WO2015159653A1 - シアン及びアンモニア含有排水の処理方法 - Google Patents

シアン及びアンモニア含有排水の処理方法 Download PDF

Info

Publication number
WO2015159653A1
WO2015159653A1 PCT/JP2015/058833 JP2015058833W WO2015159653A1 WO 2015159653 A1 WO2015159653 A1 WO 2015159653A1 JP 2015058833 W JP2015058833 W JP 2015058833W WO 2015159653 A1 WO2015159653 A1 WO 2015159653A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
wastewater
cyanide
hypobromite
hypochlorite
Prior art date
Application number
PCT/JP2015/058833
Other languages
English (en)
French (fr)
Inventor
小野 貴史
田中 浩一
水野 誠
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580019750.6A priority Critical patent/CN106232531B/zh
Publication of WO2015159653A1 publication Critical patent/WO2015159653A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/20Oxygen compounds of bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to a method for treating wastewater containing cyanide and ammonia, and more particularly, to a method for treating wastewater containing cyanide and ammonia containing soluble iron by an improved method of the alkali chlorine method.
  • the alkali chlorine method is the most widely used method for treating cyanide-containing wastewater discharged from industrial facilities such as plating factories, steelworks, smelters, power plants, and coke factories.
  • a chlorine source for example, sodium hypochlorite is added to cyanide-containing wastewater under alkalinity to oxidize cyanide in the wastewater (Patent Documents 1 and 2).
  • Patent Document 2 discloses a method of treating cyanide-containing wastewater containing free cyanide, complex cyanide and ammonia by an alkali chlorine method having a two-stage process of a first oxidation process of less than 80 ° C. and a second oxidation process of 80 ° C. or more. Is described.
  • Patent Document 3 describes a method of treating cyanide and ammonium ion-containing wastewater at pH 11 or higher by the alkali chlorine method.
  • a chlorine source is added so that the free residual chlorine concentration is 0.1 mg / L or more even after the cyanide decomposition reaction.
  • most of the soluble iron in wastewater containing cyanide and ammonium ions exists as an iron cyano complex, and this iron cyano complex is hardly decomposed by the alkali chlorine method. It is described that the concentration of soluble iron in ion-containing wastewater should be 0.4 mg / L or less (paragraph 0025).
  • Patent Document 3 has a problem that the cost of alkaline chemicals for increasing the pH of the wastewater containing cyanide and ammonium ions to 11 or more is increased. Further, depending on the amount of chlorine source added, chlorine gas may be generated.
  • the first object of the present invention is to provide a treatment method for wastewater containing cyanide and ammonia in which cyanide is sufficiently decomposed even when the concentration of soluble iron in the wastewater is high.
  • the second object of the present invention is to provide a treatment method for wastewater containing cyanide and ammonia that can sufficiently oxidatively decompose cyanide even at a pH of 11 or less.
  • the method for treating wastewater containing cyanide and ammonia according to the present invention includes a step of oxidizing and decomposing cyanide by adding a chemical solution containing hypobromite and / or hypochlorous acid to the wastewater containing cyanide and ammonia.
  • ammonia includes “ammonium ions”.
  • Cyan represents “cyanide ion” and “cyanide compound such as cyano complex”.
  • the chemical solution substantially contains only hypobromite and / or hypobromite as an oxidant component.
  • medical solution contains hypochlorous acid and / or hypobromite, and hypochlorous acid and / or hypochlorite as an oxidizing agent component.
  • ammonia is oxidatively decomposed by hypobromite ions according to the reaction of the following formula.
  • hypobromite ions react with ammonia to produce bromamine (bromoamine), but bromamine has a stronger oxidizing power than chloramine produced by a chlorine agent. Therefore, cyanide can be decomposed even with bromamine.
  • the iron cyano complex is also decomposed by the strong oxidizing action of hypobromite ions and bromamine. Therefore, even if the soluble iron concentration in the wastewater containing cyanide and ammonia is as high as 0.1 mg / L or more, cyan is sufficiently decomposed. Further, cyan is sufficiently decomposed even at a pH of 11 or less.
  • cyan and ammonia-containing wastewater to be treated is exemplified by cyanide and ammonia-containing wastewater such as ironworks wastewater, plating factory wastewater, electronic industry wastewater, and oil refinery factory wastewater, but is not limited thereto.
  • the total cyan concentration of such cyan and ammonia-containing wastewater is about 0.1 to 400 mg / L, and the ammonia concentration is 10 mg / L or more, for example, about 10 to 10000 mg / L as ammonium ions.
  • the pH is about 6 to 10.
  • Cyanide and ammonia-containing wastewater may contain organic substances such as coal and coke.
  • concentration of the organic substance is usually 1 mg / L or more, for example, about 1 to 1500 mg / L.
  • the cyanate-containing wastewater to be treated by the method of the present invention contains soluble iron in an amount of 0.1 mg / L or more, for example 0.1 to 5 mg / L, particularly 1 to 3 mg / L, can sufficiently decompose cyanide and ammonia.
  • the pH of the cyanate and ammonia-containing wastewater when the treatment is performed with the addition of hypobromite and / or hypobromite is preferably 9 or more from the viewpoint of avoiding the generation of HCN gas.
  • the ORP of the cyanate and ammonia-containing wastewater after adding hypobromite and / or hypobromite is 400 mV or more, preferably 500 mV or more.
  • the ORP is 400 mV or more, it becomes possible to maintain the oxidizing power in the aqueous system and decompose the hardly decomposable iron cyano complex.
  • the upper limit of ORP is 800 mV or less, preferably 650 mV or less from the viewpoint of drug cost.
  • a cyanide is decomposed by adding a chemical solution containing hypobromite and / or hypobromite to such cyanine and ammonia-containing waste water.
  • the chemical solution substantially contains only hypobromite and / or hypobromite as an oxidant component.
  • medical solution contains hypochlorous acid and / or hypobromite, and hypochlorous acid and / or hypochlorite as an oxidizing agent component.
  • Examples of the salt include sodium salt and potassium salt, and sodium salt is particularly preferable.
  • Hypobromite or hypobromite is preferably produced by reacting hypochlorous acid or a salt thereof (preferably sodium hypochlorite) with bromine and / or bromide, preferably sodium bromide. Hypochlorous acid and sodium bromide react in equimolar amounts according to the following formula to form hypobromous acid.
  • hypochlorous acid or a salt thereof preferably sodium hypochlorite
  • bromine and / or bromide preferably sodium bromide
  • hypochlorous acid to be reacted with bromine and / or bromide may be chlorine-dissolved water in which chlorine is dissolved in water to produce hypochlorous acid.
  • the amount of hypobromite and / or hypobromite or a solution containing hypochlorous acid and / or hypochlorite (chemical solution) added to the wastewater containing cyanide and ammonia is measured by the ORP value of the aqueous system. While you can decide. Specifically, as described above, it is added until the ORP value reaches 400 mV or more, preferably 500 mV or more.
  • hypobromite and / or hypobromite and hypochlorous acid and / or hypochlorite When adding hypobromite and / or hypobromite and hypochlorous acid and / or hypochlorite to wastewater containing cyanide and ammonia, hypobromite and / or hypobromite
  • the added molar amount of the salt is preferably 0.1 to 1.0 times, particularly 0.3 to 0.5 times the added molar amount of hypochlorous acid and / or hypochlorite.
  • the treatment of cyanide and ammonia containing waste water may be carried out batchwise in the tank, and the cyan and ammonia containing waste water is continuously flowed into and out of the reaction tank. Cyan decomposition reaction may be performed, and cyan and ammonia-containing waste water may be flowed through a pipe, and chemical treatment may be added to the pipe for line treatment.
  • the water temperature of the wastewater containing cyanide and ammonia may be 40 ° C. or higher, for example, 40 to 80 ° C., particularly about 50 to 70 ° C., thereby increasing the cyan decomposition reaction rate.
  • the water temperature is preferably 80 ° C. or lower, particularly 70 ° C. or lower.
  • Example 1 treatment with sodium hypobromite-containing solution
  • the following water quality steelworks effluent was used as test water.
  • test water 1000 mL of test water is stored in a glass container, the water temperature is kept at 50 ° C., and the pH is adjusted to 12 with NaOH. Then, the above chemical solutions (sodium hypobromite and sodium hypochlorite aqueous solution) are subjected to the conditions shown in Table 1. Added. The reaction time of the cyanide decomposition reaction was 1 hour.
  • Amount of chemical added (however, converted to NaBr addition rate and NaOCl addition rate in test water), free residual chlorine concentration after the above reaction time, ORP, total cyan concentration, total cyan decomposition rate, ammonium ion concentration and ammonium ion decomposition The rates are shown in Table 1.
  • Example 2 The following water quality steelworks effluent was used as test water.
  • Example 1 The same solution as in Example 1 was used as the sodium hypobromite-containing solution as the chemical solution. And it processed like Example 1 except having set pH to 9 with NaOH. Table 1 shows the amount of the drug added and the free residual chlorine concentration, ORP, total cyan concentration, total cyan decomposition rate, ammonium ion concentration and ammonium ion decomposition rate after the reaction time.
  • Example 3 The following water quality steelworks effluent was used as test water.
  • test water was treated in the same manner as in Example 2 except that NaOH was added so that the pH was 9.6.
  • the results are shown in Table 1.
  • sodium hypobromite-containing solution sodium hypochlorite (12 wt% aqueous solution) was used, NaOH was added so that the pH was 11.1, and NaOCl was added in the addition amount shown in Table 1.
  • Test water was treated in the same manner as in Example 1. The results are shown in Table 1.
  • Example except that sodium hypochlorite (12 wt% aqueous solution) was used in place of sodium hypobromite, NaOH was added to pH 11.3, and NaOCl was added in the addition amount shown in Table 1. Test water was treated as in 1. The results are shown in Table 1.
  • cyan is sufficiently decomposed as compared with Comparative Examples 1 and 2 using only sodium hypochlorite.
  • Comparative Example 1 in which the soluble iron concentration was high and only sodium hypochlorite was used, the total cyan concentration increased from the test water as a result of the treatment.
  • cyan is sufficiently decomposed even if the soluble iron concentration is high and the pH is less than 11.
  • Example 4 treatment with sodium hypobromite-containing solution
  • the following water quality steelworks effluent was used as test water.
  • Test water 1000 mL was placed in a glass container, the water temperature was kept at 50 ° C., and the pH was adjusted to 9.6 with NaOH, and then the above chemical solution was added. The reaction time was 5 min.
  • Table 2 shows the amount of chemicals added (however, converted to NaBr addition rate and NaOCl addition rate in the test water) and the residual chlorine concentration after the reaction time.
  • sodium hypobromite As a chemical solution (sodium hypobromite, or a solution containing sodium hypobromite and sodium hypochlorite), a 40 wt% sodium bromide solution and a 12 wt% sodium hypochlorite aqueous solution are shown in Table 2. A liquid in which sodium hypobromite was produced by mixing at a blending amount was used.
  • test water 1000 mL was placed in a glass container, the water temperature was kept at 50 ° C., and the pH was adjusted to 9.7 (Example 5) or 9.6 (Examples 6 to 9) with NaOH, and then an aqueous sodium hypobromite solution was added. Added. The reaction time was 5 min.
  • Table 2 shows the amount of chemicals added (however, converted to NaBr addition rate and NaOCl addition rate in the test water) and the residual chlorine concentration after the reaction time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

 溶解性鉄濃度が高い場合でも、シアン及びアンモニアが十分に分解されるシアン及びアンモニア含有水の処理方法が提供される。シアン及びアンモニア含有排水に次亜臭素酸及び/又は次亜塩素酸を含む薬液を添加してシアン及びアンモニアを酸化分解する工程を有するシアン及びアンモニア含有排水の処理方法。臭化物水溶液と次亜塩素酸塩水溶液とを混合して次亜臭素酸及び/又は次亜臭素酸塩を生成させた液をシアン及びアンモニア含有排水に添加する。臭化ナトリウム水溶液と次亜塩素酸ナトリウム水溶液とを等モル比にて、又は次亜塩素酸ナトリウムが過剰となるように混合して添加する。

Description

シアン及びアンモニア含有排水の処理方法
 本発明はシアン及びアンモニア含有排水の処理方法に係り、特に、溶解性鉄を含有するシアン及びアンモニア含有排水をアルカリ塩素法の改良法により処理する方法に関する。
 めっき工場、製鉄所、製錬所、発電所、コークス製造工場などの産業施設から排出されるシアン含有排水の処理方法として、現在最も広く採用されている方法は、アルカリ塩素法である。この方法では、塩素源、例えば次亜塩素酸ナトリウムをアルカリ性下でシアン含有排水に添加して排水中のシアンを酸化処理する(特許文献1,2)。
 特許文献1のアルカリ塩素法では、以下に示すようなpH及びORP制御値における2段階の反応でシアン化合物を酸化分解する。
 一段反応:pH10以上,ORP制御値300~350mV
  NaCN+NaOCl→NaCNO+NaCl            …(1)
 二段反応:pH7~8,ORP制御値600~650mV
  2NaCNO+3NaClO+HO→N+3NaCl+2NaHCO …(2)
 特許文献2には、遊離シアン、錯シアン及びアンモニアを含むシアン含有排水を80℃未満の第1酸化工程と80℃以上の第2酸化工程との2段工程を有するアルカリ塩素法によって処理する方法が記載されている。
 特許文献3には、シアン及びアンモニウムイオン含有排水をpH11以上にてアルカリ塩素法により処理する方法が記載されている。この特許文献3の方法では、シアン化合物分解反応後も遊離残留塩素濃度を0.1mg/L以上となるように塩素源を添加する。特許文献3には、シアン及びアンモニウムイオン含有排水中の溶解性鉄の大部分は鉄シアノ錯体として存在していること、この鉄シアノ錯体はアルカリ塩素法では分解されにくいこと、従って、シアン及びアンモニウムイオン含有排水中の溶解性鉄濃度は0.4mg/L以下であるべきことが記載されている(0025段落)。
特開2001-269674 特開2006-334508 特開2013-208550
 特許文献3に記載の通り、シアン及びアンモニウムイオン含有排水中の溶解性鉄濃度が高い場合、従来のアルカリ塩素法では、シアンが十分には酸化分解されない。
 上記特許文献3の方法では、シアン及びアンモニウムイオン含有排水をpH11以上とするためのアルカリ薬剤コストが嵩むという課題がある。さらに塩素源の添加量によっては塩素ガスが発生するおそれがある。
 本発明は、排水中の溶解性鉄濃度が高い場合でも、シアンが十分に分解されるシアン及びアンモニア含有排水の処理方法を提供することを第1の目的とする。
 本発明は、pH11以下でもシアンを十分に酸化分解することができるシアン及びアンモニア含有排水の処理方法を提供することを第2の目的とする。
 本発明のシアン及びアンモニア含有排水の処理方法は、シアン及びアンモニア含有排水に次亜臭素酸及び/又は次亜塩素酸を含む薬液を添加してシアンを酸化分解する工程を有するものである。なお、本発明においては、「アンモニア」とは「アンモニウムイオン」を含むものとする。また、「シアン」とは、「シアン化物イオン」及び「シアノ錯体などのシアン化合物」を表す。
 本発明の一態様では、薬液は酸化剤成分として、実質的に次亜臭素酸及び/又は次亜臭素酸塩のみを含む。本発明の別の一態様では、薬液は、酸化剤成分として、次亜臭素酸及び/又は次亜臭素酸塩と、次亜塩素酸及び/又は次亜塩素酸塩とを含む。
 本発明のシアン及びアンモニア含有排水の処理方法では、次亜臭素酸イオンによりアンモニアが次式の反応に従って酸化分解される。
  OBr+NH →NHBr+OH…………………………(3)
  2NHBr+OBr→N+3Br+HO+2H………(4)
  2NH +3OBr→N+3Br+3HO+2H………(5)
 また、次亜臭素酸の酸化力によりシアンが分解される。
 本発明方法では、(3)式の通り、次亜臭素酸イオンがアンモニアと反応しブロマミン(ブロモアミン)が生成するが、塩素剤で生成するクロラミンよりブロマミンは酸化力が強い。そのため、ブロマミンでもシアンの分解が可能となる。
 本発明では、塩素剤を添加しないか又はその添加量が少ないので、結合塩素と有機物との反応によるシアン生成が防止又は抑制され、シアン濃度が十分に低くなるように処理が行われる。
 本発明では、鉄シアノ錯体も次亜臭素酸イオンやブロマミンの強力な酸化作用により分解される。従って、シアン及びアンモニア含有排水中の溶解性鉄濃度が0.1mg/L以上と高い場合であっても、シアンが十分に分解される。また、pH11以下であってもシアンが十分に分解される。
 以下、本発明についてさらに詳細に説明する。
 本発明において、処理対象となるシアン及びアンモニア含有排水は、製鉄所排水、めっき工場排水、電子工業排水、石油精製工場排水などのシアン及びアンモニア含有排水が例示されるが、これに限定されない。
 通常の場合、このようなシアン及びアンモニア含有排水の全シアン濃度は0.1~400mg/L程度であり、アンモニアの濃度はアンモニウムイオンとして10mg/L以上例えば10~10000mg/L程度である。またpHは6~10程度である。
 シアン及びアンモニア含有排水は、石炭やコークス由来などの有機物を含有する場合がある。有機物の濃度は、通常、1mg/L以上例えば1~1500mg/L程度である。
 シアン化合物が含まれるpH中性以上の工場廃水中に含まれる溶解性鉄は、大部分が鉄シアノ錯体で存在している。本発明方法によるシアン化合物酸化分解反応では鉄シアノ錯体も分解されるため、本発明方法が処理対象とするシアン含有排水は、溶解性鉄を0.1mg/L以上、例えば0.1~5mg/Lとりわけ1~3mg/L含んでいても十分にシアン及びアンモニアを分解処理することができる。
 次亜臭素酸及び/又は次亜臭素酸塩が添加されて処理されているときのシアン及びアンモニア含有排水のpHはHCNガスの発生を避ける観点から9以上であることが好ましい。
 次亜臭素酸及び/又は次亜臭素酸塩を添加した後のシアン及びアンモニア含有排水のORPは400mV以上、好ましくは500mV以上とする。ORPを400mV以上とすることにより、水系内の酸化力を維持し、難分解性の鉄シアノ錯体を分解することが可能となる。一方、ORPの上限に関しては、薬剤コストの観点から800mV以下、好ましくは650mV以下である。
 本発明では、このようなシアン及びアンモニア含有排水に次亜臭素酸及び/又は次亜臭素酸塩を含む薬液を添加してシアンを分解する。
 本発明の一態様では、薬液は酸化剤成分として、実質的に次亜臭素酸及び/又は次亜臭素酸塩のみを含む。本発明の別の一態様では、薬液は、酸化剤成分として、次亜臭素酸及び/又は次亜臭素酸塩と、次亜塩素酸及び/又は次亜塩素酸塩とを含む。
 上記の塩としては、ナトリウム塩又はカリウム塩が挙げられるが、特にナトリウム塩が好ましい。
 次亜臭素酸又は次亜臭素酸塩は、次亜塩素酸又はその塩(好ましくは次亜塩素酸ナトリウム)と臭素及び/又は臭化物好ましくは臭化ナトリウムとを反応させて生成させることが好ましい。次亜塩素酸と臭化ナトリウムとは次式に従って等モルで反応して次亜臭素酸が生成する。
  HOCl+NaBr→HOBr+ NaCl
 次亜塩素酸ナトリウムと臭化ナトリウムとは次式に従って等モルで反応して次亜臭素酸ナトリウムが生成する。
  NaOCl+NaBr→NaOBr+NaCl
 なお、臭素及び/又は臭化物と反応させる次亜塩素酸は、塩素を水に溶解させて次亜塩素酸を生成させた塩素溶解水であってもよい。
 シアン及びアンモニア含有排水に対する次亜臭素酸及び/又は次亜臭素酸塩あるいはさらに次亜塩素酸及び/又は次亜塩素酸塩を含有する液(薬液)の添加量は、水系のORP値を測定しながら決定することができる。具体的には前述のとおり、ORP値が400mV以上、好ましくは500mV以上に到達するまで添加する。
 シアン及びアンモニア含有排水に対して次亜臭素酸及び/又は次亜臭素酸塩と次亜塩素酸及び/又は次亜塩素酸塩とを添加する場合、次亜臭素酸及び/又は次亜臭素酸塩の添加モル量は、次亜塩素酸及び/又は次亜塩素酸塩の添加モル量の0.1~1.0倍特に0.3~0.5倍とするのが好ましい。
 シアン及びアンモニア含有排水の処理は、槽内でバッチ式に行ってもよく、シアン及びアンモニア含有排水を反応槽に連続的に流入させ、かつ該反応槽から連続的に流出させ、該反応槽にてシアン分解反応を行ってもよく、シアン及びアンモニア含有排水を配管に流し、この配管に薬液を添加してライン処理してもよい。
 本発明では、シアン及びアンモニア含有排水の水温を40℃以上例えば40~80℃特に50~70℃程度とし、これによりシアン分解反応速度を大きくしてもよい。加熱コストを抑制するために、水温は80℃以下、特に70℃以下とすることが好ましい。
 以下実施例及び比較例について説明する。なお、以下の実施例及び比較例では溶解性鉄濃度、アンモニウムイオン濃度及び全シアン分析は、JIS K 0102により測定した。全残留塩素及び遊離残留塩素は、DPD試薬を用いてハック社製残留塩素計により測定した。
[実施例1(次亜臭素酸ナトリウム含有液による処理)]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.3、
  全シアン濃度:0.8mg/L、
  アンモニウムイオン濃度:532mg/L、
  TOC:22mg/L、
  溶解性鉄:1.3mg/L
  ORP:90mV
 薬液としての次亜臭素酸ナトリウム含有液としては、40wt%濃度の臭化ナトリウム溶液と12wt%濃度の次亜塩素酸ナトリウム溶液とをNaBr:NaOCl=1:1(モル比)となるように混合して次亜臭素酸ナトリウムを生成させた次亜臭素酸ナトリウム及び次亜塩素酸ナトリウム水溶液を用いた。
 試験水1000mLをガラス製容器に収容し、水温を50℃に保ち、NaOHによりpHを12とした後、上記の薬液(次亜臭素酸ナトリウム及び次亜塩素酸ナトリウム水溶液)を表1の条件にて添加した。シアン分解反応の反応時間は1時間とした。
 薬剤添加量(ただし試験水へのNaBr添加率、NaOCl添加率に換算)と、上記反応時間経過後の遊離残留塩素濃度、ORP、全シアン濃度、全シアン分解率、アンモニウムイオン濃度及びアンモニウムイオン分解率を表1に示す。
[実施例2]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.15、
  全シアン濃度:0.7mg/L、
  アンモニウムイオン濃度:354mg/L、
  TOC:17mg/L、
  溶解性鉄:1.4mg/L
  ORP:230mV
 薬液としての次亜臭素酸ナトリウム含有液としては、実施例1と同一の液を用いた。そして、NaOHによりpHを9としたこと以外は実施例1と同様にして処理を行った。薬剤添加量と、前記反応時間経過後の遊離残留塩素濃度、ORP、全シアン濃度、全シアン分解率、アンモニウムイオン濃度及びアンモニウムイオン分解率を表1に示す。
[実施例3]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.6、
  全シアン濃度:1.2mg/L、
  アンモニウムイオン濃度:410mg/L、
  TOC:18mg/L、
  溶解性鉄:1.0mg/L
  ORP:264mV
 pH9.6となるようにNaOHを添加したこと以外は実施例2と同様にして試験水を処理した。結果を表1に示す。
[比較例1(次亜塩素酸ナトリウムによる処理)]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.7、
  全シアン濃度:0.7mg/L、
  アンモニウムイオン濃度:451mg/L、
  TOC:13mg/L、
  溶解性鉄:1.3mg/L
  ORP:230mV
 次亜臭素酸ナトリウム含有液の代わりに次亜塩素酸ナトリウム(12wt%水溶液)を用い、pH11.1となるようにNaOHを添加し、NaOClとして表1に示す添加量にて添加したこと以外は実施例1と同様にして試験水を処理した。結果を表1に示す。
[比較例2(次亜塩素酸ナトリウムによる処理)]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.7、
  全シアン濃度:3.0mg/L、
  アンモニウムイオン濃度:120mg/L、
  TOC:10mg/L、
  溶解性鉄:0.1mg/L
  ORP:210mV
 次亜臭素酸ナトリウムの代わりに次亜塩素酸ナトリウム(12wt%水溶液)を用い、pH11.3となるようにNaOHを添加し、NaOClとして表1に示す添加量にて添加したこと以外は実施例1と同様にして試験水を処理した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の通り、次亜臭素酸ナトリウム含有液を用いた実施例1~3によると、次亜塩素酸ナトリウムのみを用いた比較例1,2に比べてシアンが十分に分解される。なお、溶解性鉄濃度が高く、次亜塩素酸ナトリウムのみを用いた比較例1では、処理の結果、全シアン濃度が試験水よりも増加した。本発明では、溶解性鉄濃度が高くても、またpH11未満の条件でもシアンが十分に分解される。
[実施例4(次亜臭素酸ナトリウム含有液による処理)]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.2
  アンモニウムイオン濃度:410mg/L
  TOC:21mg/L
  溶解性鉄:0.8mg/L
  ORP:187mV
 薬液(次亜臭素酸ナトリウム及び次亜塩素酸ナトリウム含有液)としては、40wt%濃度の臭化ナトリウム溶液と12wt%濃度の次亜塩素酸ナトリウム水溶液とをNaBr:NaOCl=1:1(モル比)となるように混合して次亜臭素酸ナトリウムを生成させた液を用いた。
 試験水1000mLをガラス製容器に収容し、水温を50℃に保ち、NaOHによりpH9.6とした後、上記薬液を添加した。反応時間は5minとした。
 薬剤添加量(ただし試験水へのNaBr添加率、NaOCl添加率に換算)と、上記反応時間経過後の残留塩素濃度を表2に示す。
[比較例3(次亜塩素酸ナトリウムによる処理)]
 薬液として次亜塩素酸ナトリウム(12wt%水溶液)のみを表2に示す添加量にて添加したこと以外は実施例4と同様にして同一の試験水を処理した。結果を表2に示す。
[実施例5~9(次亜臭素酸ナトリウム含有液による処理)]
 試験水として次の水質の製鉄所排水を用いた。
  pH:8.3
  アンモニウムイオン濃度:532mg/L
  TOC:22mg/L
  溶解性鉄:1.3mg/L
  ORP:90mV
 薬液(次亜臭素酸ナトリウム、又は次亜臭素酸ナトリウム及び次亜塩素酸ナトリウム含有液)としては、40wt%濃度の臭化ナトリウム溶液と12wt%濃度の次亜塩素酸ナトリウム水溶液とを表2の配合量にて混合して次亜臭素酸ナトリウムを生成させた液を用いた。
 試験水1000mLをガラス製容器に収容し、水温を50℃に保ち、NaOHによりpH9.7(実施例5)又は9.6(実施例6~9)とした後、次亜臭素酸ナトリウム水溶液を添加した。反応時間は5minとした。
 薬剤添加量(ただし試験水へのNaBr添加率、NaOCl添加率に換算)と、上記反応時間経過後の残留塩素濃度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<考察>
 表2の通り、次亜臭素酸ナトリウム及び次亜塩素酸ナトリウム含有液を添加した実施例4~9によると、溶解性鉄濃度が高くても次亜塩素酸ナトリウムのみを添加した比較例3に比べて残留塩素が少ない。このため、本発明では、ハロゲンガスの発生が抑制されることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年4月16日付で出願された日本特許出願2014-084692に基づいており、その全体が引用により援用される。

Claims (11)

  1.  シアン及びアンモニア含有排水に次亜臭素酸及び/又は次亜臭素酸塩を含む薬液を添加してシアンを酸化分解する工程を有するシアン及びアンモニア含有排水の処理方法。
  2.  請求項1において、前記薬液は、臭素及び/又は臭化物水溶液と次亜塩素酸及び/又は次亜塩素酸塩水溶液とを混合して次亜臭素酸及び/又は次亜臭素酸塩を生成させた液であることを特徴とするシアン及びアンモニア含有排水の処理方法。
  3.  請求項2において、臭素及び/又は臭化物と次亜塩素酸及び/又は次亜塩素酸塩との混合量が等モル量であることを特徴とするシアン及びアンモニア含有排水の処理方法。
  4.  請求項1において、前記薬液は、臭素及び/又は臭化物に対し次亜塩素酸及び/又は次亜塩素酸塩を等モル量よりも多く混合して次亜臭素酸及び/又は次亜臭素酸塩と次亜塩素酸及び/又は次亜塩素酸塩とを含有するように調製された液であることを特徴とするシアン及びアンモニア含有排水の処理方法。
  5.  請求項2ないし4のいずれか1項において、臭化物が臭化ナトリウムであり、次亜塩素酸塩が次亜塩素酸ナトリウムであることを特徴とするシアン及びアンモニア含有排水の処理方法。
  6.  請求項1ないし5のいずれか1項において、シアン及びアンモニア含有排水中の溶解性鉄濃度が0.1mg/L以上であることを特徴とするシアン及びアンモニア含有排水の処理方法。
  7.  請求項1ないし6のいずれか1項において、ORPを400mV以上とすることを特徴とするシアン及びアンモニア含有排水の処理方法。
  8.  請求項1ないし7のいずれか1項において、シアン及びアンモニア含有排水は、製鉄所排水、めっき工場排水、電子工業排水、又は石油精製工場排水であることを特徴とするシアン及びアンモニア含有排水の処理方法。
  9.  請求項1ないし8のいずれか1項において、シアン及びアンモニア含有排水の全シアン濃度は0.1~400mg/Lであり、アンモニア濃度はアンモニウムイオンとして10~10000mg/Lであることを特徴とするシアン及びアンモニア含有排水の処理方法。
  10.  請求項1ないし9のいずれか1項において、次亜臭素酸及び/又は次亜臭素酸塩が添加されて処理されているときのシアン及びアンモニア含有排水のpHは9以上であることを特徴とするシアン及びアンモニア含有排水の処理方法。
  11.  請求項1において、シアン及びアンモニア含有排水に対して次亜臭素酸及び/又は次亜臭素酸塩と次亜塩素酸及び/又は次亜塩素酸塩とを添加する方法であって、次亜臭素酸及び/又は次亜臭素酸塩の添加モル量は、次亜塩素酸及び/又は次亜塩素酸塩の添加モル量の0.1~1.0倍であることを特徴とするシアン及びアンモニア含有排水の処理方法。
PCT/JP2015/058833 2014-04-16 2015-03-24 シアン及びアンモニア含有排水の処理方法 WO2015159653A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580019750.6A CN106232531B (zh) 2014-04-16 2015-03-24 含有氰和氨的废水的处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084692A JP5867538B2 (ja) 2014-04-16 2014-04-16 シアン及びアンモニア含有排水の処理方法
JP2014-084692 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159653A1 true WO2015159653A1 (ja) 2015-10-22

Family

ID=54323866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058833 WO2015159653A1 (ja) 2014-04-16 2015-03-24 シアン及びアンモニア含有排水の処理方法

Country Status (4)

Country Link
JP (1) JP5867538B2 (ja)
CN (1) CN106232531B (ja)
TW (1) TWI613154B (ja)
WO (1) WO2015159653A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095124A1 (zh) * 2016-11-25 2018-05-31 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN111111086A (zh) * 2019-12-24 2020-05-08 东北大学 一种含氰贫液沉淀渣的处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690496B (zh) * 2019-02-01 2020-04-11 兆聯實業股份有限公司 水處理系統
CN109911975B (zh) * 2019-03-20 2020-12-01 江南大学 一种卤胺类大分子化合物改性的介孔材料及其制备方法与应用
CN113003800A (zh) * 2021-02-25 2021-06-22 上海金厦实业有限公司 一种废水分质处理工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129182A (ja) * 1983-12-17 1985-07-10 Hakutou Kagaku Kk 用排水系の生物障害防止方法
JPS6415200A (en) * 1987-07-10 1989-01-19 Nippon Silica Ind Slime controlling agent
JPH07328663A (ja) * 1994-06-01 1995-12-19 Japan Organo Co Ltd アンモニア性窒素含有排水処理装置
JPH08155463A (ja) * 1994-12-02 1996-06-18 Permelec Electrode Ltd アンモニア性窒素、硝酸性窒素及び/又は亜硝酸窒素の分解方法及び装置
US20030234224A1 (en) * 2002-04-19 2003-12-25 Hydro-Trace, Inc. Process for remediating ground water containing one or more nitrogen compounds
JP2005296863A (ja) * 2004-04-14 2005-10-27 Ebara Kogyo Senjo Kk チオ尿素含有廃液の処理方法及び装置
JP2006026496A (ja) * 2004-07-14 2006-02-02 Kurita Water Ind Ltd シアン化物含有廃水の処理方法およびその処理設備
JP2006334508A (ja) * 2005-06-02 2006-12-14 Nippon Parkerizing Co Ltd シアン・アンモニア含有廃液の同時連続処理方法および同時連続処理装置
JP2013208550A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd シアン含有排水の処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880954B1 (ko) * 2001-03-02 2009-02-03 밀브릿지 인베스트먼츠 (프로프라이어터리) 리미티드 안정화된 차아브롬산 용액
CN1463253A (zh) * 2001-05-21 2003-12-24 三菱电机株式会社 含氮化合物的水的处理方法和装置
CN104169226B (zh) * 2012-03-30 2016-04-06 栗田工业株式会社 含氰排水的处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129182A (ja) * 1983-12-17 1985-07-10 Hakutou Kagaku Kk 用排水系の生物障害防止方法
JPS6415200A (en) * 1987-07-10 1989-01-19 Nippon Silica Ind Slime controlling agent
JPH07328663A (ja) * 1994-06-01 1995-12-19 Japan Organo Co Ltd アンモニア性窒素含有排水処理装置
JPH08155463A (ja) * 1994-12-02 1996-06-18 Permelec Electrode Ltd アンモニア性窒素、硝酸性窒素及び/又は亜硝酸窒素の分解方法及び装置
US20030234224A1 (en) * 2002-04-19 2003-12-25 Hydro-Trace, Inc. Process for remediating ground water containing one or more nitrogen compounds
JP2005296863A (ja) * 2004-04-14 2005-10-27 Ebara Kogyo Senjo Kk チオ尿素含有廃液の処理方法及び装置
JP2006026496A (ja) * 2004-07-14 2006-02-02 Kurita Water Ind Ltd シアン化物含有廃水の処理方法およびその処理設備
JP2006334508A (ja) * 2005-06-02 2006-12-14 Nippon Parkerizing Co Ltd シアン・アンモニア含有廃液の同時連続処理方法および同時連続処理装置
JP2013208550A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd シアン含有排水の処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095124A1 (zh) * 2016-11-25 2018-05-31 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN111111086A (zh) * 2019-12-24 2020-05-08 东北大学 一种含氰贫液沉淀渣的处理方法
CN111111086B (zh) * 2019-12-24 2021-06-11 东北大学 一种含氰贫液沉淀渣的处理方法

Also Published As

Publication number Publication date
TW201607899A (zh) 2016-03-01
TWI613154B (zh) 2018-02-01
JP5867538B2 (ja) 2016-02-24
JP2015202482A (ja) 2015-11-16
CN106232531B (zh) 2019-08-30
CN106232531A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5867538B2 (ja) シアン及びアンモニア含有排水の処理方法
WO2016175006A1 (ja) アンモニア性窒素含有排水の処理方法およびアンモニア性窒素分解剤
WO2016190108A1 (ja) シアン含有廃水の処理方法
JP6146499B2 (ja) アンモニア含有排水の処理方法
JP2013056328A (ja) シアン含有水の処理方法及び処理装置
KR102470058B1 (ko) 폐수들의 처리를 위한 방법
JP2021053620A (ja) シアン含有廃水の処理方法
WO2017154243A1 (ja) シアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法
JP2020025955A (ja) シアン含有水の処理方法
WO2015159654A1 (ja) アンモニア含有排水の処理方法
JP5617862B2 (ja) シアン含有排水の処理方法
JP5990717B1 (ja) シアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法
WO2013147128A1 (ja) シアン含有排水の処理方法
JP7454096B1 (ja) 廃水の処理方法
JP6565966B2 (ja) 水処理方法
JP6712706B2 (ja) 塩化シアンの揮散抑制方法
JP7353619B2 (ja) シアン含有廃水の処理方法
JP2005296863A (ja) チオ尿素含有廃液の処理方法及び装置
JP5617863B2 (ja) シアン含有排水の処理方法
JP2017006829A (ja) 水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779579

Country of ref document: EP

Kind code of ref document: A1