conductor
partial pressure
Prior art date
Application number
PCT/JP2013/082855
Other languages
English (en)
French (fr)
Inventor
直貴 樋口
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2014109154A1 publication Critical patent/WO2014109154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29378Iridium [Ir] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20106Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20107Temperature range 250 C=<T<300 C, 523.15K =<T< 573.15K
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/087Using a reactive gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction

Definitions

  • the present invention relates to a method for manufacturing a joined body and an oven.
  • a silver paste is often used as a bonding material for bonding a portion where a large current flows and heat generation is a concern.
  • Patent Document 1 discloses an atmosphere in which an oxygen concentration is about 100 to 500 ppm after a silver paste containing silver fine particles and an organic binder is applied on a conductor pattern of an insulating substrate and a power semiconductor element is placed thereon.
  • a technique for forming a joined body by sintering the silver paste is disclosed below.
  • the known method for manufacturing a joined body has the following problems. That is, the bonding material usually contains an organic substance such as an organic binder. After the heat treatment of the bonding material, if organic carbides remain in the sintered bonded body, the bonding strength of the bonded body is lowered due to the intermetallic bond being hindered. Therefore, it is usual to promote the oxidation of organic substances by suppressing the generation of carbides by setting the atmosphere during heat treatment to an oxidizing atmosphere.
  • the bonding material when the bonding material is heat-treated in an oxidizing atmosphere, the conductor surface made of metal such as a wiring pattern of the wiring board is oxidized, and an oxide film is formed. Since the oxide film formed on the conductor surface lowers the bonding property, the bonding strength of the obtained bonded body also decreases. If the atmosphere during the heat treatment is a reducing atmosphere in order to prevent the formation of the oxide film, the carbonization of the organic matter is promoted, resulting in a decrease in bonding strength due to the carbide.
  • the present invention has been made in view of the above-described background, and a method for manufacturing a joined body capable of improving the joining strength of the obtained joined body even when the temperature during heat treatment is relatively low, and an oven suitable for the method. It was obtained by trying to provide.
  • the method for producing a joined body according to the present invention is a joining method in which a conductor formed from a metal and a joining material containing a joining metal and an organic substance are brought into contact with each other and then heat-treated to sinter the joining metal.
  • the heat treatment is performed in a mixed gas in which at least two kinds of gases having different O (oxygen) bond numbers are mixed,
  • the mixed gas has a component ratio that satisfies the following conditions (1) and (2) at the temperature during the heat treatment (Claim 1).
  • (1) Generate an oxygen partial pressure equal to or higher than the equilibrium oxygen partial pressure in which carbon and oxygen coexist.
  • Among the metal oxides of the metal forming the conductor a metal oxide having the smallest standard free energy of formation; Generates an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure so that the metal forming the conductor can coexist.
  • the oven according to the present invention includes a bonding step in which a conductor formed from a metal and a bonding material containing a bonding metal and an organic substance are brought into contact with each other and then heat-treated to sinter the bonding metal.
  • An oven used in a body manufacturing method It is configured to be able to supply a mixed gas in which at least two kinds of gases having different O (oxygen) bond numbers are mixed,
  • the mixed gas has a component ratio satisfying the following conditions (1) and (2) at the temperature during the heat treatment (claim 10).
  • (1) Generate an oxygen partial pressure equal to or higher than the equilibrium oxygen partial pressure in which carbon and oxygen coexist.
  • (2) Among the metal oxides of the metal forming the conductor a metal oxide having the smallest standard free energy of formation; Generates an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure so that the metal forming the conductor can coexist.
  • the manufacturing method of the joined body has the above configuration. Therefore, in the method for manufacturing the joined body, the oxygen partial pressure in the atmosphere is equal to or higher than the equilibrium oxygen partial pressure in which carbon and oxygen coexist during the heat treatment of the joining material. Therefore, the oxidation (combustion) of the organic substance contained in the bonding material can be promoted, and the residual carbide in the bonded body can be suppressed. Further, in the method for manufacturing the joined body, during the heat treatment of the joining material, the oxygen partial pressure in the atmosphere is a metal oxide having the smallest standard free energy of formation among the metal oxides of the metal forming the conductor, and the conductor. The equilibrium oxygen partial pressure or less is such that the metal to be formed can coexist.
  • the manufacturing method of the joined body can prevent the carbide and the oxide film from being involved in the sintering of the joining metal even when the temperature during the heat treatment of the joining material is relatively low. Thus, it is possible to improve the bonding strength of the obtained bonded body.
  • the oven has the above-described configuration. Therefore, it can use suitably for the manufacturing method of the said joined_body
  • log indicates a logarithm with 10 as the base (common logarithm).
  • component ratio indicates “component ratio” (molar ratio) of the mixed gas. Since it is a component ratio involving only gas, it is synonymous with “partial pressure” of the mixed gas.
  • the method for manufacturing a joined body of the present invention is applied to produce a joined body for joining conductors formed of metal.
  • the method for producing a joined body of the present invention is suitable for obtaining a joined body used for mounting an electronic component such as a power device. In this case, even if the temperature during heat treatment is relatively low, the bonding strength of the obtained bonded body can be improved, so that mounting with high bonding reliability is performed while suppressing deterioration of the mounted components and the substrate. Can contribute.
  • the joined body can be interposed between one conductor and the other conductor, and the two conductors can be joined. From the viewpoint of improving the bonding strength, it is preferable that the bonded body has fewer holes contained therein. However, completely eliminating the holes may cause an increase in manufacturing cost. Therefore, the joined body can include a hole within a range not departing from the gist of the present invention.
  • the shape of a joined body is not specifically limited, For example, shapes, such as a layer shape and a fillet shape, can be selected suitably.
  • the metal forming the conductor can have a joined surface.
  • the conductor include, for example, a wiring pattern in a wiring board having a wiring pattern made of metal, an electrode of a semiconductor element such as a chip, a conductor such as a lead frame, and a power supply for supplying power to a semiconductor element such as a chip.
  • the shape of the conductor is not particularly limited, and specifically, for example, it may be a flat shape, a pin shape (substantially cylindrical shape, etc.), a substantially hemispherical shape, a substantially spherical shape, or the like.
  • the metal forming the conductor include copper, tin, and nickel. Of these, copper or a copper alloy can be suitably used as the metal forming the conductor.
  • Copper or copper alloy is excellent as an electrical conductor because it has high electrical conductivity. However, even if copper or a copper alloy is used, it is easy to form a copper oxide film by reaction with oxygen when firing in an oxidizing atmosphere as in the prior art. This film lowers the bondability and also provides electrical resistance. When copper or copper alloy is used as the metal forming the conductor, it is easy to exhibit the excellent electrical characteristics of copper or copper alloy, and has the advantage that it is easy to obtain a bonded body having high bonding strength and low electrical resistance. is there.
  • the joining material includes a joining metal and an organic substance.
  • the bonding material can be prepared, for example, as a paste or a solution.
  • the bonding metal can be present in the form of particles, ions, complexes, compounds, and the like.
  • the bonding metal in the bonding material is contained in a complex state, for example, the bonding metal can be formed into a sintered body by precipitating the bonding metal by heat treatment and sintering it. .
  • one or more bonding metals may be contained.
  • the joining metal preferably has a standard oxidation-reduction potential equal to or greater than a standard oxidation-reduction potential of the metal forming the conductor (claim 4).
  • the joining metal include copper, silver, palladium, iridium, platinum, and gold.
  • silver can be suitably used as the bonding metal (claim 8).
  • the sinterability at a low temperature of about 200 to 300 ° C. is relatively good, it is suitable for mounting electronic components.
  • an organic binder such as polyimide, acrylic or epoxy resin, isopropyl alcohol, terpineol, tetradecane, toluene
  • organic solvents such as those described above, modified metals for bonding, and the like. These may be contained alone or in combination of two or more.
  • the bonding material may contain one or more additives such as a sintering aid and a surfactant.
  • the temperature during the heat treatment can be specifically set within a range of 200 to 300 ° C., for example (claim 2).
  • the temperature at the time of the above-mentioned heat treatment means the maximum temperature at the time of heat treatment.
  • the temperature during the heat treatment is 300 ° C. or lower, the sintering of the conductor formed of metal and the joining metal is usually slow. For this reason, when an oxide layer or the like is present at the boundary of the metal, the oxide constituting the oxide layer is difficult to move with the sintering of the metal, so that it is difficult to obtain a strong joined body.
  • the oxidized layer can be removed, so that a strong joined body can be obtained even by heat treatment at a low temperature of 300 ° C. or lower. . Note that when the heat treatment temperature exceeds 300 ° C., a strong bonded body can be obtained.
  • the bonded body when the bonded body is applied to, for example, mounting of an electronic component, the electronic component, a wiring board using a resin, a solder resist, and the like are not exposed to a high temperature, so that each member is hardly deteriorated due to a high temperature.
  • the degree of freedom in the mounting order can be improved.
  • the degree of freedom of material selection for each member can be improved by lowering the temperature during the heat treatment.
  • the temperature during the heat treatment is preferably 210 ° C. or higher, more preferably 215 ° C. or higher, further preferably 220 ° C. or higher, and even more preferably 225, from the viewpoint of improving bonding strength. It can be set to at least ° C.
  • the temperature during the heat treatment is preferably 290 ° C. or less, more preferably 285 ° C. or less, further preferably 280 ° C. or less, and even more preferably 275 ° C. or less, from the viewpoint of suppressing deterioration of the bonded object.
  • the heat treatment time can be set to, for example, about 0.5 to 4 hours at the temperature during the heat treatment.
  • the mixed gas has a component ratio that satisfies the following conditions (1) and (2) at the temperature during the heat treatment.
  • (1) Generate an oxygen partial pressure equal to or higher than the equilibrium oxygen partial pressure in which carbon (C) and oxygen (O 2 ) coexist.
  • (2) Among metal oxides of the metal forming the conductor, the most standard free energy of formation Generates an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure so that a small metal oxide and the metal forming the conductor can coexist.
  • the mixed gas has a component ratio satisfying the condition (1) at the temperature during the heat treatment to oxidize organic substances contained in the bonding material. It is meaningful to provide an oxygen partial pressure in the atmosphere. Thus, during the heat treatment of the bonding material, by oxidizing the organic matter contained in the bonding material (by burning) as CO 2, carbides can be prevented from remaining in the assembly.
  • the mixed gas has a component ratio that satisfies the condition (2) at the heat treatment temperature, oxygen necessary for oxidizing the metal forming the conductor is not provided in the atmosphere. There is significance to do.
  • the metal oxide that is most easily formed on the conductor surface is the metal oxide having the smallest standard free energy of formation. Therefore, under the condition (2), an equilibrium oxygen partial pressure such that “the metal oxide having the smallest standard free energy of formation and the metal forming the conductor among the metal oxides forming the conductor can coexist” is satisfied.
  • the following conditions for generating oxygen partial pressure are employed.
  • the plurality of gases constituting the mixed gas have different O (oxygen) bond numbers. That is, the plurality of gases have different numbers of Os that can be included in the molecules.
  • the mixed gas includes, for example, any gas containing O in the molecule, but may be composed of a combination of gases having different numbers of O bonds, or a gas not containing O in the molecule. , Or a combination with a gas containing O in the molecule.
  • the combination of the plurality of gases is not particularly limited as long as the component ratio satisfies the conditions (1) and (2) at the heat treatment temperature.
  • a plurality of gases can react with O 2 to create an equilibrium state.
  • the plurality of gases may be gases at the temperature during the heat treatment, and may be gases or liquids at room temperature.
  • the method for producing a joined body of the present invention can control the oxygen partial pressure in the mixed gas by adjusting the component ratio of the mixed gas, and thus has an advantage that the atmosphere can be easily controlled without using oxygen gas directly.
  • the component ratio of the mixed gas can be adjusted by adjusting the volume concentration of the gas in the mixed gas.
  • the mixed gas can be specifically composed of a combination of substances containing C and O in the molecule, such as CO, CO 2 , and C 3 O 2. . More specifically, when the mixed gas is a mixed gas of CO and CO 2 , as shown in Equation 1, by adjusting the component ratio of CO and CO 2 , a predetermined oxygen content in the atmosphere is obtained. Pressure can be provided. Similarly, when the mixed gas is a mixed gas of C 3 O 2 and CO, by adjusting the component ratio of C 3 O 2 and CO as shown in Equation 2, a predetermined oxygen in the atmosphere is obtained. A partial pressure can be provided.
  • the mixed gas is a mixed gas of C 3 O 2 and CO 2 , as shown in Equation 3, by adjusting the component ratio of C 3 O 2 and CO 2 , a predetermined oxygen content in the atmosphere Pressure can be provided.
  • 2CO + O 2 ⁇ 2CO 2 (Formula 1) 2C 3 O 2 + O 2 ⁇ 6CO (Formula 2) 2C 3 O 2 + 4O 2 ⁇ 6CO 2 (Formula 3)
  • the mixed gas is specifically a combination of H 2 and a substance containing H and O in the molecule, such as H 2 , H 2 O, H 2 O 2, etc. Can be formed. More specifically, when the mixed gas is a mixed gas of H 2 and H 2 O, by adjusting the component ratio of H 2 and H 2 O as shown in Equation 4, A predetermined oxygen partial pressure can be provided. Similarly, when the mixed gas is a mixed gas of H 2 and H 2 O 2 , as shown in Formula 5, by adjusting the component ratio of H 2 and H 2 O 2 , a predetermined amount is set in the atmosphere. The oxygen partial pressure can be provided.
  • Equation 6 When the mixed gas is a mixed gas of H 2 O and H 2 O 2 , as shown in Equation 6, by adjusting the component ratio of H 2 O and H 2 O 2 , An oxygen partial pressure can be provided. 4H 2 + O 2 ⁇ 2H 2 O (Formula 4) 2H 2 + 2O 2 ⁇ 2H 2 O 2 (Formula 5) 2H 2 O + O 2 ⁇ 2H 2 O 2 (Formula 6)
  • the mixed gas may be a mixture of CO 2 and CO, or a mixture of H 2 and H 2 O (Claim 5).
  • CO 2 and CO are more stable than C 3 O 2 .
  • H 2 and H 2 O is highly stable. Therefore, in this case, the component ratio of the mixed gas can be stably controlled, and the oxygen partial pressure in the atmosphere during the heat treatment can be easily stabilized within a range satisfying the conditions (1) and (2). Therefore, in this case, there is an advantage that it becomes easy to obtain a bonded body having high bonding strength.
  • Equation 7 [P CO2 ] 2 / ([P CO ] 2 ⁇ [P O2 ])
  • Equation 12 Equation 12 is obtained.
  • a mixed gas of CO 2 and CO can be used as the mixed gas.
  • H 2 O and H 2 O 2 have a high boiling point and are liquid at room temperature.
  • CO 2 and CO are gases at room temperature. Therefore, in this case, the mixed gas does not aggregate at a low temperature in the supply pipe or the oven, and it is easy to adjust the uniform mixed gas.
  • CO 2 and CO are relatively stable molecules that are not easily decomposed by light or the like. Therefore, this case is advantageous for accurately adjusting the component ratio of the mixed gas.
  • the mixed gas is a mixture of CO 2 and CO, and the CO concentration in the mixed gas can be within a range of 0.3 ppb to 10 ppm by volume ratio. (Claim 9).
  • the mixed gas formed by mixing CO 2 and CO easily generates an oxygen partial pressure that satisfies the conditions (1) and (2) at the temperature during the heat treatment. Therefore, in this case, even if the temperature at the time of heat treatment is relatively low, the effect that the bonding strength of the obtained bonded body can be improved can be ensured.
  • the CO concentration is preferably 0.3 ppb or more, more preferably 1 ppb or more, and even more preferably 10 ppb or more, from the viewpoint that CO reacts with a metal such as iron to form carbonyl to easily change the concentration. Can do.
  • the CO concentration is preferably 10 ppm or less, more preferably 3 ppm or less, and even more preferably 1 ppm or less from the viewpoint of not oxidizing the conductor or the like at a low temperature before reaching the maximum temperature in the heat treatment process. .
  • the mixed gas contains CO 2 as a main component.
  • the progress of the reaction is determined by the ratio of CO 2 and CO.
  • CO 2 is the main component.
  • a desirable component ratio of CO 2 with respect to the entire mixed gas can be 90 mol% or more, preferably 99 mol% or more, and more preferably 99.9 mol% or more. In any case, CO is contained in the balance of CO 2 in the mixed gas.
  • a paste containing a joining metal and an organic substance is prepared as the joining material, and the conductor surface and the paste are brought into contact with each other, and then heat treatment is performed in the mixed gas.
  • the 1st joining procedure which sinters the metal for joining in paste can be included (Claim 6).
  • a paste containing bonding metal particles and an organic substance can be suitably used as the bonding material.
  • a solution containing a joining metal and an organic substance is prepared as the joining material, the conductor surface is brought into contact with the solution, and then heat treatment is performed in the mixed gas. And a second joining procedure for depositing the joining metal from the solution and sintering the deposited joining metal (claim 7).
  • a bonding metal complex solution can be suitably used as the bonding material.
  • the manufacturing method of the joined body of the present invention can also include a third joining procedure having the first joining procedure and the second joining procedure. More specifically, a paste containing a bonding metal and an organic substance is prepared as the bonding material. Next, after bringing the surface of one of the conductors to be bonded into contact with the paste, a first bonding procedure is performed in which the bonding metal in the paste is sintered by heat treatment in the mixed gas. A porous sintered body made of a sintered body of a high quality joining metal is formed.
  • the other conductor surface to be joined and the surface of the porous sintered body are brought into contact with each other, and the solution is infiltrated into the pores of the porous sintered body, thereby bringing the other conductor surface and the solution into contact with each other. Keep in contact.
  • the surface of the porous sintered body and the other conductor to be joined can be brought into contact in a pressurized state from the viewpoint of easily improving the joining strength. Subsequently, this is heat-processed in the said mixed gas, and the joining metal is precipitated from a solution, and this deposited joining metal is sintered.
  • the manufacturing method of the joined body may include such a third joining procedure.
  • the bonding metal is deposited in the pores of the porous sintered body and at the interface between the surface of the porous sintered body and the first conductor, and the deposited bonding metal is sintered. Therefore, in this case, it becomes easy to obtain a bonded body having a higher bonding strength. In addition, since a joined body with few holes is obtained, it is difficult to cause breakage or the like due to the holes, and it is possible to contribute to manufacturing a joined body with high joining reliability. The solution penetration into the pores of the porous sintered body and the heat treatment in the mixed gas can be repeated.
  • the method for producing a joined body of the present invention may include a step of removing an oxide film present on the conductor surface in advance before performing the heat treatment.
  • a step of removing an oxide film present on the conductor surface in advance before performing the heat treatment.
  • the removal of the oxide film of the conductor is not particularly limited and can be performed using various methods. Examples of the method include an acidic solution such as hydrochloric acid and nitric acid, a method of removing an oxide film using these vapors, and the like.
  • the oven of the present invention can be configured so that the above-mentioned specific mixed gas can be supplied into the atmosphere during the heat treatment.
  • the generation of the mixed gas can be performed, for example, by adjusting the gas from each gas source by a flow rate adjusting means such as a mass flow controller or a needle valve, and mixing with a mixer.
  • the mixing can be performed once or a plurality of times in order to stabilize the component ratio of the mixed gas. In the case where the process is divided into a plurality of times, dilution can be performed in stages when the difference in the component ratio of the mixed gas is large.
  • ⁇ Bonding material> By mixing an Ag powder having a 50% volume cumulative diameter d 50 of 1 ⁇ m and an Ag powder having a 50% volume cumulative diameter d 50 of 0.1 ⁇ m in a mass ratio of 1: 1, a small Ag particle is formed in a gap between large Ag particles. A mixed Ag powder packed with particles was prepared. Then, an Ag paste was prepared by suspending the mixed Ag powder in terpineol. Further, an Ag complex solution was prepared by dissolving silver carboxylate in isopropyl alcohol (IPA). In this example, the Ag paste and the Ag complex solution are used as bonding materials.
  • IPA isopropyl alcohol
  • An oven A configured to supply a mixed gas formed by mixing CO 2 and CO as an atmosphere gas at the time of heat treatment was prepared in a heat treatment space for performing heat treatment. Specifically, the oven A adjusts the flow rate of CO 2 supplied from the CO 2 cylinder and the flow rate of CO supplied from the CO cylinder so that the flow rate becomes a predetermined flow ratio by a mass flow controller. By mixing, the mixed gas shown in Table 1 and Table 2 described later is generated, and the mixed gas can be supplied to the heat treatment space.
  • an oven B configured to be able to supply N 2 gas from an N 2 cylinder as an atmosphere gas during heat treatment was also prepared in the heat treatment space for performing heat treatment.
  • the CO concentration in the mixed gas formed by mixing CO 2 and CO was 50 ppb by volume ratio.
  • This mixed gas has a component ratio that generates an oxygen partial pressure that is equal to or higher than the equilibrium oxygen partial pressure in which carbon (C) and oxygen (O 2 ) coexist in the condition (1) described above at 200 ° C., which is the temperature during heat treatment.
  • the component ratio is such that an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure is generated so that CuO 2 and Cu corresponding to the condition (2) described above can coexist. The reason is as follows.
  • the mixed gas is equal to or higher than the equilibrium oxygen partial pressure P (1) at the temperature at the time of the heat treatment.
  • the mixed gas is a mixture of CO 2 and CO. Therefore, as described above, it can be said that the component ratio [P CO2 ] / [P CO ] of the mixed gas is adjusted to generate the oxygen partial pressure P O2 within the above range.
  • the component ratio of the mixed gas is adjusted by adjusting the volume concentration of CO in the mixed gas of CO 2 and CO.
  • the component ratio [P CO ] / [P CO2 ] that generates the equilibrium oxygen partial pressure P (1) under the condition (1) is 12.29 ⁇ 10 ⁇ 6 . Since the ratio of CO is overwhelmingly small, the CO concentration that gives this component ratio may be considered to be 12 ppm by volume.
  • the component ratio [P CO ] / [P CO2 ] that generates the equilibrium oxygen partial pressure P (2) under the condition (2) is 1.47 ⁇ 10 ⁇ 12 . Since the ratio of CO is overwhelmingly small, the CO concentration that gives this component ratio may be considered to be 1.4 ppt in volume ratio.
  • the mixed gas when the temperature at the time of heat treatment is 200 ° C., if the CO concentration in the mixed gas is within the range of 1.4 ppt to 12 ppm by volume ratio, the mixed gas will have the equilibrium oxygen partial pressure P (1) As described above, it is possible to generate the oxygen partial pressure P02 within the range of the equilibrium oxygen partial pressure P (2) or less.
  • the component ratio of CO is overwhelmingly small with respect to CO 2 , it is changed to “[P CO2 ] / [P CO ]” so that it is easy to handle with the concept of “concentration”, and “[P CO ] / [ P CO2 ] ”.
  • “[P CO ] / [P CO2 ]” is the reciprocal of “[P CO2 ] / [P CO ]]”.
  • the mixed gas having a CO concentration of 50 ppb by volume was prepared.
  • a mixed gas having a component ratio that satisfies the conditions (1) and (2) may be prepared based on the same concept as described above.
  • the Ag particles in the Ag paste were sintered by the heat treatment in the mixed gas to form a porous sintered body made of a porous Ag sintered body on the surface of the Cu plating layer of the test chip.
  • the joined body 10 of the sample 1 is a layered structure that joins between a Cu plating layer as one conductor 11 to be joined and a pin-type conductor as the other conductor 12 to be joined. This is a bonding layer.
  • the joined body 10 includes a porous sintered body 101 made of Ag, and a dense sintered portion 102 made of Ag existing in the pores and on the surface of the porous sintered body 101.
  • 13 is a Cu sputter layer
  • 14 is a Ti sputter layer
  • 15 is silicon.
  • Samples 2 to 10 were obtained in the same manner except that the heat treatment conditions were changed as shown in Tables 1 and 2 in the preparation of Sample 1. Note that the oven B was used when the samples 9 and 10 were manufactured.
  • joint strength was measured as follows. That is, after fixing the joined body sample so that it does not move up and down, the tip of the other unconnected pin type conductor is pinched with tweezers directly connected to the vertically movable load cell, and the load cell is moved at a speed of 50 mm / min. Raised and recorded the maximum strength at which the joint was destroyed. The recorded maximum strength was divided by the bonding area, which was defined as the bonding strength per unit area.
  • FIG. 2 shows the relationship between the maximum temperature during the heat treatment of the bonded body sample and the bonding strength.
  • FIGS. 3A and 3B show cross-sectional SEM photographs of the joined body sample 1 as a representative example.
  • the joined bodies of Sample 9 and Sample 10 are manufactured through a joining process in which heat treatment is performed in an N 2 atmosphere. Therefore, it can be seen that when the maximum temperature during heat treatment is relatively low, the bonding strength is lower than others. This is because the organic matter contained in the bonding material during the heat treatment was not sufficiently oxidized and easily remained as a carbide in the bonding layer. In addition, when heat treatment is performed in a sufficiently oxidizing atmosphere, an oxide film is easily formed on the conductor surface, the bondability is lowered, and it is difficult to obtain a high bonding strength. .
  • the oxidation (combustion) of the organic substances contained in the joining material can be promoted, and the remaining of carbides in the joined body can be suppressed. Moreover, since the oxidation of the conductor surface can be suppressed, the bondability can be improved.
  • the method of manufacturing the joined body of Samples 1 to 8 can prevent carbides and oxide films from being involved in the joining, so that even when the temperature during the heat treatment is lowered, the obtained joined body can be joined. The strength could be improved. In particular, it was confirmed from this result that even when the temperature during the heat treatment was lowered to about 250 ° C., a bonded body having a high bonding strength almost equal to that of solder bonding was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

 熱処理時の温度が比較的低くても、得られる接合体の接合強度を向上可能な接合体の製造方法、またこれに適したオーブンを提供する。 接合体の製造方法は、金属より形成された導体11と、接合用金属と有機物とを含む接合材料とを接触状態とした後、熱処理することにより、接合用金属を焼結させる接合工程を有する。熱処理は、Oの結合数が異なる少なくとも2種以上のガスが混合されてなる混合ガス中にて実施される。混合ガスは、熱処理時の温度において以下の(1)および(2)の条件を満たす成分比である。(1)炭素と酸素とが共存する平衡酸素分圧以上の酸素分圧を生成する、(2)導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、導体を形成する金属とが共存できるような平衡酸素分圧以下の酸素分圧を生成する。また、前記混合ガスを供給可能に構成されたオーブンとする。

Description

接合体の製造方法およびオーブン
 本発明は、接合体の製造方法およびオーブンに関する。
 従来、各種スイッチング素子等のパワー半導体素子の接合に代表されるように、大電流が流れ、それによる発熱が懸念される部位を接合するための接合材料として、銀ペーストが多く用いられている。
 例えば、特許文献1には、絶縁基板の導体パターン上に銀微粒子と有機バインダーとを含む銀ペーストを塗布し、この上にパワー半導体素子を載置した後、酸素濃度が100~500ppm程度の雰囲気下にて前記銀ペーストを焼結させて接合体を形成する技術が開示されている。
特開2006-352080号公報
 しかしながら、従来知られる接合体の製造方法は、以下の点で問題がある。すなわち、前記接合材料中には、通常、有機バインダー等の有機物が含まれている。接合材料の熱処理後、焼結による接合体中に有機物の炭化物が残留すると、その部分の金属間結合が妨げられたことにより、接合体の接合強度が低下する。そのため、熱処理時の雰囲気を酸化雰囲気とすることにより有機物の酸化を促し、炭化物の発生を抑制するのが通常である。
 しかし、酸化雰囲気中で接合材料の熱処理を行った場合、配線基板の配線パターン等の金属からなる導体表面が酸化され、酸化膜が形成される。導体表面に形成された酸化膜は、接合性を低下させるため、やはり得られる接合体の接合強度が低下する。前記酸化膜の形成を防ぐため熱処理時の雰囲気を還元雰囲気とすると、前記有機物の炭化が促進されてしまい、前記炭化物による接合強度の低下を招く。
 このように熱処理時の雰囲気を酸化雰囲気、還元雰囲気のいずれを主として調整しても、得られる接合体の接合強度が低下するという問題がある。
 なお、接合材料中の接合用金属を高温にて溶融させて接合を行えば、高い接合強度を有する接合体が得られるとの考え方もある。しかしながら、電子部品の実装等の分野に代表されるように、接合体が必要となる多くの分野では、高温による基材等の劣化を避けるため、できる限り被接合物を高温に曝したくないという事情がある。また、300℃以下の低温で完全に溶融する接合用金属は、近年使用が控えられているPb程度しかなく、金属の焼結体からなる接合体によって接合強度を向上させるほかないのが実情である。
 本発明は、上述した背景に鑑みてなされたものであり、熱処理時の温度が比較的低くても、得られる接合体の接合強度を向上可能な接合体の製造方法、またこれに適したオーブンを提供しようとして得られたものである。
 本発明の接合体の製造方法は、金属より形成された導体と、接合用金属と有機物とを含む接合材料とを接触状態とした後、熱処理することにより、前記接合用金属を焼結させる接合工程を有しており、
 前記熱処理は、O(酸素)の結合数が異なる少なくとも2種以上のガスが混合されてなる混合ガス中にて実施され、
 前記混合ガスは、前記熱処理時の温度において以下の(1)および(2)の条件を満たす成分比であることを特徴とする(請求項1)。
(1)炭素と酸素とが共存する平衡酸素分圧以上の酸素分圧を生成する
(2)前記導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、前記導体を形成する金属とが共存できるような平衡酸素分圧以下の酸素分圧を生成する
 本発明のオーブンは、金属より形成された導体と、接合用金属と有機物とを含む接合材料とを接触状態とした後、熱処理することにより、前記接合用金属を焼結させる接合工程を有する接合体の製造方法に用いられるオーブンであって、
 O(酸素)の結合数が異なる少なくとも2種以上のガスが混合されてなる混合ガスを供給可能に構成されており、
 前記混合ガスは、前記熱処理時の温度において以下の(1)および(2)の条件を満たす成分比であることを特徴とする(請求項10)。
(1)炭素と酸素とが共存する平衡酸素分圧以上の酸素分圧を生成する
(2)前記導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、前記導体を形成する金属とが共存できるような平衡酸素分圧以下の酸素分圧を生成する
 前記接合体の製造方法は、前記構成を有している。そのため、前記接合体の製造方法は、接合材料の熱処理時に、雰囲気中の酸素分圧が、炭素と酸素とが共存する平衡酸素分圧以上となる。そのため、接合材料中に含まれる有機物の酸化(燃焼)を促すことができ、接合体中の炭化物の残留を抑制することができる。また、前記接合体の製造方法は、接合材料の熱処理時に、雰囲気中の酸素分圧が、導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、導体を形成する金属とが共存できるような平衡酸素分圧以下となる。そのため、導体表面の酸化を抑制することができ、接合性を向上させることができる。このように、前記接合体の製造方法は、接合材料の熱処理時の温度が比較的低い温度であっても、接合用金属の焼結時に炭化物および酸化膜を関与させないようにすることができるので、得られる接合体の接合強度を向上させることが可能となる。
 一方、前記オーブンは、前記構成を有している。そのため、前記接合体の製造方法に好適に用いることができる。
 以上、本発明によれば、熱処理時の温度が比較的低くても、得られる接合体の接合強度を向上可能な接合体の製造方法、これに適したオーブンを提供することができる。
実施例にて作製した接合体試料を模式的に示した説明図である。 実施例における、熱処理条件が異なる接合体試料の熱処理時の最高温度と接合強度との関係を示した図である。 実施例にて作製した接合体試料1の断面SEM写真である。
 本明細書中、「log」とは、10を底とする対数(常用対数)を示す。また、本明細書中、「成分比」は、混合ガスの「成分比」(モル比)を示している。気体のみの関与する成分比であるので、混合ガスの「分圧」と同義である。先ず、本発明の接合体の製造方法の実施形態について説明する。
 本発明の接合体の製造方法は、金属より形成された導体を接合するための接合体を製造するのに適用される。本発明の接合体の製造方法は、具体的には、例えば、パワーデバイス等の電子部品の実装に用いられる接合体を得るのに好適である。この場合は、熱処理時の温度が比較的低くても、得られる接合体の接合強度を向上させることができるので、実装部品および基板の劣化を抑制しつつ、接合信頼性の高い実装を実施するのに寄与することができる。
 本発明の接合体の製造方法において、前記接合体は、具体的には、一方の導体と他方の導体との間に介在し、両導体間を接合することができる。接合体は、接合強度向上の観点から、内部に含まれる孔が少ない程好ましいが、孔を完全になくすことは製造コストの上昇等を招くことがある。そのため、接合体は、本発明の趣旨を逸脱しない範囲内で孔を含むことができる。なお、接合体の形状は、特に限定されるものではなく、例えば、層状、フィレット状等の形状を適宜選択することができる。
 本発明の接合体の製造方法において、前記導体を形成する金属は、接合面を有することができる。この場合は、接合用金属との接合強度を向上させるのに有利である。導体としては、具体的には、例えば、金属からなる配線パターンを有する配線基板における配線パターン、チップ等の半導体素子が有する電極、リードフレーム等の導体、チップ等の半導体素子に給電するための給電基板等の基板が有する導体などを例示することができる。導体の形状は特に限定されるものではなく、具体的には、例えば、平面状、ピン状(略円柱状等)、略半球状、略球状などの形状とすることができる。
 本発明の接合体の製造方法において、前記導体を形成する金属としては、具体的には、例えば、銅、スズ、ニッケルなどを例示することができる。これらのうち、導体を形成する金属としては、銅または銅合金を好適に用いることができる(請求項3)。
 銅または銅合金は高い電気伝導度を有しているので、電気導体として優れる。しかしながら、銅または銅合金であっても、従来のような酸化雰囲気中で焼成を行うと酸素との反応により酸化銅の被膜を形成しやすい。この被膜は接合性を低下させる上、電気抵抗となる。導体を形成する金属として銅または銅合金を用いた場合には、銅または銅合金の優れた電気特性を発揮させやすく、高い接合強度を有し、低電気抵抗の接合体を得やすくなる利点がある。
 本発明の接合体の製造方法において、前記接合材料は、接合用金属と有機物とを含んでいる。接合材料は、例えば、ペースト、溶液などに調製されることができる。接合材料中において、接合用金属は、例えば、粒子状、イオン、錯体、化合物などの状態で存在することができる。なお、接合材料中における接合用金属が例えば錯体状態で含まれている場合は、熱処理により接合用金属を析出させるとともにこれを焼結させる等して接合用金属を焼結体とすることができる。接合材料中には、接合用金属が1種または2種以上含まれていてもよい。
 本発明の接合体の製造方法において、前記接合用金属は、その標準酸化還元電位が、導体を形成する金属の標準酸化還元電位と同じまたはそれよりも大きいことが好ましい(請求項4)。
 この場合は、粉末状など、比表面積が大きく酸化しやすい接合用金属の粒子表面への酸化膜の形成を防止できるので、強固な結合の接合体を得ることができる。
 本発明の接合体の製造方法において、前記接合用金属としては、具体的には、例えば、銅、銀、パラジウム、イリジウム、白金、金などを例示することができる。これらのうち、接合用金属としては、銀を好適に用いることができる(請求項8)。この場合は、200~300℃程度の低温における焼結性が比較的良好であるため、電子部品の実装に好適である。
 一方、本発明の接合体の製造方法において、前記接合材料中の有機物としては、具体的には、例えば、ポリイミド系、アクリル系、エポキシ系樹脂などの有機バインダー、イソプロピルアルコール、テルピネオール、テトラデカン、トルエンなどの有機溶剤、接合用金属の修飾物などを代表的なものとして例示することができる。これらは1種または2種以上含まれていても良い。なお、接合材料中には、他にも、焼結助剤、界面活性剤などの添加剤を1または2以上を含むことができる。
 本発明の接合体の製造方法において、前記熱処理時の温度は、具体的には、例えば、200~300℃の範囲内とすることができる(請求項2)。なお、前記にいう熱処理時の温度は、熱処理時の最高温度を意味する。
 熱処理時の温度が300℃以下であると、金属により形成された導体および接合用金属の焼結が遅くなるのが通常である。このため、酸化層などが金属の境界に介在すると、金属の焼結に伴って酸化層を構成する酸化物が移動し難いので強固な接合体が得られ難くなる。しかしながら、前記接合体の製造方法においては、金属の境界に酸化層が介在しても、酸化層を取り除くことができるので300℃以下の低温で熱処理しても強固な接合体を得ることができる。なお、熱処理温度が300℃を超えると強固な接合体を得ることができることに変わりはない。
 また、前記接合体を、例えば、電子部品の実装に適用する際に、電子部品、樹脂を用いた配線基板、ソルダーレジストなどを高温に曝すことがなくなるため、各部材の高温による劣化を生じ難く、また、実装順序の自由度を向上させることができる。また、熱処理時の温度の低温化により、各部材の材料選択の自由度も向上させることができる。
 本発明の接合体の製造方法において、前記熱処理時の温度は、接合強度向上などの観点から、好ましくは210℃以上、より好ましくは215℃以上、さらに好ましくは220℃以上、さらにより好ましくは225℃以上とすることができる。前記熱処理時の温度は、被接合物の劣化抑制などの観点から、好ましくは290℃以下、より好ましくは285℃以下、さらに好ましくは280℃以下、さらにより好ましくは275℃以下とすることができる。なお、熱処理時間は、前記熱処理時の温度で例えば、0.5~4時間程度とすることができる。
 本発明の接合体の製造方法において、前記混合ガスは、熱処理時の温度において以下の(1)および(2)の条件を満たす成分比とされている。
(1)炭素(C)と酸素(O)とが共存する平衡酸素分圧以上の酸素分圧を生成する
(2)前記導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、前記導体を形成する金属とが共存できるような平衡酸素分圧以下の酸素分圧を生成する
 本発明の接合体の製造方法において、前記混合ガスが、熱処理時の温度において(1)の条件を満たす成分比となるよう構成することは、接合材料中に含まれる有機物を酸化させるのに十分な酸素分圧を雰囲気内に提供する意義がある。これにより、接合材料の熱処理時に、接合材料中に含まれる有機物を酸化させて(燃焼させて)COとし、接合体中に炭化物が残留しないようにすることができる。一方、前記混合ガスが、熱処理時の温度において(2)の条件を満たす成分比となるよう構成することは、導体を形成する金属を酸化させるのに必要な酸素が雰囲気内に提供されないようにする意義がある。これにより、接合材料の熱処理時に、導体の表面に酸化膜を形成することなく、接合を行うことができる。なお、導体を形成する金属の金属酸化物のうち、導体表面に最も形成されやすい金属酸化物は、最も標準生成自由エネルギーの小さい金属酸化物である。そのため、(2)の条件では、「導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、導体を形成する金属とが共存できる」ような平衡酸素分圧以下の酸素分圧を生成する条件を採用している。
 ここで、前記混合ガスを構成する複数のガスは、それぞれO(酸素)の結合数が異なっている。つまり、前記複数のガスは、分子内に含まれうるOの数がそれぞれ異なっている。混合ガスは、例えば、いずれのガスも分子内にOを含んでいるが、それぞれのOの結合数が異なるガスの組み合わせより構成されていても良いし、分子内にOを含んでいないガスと、分子内にOを含んでいるガスとの組み合わせより構成することもできる。熱処理時の温度において(1)および(2)の条件を満たす成分比であれば、複数のガスの組み合わせは、特に限定されるものではない。また、複数のガスは、Oと反応して平衡状態をつくることができる。なお、複数のガスは、熱処理時の温度において気体であればよく、常温においては気体であっても液体であってもよい。
 本発明の接合体の製造方法は、混合ガスの成分比を調整することによって混合ガス中の酸素分圧を制御することができるので、酸素ガスを直接用いることなく雰囲気制御がしやすい利点もある。なお、混合ガスの成分比の調整は、混合ガス中におけるガスの体積濃度を調整することなどによって行うことができる。
 本発明の接合体の製造方法において、前記混合ガスは、具体的には、例えば、CO、CO、C等、分子内にCおよびOを含む物質の組み合わせより構成することができる。より具体的には、前記混合ガスがCOとCOとの混合ガスである場合、式1に示すように、COとCOとの成分比を調整することにより、雰囲気内に所定の酸素分圧を提供することができる。同様に、前記混合ガスがCとCOとの混合ガスである場合、式2に示すように、CとCOとの成分比を調整することにより、雰囲気内に所定の酸素分圧を提供することができる。前記混合ガスがCとCOとの混合ガスである場合、式3に示すように、CとCOとの成分比を調整することにより、雰囲気内に所定の酸素分圧を提供することができる。
 2CO+O⇔2CO・・・(式1)
 2C+O⇔6CO・・・(式2)
 2C+4O⇔6CO・・・(式3)
 本発明の接合体の製造方法において、前記混合ガスは、具体的には、例えば、H、HO、H等、分子内にHおよびOを含む物質とHとの組み合わせより形成することができる。より具体的には、前記混合ガスがHとHOとの混合ガスである場合、式4に示すように、HとHOとの成分比を調整することにより、雰囲気内に所定の酸素分圧を提供することができる。同様に、前記混合ガスがHとHとの混合ガスである場合、式5に示すように、HとHとの成分比を調整することにより、雰囲気内に所定の酸素分圧を提供することができる。前記混合ガスがHOとHとの混合ガスである場合、式6に示すように、HOとHとの成分比を調整することにより、雰囲気内に所定の酸素分圧を提供することができる。
 4H+O⇔2HO・・・(式4)
 2H+2O⇔2H・・・(式5)
 2HO+O⇔2H・・・(式6)
 本発明の接合体の製造方法において、前記混合ガスは、COとCOとが混合されてなる、または、HとHOとが混合されてなるとよい(請求項5)。
 Cに比べ、COおよびCOは安定性が高い。また、Hに比べ、HおよびHOは安定性が高い。そのため、この場合は、混合ガスの成分比を安定して制御することができ、熱処理時における雰囲気中の酸素分圧を、(1)および(2)の条件を満たす範囲に安定させやすくなる。それ故、この場合は、高い接合強度を有する接合体を得やすくなる利点がある。
 以下に、前記混合ガスがCOとCOとの混合ガスである場合に、混合ガスを構成するガスの成分比を調整することにより、雰囲気中に所定の酸素分圧を提供できる理由について、より具体的に説明する。
 前記式1において、COの分圧PCO2、COの分圧PCO、Oの分圧PO2とすると、式1の平衡定数Kpcは、以下の式7となる。
pc=[PCO2/([PCO・[PO2])・・・(式7)
式7を以下のように変形すると、式9が得られる。
logKpc=2log[PCO2]-2log[PCO]-log[PO2]・・・(式8)
2log([PCO2]/[PCO])=log[PO2]+logKpc・・・(式9)
 logKpcは、熱力学の手法により算出することができる固有値である。logKpcが定数であるので、式9より、混合ガスの成分比[PCO2]/[PCO]を調整することにより、[PO2]を制御することが可能なことがわかる。
 次に、前記混合ガスがHとHOとの混合ガスである場合に、混合ガスを構成するガスの成分比を調整することにより、雰囲気中に所定の酸素分圧を提供できる理由について、より具体的に説明する。
 前記式4において、Hの分圧PH2、HOの分圧PH2O、Oの分圧PO2とすると、式4の平衡定数Kphは、以下の式10となる。
ph=[PH2O/([PH2・[PO2])・・・(式10)
式10を以下のように変形すると、式12が得られる。
logKph=2log[PH2O]-2log[PH2]-log[PO2]・・・(式11)
2log([PH2O]/[PH2])=log[PO2]+logKph・・・(式12)
 logKphは、熱力学の手法により算出することができる固有値である。logKphが定数であるので、式12より、混合ガスの成分比[PH2O]/[PH2]を調整することにより、[PO2]を制御することが可能なことがわかる。前記混合ガスがその他のガスの組み合わせよりなる場合も同様である。
 本発明の接合体の製造方法において、前記混合ガスとしては、とりわけ、COとCOとの混合ガスを用いることができる。HO、Hは、沸点が高く、常温で液体である。これに対し、COとCOは、常温で気体である。そのため、この場合は、混合ガスが供給管内あるいはオーブン内の温度の低い部分で凝集することがなく、均一な混合ガスを調整しやすい。また、CO、COは、光などで分解し難く、比較的安定な分子である。そのため、この場合は、混合ガスの成分比を精度よく調整するのに有利である。
 本発明の接合体の製造方法において、前記混合ガスは、COとCOとが混合されてなり、この混合ガスにおけるCO濃度は、体積比で0.3ppb~10ppmの範囲内とすることができる(請求項9)。
 この場合は、COとCOとが混合されてなる混合ガスが、熱処理時の温度において(1)および(2)の条件を満たす酸素分圧を生成しやすくなる。そのため、この場合は、熱処理時の温度が比較的低くても、得られる接合体の接合強度を向上させることができるという効果を確実なものとすることができる。
 前記CO濃度は、COが鉄などの金属と反応してカルボニルを形成し濃度が変化しやすいなどの観点から、好ましくは0.3ppb以上、より好ましくは1ppb以上、さらに好ましくは10ppb以上とすることができる。前記CO濃度は、熱処理の過程で最高温度に到達するまでに低い温度で導体などを酸化させないなどの観点から、好ましくは10ppm以下、より好ましくは3ppm以下、さらに好ましくは1ppm以下とすることができる。
 さらに、前記混合ガスは、COが主成分であることが好ましい。前記反応はCOとCOとの比率によって前記反応の進行が決定されるが、その他のガスが前記混合ガスに多量に含まれているとCOとCOとの比率によって進行する反応の速度が遅くなるので、COが主成分であることが好ましい。混合ガス全体に対する望ましいCOの成分比は90mol%以上、好ましくは99mol%以上、さらに好ましくは99.9mol%以上とすることができる。いずれの場合も、混合ガス中のCOの残部にCOが含まれている。
 本発明の接合体の製造方法は、例えば、前記接合材料として、接合用金属と有機物とを含むペーストを準備し、導体の表面とペーストとを接触状態とした後、前記混合ガス中にて熱処理することにより、ペースト中の接合用金属を焼結させる第1接合手順を含むことができる(請求項6)。
 この場合は、比較的短い接合時間で高い接合強度を有する接合体が得やすくなるので、生産性の向上に有利である。なお、第1接合手順では、接合材料として、より具体的には、接合用金属の粒子と有機物とを含むペーストを好適に用いることができる。
 また、本発明の接合体の製造方法は、前記接合材料として、接合用金属と有機物とを含む溶液を準備し、導体の表面と溶液とを接触状態とした後、前記混合ガス中にて熱処理し、溶液から接合用金属を析出させるとともにこの析出した接合用金属を焼結させる第2接合手順を含むことができる(請求項7)。
 この場合も、より高い接合強度を有する接合体が得やすくなる。なお、第2接合手順では、接合材料として、より具体的には、接合用金属の錯体溶液を好適に用いることができる。
 また、本発明の接合体の製造方法は、前記第1接合手順と第2接合手順とを有する第3接合手順を含むことも可能である。より具体的には、前記接合材料として、接合用金属と有機物とを含むペーストを準備する。次いで、接合すべき一方の導体の表面と前記ペーストとを接触状態とした後、前記混合ガス中にて熱処理することにより、ペースト中の接合用金属を焼結させる第1接合手順を行い、多孔質の接合用金属の焼結体からなる多孔質焼結体を形成する。次いで、接合すべき他方の導体と前記多孔質焼結体の表面とを接触させるとともに、多孔質焼結体の孔内に前記溶液を浸透させることにより、前記他方の導体表面と前記溶液とを接触状態とする。なお、多孔質焼結体の表面と接合すべき他方の導体とは、接合強度を向上させやすくなる観点から、加圧した状態で接触させることができる。次いで、これを前記混合ガス中にて熱処理し、溶液から接合用金属を析出させるとともにこの析出した接合用金属を焼結させる。前記接合体の製造方法は、このような第3接合手順を含むことができる。
 この場合は、多孔質焼結体の孔内、および多孔質焼結体の表面と第1導体との界面において接合用金属が析出するとともに、析出した接合用金属を焼結させる。そのため、この場合は、より一層高い接合強度を有する接合体を得やすくなる。また、孔の少ない接合体が得られるので、孔に起因する破壊等が生じ難く、接合信頼性の高い接合体を製造するのに寄与することができる。なお、多孔質焼結体の孔内への溶液の浸透と前記混合ガス中での熱処理は、繰り返し行うことが可能である。
 本発明の接合体の製造方法は、前記熱処理を行う前に、導体表面に存在する酸化膜を予め除去する工程を有していてもよい。この場合には、接合材料の熱処理時に、導体の表面に酸化膜がなく、かつ、雰囲気中の酸素によって新たに酸化膜が形成されることもない。そのため、この場合は、高い接合強度を有する接合体を得やすくなる利点がある。なお、導体の酸化膜の除去は、特に限定されることなく、各種の方法を用いて行うことができる。前記方法としては、例えば、塩酸、硝酸等の酸性溶液や、これらの蒸気等を用いて酸化膜を除去する方法などを例示することができる。
 次に、本発明のオーブンの実施形態について説明する。なお、前記オーブンの構成については、前記接合体の製造方法の説明を適宜準用することができる。
 本発明のオーブンは、上述した特定の混合ガスを熱処理時の雰囲気中に供給可能に構成することができる。前記混合ガスの生成は、具体的には、例えば、各ガス源からのガスをマスフローコントローラー、ニードルバルブ等の流量調節手段により調節し、混合機にて混合することなどによって実施することができる。また、前記混合は、混合ガスの成分比を安定化させるなどのために、1回または複数回実施することが可能である。複数回に分けて実施した場合は、混合ガスの成分比の差が大きい場合に段階的に希釈することができる。
 以下、実施例の接合体の製造方法およびオーブンについて説明する。
<金属より形成された導体>
 シリコン(厚み725μm)の表面に、スパッタリング法を用いてTiスパッタ層(厚み0.1μm)、Cuスパッタ層(厚み0.1μm)を順に形成した後、さらに電解めっき法を用いてCuめっき層(厚み5μm)を形成することにより、試験チップを作製した。また、Cuよりなるピン型導体(直径0.45mm)を準備した。本例では、前記試験チップが有するCuめっき層、前記Cuよりなるピン型導体を、導体として用いる。
<接合材料>
 50%体積累積径d50が1μmのAg粉末と50%体積累積径d50が0.1μmのAg粉末とを質量比1:1の割合で混合することにより、大きなAg粒子の隙間に小さなAg粒子の詰まった混合Ag粉末を作製した。そして、この混合Ag粉末をターピネオールに懸濁させることにより、Agペーストを調製した。また、カルボン酸銀をイソプロピルアルコール(IPA)に溶解することにより、Ag錯体溶液を調製した。本例では、前記Agペーストと前記Ag錯体溶液を接合材料として用いる。
<オーブン>
 熱処理を実施するための熱処理空間に、熱処理時の雰囲気ガスとして、COとCOとが混合されてなる混合ガスを供給可能に構成したオーブンAを準備した。オーブンAは、具体的には、COボンベから供給されるCOの流量とCOボンベから供給されるCOの流量とをマスフローコントローラーにより所定の流量比となるように調節し、混合機にて混合することにより、後述する表1および表2に示す混合ガスを生成し、当該混合ガスを、熱処理空間に供給可能に構成されている。また、比較のため、熱処理を実施するための熱処理空間に、熱処理時の雰囲気ガスとして、NボンベからNガスを供給可能に構成したオーブンBも併せて準備した。
<接合工程>
 本例では、前記準備した導体と前記準備した接合材料とを接触状態とした後、前記準備したオーブンA、オーブンBを用いて所定の雰囲気ガス中にて熱処理し、Agを焼結させる接合工程を経ることにより、各接合体試料を作製した。以下に詳細に説明する。
(試料1の作製)
 前記試験チップが有するCuめっき層の表面に、スクリーン印刷法により前記Agペーストを厚み50μmにて塗布した。これにより、試験チップが有するCuめっき層と、Agペーストとを接触状態とした。次いで、これをオーブンAの熱処理空間に配置し、COとCOとが混合されてなる混合ガス中にて熱処理を行った。この際、熱処理は、50℃にて5分間、100℃にて5分間、150℃にて5分間、200℃にて30分間順に加熱するという加熱条件にて行った。したがって、試料1の作製における熱処理時の温度は、最高温度の200℃ということになる。また、COとCOとが混合されてなる混合ガスにおけるCO濃度は体積比で50ppbとした。この混合ガスは、熱処理時の温度である200℃において、上述した(1)条件における炭素(C)と酸素(O)とが共存する平衡酸素分圧以上の酸素分圧を生成する成分比、上述した(2)条件に相当するCuOとCuとが共存できるような平衡酸素分圧以下の酸素分圧を生成する成分比となっている。その理由は以下の通りである。
 すなわち、熱処理時の温度が200℃の場合、Cの酸化(Cの燃焼)反応は、主に式13によって生じる。したがって、この場合は、式13の反応を考慮すればよいことになる。
C+O⇔CO・・・(式13)
 式13の反応において、上述した(1)条件における炭素(C)と酸素(O)とが共存する平衡酸素分圧P(1)は、-43.61[常用対数値]となる。
 また、熱処理時の温度が200℃の場合、導体を形成するCuの酸化物である酸化銅のうち、最も標準生成自由エネルギーの小さい酸化銅は、CuOであり、Cuの酸化反応は、主に式14によって生じる。したがって、この場合は、式14の反応を考慮すればよいことになる。
2Cu+O⇔2CuO・・・(式14)
 式14の反応において、上述した(2)条件に相当するCuOとCuとが共存する平衡酸素分圧P(2)は、-29.77[常用対数値]となる。
 そうすると、熱処理時の温度を200℃とし、導体を形成する金属としてCuを用いる場合、混合ガスは、前記熱処理時の温度において、前記平衡酸素分圧P(1)以上、前記平衡酸素分圧P(2)以下の範囲内の酸素分圧PO2を生成する成分比であればよいことになる。本例では、混合ガスは、COとCOとが混合されている。そのため、上述したように、混合ガスの成分比[PCO2]/[PCO]を調整し、前記範囲内の酸素分圧PO2を生成させるようにすればよいといえる。本例では、COとCOとの混合ガス中におけるCOの体積濃度を調整することにより、前記混合ガスの成分比の調整を行うことにした。
 具体的には、熱処理時の温度が200℃の場合、(1)条件における平衡酸素分圧P(1)を生成する成分比[PCO]/[PCO2]は、12.29×10-6である。COの比率は圧倒的に小さいので、この成分比を与えるCO濃度は、体積比で12ppmと考えてよい。一方、(2)条件における平衡酸素分圧P(2)を生成する成分比[PCO]/[PCO2]は、1.47×10-12である。COの比率は圧倒的に小さいので、この成分比を与えるCO濃度は、体積比で1.4pptと考えてよい。このことから、熱処理時の温度が200℃の場合、混合ガス中のCO濃度を、体積比で1.4ppt~12ppmの範囲内とすれば、混合ガスが、前記平衡酸素分圧P(1)以上、前記平衡酸素分圧P(2)以下の範囲内の酸素分圧PO2を生成可能となる。
 なお、ここではCOに対してCOの成分比が圧倒的に小さいので、「濃度」の概念で取り扱い易いよう「[PCO2]/[PCO]」に変えて「[PCO]/[PCO2]」で記載してある。「[PCO]/[PCO2]」は「[PCO2]/[PCO]」の逆数である。
 以上の理由により、本例では、CO濃度が体積比で50ppbである前記混合ガスを準備した。なお、前記と異なる混合ガス成分を用いる場合や熱処理時の温度が異なる場合などは、前記と同様の考え方によって(1)および(2)の条件を満たす成分比の混合ガスを準備すればよい。
 前記混合ガス中での熱処理により、Agペースト中のAg粒子を焼結させ、試験チップのCuめっき層の表面に多孔質のAgの焼結体からなる多孔質焼結体を形成した。
 次いで、これを一旦オーブンAから取り出した。次いで、多孔質焼結体の表面に、圧力1kg/mmにて前記ピン型導体のピン先端部を押し付け状態としたまま、多孔質焼結体の孔内にAg錯体溶液を浸透させることにより、ピン型導体とAg錯体溶液とを接触状態とした。次いで、再びこれをオーブンAの熱処理空間に配置し、前記と同じ混合ガス中、前記と同じ加熱条件にて熱処理を行った。そして、この熱処理により、多孔質焼結体の孔内、および多孔質焼結体の表面とピン型導体との界面において、Ag錯体溶液からAgを析出させるとともに、析出したAgを焼結させ、多孔質焼結体の表面にピン型導体を接合した。その後、前記と同じAg錯体溶液の浸透と熱処理を2回繰り返した。これにより、試料1の接合体を得た。
 なお、図1に示すように、試料1の接合体10は、接合すべき一方の導体11としてのCuめっき層と、接合すべき他方の導体12としてのピン型導体との間を接合する層状の接合層である。また、接合体10は、Agからなる多孔質焼結体101と、多孔質焼結体101の孔内および表面に存在するAgからなる緻密質焼結部102とを有している。なお、図1中、13はCuスパッタ層、14はTiスパッタ層、15はシリコンである。
 (試料2~10の作製)
 試料1の作製において、熱処理条件を、表1および表2に示すように変更した以外は同様にして、試料2~10の接合体を得た。なお、試料9および試料10の作製時には、前記オーブンBを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<接合強度>
 得られた各接合体について、接合強度を以下のようにして測定した。すなわち、接合体試料が上下に動かないように固定した後に、接合していないもう一方のピン型導体の先端部分を上下可動のロードセルと直結させたピンセットでつまみ、50mm/minの速度でロードセルを上昇させ、接合部が破壊される際の最大強度を記録した。記録した最大強度を接合面積で割り、これを単位面積あたりの接合強度とした。図2に、接合体試料の熱処理時の最高温度と接合強度との関係を示す。また、図3(a)、(b)に、代表例として、接合体試料1の断面SEM写真を示す。
 以上の結果から次のことがわかる。試料9、試料10の接合体は、N雰囲気中にて熱処理を行う接合工程を経て作製されている。そのため、熱処理時の最高温度が比較的低温では、他に比較して接合強度が低いことがわかる。これは、熱処理時に接合材料中に含まれていた有機物が十分に酸化されず、接合層中に炭化物として残留しやすかったためである。なお、十分な酸化雰囲気中にて熱処理を行った場合には、導体表面に容易に酸化膜が形成され、接合性が低下し、高い接合強度が得られ難いので、今回試験を実施していない。
 これらに対し、試料1~8の接合体の作製方法では、Oの結合数が異なるCOとCOとが混合されてなる混合ガス中にて接合工程における熱処理を行っている。そして、試料1~8の接合体の作製に用いた混合ガスは、各熱処理時の温度において、前記(1)条件における炭素(C)と酸素(O)とが共存する平衡酸素分圧P(1)以上、前記(2)条件に相当するCuOとCuとが共存する平衡酸素分圧P(2)以下の条件を満たす酸素分圧を生成する成分比とされている。
 そのため、試料1~8の接合体の作製方法によれば、接合材料中に含まれる有機物の酸化(燃焼)を促すことができ、接合体中の炭化物の残留を抑制することができる。また、導体表面の酸化を抑制することができるので、接合性を向上させることができる。このように、試料1~8の接合体の作製方法は、前記接合時に炭化物および酸化膜を関与させないようにすることができるので、熱処理時の温度を低温化しても、得られる接合体の接合強度を向上させることができた。とりわけ、今回の結果から、熱処理時の温度を250℃程度まで下げた場合でも、半田接合とほぼ同等の高い接合強度を有する接合体が得られることが確認された。
 以上、実施例について説明したが、本発明は、前記実施例により限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変形を行うことができる。
 10 接合体
 101 多孔質焼結体
 102 緻密質焼結部
 11、12 導体

Claims (10)

  1.  金属より形成された導体と、接合用金属と有機物とを含む接合材料とを接触状態とした後、熱処理することにより、前記接合用金属を焼結させる接合工程を有しており、
     前記熱処理は、O(酸素)の結合数が異なる少なくとも2種以上のガスが混合されてなる混合ガス中にて実施され、
     前記混合ガスは、前記熱処理時の温度において以下の(1)および(2)の条件を満たす成分比であることを特徴とする接合体の製造方法。
    (1)炭素と酸素とが共存する平衡酸素分圧以上の酸素分圧を生成する
    (2)前記導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、前記導体を形成する金属とが共存できるような平衡酸素分圧以下の酸素分圧を生成する
  2.  請求項1に記載の接合体の製造方法において、
     前記熱処理時の温度は、200~300℃の範囲内であることを特徴とする接合体の製造方法。
  3.  請求項1または2に記載の接合体の製造方法において、
     前記導体を形成する金属は、銅または銅合金であることを特徴とする接合体の製造方法。
  4.  請求項1~3のいずれか1項に記載の接合体の製造方法において、
     前記接合用金属は、その標準酸化還元電位が、前記導体を形成する金属の標準酸化還元電位と同じまたはそれよりも大きいことを特徴とする接合体の製造方法。
  5.  請求項1~4のいずれか1項に記載の接合体の製造方法において、
     前記混合ガスは、COとCOとが混合されてなる、または、HとHOとが混合されてなることを特徴とする接合体の製造方法。
  6.  請求項1~5のいずれか1項に記載の接合体の製造方法において、
     前記接合材料として、前記接合用金属と前記有機物とを含むペーストを準備し、
     前記導体の表面と前記ペーストとを接触状態とした後、前記混合ガス中にて熱処理することにより、前記ペースト中の接合用金属を焼結させる第1接合手順を含むことを特徴とする接合体の製造方法。
  7.  請求項1~5のいずれか1項に記載の接合体の製造方法において、
     前記接合材料として、前記接合用金属と前記有機物とを含む溶液を準備し、
     前記導体の表面と前記溶液とを接触状態とした後、前記混合ガス中にて熱処理し、前記溶液から前記接合用金属を析出させるとともに該析出した接合用金属を焼結させる第2接合手順を含むことを特徴とする接合体の製造方法。
  8.  請求項1~7のいずれか1項に記載の接合体の製造方法において、
     前記接合用金属は、銀であることを特徴とする接合体の製造方法。
  9.  請求項1~8のいずれか1項に記載の接合体の製造方法において、
     前記混合ガスは、COとCOとが混合されてなり、
     前記混合ガスにおける前記CO濃度は、体積比で0.3ppb~10ppmの範囲内にあることを特徴とする接合体の製造方法。
  10.  金属より形成された導体と、接合用金属と有機物とを含む接合材料とを接触状態とした後、熱処理することにより、前記接合用金属を焼結させる接合工程を有する接合体の製造方法に用いられるオーブンであって、
     O(酸素)の結合数が異なる少なくとも2種以上のガスが混合されてなる混合ガスを供給可能に構成されており、
     前記混合ガスは、前記熱処理時の温度において以下の(1)および(2)の条件を満たす成分比であることを特徴とするオーブン。
    (1)炭素と酸素とが共存する平衡酸素分圧以上の酸素分圧を生成する
    (2)前記導体を形成する金属の金属酸化物のうち、最も標準生成自由エネルギーの小さい金属酸化物と、前記導体を形成する金属とが共存できるような平衡酸素分圧以下の酸素分圧を生成する
PCT/JP2013/082855 2013-01-10 2013-12-06 接合体の製造方法およびオーブン WO2014109154A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013002258A JP2014133920A (ja) 2013-01-10 2013-01-10 接合体の製造方法およびオーブン
JP2013-002258 2013-01-10

Publications (1)

Publication Number Publication Date
WO2014109154A1 true WO2014109154A1 (ja) 2014-07-17

Family

ID=51166816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082855 WO2014109154A1 (ja) 2013-01-10 2013-12-06 接合体の製造方法およびオーブン

Country Status (2)

Country Link
JP (1) JP2014133920A (ja)
WO (1) WO2014109154A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087939A (ja) * 2007-09-28 2009-04-23 Wc Heraeus Gmbh 金属面の接続方法及びそのためのペースト
WO2009081685A1 (ja) * 2007-12-26 2009-07-02 Murata Manufacturing Co., Ltd. 部品実装基板およびその製造方法
JP2012218020A (ja) * 2011-04-07 2012-11-12 Jsr Corp 接合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087939A (ja) * 2007-09-28 2009-04-23 Wc Heraeus Gmbh 金属面の接続方法及びそのためのペースト
WO2009081685A1 (ja) * 2007-12-26 2009-07-02 Murata Manufacturing Co., Ltd. 部品実装基板およびその製造方法
JP2012218020A (ja) * 2011-04-07 2012-11-12 Jsr Corp 接合方法

Also Published As

Publication number Publication date
JP2014133920A (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6337909B2 (ja) 電子部品モジュールの製造方法
JP5766336B1 (ja) 銅ペーストの焼成方法
CN107848077B (zh) 含金属微粒的组合物
JP5773429B2 (ja) 電子部品を接触させるための接触手段および方法
JP6153077B2 (ja) 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
KR20060128997A (ko) 복합형 나노입자 및 그 제조방법
KR20130061671A (ko) 도전성 페이스트, 및 이 페이스트로부터 얻어지는 도전접속부재
JP2012182111A (ja) 導電性金属ペースト組成物及びその製造方法
JP3690552B2 (ja) 金属ペーストの焼成方法
US20170278589A1 (en) Metal oxide particles for bonding, sintering binder including same, process for producing metal oxide particles for bonding, and method for bonding electronic components
JP2011094236A (ja) 低温焼成用銅粉または導電ペースト用銅粉
JP6617049B2 (ja) 導電性ペースト及び半導体装置
JP5067312B2 (ja) ニッケル粉末とその製造方法
TWI609381B (zh) 可在空氣中燒結高導電率奈米銀包銅厚膜膏之製備方法
JP2015011900A (ja) 導電性ペースト、及びその製造方法
WO2014109154A1 (ja) 接合体の製造方法およびオーブン
JP6626572B2 (ja) 金属接合材料及びその製造方法、並びにそれを使用した金属接合体の製造方法
JP6442688B2 (ja) 金属材の接合方法
JP6677231B2 (ja) 電子部品の接合方法および接合体の製造方法
JP6338419B2 (ja) 金属粒子組成物、接合材及びそれを用いた接合方法
Liu et al. Fabrication and characterization of (Pd/Ag)–La0. 2Sr0. 8CoO3− δ composite membrane on porous asymmetric substrates
JP6179423B2 (ja) 硫黄含有ニッケル粉末の製造方法
WO2017179524A1 (ja) 銀被覆銅粉およびその製造方法
JP2015030869A (ja) 銅複合粒子、これを含む銅ペースト及びこれを用いた回路基板の製造方法
JP7208619B2 (ja) 電子部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870623

Country of ref document: EP

Kind code of ref document: A1