WO2015177830A1 - 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 - Google Patents

負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 Download PDF

Info

Publication number
WO2015177830A1
WO2015177830A1 PCT/JP2014/063147 JP2014063147W WO2015177830A1 WO 2015177830 A1 WO2015177830 A1 WO 2015177830A1 JP 2014063147 W JP2014063147 W JP 2014063147W WO 2015177830 A1 WO2015177830 A1 WO 2015177830A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
sio
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2014/063147
Other languages
English (en)
French (fr)
Inventor
斉景 田中
賢匠 星
鈴木 修一
博史 春名
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP14892859.1A priority Critical patent/EP3147988B1/en
Priority to KR1020167031962A priority patent/KR101897384B1/ko
Priority to JP2016520814A priority patent/JP6272996B2/ja
Priority to US15/311,220 priority patent/US9899673B2/en
Priority to PCT/JP2014/063147 priority patent/WO2015177830A1/ja
Publication of WO2015177830A1 publication Critical patent/WO2015177830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode material, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a production method thereof.
  • lithium ion secondary batteries In recent years, development of lithium ion secondary batteries has been actively promoted. In general, graphite is used as a negative electrode active material of a lithium ion secondary battery. However, in recent years, with the increase in the cruising distance of electric vehicles and the increase in the number of functions of portable terminals, further increase in capacity is required for lithium ion secondary batteries.
  • Patent Document 1 proposes SiO in which nano-sized Si is dispersed in SiO 2 in order to solve the above problems. This SiO exhibits better cycle characteristics than Si.
  • the present invention is to solve such problems and problems.
  • the authors formed an oxide layer that forms a compound with SiO2 on the surface of SiO and deposited a fine metal having a high affinity with carbon to reduce the irreversible capacity and cycle. It has been found that the characteristics are improved. That is, the present invention provides a lithium ion secondary battery having excellent initial charge / discharge characteristics and life characteristics.
  • a feature of the present invention for solving the above problems is a lithium ion secondary battery in which a positive electrode and an electrode group having a negative electrode are housed in a battery can, the negative electrode having a negative electrode active material supported on a negative electrode foil,
  • the negative electrode active material includes a core portion 30 mainly composed of SiO, a composite oxide coating layer 31 of Fe and SiO2 provided around the core portion 30, and a composite oxide coating layer of Fe and SiO2.
  • the carbon coating layer 32 is included.
  • initial charge / discharge characteristics can be achieved without degrading other battery characteristics.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the figure which shows the electrical property of each Example and each comparative example. 2 is an SEM of negative electrode active material particles of Example 1.
  • 2 is an SEM of negative electrode active material particles of Example 2.
  • a battery a cylindrical lithium ion secondary battery will be described as an example.
  • a prismatic battery, a laminated battery, etc. are used as a lithium ion secondary battery that is used by bending a current collector on a flat plate or a current collector on a flat plate. It is possible to apply the idea of the present invention.
  • process is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • FIG. 1 is a view showing a longitudinal section of a cylindrical battery 1 of the present embodiment.
  • the cylindrical battery 1 is manufactured by injecting an electrode group 3 (see FIG. 3) in which a positive electrode 200 and a negative electrode 300 face each other with a separator 350 therebetween, and an electrolytic solution is injected into the battery can 4. It is done.
  • the electrode group 3 has a shaft core 2 at the start of the electrode group 3, and the electrode group 3 is configured to be wound around the shaft core 2, and the electrode group 3 and the shaft core 2 are accommodated inside the battery can 4. It has become.
  • the shaft core 2 any known one can be used as long as it can carry the positive electrode 200, the separator 350, and the negative electrode 300.
  • the shape of the battery can 4 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape in accordance with the shape of the electrode group 3.
  • the material of the battery can 4 is selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the battery can 4 when the battery can 4 is electrically connected to the positive electrode 200 or the negative electrode 300, the material is not deteriorated due to corrosion of the battery can 4 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, it is preferable to select the material of the battery can 4.
  • the upper and lower ends of the electrode group 3 are provided with electrical insulating plates 5 so that the electrode group 3 does not come into contact with the battery can 4 due to vibration or the like and is not short-circuited.
  • a positive electrode conductive lead 7 is provided at the upper end of the electrode group 3. One end of the conductive lead 7 is electrically connected to the positive electrode 200 of the electrode group 3, and the other end of the conductive lead 7 is electrically connected to the battery lid 6.
  • a negative electrode conductive lead 8 is disposed at the lower end of the electrode group 3.
  • One end of the conductive lead 8 is electrically connected to the negative electrode 300 of the electrode group 3, and the other end of the conductive lead 8 is joined to the bottom of the battery can 4.
  • the electrolytic solution is injected into the battery can 4 when the dehumidifying atmosphere or the inert atmosphere is controlled.
  • a gasket 9 that serves both as an electrical insulation and a gas seal is disposed between the battery can 4 and the battery lid 6, and the battery can 4 and the battery lid 6 are integrated by caulking the battery can 4.
  • the interior is kept hermetically sealed.
  • FIG. 2 is a cross-sectional view of the battery 1 of FIG. 1 as viewed from the AA cross section. As described above, the shaft core 2 and the electrode group 3 are accommodated in the battery can 4.
  • the electrode group 3 has a structure in which the positive electrode 200 and the negative electrode 300 are wound through the separator 350.
  • the positive electrode 200 has a structure in which the positive electrode material 202 is provided on both surfaces of the positive electrode foil 201.
  • the negative electrode 300 has a structure in which the negative electrode material 302 is provided on both surfaces of the negative electrode foil 301. And if the separator 350 is inserted between the positive electrode 200 and the negative electrode 300 and wound around the shaft core 2, the electrode group 3 is completed.
  • a cylindrical battery has been described as a specific example.
  • applicable batteries are not limited to cylindrical batteries, and the present invention can also be applied to rectangular batteries and laminated cell batteries.
  • the electrode group 3 can have various shapes obtained by winding the positive electrode 200 and the negative electrode 300 into an arbitrary shape such as a flat shape. Moreover, the electrode group 3 may be produced by winding without using the shaft core 2, or a laminate in which a positive electrode and a negative electrode are laminated via a separator like a laminated cell battery may be used.
  • the positive electrode material 202 constituting the positive electrode 200 includes a positive electrode active material, a conductive agent, a binder, and a current collector.
  • the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2 ⁇ x MxO 2 (where M Co, Ni, Fe, Cr, Zn, Ti are selected.
  • the particle size of the positive electrode active material is usually specified so as to be equal to or less than the thickness of the mixture layer formed of the positive electrode active material, the conductive agent, and the binder.
  • the coarse particles can be removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer thickness or less. preferable.
  • the positive electrode active material is generally oxide-based and has high electric resistance
  • a conductive agent made of carbon powder for supplementing electric conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the current collector.
  • the positive electrode foil 201 constituting the positive electrode 200 includes an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, or A metal foam plate or the like is used.
  • aluminum materials such as stainless steel and titanium are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • a positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and applied by a roll press. It can be produced by pressure forming. In addition, a plurality of mixture layers can be laminated on the current collector by performing a plurality of times from application to drying.
  • the separator 350 can be a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. It is. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator so that the separator does not shrink when the battery temperature increases. Since these separators need to allow lithium ions to permeate during charge and discharge of the battery, they can be used for lithium ion batteries as long as the pore diameter is generally 0.01 to 10 ⁇ m and the porosity is 20 to 90%.
  • Electrolyte solution As a representative example of an electrolyte solution that can be used in an embodiment of the present invention, a solvent obtained by mixing ethylene carbonate with dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte, Alternatively, there is a solution in which lithium borofluoride (LiBF 4 ) is dissolved.
  • the present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytes can be used.
  • non-aqueous solvents examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, -Methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-
  • non-aqueous solvents such as oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, or chloropropylene carbonate.
  • Other solvents may be used as long as they do not decompose on the positive electrode 200 or the negative electrode
  • examples of the electrolyte LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, multi
  • lithium salts A nonaqueous electrolytic solution obtained by dissolving these salts in the above-mentioned solvent can be used as a battery electrolytic solution.
  • electrolytes other than this.
  • an ionic liquid can be used.
  • EMI-BF4 (1-ethyl-3-methyltetrafluoroborate)
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • a mixed complex of triglyme and tetraglyme, a cyclic quaternary ammonium cation (N-methyl) -N-propylpyrrolidinium is exemplified
  • an imide-based anion example is bis (fluorosulfonyl) imide
  • a combination that does not decompose at the positive electrode and the negative electrode is selected.
  • the structure of the lithium ion secondary battery in one embodiment of the present invention is not particularly limited.
  • a positive electrode and a negative electrode, and a separator provided as necessary are wound in a flat spiral shape to form a winding electrode.
  • a plate group is formed, or these are laminated in a flat plate shape to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body.
  • the negative electrode material 302 (see FIG. 3) that constitutes the negative electrode 300 is made of carbonaceous matter on particles coated with a composite oxide of SiO and a composite oxide of Fe and SiO2, or a composite oxide of Fe and Fe and SiO2.
  • a negative electrode active material which is a coated particle is used.
  • FIG. 4 is a diagram showing an example of the negative electrode active material according to the present invention.
  • the negative electrode active material is composed of a core layer 30, a composite layer 31 of a composite oxide of Fe and SiO2 or a composite oxide of metal Fe and Fe and SiO2 existing on the outer periphery of the core part 30, a composite of Fe and SiO2. It is composed of a carbon coating layer 32 existing on the outer periphery of a coating layer 31 of a composite made of oxide or metal Fe and a composite oxide of Fe and SiO2.
  • the core portion 30 is a nucleus mainly composed of SiO, and the coating layer 31 of a composite oxide composed of a composite oxide of Fe and SiO2 or a composite oxide of metal Fe and Fe and SiO2 is compositely oxidized of Fe, Fe, and SiO2.
  • the carbon covering layer 32 is a layer mainly composed of carbon as the name suggests.
  • ⁇ Cover creation method> a process until the composite oxide coating layer 31 of Fe and SiO 2 is formed on the outer periphery of the core portion 30 will be described.
  • a method for coating Si—Fe composite oxide on SiO it is desirable to mix a Fe-containing compound having a particle diameter smaller than that of SiO in a mortar or the like and to fire at about 600 ° C. to 1100 ° C. in an inert atmosphere.
  • the reason for using Fe having a particle diameter smaller than that of SiO is to uniformly distribute the Fe precursor around SiO. When particles larger than SiO are used, Fe and its oxide may be unevenly distributed.
  • the Fe coating is made using Fe having a particle diameter smaller than that of SiO, and the destruction of the conductive network of the electrode is suppressed.
  • solid Fe-containing compound in addition to inorganic compounds such as metal oxides, hydroxides, carbonates and nitrates, organic compounds such as metal alkoxides and organometallic complexes can also be used.
  • inorganic compounds such as metal oxides, hydroxides, carbonates and nitrates
  • organic compounds such as metal alkoxides and organometallic complexes can also be used.
  • part of the Fe oxide is thermally decomposed during firing. At that time, a complex oxide of Si and Fe oxide is formed by the reaction between the Fe oxide and the surface of SiO.
  • the surface of the SiO particles (the surface of the core 30) reacts with the composite oxide, thereby terminating dangling bonds on the surface of the SiO particles. Therefore, it is suppressed that Li ions are trapped by dangling bonds, and the irreversible capacity is reduced.
  • the coating is difficult to peel off. Therefore, even if the particles expand due to charging / discharging, the composite oxide coating layer 31 is hardly peeled off from the core portion 30, and the surface of the SiO is prevented from being exposed. In addition, since the dangling bonds on the surface of the Si and SiO particles (the surface of the core part 30) are terminated by the metal element, the trapping of Li ions in the dangling bonds is suppressed, and the irreversible capacity is reduced.
  • a carbon material is further coated around the SiO particles coated with the composite oxide coating layer 31 produced here.
  • the composite oxide coating layer 31 made of Fe and SiO 2 having a smaller volume change than SiO between carbon and SiO, the destruction of the coated carbon layer due to the volume change of SiO can be suppressed.
  • the firing temperature is preferably 600 ° C. to 1300 ° C. as described above. If the firing temperature is higher than 1300 ° C., the growth of Si particles in the SiO particles proceeds, while the crystallization of SiO 2 proceeds, so that the charge / discharge capacity and the cycle characteristics decrease.
  • the firing temperature is lower than 600 ° C., the reaction between Fe and SiO 2 does not occur and a good film is not formed.
  • the coating amount of the composite oxide coating layer 31 is preferably such that the ratio Fe / Si of the amount of Fe substance to the amount of Si is 50% or less, and the thickness of the composite oxide film is 5 nm to 1 ⁇ m or less. Further, Fe / Si is 20% or less, and more preferably 20 nm to 500 nm.
  • the composite oxide coating layer 31 When the composite oxide coating layer 31 is too thick, Li does not easily reach the internal SiO, that is, it is difficult to charge and discharge. Moreover, the influence by the composite oxide layer, for example, the weight ratio of SiO is relatively reduced. Therefore, it is possible to prevent the capacity of the battery from being reduced and the Li release potential from the composite oxide from becoming higher than the Li release potential from SiO.
  • Liquid and gaseous organic compounds can be used for the coated carbon material in one embodiment of the present embodiment.
  • the composite particles when using a gaseous organic compound, for example, a hydrocarbon gas such as methane, ethane, or benzene, the composite particles may be carbonized by thermal decomposition (600 to 1300 ° C.).
  • a gaseous organic compound for example, a hydrocarbon gas such as methane, ethane, or benzene
  • the composite particles may be carbonized by thermal decomposition (600 to 1300 ° C.).
  • the crystallinity of the coated carbon is lowered, so that the electrical resistance and the irreversible capacity are increased, and the adhesion with the composite particles is also lowered.
  • the temperature is too high, the crystallinity and reactivity of carbon are improved, and a reaction in the composite particles (reaction in which Fe oxide is reduced and Fe metal phase is formed) occurs. Therefore, it is not preferable. Further, as described above, the growth of Si particles and the crystallization of SiO2 are promoted, and the cycle characteristics are deteriorated.
  • aqueous solution of a water-soluble organic compound such as a liquid organic compound such as carboxymethyl cellulose (CMC), carboxyethyl cellulose, alginic acid, polyacrylic acid, urea, etc.
  • a water-soluble organic compound such as a liquid organic compound such as carboxymethyl cellulose (CMC), carboxyethyl cellulose, alginic acid, polyacrylic acid, urea, etc.
  • CMC carboxymethyl cellulose
  • carboxyethyl cellulose carboxyethyl cellulose
  • alginic acid alginic acid
  • polyacrylic acid polyacrylic acid
  • urea etc.
  • complex oxidation is impregnated in the aqueous solution or mixed and dried.
  • carbon coating may be performed by firing at 600 ° C. to 1300 ° C. in an inert gas atmosphere.
  • Further heat treatment may contain another carbon precursor, such as a phenolic resin, a polymer compound such as a styrene resin, a carbonizable solid such as pitch, etc. Can be processed.
  • another carbon precursor such as a phenolic resin, a polymer compound such as a styrene resin, a carbonizable solid such as pitch, etc.
  • the carbon material can be coated on the particles in which the composite oxide of Fe and SiO2 is coated on SiO.
  • the conductivity of the composite particles can be imparted more strongly. Therefore, it is possible to charge and discharge even when a relatively large current is passed, and to suppress sintering (sintering) between the covering oxides.
  • the temperature is raised to 800 ° C. at a temperature increase rate of 50 ° C./hour in an atmosphere firing furnace in an inert gas atmosphere (Ar atmosphere) and heat treated at 800 ° C. for 2 hours. did.
  • the mixture was naturally cooled to obtain composite particles in which carbon covered with SiO coated with a composite oxide of Fe and SiO2.
  • the obtained composite particles are roughly crushed with a mill (TM837, manufactured by Tescom Co., Ltd.), and then the average particle size is reduced to 10 ⁇ m or less with a rakai machine (Ishikawa-type stirring crusher (registered trademark) AGA type). It was crushed.
  • the crushed powder, carboxymethyl cellulose (CMC) and vapor grown carbon fiber (Vapor Grown Carbon Fiber) were weighed to a solid content concentration ratio of 75:15:10 and dispersed well in a mortar. Therefore, an appropriate amount of pure water was added to prepare a slurry.
  • the prepared slurry was applied to a 10 ⁇ m thick electrolytic copper foil with an applicator so as to be 2 mg / cm 2, and left in an 80 ° C. stationary dryer for 1 hour to remove moisture. It was pressed by a roll press so that the electrode density was 1.3 g / cc.
  • the pressed electrode was vacuum-dried at 120 ° C. for 2 hours, and punched into a ⁇ 15 mm circle was used as a test electrode.
  • a model cell shown in the figure was produced using a test electrode.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 2 is the same as Example 1 except that Fe (III) citrate was used instead of the Fe2O3 powder used in Example 1.
  • Example 3 This example differs from Example 1 in that carboxymethyl cellulose_ammonium salt was used instead of the used ammonium alginate.
  • CMC_NH4 carboxymethylcellulose_ammonium salt
  • purified water was mixed to prepare 5% CMC_NH4
  • the CMC_NH4 aqueous solution was applied three times to the SiO particles coated with the composite oxide of Fe and SiO2 prepared in Example 1.
  • SiO: CMC_NH4 coated with a composite oxide of Fe and SiO2 100: 50% by weight.
  • Water was removed from the mixture using a stationary dryer at 80 ° C., followed by vacuum drying at 100 ° C. for 2 hours.
  • the dried mixture was heated to 800 ° C. at a heating rate of 50 ° C./hour in an atmosphere firing furnace in an Ar atmosphere, and heat-treated at 800 ° C. for 2 hours.
  • the prepared slurry was applied to a 10 ⁇ m thick electrolytic copper foil with an applicator so as to be 2 mg / cm 2, and left in an 80 ° C. stationary dryer for 1 hour to remove moisture. It was pressed by a roll press so that the electrode density was 1.3 g / cc.
  • the pressed electrode was vacuum-dried at 120 ° C. for 2 hours, and punched into a ⁇ 15 mm circle was used as a test electrode.
  • a model cell shown in the figure was produced using a test electrode.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the charging conditions were constant current charging to 0.01 V with a current value equivalent to 0.2 C, and then constant voltage charging until the current value became 1/100 C. Thereafter, the battery was discharged at a current value equivalent to 0.2 C up to 2.5 V with a 5-minute pause. This was one cycle.
  • Example 4 In Example 3, the same procedure as in Example 3 was used except that the iron oxide-coated SiO powder (Example 1) was used and the powder of Example 2 was used.
  • Example 1 is the same as Example 1 except that heat treatment was performed without mixing any SiO.
  • Comparative Example 2 >> In Example 3, the same procedure as in Example 3 was used, except that the SiO of Comparative Example 1 was used instead of the iron oxide-coated SiO.
  • Example 1 is the same as Example 1 except that a mixed powder of SiO and Fe2O3 is fired in air.
  • Example 2 is the same as Example 2 except that a mixed powder of SiO and iron (III) citrate is fired in air.
  • Example 3 it produced in the same procedure as Example 3 except having changed into the composite particle produced in Comparative Example 3.
  • Example 4 it produced with the procedure similar to Example 3 except having changed into the composite particle produced in the comparative example 4.
  • FIG. 1 Comparative Example 6
  • FIG. 7 shows a summary of the preparation conditions for each example.
  • Example 1 and Example 2 The XRD measurement results of Example 1 and Example 2 are shown in FIG.
  • the black circles in FIG. 5 are the peaks indicating the complex oxide of Fe and SiO2, and the white triangles are the peaks of Fe. From Example 1, the peak of the composite oxide of SiO2 and Fe was seen, and from Example 2, the peak of Fe and the weak peak of the composite oxide of SiO2 and Fe were seen. From these results, it can be seen that a composite oxide layer of Fe and SiO 2 is generated.
  • FIG. 6 shows the XRD measurement results of Comparative Example 3 and Comparative Example 4 as representative examples.
  • Comparative Example 3 and Comparative Example 4 only the Fe 2 O 3 peak was observed even when the Fe source was changed, and the peak of the composite oxide of Fe and SiO 2 was not observed. Therefore, it can be seen that the composite oxide layer of Fe and SiO2 is not formed by the method for producing the comparative example.
  • FIG. 9 and FIG. 9 and 10 show the composite particles are hardened with carbonaceous material so that the composite oxide layer of Fe and SiO 2 can be easily seen. Therefore, the outermost carbon coating layer is not visible.
  • FIG. 9 shows the particles of Example 1
  • FIG. 10 shows the particles of Example 2.
  • a thin coating (a composite oxide layer of Fe and SiO 2) was observed on the SiO surface, and Example 1 was thicker than Example 2.
  • Example 2 it is presumed that an extremely thin film is formed and fine Fe is dispersed in the composite oxide layer of Fe and SiO2.
  • FIG. 8 shows a summary of data in each example. Charging is defined as Li insertion into the active material, and discharging is defined as Li desorption from the active material.
  • Example 1 the capacity retention rate when discharged to 2.5V was as high as 77%, but the discharge capacity retention rate at 1.5V was as low as 56%.
  • the reason for the low capacity retention rate in the case of 1.5 V discharge is that the Li stored in the Fe oxide does not discharge unless it is 2 V or higher.
  • Example 2 the discharge capacity maintenance rate when discharging to 2.5 V was lower than that of Example 1 and Comparative Example 2, and the discharge capacity maintenance rate at 1.5 V was 60%, which is higher than Example 1. It was. This is presumed that since the amount of composite oxide produced was smaller than that in Example 1, the amount of Li occluded in the composite oxide during the first charge decreased, and the capacity retention rate during 1.5 V discharge was high.
  • Example 3 the initial coulomb efficiency and cycle characteristics were similar to those in Example 1.
  • Example 4 the initial coulomb efficiency and cycle characteristics were improved as compared with Example 1.
  • Comparative Example 1 only the initial charge / discharge capacity was larger than that in Example 1, and the others were low. This is considered to be the result of the disconnection of the Fe2O3 particles and the SiO particles during charging / discharging because Fe2O3 and SiO do not form a composite oxide.
  • Comparative Example 2 showed higher initial Coulomb efficiency and cycle characteristics than Comparative Example 1, but the discharge capacity retention rate decreased after the initial few cycles, and the capacity retention rate at the end of 30 cycles was 47%. This is considered to be because the SiO on the surface was easily peeled off as compared with Example 1 due to expansion and contraction accompanying charging and discharging.
  • the lithium ion secondary battery of the present invention has a positive electrode and an electrode group having a negative electrode housed in a battery can, the negative electrode has a negative electrode active material supported on a negative electrode foil, and the negative electrode active material has SiO as a main component. And a composite oxide coating layer of Fe and SiO 2 provided around the core portion, and a carbon coating layer around the composite oxide coating layer of Fe and SiO 2.
  • the SiO surface becomes difficult to be exposed to the electrolytic solution, the reaction with the electrolytic solution, and the generation of decomposition products such as SEI can be suppressed.
  • the composite oxide coating layer is provided between the carbon coating layer and the carbon coating layer, the carbon material is not in direct contact with the SiO of the core portion. Therefore, since the composite oxide coating layer relieves stress due to SiO expansion and contraction, the carbon material is more difficult to peel off.
  • the amount of SiO in the negative electrode active material is larger than the amount of Fe. Therefore, dangling bonds on the SiO surface can be terminated without reducing the capacity of the battery, and the irreversible capacity can be reduced.
  • the lithium ion secondary battery of the present invention has a structure in which minute Fe metal is dispersed in the composite oxide coating layer as shown by XRD in Example 2. Since Fe metal has good affinity with carbon and composite oxide, even if the composite oxide layer is thin, the carbon layer is difficult to peel off, and the cycle characteristics are improved.
  • the thickness of the composite oxide coating layer of Fe and SiO 2 is 5 nm or more and 1 ⁇ m or less. Therefore, it is possible to prevent the capacity of the battery from being reduced and the Li release potential from the composite oxide from becoming higher than the Li release potential from SiO.
  • the negative electrode active material preparation method of the present invention includes a step of kneading SiO particles and Fe oxide particles having an average particle size smaller than that of the SiO particles to prepare a mixed powder, and the mixed powder in an inert gas atmosphere.
  • the method includes a step of heating at 800 ° C. to 1100 ° C. and a step of coating the mixed powder after the heating step with carbon.
  • SiO particles and Fe oxide particles having an average particle size smaller than that of the SiO particles it becomes possible to uniformly distribute the Fe precursor around the SiO, and reliably the core of the SiO. It becomes possible to form a composite oxide coating layer of Fe and SiO 2 around.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、初期充放電特性および寿命特性に優れたリチウムイオン二次電池を提供することを課題とする。本発明は、正極と、負極を有する電極群を電池缶に収納したリチウムイオン二次電池において、負極は負極箔に担持された負極活物質を有し、負極活物質は、SiOを主成分とするコア部(30)と、Feの酸化物とコア部(30)SiOの表面とが反応することでコア部(30)の周りに設けられた複合酸化物被覆層(31)であって、当該層中に微細なFeが分散しているFeとSiO2との複合酸化物被覆層(31)と、FeとSiO2との複合酸化物被覆層(31)の周りに設けられた炭素被覆層(32)と、を有することを特徴とする。

Description

負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
 本発明は、負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法に関する。
 近年、リチウムイオン二次電池に対する開発が盛んに進められている。リチウムイオン二次電池の負極活物質には、一般的にグラファイトが使用されている。しかしながら、近年、電気自動車の航続距離の増加や携帯端末の多機能化に伴い、リチウムイオン二次電池には、更なる高容量化が求められている。
 そこで、リチウムイオン二次電池の高容量化の一手法として、負極活物質の高容量化、つまり、Si系、Sn系に代表される金属系高容量負極の検討がされている。しかし、これらの材料は充放電に伴う体積変化が大きく、活物質の割れや、集電体から活物質が脱落しサイクル特性が悪化するといった課題がある。
 特許文献1には、上記課題を解決するために、ナノサイズのSiがSiO2中に分散したSiOが提案されている。このSiOはSiよりも良好なサイクル特性を示す。
特開2011-222151号公報
 しかしながら、特許文献1に記載されたSiOは、結晶内に多数のダングリングボンドを含むため、充電時にLiイオンがトラップされ、Liシリケートが生成し、不可逆な容量が生じてしまう。そのため電気抵抗が高く、高い充電充放レートでは特性が低下するという問題や、活物質表面で電解液が消費されやすいといった問題点があった。これらの問題点に対してSiO表面をカーボンで被覆し、導電性を向上させたり、電解液にVCやEFCを添加することで、上記の課題に対して効果的な手法が開発されてきたが、まだ改善の余地が残っている。例えば、SiOと表面のカーボン層とでは、充放電時の体積膨張率が大きく異なるため、サイクルを重ねるうちに、表面のカーボン層が剥離し、SiOの表面が電解液にさらされるといった問題があった。
 本発明はこのような問題や課題を解決することにある。筆者らは鋭意検討を重ねた結果、SiOの表面にSiO2と化合物を形成する酸化物層を形成させ、かつ炭素と親和性の高い微細な金属を析出させることで、不可逆容量を低減しつつサイクル特性が向上することを見出した。すなわち本発明は、初期充放電特性および寿命特性に優れたリチウムイオン二次電池を提供する。
 上記課題を解決するための本発明の特徴は正極と、負極を有する電極群を電池缶に収納したリチウムイオン二次電池であって、負極は負極箔に担持された負極活物質を有し、負極活物質は、SiOを主成分とするコア部30と、コア部30の周りに設けられたFeとSiO2との複合酸化物被覆層31と、FeとSiO2との複合酸化物被覆層の周りに炭素被覆層32を有するを有する点である。
 本発明により、他の電池特性を低下させることなく初期充放電特性を達成できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係るリチウムイオン二次電池の一例を示す図。 図1のA-A断面図。 本発明の正極200及び負極300の詳細図。 本発明の負極活物質粒子の詳細図。 本発明の実施例1及び実施例2の負極活物質粒子のXRD測定結果。 本発明の比較例3及び比較例4の負極活物質粒子のXRD測定結果。 各実施例及び各比較例の負極活物質の作成条件を示す図。 各実施例及び各比較例の電気的特性を示す図。 実施例1の負極活物質粒子のSEM。 実施例2の負極活物質粒子のSEM。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。例えば、電池として、円筒型リチウムイオン二次電池を例にとって説明するが、角形電池、ラミネート型電池等、平板上の集電体または平板上の集電体を折り曲げて用いるリチウムイオン二次電池に本発明の思想を適用することが可能である。
 また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 また、明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 <電池>
 まず、図1を用いて本発明のLiイオン電池の概要について説明する。図1は本実施形態の円筒形の電池1の縦断面を示す図である。円筒形の電池1は、正極200と負極300とがセパレータ350を介して対向するように捲回された電極群3(図3参照)と、電解液が電池缶4の内部に注入されて作られる。
 電極群3の捲始め部には軸芯2があり、電極群3は当該軸芯2に捲きつけられる形で構成され当該電極群3および軸芯2は電池缶4の内部に収納される形となっている。なお、軸芯2は、正極200、セパレータ350及び負極300を担持できるものであれば、公知の任意のものを用いることができる。また、電池缶4の形状は、電極群3の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。さらに電池缶4の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池缶4を正極200又は負極300に電気的に接続する場合は、非水電解質と接触している部分において、電池缶4の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池缶4の材料の選定を行うことが好ましい。
 電極群3の上端と下端には電気絶縁板5が備えられており、振動等によって電極群3が電池缶4に接触して短絡しないような構造になっている。
 また、電極群3の上部端には正極の導電リード7が設けられている。導電リード7の一端は電極群3の正極200と電気的に接続されており、導電リード7の他端は電池蓋6に電気的に接続される構成となっている。
 一方、電極群3の下端には負極の導電リード8が配置されている。導電リード8の一端は電極群3の負極300と電気的に接続されており、導電リード8の他端は電池缶4の底部に接合されている。
 電池缶4内には除湿雰囲気あるいは不活性雰囲気に制御されたところで電解液が注入される。そして、その後電池缶4と電池蓋6の間に電気絶縁とガスシールを兼ねたガスケット9を配置し、電池缶4をかしめることによって当該電池缶4と電池蓋6を一体にし、電池缶4内部を密閉に保つ構成となっている。なお、電解液の注入方法は、上述した方法の他に電池蓋6を解放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法がある。
 図2は、図1の電池1をA-A断面から見た断面図となっている。このように軸芯2および電極群3は電池缶4内部に収納されている。
 続いて、図3を用いて、電極群3の詳細な構造を説明する。電極群3は上述したように、正極200と負極300がセパレータ350を介して捲回された構造となっている。
 正極200は正極箔201の両面に正極材202が設けられた構造になっている。一方、負極300は負極箔301の両面に負極材302が設けられた構造になっている。そして、正極200と負極300の間にセパレータ350を挿入し、軸芯2に捲回すれば電極群3が完成する。
 また、本実施形態では具体例として円筒形の電池を用いて説明したが、適用できる電池は円筒形電池に限らず、角形電池、ラミネートセル電池でも本発明を適用することが可能である。
 従って電極群3は、図2に示した円筒形状の他に、正極200と負極300を扁平状等の任意の形状に捲回したもの種々の形状にすることができる。また、軸芯2を用いずに捲回し電極群3を作製してもよいし、ラミネートセル電池のようにセパレータを介し、正極と負極を積層したものを用いても良い。
 続いて、上述した電池の各部材について詳細に説明する。
 <正極200>
 正極200を構成する正極材料202は、正極活物質、導電剤、バインダ、及び集電体から構成される。正極活物質を例示すると、LiCoO2、LiNiO2、及びLiMn24が代表例である。他には、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xMxO2(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xxMn24(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-xx2(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO2、Fe2(SO43、LiCo1-xx2(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-xx2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO43、FeF3、LiFePO4、及びLiMnPO4等を列挙することができる。
 正極活物質の粒径は、正極活物質、導電剤、及びバインダから形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが好ましい。
 また、正極活物質は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための炭素粉末からなる導電剤を利用する。正極活物質及び導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に集電体へ接着させることができる。
 正極200を構成する正極箔201(図3参照)には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
 正極活物質、導電剤、バインダ、及び有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
 <セパレータ350>
 セパレータ350には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、又はポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータが収縮しないように、セパレータの表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。これらのセパレータは、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン電池に使用可能である。
 <電解液>
 本発明の一実施形態で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)、又はホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
 なお、電解液に使用可能な非水溶媒の例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、又はクロルプロピレンカーボネート等の非水溶媒がある。本発明の電池1に内蔵される正極200又は負極300上で分解しなければ、これ以外の溶媒を用いてもよい。
 また、電解質の例としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、又はリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩等、多種類のリチウム塩がある。これらの塩を、上記の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。なお本発明の電池1に内蔵される正極200又は負極300上で分解しなければ、これ以外の電解質を用いてもよい。
 一方で、固体高分子電解質(ポリマー電解質)を用いる場合には、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ350を省略することができる利点がある。
 さらに、イオン性液体を用いることができる。例えば、EMI-BF4(1-ethyl-3-methylimidazolium tetrafluoroborate)、リチウム塩LiN(SO2CF32(LiTFSI)とトリグライムとテトラグライムとの混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)、及びイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より、正極及び負極にて分解しない組み合わせを選択して、本実施形態に係る電池に用いることができる。
 本発明の一実施形態におけるリチウムイオン二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられたセパレータとを、扁平渦巻状に巻回して巻回方極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。
 <負極300>
 負極300を構成する負極材302(図3参照)は、SiOにFeとSiO2の複合酸化物またはFeおよびFeとSiO2との複合酸化物からなる複合体で被覆された粒子に、更に炭素質で被覆された粒子である負極活物質が使用される。
 図4は本発明にかかる負極活物質の例を示す図である。負極活物質は、コア部30、コア部30の外周に存在するFeとSiO2の複合酸化物または金属FeおよびFeとSiO2との複合酸化物からなる複合体の被覆層31、FeとSiO2の複合酸化物または金属FeおよびFeとSiO2との複合酸化物からなる複合体の被覆層31の外周に存在する炭素被覆層32から構成される。コア部30はSiOを主成分とする核であり、FeとSiO2の複合酸化物または金属FeおよびFeとSiO2との複合酸化物からなる複合体の被覆層31はFeおよびFeとSiO2の複合酸化物を主成分とする層であり、炭素被覆層32はその名の通り炭素を主成分とする層である。
 この複合酸化物被覆層31はXRD測定において、Fe、Fe2SiO4またはFeSiO3に帰属されるピークが観察される。
 <被覆の作成方法>
 ここでは、コア部30の外周にFeとSiO2の複合酸化物被覆層31を形成するまでの工程について説明する。SiOにSi―Feの複合酸化物を被覆する方法としては、SiOより粒子径の小さなFe含有化合物を乳鉢等で混合し、不活性雰囲気下で600℃~1100℃程度で焼成する事が望ましい。SiOより粒子径の小さいFeを用いる理由としては、SiOの周りにFeの前駆体を均一に分布させるためである。SiOより大きな粒子を用いるとFeおよびその酸化物が偏在することがある。Feが偏在することにより、電極内の活物質の膨張収縮挙動に偏りが生じるため、電極の導電網が破壊されやすくなる。従って、本発明ではSiOよりも粒子径の小さいFeを用いてFeの被覆を作成し、電極の導電網の破壊を抑制している。
 なお、固体のFe含有化合物としては、金属酸化物、水酸化物、炭酸塩、硝酸塩、等の無機化合物の他に、金属アルコキシド、有機金属錯体なとの有機化合物も使用することができる。
 また、焼成する際にFe酸化物の一部が熱分解する。その時にFeの酸化物とSiOの表面とが反応する事でSiとFe酸化物との複合酸化物が形成される。この層が形成されることによって、SiO粒子の表面(コア30の表面)が複合酸化物と反応することによって、SiO粒子表面のダングリングボンドが終端する。従って、Liイオンがダングリングボンドにトラップされることが抑制され、不可逆容量が低減される。
 また、Si-O-Fe(金属)の強力な結合が生成されるため、被膜が剥がれにくくなる。そのため、充放電によって粒子が膨張してもコア部30から複合酸化物の被覆層31が剥がれ落ちにくくなり、SiOの表面が露出することが抑制される。加えてSi及びSiO粒子表面(コア部30表面)のダングリングボンドが金属元素によって終端されるので、ダングリングボンドにLiイオンがトラップされることが抑制され、不可逆容量が低減される。
 また、後述するように、ここで作成された複合酸化物被覆層31が被覆されたSiO粒子の周りには、さらに炭素材が被覆されることになる。SiOと表面に被覆される炭素では、充放電に伴う体積変化率に大きな差(SiO:200%、非晶質炭素2~4%)があるため、充放電を繰り返す内に、表面の炭素層が断裂、剥離してしまう。SiOより体積変化の少ないFeとSiO2からなる複合酸化物被覆層31を炭素とSiO間に有する事で、SiOの体積変化による被覆炭素層の破壊を抑制することができる。
 焼成温度は、上述したように600℃~1300℃が好ましい。焼成温度が1300℃よりも高いとSiO粒子内でのSi粒子の成長が進む一方で、SiO2の結晶化が進行してしまうため、充放電容量とサイクル特性が低下してしまう。
 また焼成温度が600℃よりも低いと、FeとSiO2との反応が起こらず、良好な被膜を形成しない。
 また、複合酸化物被覆層31の被覆量は、Feの物質量とSiの物質量の比Fe/Siが50%以下であり、複合酸化物被膜の厚さが5nm~1μm以下が望ましい。また、Fe/Siが20%以下であり20nmから500nm以下がより好ましい。
 複合酸化物被覆層31が厚過ぎると内部のSiOまでLiが到達しにくく、すなわち、充放電しにくくなる。また複合酸化物層による影響、例えば相対的にSiOの重量比率が減る。そのため電池の容量がさがることや、複合酸化物からのLiの離脱電位がSiOからのLi放出電位より高くなってしまうということを防止することができる。
 <炭素被覆の作成方法>
 本形態の一実施形態における被覆炭素材には、液体および気体の有機化合物を使用できる。
 まず、気体の有機化合物、例えばメタン、エタン、ベンゼン等の炭化水素ガスを使用する場合、熱分解(600~1300℃)によって複合粒子に炭素質被してもよい。
 温度が600℃よりも低すぎると、被覆した炭素の結晶性が低下する事により、電気抵抗ならびに不可逆容量が増加し、また複合粒子との密着性も低下する。一方で温度が1300度よりも高すぎると、炭素の結晶性ならびに反応性が向上し、複合粒子内での反応(Feの酸化物が還元され、Feの金属相が出来てしまう反応)が発生するため、好ましくない。また、上述したようにSi粒子の成長とSiO2の結晶化が促進されサイクル特性の悪化を招いてしまうため、好ましくない。
 また、液体状の有機化合物、例えばカルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、アルギン酸、ポリアクリル酸、尿素等の水溶性有機物の水溶液を用いる場合、複合酸化を前記水溶液中に含浸、または混合し乾燥させた後、不活性ガス雰囲気化で600℃~1300℃で焼成することによって炭素被覆してもよい。
 さらに熱処理をする際に、別の炭素前駆体を含有していてもよく、フェノール樹脂、スチレン樹脂等の高分子化合物、ピッチ等の炭化可能な固形物などを、固形のまま、または溶解物などにして処理を行うことができる。溶解物を用いた場合、200℃程度で一定時間保持し、溶媒を揮発させ、その後、目的温度まで昇温することが好ましい。
 以上のようにしてSiOにFeとSiO2の複合酸化物を被覆した粒子に炭素材を被覆させることが出来る。FeとSiO2の複合酸化物を被覆したSiOをさらに炭素で被覆することによって、複合粒子の導電性をより強く付与できる。そのため、比較的大きな電流を流しても充放電が可能になることや、被覆している酸化物同士の焼結(シンタリング)抑制が期待できる。
 以下、本発明の具体的な実施例について説明する。
 《実施例1》
 平均粒径5μmに調整されたSiOに対し、平均粒径0.3μmのFe23粉末を物質量比でSi:Fe=80:20になるように混合し、自動乳鉢にて30分混練した。
 この混合粉末をペレット状に圧粉した後、不活性ガス雰囲気下(Ar雰囲気))の雰囲気焼成炉にて800℃まで50℃/時間の昇温速度で昇温し、800℃で2時間熱処理した。
 その後、得られた粉末にアルギン酸アンモニウム水溶液を添加させて乾燥させた後に800℃から1100℃で加熱する熱処理をして炭素質を被覆した。
 熱処理後、自然冷却し、FeとSiO2の複合酸化物が被覆されたSiOに炭素質を被覆した複合粒子を得た。得られた複合粒子をミル(テスコム社製 TM837)にて粗解砕し、その後、らいかい機(石川式攪拌擂潰機(登録商標)AGA型)にて平均粒子径が10μm以下になるまで解砕した。解砕粉とカルボキシメチルセルロース(CMC)と気相法炭素繊維(Vapor Grown Carbon Fiber)を固形分濃度比で75:15:10になるように秤量し、乳鉢で良く分散させた後、粘度調整のために純水を適量加えスラリーを作製した。
 作製したスラリーを厚さ10μm電解銅箔にアプリケーターを用いて、2mg/cm2になるように塗布し、80℃定置乾燥機内に1時間放置し、水分を除去した。ロールプレスにて電極密度が1.3g/ccになるようにプレスした。
 プレスした電極を120℃で2時間真空乾燥させφ15mmの円形に打ち抜いた電極を試験電極とした。試験電極を用いて図に示すモデルセルを作製した。
 電解液には1MのLiPF6を溶解させたエチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC)=2:4:4(重量%比)に調整したものを用いた。
 《実施例2》
 実施例1で用いたFe2O3粉末の代わりにクエン酸Fe(III)を用いたこと以外は実施例1と同様である。
 《実施例3》
 本実施例は用いたアルギン酸アンモニウムの代わりに、カルボキシメチルセルロース_アンモニウム塩を用いた点が実施例1と異なる。
 まず、カルボキシメチルセルロース_アンモニウム塩(CMC_NH4)と精製水を混合し、5%CMC_NH4を作製し、実施例1で作製したFeとSiO2の複合酸化物を被覆したSiO粒子に対しCMC_NH4水溶液を3回に分け順次添加してFeとSiO2の複合酸化物を被覆したSiO:CMC_NH4=100:50重量%にした。
 CMC_NH4水溶液を添加するごとに、プラネタリーミキサー(PRIMIX社製 ハイビスミックス(登録商標)2P-03型)を使用し15rpmの速度で0.2時間混合した。
 混合物を80℃定置乾燥機にて水分を除去し、その後100℃で2時間真空乾燥した。乾燥した混合物を、Ar雰囲気の雰囲気焼成炉にて800℃まで50℃/時間の昇温速度で昇温し、800℃で2時間熱処理した。
 熱処理後、自然冷却し、FeとSiO2の複合酸化物が被覆されたSiOに炭素質を被覆した複合粒子得た。得られた、複合粒子をミル(テスコム社製 TM837)にて粗解砕し、その後、らいかい機(石川式攪拌擂潰機(登録商標) AGA型)にて平均粒子径が10μm以下になるまで解砕した。解砕粉とカルボキシメチルセルロース(CMC)と気相法炭素繊維(Vapor Grown Carbon Fiber)を固形分濃度比で75:15:10になるように秤量し、乳鉢で良く分散させた後、粘度調整のために純水を適量加えスラリーを作製した。
 作製したスラリーを厚さ10μm電解銅箔にアプリケーターを用いて、2mg/cm2になるように塗布し、80℃定置乾燥機内に1時間放置し、水分を除去した。ロールプレスにて電極密度が1.3g/ccになるようにプレスした。
 プレスした電極を120℃で2時間真空乾燥させφ15mmの円形に打ち抜いた電極を試験電極とした。試験電極を用いて図に示すモデルセルを作製した。
 電解液には1MのLiPF6を溶解させたエチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC)=2:4:4(重量%)に調整したものを用いた。
 充電条件は、0.2C相当の電流値で0.01Vまで定電流充電し、その後電流値が1/100Cになるまで定電圧充電した。その後5分間の休止を挟み、2.5Vまで0.2C相当の電流値で放電した。これを1サイクルとした。
 《実施例4》
 実施例3において、用いた酸化鉄被覆SiO粉末(実施例1)から実施例2の粉末を用いたこと以外、実施例3と同様な手順で作製した。
 《比較例1》
 実施例1においてSiOを何とも混合せず熱処理したこと以外は、実施例1と同様である。
 《比較例2》
 実施例3において、酸化鉄被覆SiOのかわりに比較例1のSiOを用いた以外、実施例3と同様な手順で作製した。
  《比較例3》
 実施例1においてSiOとFe2O3の混合粉末を空気中で焼成した以外は実施例1と同様である。
 《比較例4》
 実施例2においてSiOとクエン酸鉄(III)の混合粉末を空気中で焼成した以外は実施例2と同様である。
 《比較例5》
 実施例3において、比較例3で作製した複合粒子に変更にしたこと以外実施例3と同様な手順で作製した。
 《比較例6》
 実施例4において、比較例4で作製した複合粒子に変更にしたこと以外実施例3と同様な手順で作製した。
 なお、理解を助けるため、各実施例の作成条件をまとめたものを図7に示す。
 実施例1と実施例2のXRD測定結果を図5に示す。図5中の黒丸はFeとSiO2との複合酸化物を示すピークであり、白三角はFeのピークを示したものである。実施例1からはSiO2とFeの複合酸化物のピークが見られ、実施例2からはFeのピークとSiO2とFeの複合酸化物の弱いピークが見られた。これらの結果よりFeとSiO2との複合酸化物層が生成されていることが分かる。
 一方で、図6には代表的な例として比較例3および比較例4のXRD測定結果を示す。比較例3および比較例4はFe源を変えても、Fe23のピークのみが見られるのみで、FeとSiO2との複合酸化物のピークは見られなかった。従って、比較例の作成方法ではFeとSiO2の複合酸化物層が出来ていないことが分かる。
 これらの粒子をSEMにて観察したデータを図9及び図10に示す。図9及び図10では、FeとSiO2の複合酸化物層を見やすくするため、複合粒子を炭素質で固めている。そのため、最外周の炭素被覆層は見えなくなっている。図9は実施例1の粒子、図10は実施例2の粒子である。実施例1、実施例2ともにSiOの表面に薄い被膜(FeとSiO2の複合酸化物層)がみられ、実施例1の方が実施例2よりも被膜は厚かった。実施例2では極薄い被膜を形成し、FeとSiO2の複合酸化物層中に微細なFeが分散していると推測される。
 続いて、各実施例及び比較例で得られた電池を用いて、充電条件、0.2C相当の電流値で0.01Vまで定電流充電し、その後電流値が1/100Cになるまで定電圧充電した。その後5分間の休止を挟み、2.5Vまで0.2C相当の電流値で放電した。これを1サイクルとして充放電データを取得した。各実施例でのデータをまとめたものを図8に示す。なお、充電は活物へのLi挿入、放電は活物質からのLi脱離と定義する。
 実施例1において、2.5Vまで放電した場合の容量維持率は77%と高かったが、1.5Vでの放電容量維持率は56%と低かった。1.5V放電の場合の容量維持率が低かった理由は、Fe酸化物に吸蔵されたLiが、2V以上でないと放電しないためである。
 実施例2において、2.5Vまで放電した場合の放電容量維持率は実施例1や比較例2よりも低くかった、1.5V時の放電容量維持率は60%と実施例1よりも高かった。これは複合酸化物の生成量が実施例1よりも少ないために、初回充電時に複合酸化物に吸蔵されるLi量が減少したため、1.5V放電時の容量維持率が高かったと推察される。
 実施例3では、実施例1と同程度な初回クーロン効率とサイクル特性だった。
 実施例4では、実施例1に比べ初回クーロン効率およびサイクル特性が向上した。
 いずれの結果からも比較例のデータより良いデータであることが分かる。
 比較例1は実施例1と比較して初回充放電容量のみが大きく、それ以外は低い結果となった。これはFe2O3とSiOが複合酸化物を形成していないため、充放電中にFe2O3粒子とSiO粒子との接合が途切れた結果だと考えられる。
 比較例2は比較例1よりも高い初回クーロン効率と、サイクル特性を示したが、初期数サイクル以降放電容量維持率が低下し、30サイクル終了時の容量維持率は47%だった。これは充放電に伴う膨張収縮により、実施例1に比べ表面のSiOが剥離しやすかったためだと考えられる。
 比較例3、4では、初回クーロン効率が比較例1より低かったが、、Fe2O3とSiOが複合酸化物を形成しないていないため、充放電中にFe2O3粒子とSiO粒子との接合が途切れたためと考えられる。
 比較例5,6では炭素被覆により初回クーロン効率は上昇するものの、Fe2O3とSiOが複合酸化物を形成していないため、粒子界面の接合が弱く、かつFe2O3は充放電にともなう膨張収縮率もSiOとは異なるため、充放電を繰り返すうちにSiOから遊離し、表面の炭素層や電極の導電網が破壊してしまったものと考えられる。
 以上、本発明の作用効果をまとめる。
 本発明のリチウムイオン二次電池は、 正極と、負極を有する電極群を電池缶に収納し、負極は負極箔に担持された負極活物質を有し、負極活物質は、SiOを主成分とするコア部と、コア部の周りに設けられたFeとSiO2との複合酸化物被覆層と、FeとSiO2との複合酸化物被覆層の周りに炭素被覆層を有することを特徴とする。このようなにSiO表面と化合物を形成することにより、SiO表面のダングリングボンドを終端させ、不可逆容量を軽減することができる。またSiOと複合酸化物層との結着強度が高くなるため、表面被覆層がはがれにくくなる。そのためSiO表面が電解液にさらされにくくなり、電解液との反応し、SEIなどの分解生成物の発生を抑制できる。また、炭素被覆層との間に複合酸化物被覆層が設けられているため、コア部のSiOに直接炭素材が接触していない構造となっている。そのため、複合酸化物被覆層がSiOの膨張収縮による応力を緩和するため、より炭素材が剥がれにくい構造となっている。
 また、本発明のリチウムイオン二次電池は、負極活物質中のSiOの物質量は、Feの物質量よりも多い。そのため、電池の容量を落としすぎることなく、SiO表面のダングリングボンドを終端させ、不可逆容量を軽減することができる。
 また、本発明のリチウムイオン二次電池は、実施例2のXRDで示したように、複合酸化物被覆層中に微小なFe金属が分散した構造となっている。Fe金属は炭素及び複合酸化物とも親和性が良いため、複合酸化物層が薄かったとしても炭素層が剥離しにくく、サイクル特性が良好になる。
 また、本発明のリチウムイオン二次電池は、FeとSiO2との複合酸化物被覆層の厚さは5nm以上1μm以下である。そのため、電池の容量がさがることや、複合酸化物からのLiの離脱電位がSiOからのLi放出電位より高くなってしまうということを防止することができる。
 また、本発明の負極活物質の作成方法は、SiO粒子と、SiO粒子よりも平均粒径が小さいFe酸化物粒子を混練して混合粉末を作成する工程と、混合粉末を不活性ガス雰囲気下で、800℃から1100℃で加熱する工程と、加熱工程の後の混合粉末に炭素を被覆する工程を有することを特徴とする。特に本発明ではSiO粒子と、SiO粒子よりも平均粒径が小さいFe酸化物粒子を使用することによって、SiOの周りにFeの前駆体を均一に分布させることが可能となり、確実にSiOのコアの周りにFeとSiO2との複合酸化物被覆層を作成することが可能となる。
1:電池
2:軸芯
3:電極群
4:電池缶
5:絶縁板
6:電池蓋
7、8:導電リード
9:ガスケット

Claims (5)

  1.  正極と、負極を有する電極群を電池缶に収納したリチウムイオン二次電池において、
     前記負極は負極箔に担持された負極活物質を有し、
     前記負極活物質は、SiOを主成分とするコア部と、当該コア部の周りに設けられたFeとSiO2との複合酸化物被覆層と、前記FeとSiO2との複合酸化物被覆層の周りに炭素被覆層を有することを特徴とするリチウムイオン二次電池。
  2.  請求項1に記載のリチウムイオン二次電池において、
     前記負極活物質中のSiOの物質量は、Feの物質量よりも多いことを特徴とするリチウムイオン二次電池。
  3.  請求項2に記載のリチウムイオン二次電池において、
     前記FeとSiO2との酸化物被覆層の厚さは5nm以上1μm以下であることを特徴とするリチウムイオン二次電池。
  4.  SiO粒子と、前記SiO粒子よりも平均粒径が小さいFe酸化物粒子を混練して混合粉末を作成する工程と、
     前記混合粉末を不活性ガス雰囲気下で、600℃から1100℃で加熱する工程と、
     前記加熱工程の後の混合粉末に炭素を被覆する工程を有することを特徴とする負極活物質の作成方法。
  5.  請求項4に記載の負極活物質の作成方法において、
     前記加熱工程の後の混合粉末に炭素を被覆する工程は、アルギン酸アンモニウム水溶液を添加して乾燥させた後に、800℃から1100℃に加熱する工程であることを特徴とする負極活物質の作成方法。
PCT/JP2014/063147 2014-05-19 2014-05-19 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 WO2015177830A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14892859.1A EP3147988B1 (en) 2014-05-19 2014-05-19 Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing same
KR1020167031962A KR101897384B1 (ko) 2014-05-19 2014-05-19 부극재, 리튬 이온 이차 전지용 부극, 리튬 이온 이차 전지 및 그들의 제조 방법
JP2016520814A JP6272996B2 (ja) 2014-05-19 2014-05-19 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
US15/311,220 US9899673B2 (en) 2014-05-19 2014-05-19 Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing the same
PCT/JP2014/063147 WO2015177830A1 (ja) 2014-05-19 2014-05-19 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063147 WO2015177830A1 (ja) 2014-05-19 2014-05-19 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2015177830A1 true WO2015177830A1 (ja) 2015-11-26

Family

ID=54553530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063147 WO2015177830A1 (ja) 2014-05-19 2014-05-19 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法

Country Status (5)

Country Link
US (1) US9899673B2 (ja)
EP (1) EP3147988B1 (ja)
JP (1) JP6272996B2 (ja)
KR (1) KR101897384B1 (ja)
WO (1) WO2015177830A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556529A (zh) * 2019-10-15 2019-12-10 溧阳天目先导电池材料科技有限公司 具有多层核壳结构的负极复合材料及其制备方法和应用
TWI826235B (zh) * 2023-01-13 2023-12-11 創芯科技有限公司 經雙離子高分子修飾之負極活性材料、其製法與應用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040613A1 (ko) 2018-08-23 2020-02-27 주식회사 엘지화학 음극 활물질, 이를 포함하는 음극, 및 리튬 이차전지
CN111162268B (zh) * 2019-09-26 2021-06-18 贝特瑞新材料集团股份有限公司 一种复合负极材料及其制备方法和锂离子电池
CN110660984B (zh) * 2019-10-15 2022-04-12 溧阳天目先导电池材料科技有限公司 一种纳米硅碳复合材料及其制备方法和应用
CN115084482B (zh) * 2022-07-21 2023-09-01 湖北亿纬动力有限公司 一种碳包覆纳米硅负极材料的制备方法和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277485A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp Si/C複合体型負極活物質の製造方法
JP2012033478A (ja) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd 電極用材料および電極用材料の作製方法
JP2012134050A (ja) * 2010-12-22 2012-07-12 Osaka Titanium Technologies Co Ltd リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
WO2013038884A1 (ja) * 2011-09-13 2013-03-21 日本電気株式会社 負極活物質及びその製造方法
JP2013131324A (ja) * 2011-12-20 2013-07-04 Sony Corp 二次電池用活物質、二次電池および電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511781C (zh) 2004-12-22 2009-07-08 松下电器产业株式会社 复合负极活性材料及其制备方法以及非水电解质二次电池
EP2088157A4 (en) * 2006-11-15 2009-12-30 Meiji Seika Kaisha COLLAGEN PEPTIDE COMPOSITION AND FOOD OR BEVERAGE CONTAINING THEREOF
JP5411780B2 (ja) 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
US9735422B2 (en) * 2011-05-30 2017-08-15 National University Corporation Gunma University Lithium ion secondary cell
JP5729163B2 (ja) * 2011-06-24 2015-06-03 トヨタ自動車株式会社 負極活物質及び負極活物質の製造方法
CN103474631B (zh) * 2013-10-08 2017-01-11 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用氧化亚硅复合负极材料、制备方法及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277485A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp Si/C複合体型負極活物質の製造方法
JP2012033478A (ja) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd 電極用材料および電極用材料の作製方法
JP2012134050A (ja) * 2010-12-22 2012-07-12 Osaka Titanium Technologies Co Ltd リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
WO2013038884A1 (ja) * 2011-09-13 2013-03-21 日本電気株式会社 負極活物質及びその製造方法
JP2013131324A (ja) * 2011-12-20 2013-07-04 Sony Corp 二次電池用活物質、二次電池および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147988A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556529A (zh) * 2019-10-15 2019-12-10 溧阳天目先导电池材料科技有限公司 具有多层核壳结构的负极复合材料及其制备方法和应用
CN110556529B (zh) * 2019-10-15 2023-03-14 溧阳天目先导电池材料科技有限公司 具有多层核壳结构的负极复合材料及其制备方法和应用
TWI826235B (zh) * 2023-01-13 2023-12-11 創芯科技有限公司 經雙離子高分子修飾之負極活性材料、其製法與應用

Also Published As

Publication number Publication date
JP6272996B2 (ja) 2018-01-31
JPWO2015177830A1 (ja) 2017-04-20
EP3147988B1 (en) 2018-10-31
KR20160143839A (ko) 2016-12-14
EP3147988A1 (en) 2017-03-29
EP3147988A4 (en) 2017-10-11
US9899673B2 (en) 2018-02-20
KR101897384B1 (ko) 2018-09-11
US20170104211A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP7063981B2 (ja) 負極活物質、これを含む負極及びリチウム二次電池
JP6272996B2 (ja) 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
JP2009277661A (ja) 正極活物質、正極および非水電解質二次電池
JP6494194B2 (ja) リチウム二次電池用被覆正極活物質、その製造方法及びそれを用いたリチウム二次電池
CN108123096B (zh) 正极板的制造方法和非水电解质二次电池的制造方法、以及非水电解质二次电池
JP2005228706A (ja) 正極活物質および非水電解質二次電池
JP2017152294A (ja) 正極活物質材料及びリチウムイオン二次電池
JP6375721B2 (ja) 正極活物質材料及びリチウムイオン二次電池
EP3780170A1 (en) Method for suppressing thermal runaway caused by internal short circuit
JP5505479B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
WO2015001871A1 (ja) 非水電解液二次電池及びその製造方法
JP6077345B2 (ja) 非水二次電池用正極材料、非水二次電池用正極および非水二次電池
CN108463909B (zh) Li离子二次电池用负极材料及其制造方法、Li离子二次电池用负极、以及Li离子二次电池
JP7009016B2 (ja) リチウム二次電池用正極活物質、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池
WO2015015548A1 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池用負極材料の製造法
EP2672553B1 (en) Nonaqueous electrolyte secondary battery
JP5888512B2 (ja) 非水電解質二次電池用正極、その製造方法及び非水電解質二次電池
JP2020525991A (ja) リチウム二次電池用正極活物質、その製造方法、それを含むリチウム二次電池用正極及びリチウム二次電池
JP7337096B2 (ja) 非水電解質二次電池
JP6002475B2 (ja) 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
WO2018096889A1 (ja) 非水電解液、及びリチウムイオン二次電池
JP2022181365A (ja) リチウムイオン二次電池
JP2022181360A (ja) リチウムイオン二次電池
JP2019175630A (ja) 正極活物質材料およびリチウムイオン二次電池
CN117293269A (zh) 负极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520814

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014892859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15311220

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167031962

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE