WO2015177830A1 - 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 - Google Patents
負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 Download PDFInfo
- Publication number
- WO2015177830A1 WO2015177830A1 PCT/JP2014/063147 JP2014063147W WO2015177830A1 WO 2015177830 A1 WO2015177830 A1 WO 2015177830A1 JP 2014063147 W JP2014063147 W JP 2014063147W WO 2015177830 A1 WO2015177830 A1 WO 2015177830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- sio
- lithium ion
- ion secondary
- secondary battery
- Prior art date
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 33
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 21
- 230000008569 process Effects 0.000 title description 6
- 239000002131 composite material Substances 0.000 claims abstract description 59
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000011247 coating layer Substances 0.000 claims abstract description 31
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 30
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 28
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 28
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 28
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 28
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 28
- 239000011888 foil Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims description 45
- 235000012239 silicon dioxide Nutrition 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000011812 mixed powder Substances 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000000728 ammonium alginate Substances 0.000 claims description 3
- 235000010407 ammonium alginate Nutrition 0.000 claims description 3
- KPGABFJTMYCRHJ-YZOKENDUSA-N ammonium alginate Chemical compound [NH4+].[NH4+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O KPGABFJTMYCRHJ-YZOKENDUSA-N 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000004898 kneading Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 75
- 230000000052 comparative effect Effects 0.000 description 27
- 239000010410 layer Substances 0.000 description 24
- 229910052742 iron Inorganic materials 0.000 description 15
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 12
- 239000011246 composite particle Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000007774 positive electrode material Substances 0.000 description 10
- 239000008151 electrolyte solution Substances 0.000 description 9
- 238000007600 charging Methods 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 230000002427 irreversible effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- -1 x = 0.01 to 0.2) Inorganic materials 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 239000011149 active material Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002134 carbon nanofiber Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000012692 Fe precursor Substances 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910013709 LiNi 1-x M Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- YQFWGCSKGJMGHE-UHFFFAOYSA-N 1-methyl-1-propylpyrrolidin-1-ium Chemical compound CCC[N+]1(C)CCCC1 YQFWGCSKGJMGHE-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- AETJTBDBQRMLLQ-UHFFFAOYSA-N 4-chloro-5-methyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1Cl AETJTBDBQRMLLQ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910002803 Si-O-Fe Inorganic materials 0.000 description 1
- 229910002802 Si–O–Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 229910052840 fayalite Inorganic materials 0.000 description 1
- 229910052635 ferrosilite Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- NPFOYSMITVOQOS-UHFFFAOYSA-K iron(III) citrate Chemical compound [Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NPFOYSMITVOQOS-UHFFFAOYSA-K 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical group FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/523—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a negative electrode material, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a production method thereof.
- lithium ion secondary batteries In recent years, development of lithium ion secondary batteries has been actively promoted. In general, graphite is used as a negative electrode active material of a lithium ion secondary battery. However, in recent years, with the increase in the cruising distance of electric vehicles and the increase in the number of functions of portable terminals, further increase in capacity is required for lithium ion secondary batteries.
- Patent Document 1 proposes SiO in which nano-sized Si is dispersed in SiO 2 in order to solve the above problems. This SiO exhibits better cycle characteristics than Si.
- the present invention is to solve such problems and problems.
- the authors formed an oxide layer that forms a compound with SiO2 on the surface of SiO and deposited a fine metal having a high affinity with carbon to reduce the irreversible capacity and cycle. It has been found that the characteristics are improved. That is, the present invention provides a lithium ion secondary battery having excellent initial charge / discharge characteristics and life characteristics.
- a feature of the present invention for solving the above problems is a lithium ion secondary battery in which a positive electrode and an electrode group having a negative electrode are housed in a battery can, the negative electrode having a negative electrode active material supported on a negative electrode foil,
- the negative electrode active material includes a core portion 30 mainly composed of SiO, a composite oxide coating layer 31 of Fe and SiO2 provided around the core portion 30, and a composite oxide coating layer of Fe and SiO2.
- the carbon coating layer 32 is included.
- initial charge / discharge characteristics can be achieved without degrading other battery characteristics.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- the figure which shows the electrical property of each Example and each comparative example. 2 is an SEM of negative electrode active material particles of Example 1.
- 2 is an SEM of negative electrode active material particles of Example 2.
- a battery a cylindrical lithium ion secondary battery will be described as an example.
- a prismatic battery, a laminated battery, etc. are used as a lithium ion secondary battery that is used by bending a current collector on a flat plate or a current collector on a flat plate. It is possible to apply the idea of the present invention.
- process is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
- FIG. 1 is a view showing a longitudinal section of a cylindrical battery 1 of the present embodiment.
- the cylindrical battery 1 is manufactured by injecting an electrode group 3 (see FIG. 3) in which a positive electrode 200 and a negative electrode 300 face each other with a separator 350 therebetween, and an electrolytic solution is injected into the battery can 4. It is done.
- the electrode group 3 has a shaft core 2 at the start of the electrode group 3, and the electrode group 3 is configured to be wound around the shaft core 2, and the electrode group 3 and the shaft core 2 are accommodated inside the battery can 4. It has become.
- the shaft core 2 any known one can be used as long as it can carry the positive electrode 200, the separator 350, and the negative electrode 300.
- the shape of the battery can 4 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape in accordance with the shape of the electrode group 3.
- the material of the battery can 4 is selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
- the battery can 4 when the battery can 4 is electrically connected to the positive electrode 200 or the negative electrode 300, the material is not deteriorated due to corrosion of the battery can 4 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, it is preferable to select the material of the battery can 4.
- the upper and lower ends of the electrode group 3 are provided with electrical insulating plates 5 so that the electrode group 3 does not come into contact with the battery can 4 due to vibration or the like and is not short-circuited.
- a positive electrode conductive lead 7 is provided at the upper end of the electrode group 3. One end of the conductive lead 7 is electrically connected to the positive electrode 200 of the electrode group 3, and the other end of the conductive lead 7 is electrically connected to the battery lid 6.
- a negative electrode conductive lead 8 is disposed at the lower end of the electrode group 3.
- One end of the conductive lead 8 is electrically connected to the negative electrode 300 of the electrode group 3, and the other end of the conductive lead 8 is joined to the bottom of the battery can 4.
- the electrolytic solution is injected into the battery can 4 when the dehumidifying atmosphere or the inert atmosphere is controlled.
- a gasket 9 that serves both as an electrical insulation and a gas seal is disposed between the battery can 4 and the battery lid 6, and the battery can 4 and the battery lid 6 are integrated by caulking the battery can 4.
- the interior is kept hermetically sealed.
- FIG. 2 is a cross-sectional view of the battery 1 of FIG. 1 as viewed from the AA cross section. As described above, the shaft core 2 and the electrode group 3 are accommodated in the battery can 4.
- the electrode group 3 has a structure in which the positive electrode 200 and the negative electrode 300 are wound through the separator 350.
- the positive electrode 200 has a structure in which the positive electrode material 202 is provided on both surfaces of the positive electrode foil 201.
- the negative electrode 300 has a structure in which the negative electrode material 302 is provided on both surfaces of the negative electrode foil 301. And if the separator 350 is inserted between the positive electrode 200 and the negative electrode 300 and wound around the shaft core 2, the electrode group 3 is completed.
- a cylindrical battery has been described as a specific example.
- applicable batteries are not limited to cylindrical batteries, and the present invention can also be applied to rectangular batteries and laminated cell batteries.
- the electrode group 3 can have various shapes obtained by winding the positive electrode 200 and the negative electrode 300 into an arbitrary shape such as a flat shape. Moreover, the electrode group 3 may be produced by winding without using the shaft core 2, or a laminate in which a positive electrode and a negative electrode are laminated via a separator like a laminated cell battery may be used.
- the positive electrode material 202 constituting the positive electrode 200 includes a positive electrode active material, a conductive agent, a binder, and a current collector.
- the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
- LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2 ⁇ x MxO 2 (where M Co, Ni, Fe, Cr, Zn, Ti are selected.
- the particle size of the positive electrode active material is usually specified so as to be equal to or less than the thickness of the mixture layer formed of the positive electrode active material, the conductive agent, and the binder.
- the coarse particles can be removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer thickness or less. preferable.
- the positive electrode active material is generally oxide-based and has high electric resistance
- a conductive agent made of carbon powder for supplementing electric conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the current collector.
- the positive electrode foil 201 constituting the positive electrode 200 includes an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, or A metal foam plate or the like is used.
- aluminum materials such as stainless steel and titanium are also applicable.
- any current collector can be used without being limited by the material, shape, manufacturing method and the like.
- a positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and applied by a roll press. It can be produced by pressure forming. In addition, a plurality of mixture layers can be laminated on the current collector by performing a plurality of times from application to drying.
- the separator 350 can be a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. It is. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator so that the separator does not shrink when the battery temperature increases. Since these separators need to allow lithium ions to permeate during charge and discharge of the battery, they can be used for lithium ion batteries as long as the pore diameter is generally 0.01 to 10 ⁇ m and the porosity is 20 to 90%.
- Electrolyte solution As a representative example of an electrolyte solution that can be used in an embodiment of the present invention, a solvent obtained by mixing ethylene carbonate with dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte, Alternatively, there is a solution in which lithium borofluoride (LiBF 4 ) is dissolved.
- the present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytes can be used.
- non-aqueous solvents examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, -Methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-
- non-aqueous solvents such as oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, or chloropropylene carbonate.
- Other solvents may be used as long as they do not decompose on the positive electrode 200 or the negative electrode
- examples of the electrolyte LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, multi
- lithium salts A nonaqueous electrolytic solution obtained by dissolving these salts in the above-mentioned solvent can be used as a battery electrolytic solution.
- electrolytes other than this.
- an ionic liquid can be used.
- EMI-BF4 (1-ethyl-3-methyltetrafluoroborate)
- LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
- LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
- a mixed complex of triglyme and tetraglyme, a cyclic quaternary ammonium cation (N-methyl) -N-propylpyrrolidinium is exemplified
- an imide-based anion example is bis (fluorosulfonyl) imide
- a combination that does not decompose at the positive electrode and the negative electrode is selected.
- the structure of the lithium ion secondary battery in one embodiment of the present invention is not particularly limited.
- a positive electrode and a negative electrode, and a separator provided as necessary are wound in a flat spiral shape to form a winding electrode.
- a plate group is formed, or these are laminated in a flat plate shape to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body.
- the negative electrode material 302 (see FIG. 3) that constitutes the negative electrode 300 is made of carbonaceous matter on particles coated with a composite oxide of SiO and a composite oxide of Fe and SiO2, or a composite oxide of Fe and Fe and SiO2.
- a negative electrode active material which is a coated particle is used.
- FIG. 4 is a diagram showing an example of the negative electrode active material according to the present invention.
- the negative electrode active material is composed of a core layer 30, a composite layer 31 of a composite oxide of Fe and SiO2 or a composite oxide of metal Fe and Fe and SiO2 existing on the outer periphery of the core part 30, a composite of Fe and SiO2. It is composed of a carbon coating layer 32 existing on the outer periphery of a coating layer 31 of a composite made of oxide or metal Fe and a composite oxide of Fe and SiO2.
- the core portion 30 is a nucleus mainly composed of SiO, and the coating layer 31 of a composite oxide composed of a composite oxide of Fe and SiO2 or a composite oxide of metal Fe and Fe and SiO2 is compositely oxidized of Fe, Fe, and SiO2.
- the carbon covering layer 32 is a layer mainly composed of carbon as the name suggests.
- ⁇ Cover creation method> a process until the composite oxide coating layer 31 of Fe and SiO 2 is formed on the outer periphery of the core portion 30 will be described.
- a method for coating Si—Fe composite oxide on SiO it is desirable to mix a Fe-containing compound having a particle diameter smaller than that of SiO in a mortar or the like and to fire at about 600 ° C. to 1100 ° C. in an inert atmosphere.
- the reason for using Fe having a particle diameter smaller than that of SiO is to uniformly distribute the Fe precursor around SiO. When particles larger than SiO are used, Fe and its oxide may be unevenly distributed.
- the Fe coating is made using Fe having a particle diameter smaller than that of SiO, and the destruction of the conductive network of the electrode is suppressed.
- solid Fe-containing compound in addition to inorganic compounds such as metal oxides, hydroxides, carbonates and nitrates, organic compounds such as metal alkoxides and organometallic complexes can also be used.
- inorganic compounds such as metal oxides, hydroxides, carbonates and nitrates
- organic compounds such as metal alkoxides and organometallic complexes can also be used.
- part of the Fe oxide is thermally decomposed during firing. At that time, a complex oxide of Si and Fe oxide is formed by the reaction between the Fe oxide and the surface of SiO.
- the surface of the SiO particles (the surface of the core 30) reacts with the composite oxide, thereby terminating dangling bonds on the surface of the SiO particles. Therefore, it is suppressed that Li ions are trapped by dangling bonds, and the irreversible capacity is reduced.
- the coating is difficult to peel off. Therefore, even if the particles expand due to charging / discharging, the composite oxide coating layer 31 is hardly peeled off from the core portion 30, and the surface of the SiO is prevented from being exposed. In addition, since the dangling bonds on the surface of the Si and SiO particles (the surface of the core part 30) are terminated by the metal element, the trapping of Li ions in the dangling bonds is suppressed, and the irreversible capacity is reduced.
- a carbon material is further coated around the SiO particles coated with the composite oxide coating layer 31 produced here.
- the composite oxide coating layer 31 made of Fe and SiO 2 having a smaller volume change than SiO between carbon and SiO, the destruction of the coated carbon layer due to the volume change of SiO can be suppressed.
- the firing temperature is preferably 600 ° C. to 1300 ° C. as described above. If the firing temperature is higher than 1300 ° C., the growth of Si particles in the SiO particles proceeds, while the crystallization of SiO 2 proceeds, so that the charge / discharge capacity and the cycle characteristics decrease.
- the firing temperature is lower than 600 ° C., the reaction between Fe and SiO 2 does not occur and a good film is not formed.
- the coating amount of the composite oxide coating layer 31 is preferably such that the ratio Fe / Si of the amount of Fe substance to the amount of Si is 50% or less, and the thickness of the composite oxide film is 5 nm to 1 ⁇ m or less. Further, Fe / Si is 20% or less, and more preferably 20 nm to 500 nm.
- the composite oxide coating layer 31 When the composite oxide coating layer 31 is too thick, Li does not easily reach the internal SiO, that is, it is difficult to charge and discharge. Moreover, the influence by the composite oxide layer, for example, the weight ratio of SiO is relatively reduced. Therefore, it is possible to prevent the capacity of the battery from being reduced and the Li release potential from the composite oxide from becoming higher than the Li release potential from SiO.
- Liquid and gaseous organic compounds can be used for the coated carbon material in one embodiment of the present embodiment.
- the composite particles when using a gaseous organic compound, for example, a hydrocarbon gas such as methane, ethane, or benzene, the composite particles may be carbonized by thermal decomposition (600 to 1300 ° C.).
- a gaseous organic compound for example, a hydrocarbon gas such as methane, ethane, or benzene
- the composite particles may be carbonized by thermal decomposition (600 to 1300 ° C.).
- the crystallinity of the coated carbon is lowered, so that the electrical resistance and the irreversible capacity are increased, and the adhesion with the composite particles is also lowered.
- the temperature is too high, the crystallinity and reactivity of carbon are improved, and a reaction in the composite particles (reaction in which Fe oxide is reduced and Fe metal phase is formed) occurs. Therefore, it is not preferable. Further, as described above, the growth of Si particles and the crystallization of SiO2 are promoted, and the cycle characteristics are deteriorated.
- aqueous solution of a water-soluble organic compound such as a liquid organic compound such as carboxymethyl cellulose (CMC), carboxyethyl cellulose, alginic acid, polyacrylic acid, urea, etc.
- a water-soluble organic compound such as a liquid organic compound such as carboxymethyl cellulose (CMC), carboxyethyl cellulose, alginic acid, polyacrylic acid, urea, etc.
- CMC carboxymethyl cellulose
- carboxyethyl cellulose carboxyethyl cellulose
- alginic acid alginic acid
- polyacrylic acid polyacrylic acid
- urea etc.
- complex oxidation is impregnated in the aqueous solution or mixed and dried.
- carbon coating may be performed by firing at 600 ° C. to 1300 ° C. in an inert gas atmosphere.
- Further heat treatment may contain another carbon precursor, such as a phenolic resin, a polymer compound such as a styrene resin, a carbonizable solid such as pitch, etc. Can be processed.
- another carbon precursor such as a phenolic resin, a polymer compound such as a styrene resin, a carbonizable solid such as pitch, etc.
- the carbon material can be coated on the particles in which the composite oxide of Fe and SiO2 is coated on SiO.
- the conductivity of the composite particles can be imparted more strongly. Therefore, it is possible to charge and discharge even when a relatively large current is passed, and to suppress sintering (sintering) between the covering oxides.
- the temperature is raised to 800 ° C. at a temperature increase rate of 50 ° C./hour in an atmosphere firing furnace in an inert gas atmosphere (Ar atmosphere) and heat treated at 800 ° C. for 2 hours. did.
- the mixture was naturally cooled to obtain composite particles in which carbon covered with SiO coated with a composite oxide of Fe and SiO2.
- the obtained composite particles are roughly crushed with a mill (TM837, manufactured by Tescom Co., Ltd.), and then the average particle size is reduced to 10 ⁇ m or less with a rakai machine (Ishikawa-type stirring crusher (registered trademark) AGA type). It was crushed.
- the crushed powder, carboxymethyl cellulose (CMC) and vapor grown carbon fiber (Vapor Grown Carbon Fiber) were weighed to a solid content concentration ratio of 75:15:10 and dispersed well in a mortar. Therefore, an appropriate amount of pure water was added to prepare a slurry.
- the prepared slurry was applied to a 10 ⁇ m thick electrolytic copper foil with an applicator so as to be 2 mg / cm 2, and left in an 80 ° C. stationary dryer for 1 hour to remove moisture. It was pressed by a roll press so that the electrode density was 1.3 g / cc.
- the pressed electrode was vacuum-dried at 120 ° C. for 2 hours, and punched into a ⁇ 15 mm circle was used as a test electrode.
- a model cell shown in the figure was produced using a test electrode.
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- DMC dimethyl carbonate
- Example 2 is the same as Example 1 except that Fe (III) citrate was used instead of the Fe2O3 powder used in Example 1.
- Example 3 This example differs from Example 1 in that carboxymethyl cellulose_ammonium salt was used instead of the used ammonium alginate.
- CMC_NH4 carboxymethylcellulose_ammonium salt
- purified water was mixed to prepare 5% CMC_NH4
- the CMC_NH4 aqueous solution was applied three times to the SiO particles coated with the composite oxide of Fe and SiO2 prepared in Example 1.
- SiO: CMC_NH4 coated with a composite oxide of Fe and SiO2 100: 50% by weight.
- Water was removed from the mixture using a stationary dryer at 80 ° C., followed by vacuum drying at 100 ° C. for 2 hours.
- the dried mixture was heated to 800 ° C. at a heating rate of 50 ° C./hour in an atmosphere firing furnace in an Ar atmosphere, and heat-treated at 800 ° C. for 2 hours.
- the prepared slurry was applied to a 10 ⁇ m thick electrolytic copper foil with an applicator so as to be 2 mg / cm 2, and left in an 80 ° C. stationary dryer for 1 hour to remove moisture. It was pressed by a roll press so that the electrode density was 1.3 g / cc.
- the pressed electrode was vacuum-dried at 120 ° C. for 2 hours, and punched into a ⁇ 15 mm circle was used as a test electrode.
- a model cell shown in the figure was produced using a test electrode.
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- DMC dimethyl carbonate
- the charging conditions were constant current charging to 0.01 V with a current value equivalent to 0.2 C, and then constant voltage charging until the current value became 1/100 C. Thereafter, the battery was discharged at a current value equivalent to 0.2 C up to 2.5 V with a 5-minute pause. This was one cycle.
- Example 4 In Example 3, the same procedure as in Example 3 was used except that the iron oxide-coated SiO powder (Example 1) was used and the powder of Example 2 was used.
- Example 1 is the same as Example 1 except that heat treatment was performed without mixing any SiO.
- Comparative Example 2 >> In Example 3, the same procedure as in Example 3 was used, except that the SiO of Comparative Example 1 was used instead of the iron oxide-coated SiO.
- Example 1 is the same as Example 1 except that a mixed powder of SiO and Fe2O3 is fired in air.
- Example 2 is the same as Example 2 except that a mixed powder of SiO and iron (III) citrate is fired in air.
- Example 3 it produced in the same procedure as Example 3 except having changed into the composite particle produced in Comparative Example 3.
- Example 4 it produced with the procedure similar to Example 3 except having changed into the composite particle produced in the comparative example 4.
- FIG. 1 Comparative Example 6
- FIG. 7 shows a summary of the preparation conditions for each example.
- Example 1 and Example 2 The XRD measurement results of Example 1 and Example 2 are shown in FIG.
- the black circles in FIG. 5 are the peaks indicating the complex oxide of Fe and SiO2, and the white triangles are the peaks of Fe. From Example 1, the peak of the composite oxide of SiO2 and Fe was seen, and from Example 2, the peak of Fe and the weak peak of the composite oxide of SiO2 and Fe were seen. From these results, it can be seen that a composite oxide layer of Fe and SiO 2 is generated.
- FIG. 6 shows the XRD measurement results of Comparative Example 3 and Comparative Example 4 as representative examples.
- Comparative Example 3 and Comparative Example 4 only the Fe 2 O 3 peak was observed even when the Fe source was changed, and the peak of the composite oxide of Fe and SiO 2 was not observed. Therefore, it can be seen that the composite oxide layer of Fe and SiO2 is not formed by the method for producing the comparative example.
- FIG. 9 and FIG. 9 and 10 show the composite particles are hardened with carbonaceous material so that the composite oxide layer of Fe and SiO 2 can be easily seen. Therefore, the outermost carbon coating layer is not visible.
- FIG. 9 shows the particles of Example 1
- FIG. 10 shows the particles of Example 2.
- a thin coating (a composite oxide layer of Fe and SiO 2) was observed on the SiO surface, and Example 1 was thicker than Example 2.
- Example 2 it is presumed that an extremely thin film is formed and fine Fe is dispersed in the composite oxide layer of Fe and SiO2.
- FIG. 8 shows a summary of data in each example. Charging is defined as Li insertion into the active material, and discharging is defined as Li desorption from the active material.
- Example 1 the capacity retention rate when discharged to 2.5V was as high as 77%, but the discharge capacity retention rate at 1.5V was as low as 56%.
- the reason for the low capacity retention rate in the case of 1.5 V discharge is that the Li stored in the Fe oxide does not discharge unless it is 2 V or higher.
- Example 2 the discharge capacity maintenance rate when discharging to 2.5 V was lower than that of Example 1 and Comparative Example 2, and the discharge capacity maintenance rate at 1.5 V was 60%, which is higher than Example 1. It was. This is presumed that since the amount of composite oxide produced was smaller than that in Example 1, the amount of Li occluded in the composite oxide during the first charge decreased, and the capacity retention rate during 1.5 V discharge was high.
- Example 3 the initial coulomb efficiency and cycle characteristics were similar to those in Example 1.
- Example 4 the initial coulomb efficiency and cycle characteristics were improved as compared with Example 1.
- Comparative Example 1 only the initial charge / discharge capacity was larger than that in Example 1, and the others were low. This is considered to be the result of the disconnection of the Fe2O3 particles and the SiO particles during charging / discharging because Fe2O3 and SiO do not form a composite oxide.
- Comparative Example 2 showed higher initial Coulomb efficiency and cycle characteristics than Comparative Example 1, but the discharge capacity retention rate decreased after the initial few cycles, and the capacity retention rate at the end of 30 cycles was 47%. This is considered to be because the SiO on the surface was easily peeled off as compared with Example 1 due to expansion and contraction accompanying charging and discharging.
- the lithium ion secondary battery of the present invention has a positive electrode and an electrode group having a negative electrode housed in a battery can, the negative electrode has a negative electrode active material supported on a negative electrode foil, and the negative electrode active material has SiO as a main component. And a composite oxide coating layer of Fe and SiO 2 provided around the core portion, and a carbon coating layer around the composite oxide coating layer of Fe and SiO 2.
- the SiO surface becomes difficult to be exposed to the electrolytic solution, the reaction with the electrolytic solution, and the generation of decomposition products such as SEI can be suppressed.
- the composite oxide coating layer is provided between the carbon coating layer and the carbon coating layer, the carbon material is not in direct contact with the SiO of the core portion. Therefore, since the composite oxide coating layer relieves stress due to SiO expansion and contraction, the carbon material is more difficult to peel off.
- the amount of SiO in the negative electrode active material is larger than the amount of Fe. Therefore, dangling bonds on the SiO surface can be terminated without reducing the capacity of the battery, and the irreversible capacity can be reduced.
- the lithium ion secondary battery of the present invention has a structure in which minute Fe metal is dispersed in the composite oxide coating layer as shown by XRD in Example 2. Since Fe metal has good affinity with carbon and composite oxide, even if the composite oxide layer is thin, the carbon layer is difficult to peel off, and the cycle characteristics are improved.
- the thickness of the composite oxide coating layer of Fe and SiO 2 is 5 nm or more and 1 ⁇ m or less. Therefore, it is possible to prevent the capacity of the battery from being reduced and the Li release potential from the composite oxide from becoming higher than the Li release potential from SiO.
- the negative electrode active material preparation method of the present invention includes a step of kneading SiO particles and Fe oxide particles having an average particle size smaller than that of the SiO particles to prepare a mixed powder, and the mixed powder in an inert gas atmosphere.
- the method includes a step of heating at 800 ° C. to 1100 ° C. and a step of coating the mixed powder after the heating step with carbon.
- SiO particles and Fe oxide particles having an average particle size smaller than that of the SiO particles it becomes possible to uniformly distribute the Fe precursor around the SiO, and reliably the core of the SiO. It becomes possible to form a composite oxide coating layer of Fe and SiO 2 around.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
まず、図1を用いて本発明のLiイオン電池の概要について説明する。図1は本実施形態の円筒形の電池1の縦断面を示す図である。円筒形の電池1は、正極200と負極300とがセパレータ350を介して対向するように捲回された電極群3(図3参照)と、電解液が電池缶4の内部に注入されて作られる。
正極200を構成する正極材料202は、正極活物質、導電剤、バインダ、及び集電体から構成される。正極活物質を例示すると、LiCoO2、LiNiO2、及びLiMn2O4が代表例である。他には、LiMnO3、LiMn2O3、LiMnO2、Li4Mn5O12、LiMn2-xMxO2(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xAxMn2O4(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-xMxO2(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO2、Fe2(SO4)3、LiCo1-xMxO2(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-xMxO2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO4)3、FeF3、LiFePO4、及びLiMnPO4等を列挙することができる。
セパレータ350には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、又はポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータが収縮しないように、セパレータの表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。これらのセパレータは、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン電池に使用可能である。
本発明の一実施形態で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)、又はホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
負極300を構成する負極材302(図3参照)は、SiOにFeとSiO2の複合酸化物またはFeおよびFeとSiO2との複合酸化物からなる複合体で被覆された粒子に、更に炭素質で被覆された粒子である負極活物質が使用される。
ここでは、コア部30の外周にFeとSiO2の複合酸化物被覆層31を形成するまでの工程について説明する。SiOにSi―Feの複合酸化物を被覆する方法としては、SiOより粒子径の小さなFe含有化合物を乳鉢等で混合し、不活性雰囲気下で600℃~1100℃程度で焼成する事が望ましい。SiOより粒子径の小さいFeを用いる理由としては、SiOの周りにFeの前駆体を均一に分布させるためである。SiOより大きな粒子を用いるとFeおよびその酸化物が偏在することがある。Feが偏在することにより、電極内の活物質の膨張収縮挙動に偏りが生じるため、電極の導電網が破壊されやすくなる。従って、本発明ではSiOよりも粒子径の小さいFeを用いてFeの被覆を作成し、電極の導電網の破壊を抑制している。
本形態の一実施形態における被覆炭素材には、液体および気体の有機化合物を使用できる。
平均粒径5μmに調整されたSiOに対し、平均粒径0.3μmのFe2O3粉末を物質量比でSi:Fe=80:20になるように混合し、自動乳鉢にて30分混練した。
実施例1で用いたFe2O3粉末の代わりにクエン酸Fe(III)を用いたこと以外は実施例1と同様である。
本実施例は用いたアルギン酸アンモニウムの代わりに、カルボキシメチルセルロース_アンモニウム塩を用いた点が実施例1と異なる。
実施例3において、用いた酸化鉄被覆SiO粉末(実施例1)から実施例2の粉末を用いたこと以外、実施例3と同様な手順で作製した。
実施例1においてSiOを何とも混合せず熱処理したこと以外は、実施例1と同様である。
実施例3において、酸化鉄被覆SiOのかわりに比較例1のSiOを用いた以外、実施例3と同様な手順で作製した。
実施例1においてSiOとFe2O3の混合粉末を空気中で焼成した以外は実施例1と同様である。
実施例2においてSiOとクエン酸鉄(III)の混合粉末を空気中で焼成した以外は実施例2と同様である。
実施例3において、比較例3で作製した複合粒子に変更にしたこと以外実施例3と同様な手順で作製した。
実施例4において、比較例4で作製した複合粒子に変更にしたこと以外実施例3と同様な手順で作製した。
2:軸芯
3:電極群
4:電池缶
5:絶縁板
6:電池蓋
7、8:導電リード
9:ガスケット
Claims (5)
- 正極と、負極を有する電極群を電池缶に収納したリチウムイオン二次電池において、
前記負極は負極箔に担持された負極活物質を有し、
前記負極活物質は、SiOを主成分とするコア部と、当該コア部の周りに設けられたFeとSiO2との複合酸化物被覆層と、前記FeとSiO2との複合酸化物被覆層の周りに炭素被覆層を有することを特徴とするリチウムイオン二次電池。 - 請求項1に記載のリチウムイオン二次電池において、
前記負極活物質中のSiOの物質量は、Feの物質量よりも多いことを特徴とするリチウムイオン二次電池。 - 請求項2に記載のリチウムイオン二次電池において、
前記FeとSiO2との酸化物被覆層の厚さは5nm以上1μm以下であることを特徴とするリチウムイオン二次電池。 - SiO粒子と、前記SiO粒子よりも平均粒径が小さいFe酸化物粒子を混練して混合粉末を作成する工程と、
前記混合粉末を不活性ガス雰囲気下で、600℃から1100℃で加熱する工程と、
前記加熱工程の後の混合粉末に炭素を被覆する工程を有することを特徴とする負極活物質の作成方法。 - 請求項4に記載の負極活物質の作成方法において、
前記加熱工程の後の混合粉末に炭素を被覆する工程は、アルギン酸アンモニウム水溶液を添加して乾燥させた後に、800℃から1100℃に加熱する工程であることを特徴とする負極活物質の作成方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167031962A KR101897384B1 (ko) | 2014-05-19 | 2014-05-19 | 부극재, 리튬 이온 이차 전지용 부극, 리튬 이온 이차 전지 및 그들의 제조 방법 |
PCT/JP2014/063147 WO2015177830A1 (ja) | 2014-05-19 | 2014-05-19 | 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 |
JP2016520814A JP6272996B2 (ja) | 2014-05-19 | 2014-05-19 | 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 |
EP14892859.1A EP3147988B1 (en) | 2014-05-19 | 2014-05-19 | Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing same |
US15/311,220 US9899673B2 (en) | 2014-05-19 | 2014-05-19 | Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/063147 WO2015177830A1 (ja) | 2014-05-19 | 2014-05-19 | 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015177830A1 true WO2015177830A1 (ja) | 2015-11-26 |
Family
ID=54553530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063147 WO2015177830A1 (ja) | 2014-05-19 | 2014-05-19 | 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9899673B2 (ja) |
EP (1) | EP3147988B1 (ja) |
JP (1) | JP6272996B2 (ja) |
KR (1) | KR101897384B1 (ja) |
WO (1) | WO2015177830A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110556529A (zh) * | 2019-10-15 | 2019-12-10 | 溧阳天目先导电池材料科技有限公司 | 具有多层核壳结构的负极复合材料及其制备方法和应用 |
TWI826235B (zh) * | 2023-01-13 | 2023-12-11 | 創芯科技有限公司 | 經雙離子高分子修飾之負極活性材料、其製法與應用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102429238B1 (ko) | 2018-08-23 | 2022-08-05 | 주식회사 엘지에너지솔루션 | 음극 활물질, 이를 포함하는 음극, 및 리튬 이차전지 |
CN111162268B (zh) * | 2019-09-26 | 2021-06-18 | 贝特瑞新材料集团股份有限公司 | 一种复合负极材料及其制备方法和锂离子电池 |
CN110660984B (zh) * | 2019-10-15 | 2022-04-12 | 溧阳天目先导电池材料科技有限公司 | 一种纳米硅碳复合材料及其制备方法和应用 |
CN115084482B (zh) * | 2022-07-21 | 2023-09-01 | 湖北亿纬动力有限公司 | 一种碳包覆纳米硅负极材料的制备方法和锂离子电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009277485A (ja) * | 2008-05-14 | 2009-11-26 | Toyota Motor Corp | Si/C複合体型負極活物質の製造方法 |
JP2012033478A (ja) * | 2010-07-02 | 2012-02-16 | Semiconductor Energy Lab Co Ltd | 電極用材料および電極用材料の作製方法 |
JP2012134050A (ja) * | 2010-12-22 | 2012-07-12 | Osaka Titanium Technologies Co Ltd | リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池 |
WO2013038884A1 (ja) * | 2011-09-13 | 2013-03-21 | 日本電気株式会社 | 負極活物質及びその製造方法 |
JP2013131324A (ja) * | 2011-12-20 | 2013-07-04 | Sony Corp | 二次電池用活物質、二次電池および電子機器 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100840459B1 (ko) * | 2004-12-22 | 2008-06-20 | 마쯔시다덴기산교 가부시키가이샤 | 복합음극활물질 및 그 제조법 및 비수전해질 2차전지 |
WO2008059927A1 (fr) * | 2006-11-15 | 2008-05-22 | Meiji Seika Kaisha, Ltd. | Composition de peptide de collagène et aliment ou boisson la contenant |
JP5411780B2 (ja) | 2010-04-05 | 2014-02-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池 |
JP5749339B2 (ja) * | 2011-05-30 | 2015-07-15 | 株式会社豊田自動織機 | リチウムイオン二次電池 |
JP5729163B2 (ja) * | 2011-06-24 | 2015-06-03 | トヨタ自動車株式会社 | 負極活物質及び負極活物質の製造方法 |
CN103474631B (zh) * | 2013-10-08 | 2017-01-11 | 深圳市贝特瑞新能源材料股份有限公司 | 一种锂离子电池用氧化亚硅复合负极材料、制备方法及锂离子电池 |
-
2014
- 2014-05-19 WO PCT/JP2014/063147 patent/WO2015177830A1/ja active Application Filing
- 2014-05-19 KR KR1020167031962A patent/KR101897384B1/ko active IP Right Grant
- 2014-05-19 JP JP2016520814A patent/JP6272996B2/ja not_active Expired - Fee Related
- 2014-05-19 US US15/311,220 patent/US9899673B2/en active Active
- 2014-05-19 EP EP14892859.1A patent/EP3147988B1/en not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009277485A (ja) * | 2008-05-14 | 2009-11-26 | Toyota Motor Corp | Si/C複合体型負極活物質の製造方法 |
JP2012033478A (ja) * | 2010-07-02 | 2012-02-16 | Semiconductor Energy Lab Co Ltd | 電極用材料および電極用材料の作製方法 |
JP2012134050A (ja) * | 2010-12-22 | 2012-07-12 | Osaka Titanium Technologies Co Ltd | リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池 |
WO2013038884A1 (ja) * | 2011-09-13 | 2013-03-21 | 日本電気株式会社 | 負極活物質及びその製造方法 |
JP2013131324A (ja) * | 2011-12-20 | 2013-07-04 | Sony Corp | 二次電池用活物質、二次電池および電子機器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3147988A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110556529A (zh) * | 2019-10-15 | 2019-12-10 | 溧阳天目先导电池材料科技有限公司 | 具有多层核壳结构的负极复合材料及其制备方法和应用 |
CN110556529B (zh) * | 2019-10-15 | 2023-03-14 | 溧阳天目先导电池材料科技有限公司 | 具有多层核壳结构的负极复合材料及其制备方法和应用 |
TWI826235B (zh) * | 2023-01-13 | 2023-12-11 | 創芯科技有限公司 | 經雙離子高分子修飾之負極活性材料、其製法與應用 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015177830A1 (ja) | 2017-04-20 |
US20170104211A1 (en) | 2017-04-13 |
EP3147988B1 (en) | 2018-10-31 |
US9899673B2 (en) | 2018-02-20 |
JP6272996B2 (ja) | 2018-01-31 |
EP3147988A4 (en) | 2017-10-11 |
KR101897384B1 (ko) | 2018-09-11 |
KR20160143839A (ko) | 2016-12-14 |
EP3147988A1 (en) | 2017-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7063981B2 (ja) | 負極活物質、これを含む負極及びリチウム二次電池 | |
JP6272996B2 (ja) | 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 | |
JP2009277661A (ja) | 正極活物質、正極および非水電解質二次電池 | |
JP6494194B2 (ja) | リチウム二次電池用被覆正極活物質、その製造方法及びそれを用いたリチウム二次電池 | |
CN108123096B (zh) | 正极板的制造方法和非水电解质二次电池的制造方法、以及非水电解质二次电池 | |
JP2005228706A (ja) | 正極活物質および非水電解質二次電池 | |
JP2017152294A (ja) | 正極活物質材料及びリチウムイオン二次電池 | |
JP6375721B2 (ja) | 正極活物質材料及びリチウムイオン二次電池 | |
EP3780170A1 (en) | Method for suppressing thermal runaway caused by internal short circuit | |
JP5505479B2 (ja) | リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池 | |
WO2015001871A1 (ja) | 非水電解液二次電池及びその製造方法 | |
JP6077345B2 (ja) | 非水二次電池用正極材料、非水二次電池用正極および非水二次電池 | |
CN108463909B (zh) | Li离子二次电池用负极材料及其制造方法、Li离子二次电池用负极、以及Li离子二次电池 | |
JP7009016B2 (ja) | リチウム二次電池用正極活物質、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池 | |
WO2015015548A1 (ja) | リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池用負極材料の製造法 | |
EP2672553B1 (en) | Nonaqueous electrolyte secondary battery | |
JP5888512B2 (ja) | 非水電解質二次電池用正極、その製造方法及び非水電解質二次電池 | |
JP2020525991A (ja) | リチウム二次電池用正極活物質、その製造方法、それを含むリチウム二次電池用正極及びリチウム二次電池 | |
JP7337096B2 (ja) | 非水電解質二次電池 | |
JP6002475B2 (ja) | 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 | |
WO2018096889A1 (ja) | 非水電解液、及びリチウムイオン二次電池 | |
JP2022181365A (ja) | リチウムイオン二次電池 | |
JP2022181360A (ja) | リチウムイオン二次電池 | |
JP2019175630A (ja) | 正極活物質材料およびリチウムイオン二次電池 | |
CN117293269A (zh) | 负极 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14892859 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016520814 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014892859 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014892859 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15311220 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167031962 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |