WO2018095124A1 - 一种焦化废水深度处理脱碳脱色脱氰的方法及系统 - Google Patents

一种焦化废水深度处理脱碳脱色脱氰的方法及系统 Download PDF

Info

Publication number
WO2018095124A1
WO2018095124A1 PCT/CN2017/102692 CN2017102692W WO2018095124A1 WO 2018095124 A1 WO2018095124 A1 WO 2018095124A1 CN 2017102692 W CN2017102692 W CN 2017102692W WO 2018095124 A1 WO2018095124 A1 WO 2018095124A1
Authority
WO
WIPO (PCT)
Prior art keywords
coking wastewater
decolorization
fluidized bed
reaction
sodium hypochlorite
Prior art date
Application number
PCT/CN2017/102692
Other languages
English (en)
French (fr)
Inventor
赵二华
姜剑
邱利祥
袁玉婷
严浩
Original Assignee
中冶赛迪工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶赛迪工程技术股份有限公司 filed Critical 中冶赛迪工程技术股份有限公司
Publication of WO2018095124A1 publication Critical patent/WO2018095124A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Definitions

  • the invention relates to the field of deep treatment of refractory wastewater, in particular to a method and a system for deep treatment of decarburization, decolorization and denitrification of coking wastewater.
  • Coking wastewater is the wastewater produced by the steel industry coking plant and the city gas plant in the process of producing coke, gas, tar and coking products.
  • the composition is complex and the color is heavy. It contains many organic and inorganic pollutants, cyanide and thiocyanate. And phenolic compounds, polycyclic aromatic hydrocarbons (PAHs), nitrogen-containing heterocyclic compounds, oxygen-containing or sulfur-containing heterocyclic compounds, and long-chain aliphatic compounds.
  • PHAs polycyclic aromatic hydrocarbons
  • Coking wastewater treatment generally adopts the treatment process of pretreatment ⁇ biochemical treatment ⁇ deep treatment.
  • the pretreatment mainly removes oil, ammonia nitrogen and phenols in the wastewater
  • the biochemical treatment mainly removes COD, ammonia nitrogen and total nitrogen in the wastewater; under normal circumstances, the coking wastewater is biochemically treated and the effluent COD is 250-300 mg/L.
  • cyanide 5 ⁇ 10mg / L, color 400 ⁇ 800 times must take appropriate technology to remove cyanide, COD and color.
  • the existing advanced treatment methods have problems such as low treatment efficiency, effluent pollutant concentration, and failure to meet emission standards for the removal of COD, cyanide, and chromaticity.
  • the object of the present invention is to provide a method and a system for deep treatment of decarburization, decolorization and de-cyanation of coking wastewater, which are used for solving the problem of low depth treatment and effluent pollution of coking wastewater in the prior art.
  • the concentration of the substance is high and the emission standards are not met.
  • the present invention provides a method for deep treatment of decarburization, decolorization and deacetylation of coking wastewater, comprising the following steps:
  • the pH of the reaction liquid after oxidation is adjusted to 7 to 8, and the activated water is used for adsorption treatment to obtain a water body after the deep treatment.
  • the coking wastewater is a wastewater after biochemical treatment.
  • the dosage of ferrous sulfate is 400-2000 mg/L, that is, per liter of coking wastewater is added.
  • the mixed solution is pre-formulated. After being added to the wastewater, the pH of the solution is usually between 3 and 5, and the subsequent Fenton reaction can be carried out without a special pH adjusting device. Pre-formulation of a mixed solution of ferrous sulfate, sulfuric acid and water can also effectively prevent the oxidation of ferrous sulfate.
  • step 2) the dosage of hydrogen peroxide is 100-800 mg/L, usually hydrogen peroxide is added, and the ratio of hydrogen peroxide in hydrogen peroxide is added according to the ratio of adding 100-800 mg of hydrogen peroxide per liter of coking wastewater. After the mass fraction is converted into the required amount of hydrogen peroxide to be added, hydrogen peroxide is added.
  • the reaction time is 15 to 30 min.
  • the flocculating agent added is one or a combination of polyacrylamide, cationic starch, and polyepichlorohydrin dimethylamine, all of which are high molecular organic polymers.
  • the flocculating agent is added in an amount of 15 to 30 mg/L.
  • the ratio of the mass of the sodium hypochlorite to the mass of the cyanide in the supernatant is (10 to 40):1.
  • the residence time is 20 to 30 minutes, and the oxidation reaction is sufficiently performed.
  • the pH of the reaction liquid is adjusted using sulfuric acid or hydrochloric acid.
  • reaction liquid is adsorbed and treated by using an activated carbon canister.
  • the activated carbon filter tank has a filtration rate of 4 to 10 m/h, a hydraulic retention time of 15 to 30 minutes, and an activated carbon loading of 3 to 6 BV.
  • a second aspect of the present invention provides a coking wastewater advanced treatment system comprising a Fenton fluidized bed, a flocculation sedimentation tank, a sodium hypochlorite oxidation tank, a pH adjustment tank, and an activated carbon adsorption filter tank.
  • a pipeline mixer is arranged on the water inlet pipe of the Fenton fluidized bed.
  • the inlet pipe of the pipeline mixer is provided with a feeding port for adding ferrous sulfate.
  • the Fenton fluidized bed is provided with a hydrogen peroxide inlet.
  • reaction zone of the flocculation sedimentation tank is provided with a baffled passage.
  • baffle channel is provided in the sodium hypochlorite oxidation tank.
  • baffle channel is provided in the pH adjustment tank.
  • the above-mentioned baffled passage means that a folding plate is arranged in the corresponding pool to form a baffled passage, so that the reaction liquid is deflected through the pool to achieve the purpose of thorough mixing.
  • the water inlet of the pH adjusting tank is provided with an inlet for adding acid.
  • the activated carbon adsorption filter tank has a filtration rate of 4 to 10 m/h.
  • the activated carbon adsorption amount of the activated carbon adsorption filter tank is 3-6 BV.
  • the method and system for decarburization, decolorization and denitrification of the coking wastewater of the present invention have the following beneficial effects:
  • Fenton fluidized bed integrates medicine and reaction into one, has high reaction efficiency, can simultaneously decarbonize, decolorize, remove cyanide, and has less mud production; when adding a mixed aqueous solution containing ferrous sulfate and sulfuric acid, At the same time, the pH of the reaction solution is adjusted to 3 to 5, and the separate pH adjustment tank is not required for the Fenton oxidation step.
  • the Fenton fluidized bed effluent is combined with flocculation and precipitation to further remove organic matter and complex cyanide adsorbed on the suspended matter or colloid.
  • the cyanide in the flocculated and precipitated effluent mainly exists in the presence of CN-, which improves the oxidation efficiency of the sodium hypochlorite reaction, and requires only one oxidation to remove cyanide compared with the conventional alkaline chlorination method, thereby reducing the capital investment of the reaction cell body.
  • FIG. 1 is a schematic view showing the structure of a coking wastewater advanced treatment system according to an embodiment of the invention.
  • the coking wastewater advanced treatment system shown in Fig. 1 comprises a Fenton fluidized bed (also known as Fenton fluidized bed), a flocculation sedimentation tank, a sodium hypochlorite oxidation tank, a pH adjustment tank, and an activated carbon adsorption filter tank.
  • the inlet pipe of the Fenton fluidized bed is provided with a pipe mixer, and the inlet pipe of the pipe mixer is provided with a feeding port for adding ferrous sulfate.
  • the ferrous sulfate is added before the pipeline mixer, and the ferrous sulfate is evenly distributed in the wastewater through the mixing action of the pipeline mixer.
  • the pH of the wastewater can be simultaneously adjusted by adding a mixed solution of ferrous sulfate, sulfuric acid and water. To 3 to 5, it is not necessary to adjust the pH of the wastewater by an acid solution.
  • the Fenton fluidized bed is equipped with a hydrogen peroxide inlet.
  • the hydrogen peroxide is directly fed into the Fenton fluidized bed and is evenly distributed in the wastewater through the hydraulic stirring of the Fenton fluidized bed.
  • Hydrogen peroxide and ferrous sulfate undergo an advanced oxidation reaction in a Fenton fluidized bed to form ⁇ OH (hydroxyl radical), and the effective reaction time is 15 to 30 min.
  • ⁇ OH can open the refractory organic matter in the wastewater, and some organic substances are directly oxidized to carbon dioxide and water; at the same time, the chromophore group is broken to play the decolorization effect; and part of the cyanide in the wastewater is directly oxidized to carbon dioxide and nitrogen.
  • the organic matter and complex cyanide can be combined with the subsequent flocculation sedimentation tank to further decarburize, decolorize and remove cyanide.
  • the reaction zone of the flocculation sedimentation tank is provided with a baffled passage, specifically a folding plate type, and sodium hydroxide or slaked lime is added to the water inlet of the flocculation sedimentation tank, and the pH value of the wastewater is adjusted to 10-12, and PAM is added by PAM.
  • the adsorption bridge acts to form large particle flocs from colloidal iron hydroxide and other suspended materials, and precipitates after 30 to 60 minutes to further remove organic matter and cyanide.
  • the effluent from the flocculation sedimentation tank directly enters the sodium hypochlorite oxidation tank, and no need to adjust the pH value.
  • the sodium hypochlorite oxidation tank is provided with a baffled passage, specifically a folding plate type, the water flow stays for 20 to 30 minutes, no precipitation is required, and the effluent directly enters the pH adjustment tank.
  • the pH adjusting tank and the pH adjusting tank are provided with a baffled passage, specifically a folding plate type, and the water inlet of the pH adjusting tank is provided with an inlet for adding acid, and the pH value is adjusted to 7-8 by adding sulfuric acid or hydrochloric acid through the water inlet.
  • the effluent of the pH regulating tank enters the activated carbon adsorption filter tank, and the filtration rate of the activated carbon adsorption filter tank is 4-10 m/h, and the activated carbon loading is 3-6 BV.
  • the biochemically treated coking wastewater first enters the Fenton fluidized bed, and the Fenton fluidized bed inlet pipe is provided with a pipe mixer, and ferrous sulfate is added before the pipe mixer, and the ferrous sulfate dosage is 400 ⁇ 2000mg/L, through the mixing action of the pipeline mixer, after adding a mixed solution of ferrous sulfate, sulfuric acid and water, the ferrous sulfate is evenly distributed in the wastewater, and the pH of the wastewater is adjusted to 3 to 5.
  • Hydrogen peroxide is directly added to the Fenton fluidized bed, and is uniformly distributed in the wastewater through the hydraulic stirring of the Fenton fluidized bed.
  • the dosage of hydrogen peroxide is 100-800 mg/L, usually with hydrogen peroxide and hydrogen peroxide. The dosage is converted according to the amount of hydrogen peroxide added and the mass fraction of hydrogen peroxide in the hydrogen peroxide.
  • ⁇ OH Hydrogen peroxide and ferrous sulfate undergo advanced oxidation reaction in Fenton fluidized bed to form ⁇ OH, and the effective reaction time is 15-30 min.
  • ⁇ OH can open the refractory organic matter in the wastewater, and some organic substances are directly oxidized to carbon dioxide and water; at the same time, the chromophore group is broken to play the decolorization effect; and part of the cyanide in the wastewater is directly oxidized to carbon dioxide and nitrogen.
  • Fenton reaction effluent enters flocculation sedimentation tank, flocculation sedimentation tank adopts baffled type, adding sodium hydroxide or slaked lime at the water inlet, adjusting the pH value of wastewater to 10 ⁇ 12, and adding 15 ⁇ 30mg/L PAM at the same time.
  • PAM adsorption and bridging action of PAM, colloidal iron hydroxide and other suspended matter are formed into large particle flocs, which are precipitated for 30 to 60 minutes to further remove organic matter and cyanide.
  • the pH adjustment tank is provided with a baffled passage, and the solution is thoroughly mixed by the baffle baffling, and the pH value of the solution is adjusted to 7-8 by sulfuric acid or hydrochloric acid added by the water inlet.
  • the coking plant effluent ie coking wastewater, biochemical effluent selected from a coking plant, COD: 290mg/L, cyanide 10mg/L, color chromaticity 600 times
  • the Fenton fluidized bed ie coking wastewater, biochemical effluent selected from a coking plant, COD: 290mg/L, cyanide 10mg/L, color chromaticity 600 times
  • ferrous sulfate 1500mg is added.
  • /L in a mixed aqueous solution containing ferrous sulfate, the mass concentration of ferrous sulfate is 25%, the mass concentration of sulfuric acid is 3%, and the balance is water
  • the ratio of hydrogen peroxide addition is 150 mg/L.
  • the sodium solution adjusts the pH of the reaction solution to 10, adds PAM 20mg/L, reacts for 10 minutes, and precipitates for 30 minutes; flocculates the precipitated water into the sodium hypochlorite oxidation tank, and the mass ratio of sodium hypochlorite to the cyanide in the wastewater is 20:1 (sodium hypochlorite)
  • the dosage is 20mg/L
  • the reaction is stirred for 30min; the effluent of the sodium hypochlorite oxidation tank enters the pH adjustment tank, and the pH is adjusted to 7.8 by adding sulfuric acid, and then raised to the activated carbon filter tank, the filtration rate is 4m/h, the activated carbon filling amount is 3bv, water
  • the force stay time is 20min, and the final effluent COD is 75.1mg/L, cyanide is 0.192mg/L, and the chroma is 26 times.
  • the coking wastewater (selected from the biochemical effluent of a coking plant, COD: 240mg/L, cyanide 8.6mg/L, chromaticity 550 times) is raised to the Fenton fluidized bed, and ferrous sulfate 1000mg/L is added (containing sulfuric acid).
  • ferrous sulfate 1000mg/L is added (containing sulfuric acid).
  • the mass concentration of ferrous sulfate is 22%
  • the mass concentration of sulfuric acid is 1.5%
  • the balance is water
  • the amount of hydrogen peroxide added is 200 mg/L, and the corresponding amount is added.
  • the hydrogen peroxide to Fenton fluidized bed after adding a mixed aqueous solution containing ferrous sulfate, the pH of the solution is 4.0, and the effective reaction time is 30 min; after the Fenton reaction, the effluent enters the flocculation sedimentation tank, and the sodium hydroxide aqueous solution is added to adjust the pH of the reaction solution.
  • the coking wastewater (selected from a biochemical effluent from a coking plant, COD: 150 mg/L, cyanide 5.9 mg/L, color chromaticity 450 times) is raised to a Fenton fluidized bed, and ferrous sulfate 1300 mg/L is added (containing sulfuric acid).
  • Ferrous sulfate quality in a mixed aqueous solution of ferrous iron The concentration is 24%, the mass concentration of sulfuric acid is 2%, and the balance is water), and the ratio of hydrogen peroxide is 300mg/L, and the corresponding amount of hydrogen peroxide is added to the Fenton fluidized bed.
  • the pH value of the solution is 3.4, and the effective reaction time is 30 min; after the Fenton reaction, the effluent enters the flocculation sedimentation tank, and the pH of the reaction solution is adjusted to 12 by adding sodium hydroxide aqueous solution, and the dosage of PAM is 30 mg.
  • ferrous sulfate was 50-2500 mg/L, hydrogen peroxide was 50-1000 mg/L, and ferrous sulfate was ⁇ 300 mg/L.
  • the dosage of hydrogen peroxide was ⁇ 100 mg/L, sulfuric acid Insufficient amount of ferrous iron, insufficient reaction of solution, heavy effluent color, and residual hydrogen peroxide in effluent, affecting COD determination, COD removal rate is reduced to 30%, cyanide is reduced to 20%; ferrous sulfate is >2000mg/L, When the dosage of hydrogen peroxide is >800mg/L, the ferrous sulfate is excessive and the sludge production is excessive.
  • the mass ratio of sodium hypochlorite to cyanide is (5-50):1.
  • the mass ratio of sodium hypochlorite to cyanide is (5-10):1
  • the cyanide removal rate is low, 5%-10%, sodium hypochlorite.
  • Mass ratio to cyanide (10 ⁇ 40): 1 cyanide removal rate is lower, 55% ⁇ 75%, and then increase the ratio of sodium hypochlorite to cyanide mass ratio (40 ⁇ 50): 1, cyanide removal rate increases less, 75 % to 78%, based on operating cost considerations, the mass ratio of sodium hypochlorite to cyanide is selected to be (10-40):1.
  • the present invention provides a new combined process for the deep treatment of coking wastewater, which combines Fenton fluidized bed, flocculation sedimentation, sodium hypochlorite oxidation, activated carbon filtration adsorption; and advanced use of Fenton fluidized bed Oxidation, removal of refractory organics in wastewater, opening of chromophores, oxidation of cyanide, etc., combined with flocculation and precipitation, further removal of organic matter and complex cyanide adsorbed on Fenton effluent suspension or colloid.
  • the pH of the wastewater is adjusted by adding a pre-formed mixed aqueous solution containing ferrous sulfate, so that the Fenton oxidation step does not require an additional pH adjustment tank, thereby effectively reducing equipment installation costs.
  • the residual cyanide in the effluent is mainly in the presence of CN-, and the sodium hypochlorite is more oxidized.
  • only one step of oxidation is needed to remove cyanide.
  • the effluent water quality is lower.
  • the effluent meets the requirements of cyanide ( ⁇ 0.2mg/L) and COD ( ⁇ 80mg/L) in Table 2 of GB16171-2012, and the sensory is better.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种焦化废水深度处理脱碳脱色脱氰的方法及系统,该方法包括如下步骤:1)将焦化废水引入芬顿流化床,向溶液中加入硫酸亚铁、硫酸与水的混合溶液;2)向芬顿流化床的溶液中加入过氧化氢,充分反应;3)将芬顿流化床中的反应液引出,调节反应液的pH,加入絮凝剂,沉淀后取上清液;4)将上清液与次氯酸钠混合,进行氧化反应;5)调节反应液pH,采用活性炭吸附处理,得到深度处理后的水体。将芬顿流化床、絮凝沉淀、次氯酸钠氧化、活性炭过滤吸附进行有效组合;经过芬顿流化床和絮凝沉淀,出水中残留的氰化物主要以CN -存在,次氯酸钠氧化效率更高,只需一级氧化即可去除氰化物,再结合活性炭的吸附效果,提高出水水质。

Description

一种焦化废水深度处理脱碳脱色脱氰的方法及系统 技术领域
本发明涉及难降解废水的深度处理领域,特别是涉及一种焦化废水深度处理脱碳脱色脱氰的方法及系统。
背景技术
焦化废水是钢铁工业焦化厂和城市煤气厂在生产焦炭、煤气、焦油以及焦化产品的过程中产生的废水,成分复杂且色度重,含有许多有机、无机污染物,氰化物、硫氰酸盐、酚类化合物、多环芳烃(PAHs)、含氮杂环化合物、含氧或含硫杂环化合物以及长链的脂肪族化合物等。
焦化废水处理普遍采用预处理→生化处理→深度处理的处理流程。其中,预处理主要去除废水中的油类、氨氮和酚类等物质,生化处理主要去除废水中的COD、氨氮和总氮;通常情况下,焦化废水经生化处理后出水COD 250~300mg/L,氰化物5~10mg/L,色度400~800倍,必须要采取适当的技术,将氰化物、COD及色度去除。
现有的深度处理方法对COD、氰化物、色度等的去除均存在处理效率低、出水污染物浓度、达不到排放标准等问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种焦化废水深度处理脱碳脱色脱氰的方法及系统,用于解决现有技术中对焦化废水的深度处理效率低、出水污染物浓度高、达不到排放标准等问题。
为实现上述目的及其他相关目的,本发明提供一种焦化废水深度处理脱碳脱色脱氰的方法,包括如下步骤:
1)将焦化废水引入芬顿流化床,向溶液中加入硫酸亚铁;
2)向芬顿流化床的溶液中加入过氧化氢,充分反应;
3)将芬顿流化床中的反应液引出,调节反应液的pH为10~12,加入絮凝剂,沉淀后取上清液;
4)将上清液与次氯酸钠混合,进行氧化反应;
5)将氧化后的反应液pH调节为7~8,采用活性炭吸附处理,得到深度处理后的水体。
进一步地,步骤1)中,所述焦化废水是经过生化处理后的废水。
进一步地,步骤1)中,硫酸亚铁的投加量为400~2000mg/L,即每升焦化废水加入 400~2000mg硫酸亚铁,所述硫酸亚铁、硫酸与水的混合溶液中,硫酸亚铁的质量浓度为10~30%,硫酸的质量浓度为0.5~10%;优选地,硫酸亚铁的质量浓度为15~26%,硫酸的质量浓度为0.5~5%。该混合溶液是预先配制的,加入到废水中之后,溶液的pH通常在3~5,即可进行后续的芬顿反应,不需设置专门的pH调节装置。预先配制硫酸亚铁、硫酸与水的混合溶液,还可有效防止硫酸亚铁被氧化。
进一步地,步骤2)中,过氧化氢的投加量为100~800mg/L,通常是加入双氧水,按照每升焦化废水中加入100~800mg过氧化氢的比例,结合双氧水中过氧化氢的质量分数,换算出所需双氧水的投加量之后,加入双氧水。
进一步地,步骤2)中,加入过氧化氢后,反应时间为15~30min。
进一步地,步骤3)中,加入的絮凝剂为聚丙烯酰胺、阳离子淀粉、聚环氧氯丙烷二甲胺中的一种或几种组合,均为高分子有机聚合物。
进一步地,步骤3)中,絮凝剂的加入量为15~30mg/L。
进一步地,步骤4)中,次氯酸钠的质量与上清液中氰化物的质量之比为(10~40):1。
进一步地,步骤4)中,上清液与次氯酸钠混合后,停留时间为20~30min,充分进行氧化反应。
进一步地,步骤5)中,采用硫酸或盐酸调节反应液的pH。
进一步地,步骤5)中,采用活性炭滤罐吸附处理反应液。
进一步地,步骤5)中,活性炭滤罐滤速为4~10m/h,水力停留时间为15~30min,活性炭装填量为3~6BV。
本发明第二方面提供一种焦化废水深度处理系统,包括依次连接的芬顿流化床、絮凝沉淀池、次氯酸钠氧化池、pH调节池、活性炭吸附过滤罐。
进一步地,所述芬顿流化床的进水管道上设有管道混合器。
进一步地,所述管道混合器的进水管道上设有用于投加硫酸亚铁的加料口。
进一步地,所述芬顿流化床上设有双氧水入口。
进一步地,所述絮凝沉淀池的反应区设有折流式通道。
进一步地,所述次氯酸钠氧化池中设有折流式通道。
进一步地,所述pH调节池中设有折流式通道。
上述折流式通道,是指在相应的水池中设置折板,形成折流式通道,使得反应液折流通过水池,达到充分混合的目的。
进一步地,所述pH调节池的进水口设有用于加酸的入口。
进一步地,所述活性炭吸附过滤罐的滤速为4~10m/h。
进一步地,所述活性炭吸附过滤罐的活性炭装填量为3-6BV。
如上所述,本发明的焦化废水深度处理脱碳脱色脱氰的方法及系统,具有以下有益效果:
1、能同时脱碳、脱色、除氰,效果稳定,在进水污染物浓度COD≤300mg/L、氰化物≤10mg/L、色度≤800倍时,出水能稳定达到COD≤80mg/L、氰化物≤0.2mg/L、色度≤30倍,满足标准GB16171-2012表二中对氰化物、COD的要求。
2、芬顿流化床集加药、反应于一体,反应效率高,能同时脱碳、脱色、除氰,且产泥量少;投加含有硫酸亚铁、硫酸的混合水溶液时,即可同时将反应液pH值调节到3~5,芬顿氧化环节不需设置单独的pH值调节池。芬顿流化床出水再结合絮凝沉淀,进一步去除吸附在悬浮物或胶体上的有机物和络合氰化物。
3、絮凝沉淀出水中氰化物主要以CN-存在,提高次氯酸钠反应的氧化效率,且相对于传统的碱性氯化法只需一级氧化即可去除氰化物,减少反应池体的基建投资。
附图说明
图1显示为发明实施例的焦化废水深度处理系统结构示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如图1所示的焦化废水深度处理系统,包括依次连接的芬顿流化床(又名Fenton流化床)、絮凝沉淀池、次氯酸钠氧化池、pH调节池、活性炭吸附过滤罐。芬顿流化床的进水管道上设有管道混合器,管道混合器的进水管道上设有用于投加硫酸亚铁的加料口。在管道混合器前投加硫酸亚铁,通过管道混合器的混合作用,硫酸亚铁均匀分布在废水中,通过加入硫酸亚铁、硫酸与水的混合溶液,即可同时将废水的pH值调节到3~5,不需另外再通过酸溶液调节废水的pH。
芬顿流化床上设有双氧水入口,双氧水直接投加到芬顿流化床中,通过芬顿流化床的水力搅拌,均匀分布在废水中。双氧水和硫酸亚铁在芬顿流化床中发生高级氧化反应,生成·OH(羟基自由基),有效反应时间15~30min。·OH能将废水中难降解有机物开环,部分有机物直接氧化为二氧化碳和水;同时将发色基团打破,起到脱色效果;并直接将废水中部分氰化物氧化为二氧化碳和氮气。Fenton反应后废水中生成的胶态氢氧化铁及其他悬浮物,吸附有 有机物和络合氰化物,可结合后续的絮凝沉淀池进一步脱碳、脱色、除氰。
絮凝沉淀池的反应区设有折流式通道,具体为折板式,投加氢氧化钠或熟石灰在絮凝沉淀池的进水口,将废水pH值调节到10~12,同时投加PAM,借助PAM的吸附架桥作用,将胶态氢氧化铁及其他悬浮物生成大颗粒絮体,经30~60min沉淀,进一步去除有机物和氰化物。絮凝沉淀池的出水直接进入次氯酸钠氧化池,不需再调pH值,次氯酸钠氧化池中设有折流式通道,具体为折板式,水流停留20~30min,不需沉淀,出水直接进入pH调节池pH调节池,pH调节池中设有折流式通道,具体为折板式,pH调节池的进水口设有用于加酸的入口,通过进水口投加硫酸或盐酸调节pH值至7~8。
pH调节池的出水进入活性炭吸附过滤罐,活性炭吸附过滤罐的滤速为4~10m/h,活性炭装填量为3-6BV。
采用上述系统进行焦化废水深度处理的具体步骤是:
1)经生化处理后的焦化废水首先进入芬顿流化床,芬顿流化床进水管道上设置管道混合器,在管道混合器前投加硫酸亚铁,硫酸亚铁投加量400~2000mg/L,通过管道混合器的混合作用,加入硫酸亚铁、硫酸与水的混合溶液后,硫酸亚铁均匀分布在废水中,同时将废水的pH值调节到3~5。
2)双氧水直接投加到芬顿流化床中,通过芬顿流化床的水力搅拌,均匀分布在废水中,过氧化氢投加量100~800mg/L,通常是投加双氧水,双氧水的投加量则根据过氧化氢的投加量结合双氧水中过氧化氢的质量分数进行换算。
3)双氧水和硫酸亚铁在芬顿流化床中发生高级氧化反应,生成·OH,有效反应时间15~30min。·OH能将废水中难降解有机物开环,部分有机物直接氧化为二氧化碳和水;同时将发色基团打破,起到脱色效果;并直接将废水中部分氰化物氧化为二氧化碳和氮气。
4)Fenton反应后废水中生成的胶态氢氧化铁及其他悬浮物,吸附有有机物和络合氰化物,可结合后续的絮凝沉淀池进一步脱碳、脱色、除氰。
5)Fenton反应出水进入絮凝沉淀池,絮凝沉淀池采用折流式,投加氢氧化钠或熟石灰在进水口,将废水pH值调节到10~12,同时投加15~30mg/L的PAM,借助PAM的吸附架桥作用,将胶态氢氧化铁及其他悬浮物生成大颗粒絮体,经30~60min沉淀,进一步去除有机物和氰化物。
6)从絮凝沉淀池沉淀区溢出的水直接进入次氯酸钠氧化池,不需再调pH值,次氯酸钠加药量与进水中氰化物质量比为10∶1~40∶1,次氯酸钠反应池采用折流式,水流停留20~30min,不需沉淀,出水直接进入pH调节池。
7)pH调节池中设有折流式通道,通过折板折流使得溶液充分混合,通过进水口投加的硫酸或盐酸调节溶液pH值至7~8。
8)pH调节池的出水进入活性炭滤罐,滤速4~10m/h,活性炭装填量3-6BV,水力停留时间15~30min。
实施例1
首先将焦化厂出水(即焦化废水,选自某焦化厂的生化出水,COD:290mg/L,氰化物10mg/L,色度600倍)提升到芬顿流化床,投加硫酸亚铁1500mg/L(含有硫酸亚铁的混合水溶液中,硫酸亚铁的质量浓度为25%,硫酸的质量浓度为3%,余量为水),并按照过氧化氢加入量为150mg/L的比例进行换算,加入对应量的双氧水至芬顿流化床,投加含有硫酸亚铁的混合水溶液后,溶液pH值为3.3,有效反应时间20min;Fenton反应后,出水进入絮凝沉淀池,同时加氢氧化钠水溶液调节反应液pH值至10,投加PAM 20mg/L,反应10分钟,沉淀30分钟;絮凝沉淀出水进入次氯酸钠氧化池,次氯酸钠投加质量与废水中氰化物质量比为20∶1(次氯酸钠投加量20mg/L),搅拌反应30min;次氯酸钠氧化池的出水进入pH调节池,通过加硫酸调节pH值至7.8,再提升至活性炭过滤罐,过滤速度4m/h,活性炭填充量3bv,水力停留时间20min,最终出水COD75.1mg/L、氰化物0.192mg/L、色度26倍,实现达标排放。
实施例2
将焦化废水(选自某焦化厂的生化出水,COD:240mg/L,氰化物8.6mg/L,色度550倍)提升到芬顿流化床,投加硫酸亚铁1000mg/L(含有硫酸亚铁的混合水溶液中,硫酸亚铁的质量浓度为22%,硫酸的质量浓度为1.5%,余量为水),并按照过氧化氢加入量为200mg/L的比例进行换算,加入对应量的双氧水至芬顿流化床,投加含有硫酸亚铁的混合水溶液后,溶液pH值为4.0,有效反应时间30min;Fenton反应后出水进入絮凝沉淀池,同时加氢氧化钠水溶液调节反应液pH值至11,投加PAM 15mg/L,反应时间15分钟,沉淀30分钟;絮凝沉淀出水进入次氯酸钠氧化池,次氯酸钠投加量与废水中氰化物质量比30∶1(次氯酸钠投加量25.5mg/L),搅拌反应25min;次氯酸钠氧化池的出水进入pH调节池,通过硫酸调节pH值至7.6,再提升至活性炭过滤罐,过滤速度5m/h,活性炭填充量4bv,水力停留时间25min,出水COD65.2mg/L、氰化物0.179mg/L、色度20倍,实现达标排放。
实施例3
将焦化废水(选自某焦化厂的生化出水,COD:150mg/L,氰化物5.9mg/L,色度450倍)提升到芬顿流化床,投加硫酸亚铁1300mg/L(含有硫酸亚铁的混合水溶液中,硫酸亚铁的质 量浓度为24%,硫酸的质量浓度为2%,余量为水),并按照过氧化氢加入量为300mg/L的比例进行换算,加入对应量的双氧水至芬顿流化床,投加含有硫酸亚铁的混合水溶液后,溶液pH值为3.4,有效反应时间30min;Fenton反应后出水进入絮凝沉淀池,同时加氢氧化钠水溶液调节反应液pH值至12,投加PAM投加量30mg/L,反应15分钟,沉淀30分钟;絮凝沉淀出水进入次氯酸钠反应池,次氯酸钠投加量与废水中氰化物质量比25∶1(次氯酸钠投加量15mg/L),搅拌反应30min;次氯酸钠氧化池的出水进入pH调节池,通过硫酸调节pH值至7.6,再提升至活性炭过滤罐,过滤速度6m/h,活性炭填充量5bv,出水COD 67mg/L、氰化物0.186mg/L、色度18倍,实现达标排放。
Fenton试验过程中,硫酸亚铁投加量50~2500mg/L,过氧化氢50~1000mg/L,其中硫酸亚铁<300mg/L,过氧化氢的投加量为<100mg/L时,硫酸亚铁量不足,溶液反应不充分,出水色度较重,且出水中残留双氧水,影响COD测定,COD去除率降低至30%,氰化物降低至20%;其中硫酸亚铁>2000mg/L,过氧化氢的投加量为>800mg/L时,硫酸亚铁过量,污泥产量过多,过量的双氧水会导致硫酸亚铁被氧化,降低Fenton反应效率,COD去除率40%,氰化物50%。基于运行费用及处理效率考虑,选择硫酸亚铁投加量400~2000mg/L,过氧化氢投加量100~800mg/L。
次氯酸钠试验过程中,次氯酸钠与氰化物质量比为(5~50)∶1,次氯酸钠与氰化物质量比为(5~10)∶1时,氰化物去除率较低,5%~10%,次氯酸钠与氰化物质量比(10~40)∶1氰化物去除率较低,55%~75%,再增加次氯酸钠与氰化物质量比(40~50)∶1,氰化物去除率增加较少,75%~78%,基于运行费用考虑,选择次氯酸钠与氰化物质量比为(10~40)∶1。
综上所述,本发明针对焦化废水深度处理给出了一种新的组合工艺,将芬顿流化床、絮凝沉淀、次氯酸钠氧化、活性炭过滤吸附进行有效组合;利用芬顿流化床的高级氧化,去除废水中的难降解有机物,打开发色基团,氧化氰化物等,再结合絮凝沉淀,进一步去除吸附在Fenton出水悬浮物或胶体上的有机物和络合氰化物。通过加入预先配制的含有硫酸亚铁的混合水溶液,实现对废水pH的调节,使得芬顿氧化环节不需额外设置pH调节池,有效降低设备安装成本。经过芬顿流化床和絮凝沉淀,出水中残留的氰化物主要以CN-存在,次氯酸钠氧化效率更高,相对于传统的碱性氯化法,此时只需一步氧化,既能去除氰化物,再结合活性炭的吸附效果,出水水质浓度更低。出水满足标准GB16171-2012表二中对氰化物(≤0.2mg/L)、COD(≤80mg/L)的要求,感官更好。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种焦化废水深度处理脱碳脱色脱氰的方法,其特征在于,包括如下步骤:
    1)将焦化废水引入芬顿流化床,向溶液中加入硫酸亚铁、硫酸与水的混合溶液;
    2)向芬顿流化床的溶液中加入过氧化氢,充分反应;
    3)将芬顿流化床中的反应液引出,调节反应液的pH为10~12,加入絮凝剂,沉淀后取上清液;
    4)将上清液与次氯酸钠混合,进行氧化反应;
    5)将氧化后的反应液pH调节为7~8,采用活性炭吸附处理,得到深度处理后的水体。
  2. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤1)中,硫酸亚铁的投加量为400~2000mg/L,所述硫酸亚铁、硫酸与水的混合溶液中,硫酸亚铁的质量浓度为10~30%,硫酸的质量浓度为0.5~10%;优选地,硫酸亚铁的质量浓度为15~26%,硫酸的质量浓度为0.5~5%。
  3. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤2)中,过氧化氢的投加量为100~800mg/L。
  4. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤2)中,加入过氧化氢后,反应时间为15~30min。
  5. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤3)中,加入的絮凝剂为聚丙烯酰胺、阳离子淀粉、聚环氧氯丙烷二甲胺中的一种或几种组合。
  6. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤3)中,絮凝剂的加入量为15~30mg/L。
  7. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤4)中,次氯酸钠的质量与上清液中氰化物的质量之比为(10~40)∶1,上清液与次氯酸钠混合后,停留时间为20~30min。
  8. 根据权利要求1所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤5)中,采用活性炭滤罐吸附处理反应液。
  9. 根据权利要求8所述的焦化废水深度处理脱碳脱色脱氰的方法,其特征在于:步骤5)中,活性炭滤罐滤速为4~10m/h,水力停留时间为15~30min。
  10. 一种焦化废水深度处理系统,其特征在于:包括依次连接的芬顿流化床、絮凝沉淀池、次氯酸钠氧化池、pH调节池、活性炭吸附过滤罐。
PCT/CN2017/102692 2016-11-25 2017-09-21 一种焦化废水深度处理脱碳脱色脱氰的方法及系统 WO2018095124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611059036.2A CN106745961B (zh) 2016-11-25 2016-11-25 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN201611059036.2 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018095124A1 true WO2018095124A1 (zh) 2018-05-31

Family

ID=58911488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102692 WO2018095124A1 (zh) 2016-11-25 2017-09-21 一种焦化废水深度处理脱碳脱色脱氰的方法及系统

Country Status (2)

Country Link
CN (1) CN106745961B (zh)
WO (1) WO2018095124A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862739A (zh) * 2018-08-22 2018-11-23 南京科盛环保技术有限公司 一种用于湿式煤气柜水封水的处理系统和方法
CN109592861A (zh) * 2019-01-31 2019-04-09 清华大学深圳研究生院 一种印染废水深度处理方法与设备
CN110282811A (zh) * 2019-08-02 2019-09-27 山西省应用化学研究所(有限公司) 松香改性酚醛树脂工业废水的处理方法及设备
CN111302573A (zh) * 2020-04-16 2020-06-19 清有生态科技(上海)有限公司 一种制罐废水处理方法
CN111392907A (zh) * 2020-04-03 2020-07-10 贺利氏贵金属技术(中国)有限公司 处理废水的方法
CN111704230A (zh) * 2020-06-28 2020-09-25 南通大学 一种生物质气化洗焦污水脱色方法
CN112142241A (zh) * 2020-10-28 2020-12-29 绍兴柯桥和兴印染有限公司 一种高浓印染污水处理工艺及装置
CN112551677A (zh) * 2020-11-20 2021-03-26 联合环境技术(天津)有限公司 一种新型芬顿氧化法工业废水处理工艺
CN112759107A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 一种处理含重金属污水的方法
CN112939274A (zh) * 2021-02-01 2021-06-11 淄博正河净水剂有限公司 印染废水的处理方法
CN113117680A (zh) * 2021-05-25 2021-07-16 齐鲁工业大学 一种纳米偏钛酸亚铁-硅胶颗粒芬顿催化剂及其制备方法和使用方法
CN113149259A (zh) * 2020-12-31 2021-07-23 中节能大地(杭州)环境修复有限公司 适用于低浓度垃圾渗滤液的无浓缩液处置方法及处置设备
CN113213673A (zh) * 2021-06-09 2021-08-06 山东潍坊润丰化工股份有限公司 一种庚烯酮焦油废水的处理方法
CN113461212A (zh) * 2021-07-20 2021-10-01 中原环保股份有限公司 一种废旧塑料加工废水处理装置和方法
CN113880358A (zh) * 2021-10-19 2022-01-04 云南能投硅材科技发展有限公司 一种有机硅废水中有效去除硅氧烷和cod的方法
CN114212917A (zh) * 2021-12-21 2022-03-22 河南力诚环保科技有限公司 一种有效的餐厨垃圾厌氧消化后沼液处理方法
CN114288834A (zh) * 2021-12-27 2022-04-08 深圳职业技术学院 基于碳活化过硫酸盐处理有机废气的高级氧化系统及方法
CN114590935A (zh) * 2022-03-08 2022-06-07 刘小明 一种硫化染料生产废水的脱色方法
CN114804408A (zh) * 2022-04-07 2022-07-29 广州珠江天然气发电有限公司 一种电厂燃机水洗废液的处理与回用方法及其装置
CN115159744A (zh) * 2022-07-22 2022-10-11 东华工程科技股份有限公司 一种污水电吸附-还原耦合芬顿处理系统及工艺方法
CN115180736A (zh) * 2022-06-30 2022-10-14 上海宝汇环境科技有限公司 一种焦化废水除氰药剂及处理焦化废水的方法
CN115536186A (zh) * 2021-06-30 2022-12-30 中国石油化工股份有限公司 含膦含氯苯废水处理方法及装置
CN115571970A (zh) * 2022-12-07 2023-01-06 河北协同水处理技术有限公司 一种焦化废水智能一体化预处理装置及工艺
CN116081903A (zh) * 2023-04-10 2023-05-09 山东省资源环境建设集团有限公司 一种Fenton深度处理废水的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745961B (zh) * 2016-11-25 2019-03-01 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN109019945B (zh) * 2017-06-12 2021-07-20 鞍钢股份有限公司 一种含氰废水的处理方法
CN109205823A (zh) * 2017-07-06 2019-01-15 荆门市格林美新材料有限公司 一种耗材的环保处理系统
CN107935319A (zh) * 2017-12-22 2018-04-20 中冶焦耐(大连)工程技术有限公司 一种焦化废水深度处理系统
CN108117192A (zh) * 2017-12-22 2018-06-05 中冶焦耐(大连)工程技术有限公司 一种焦化废水深度处理工艺
CN108911410A (zh) * 2018-08-02 2018-11-30 合肥中亚环保科技有限公司 一种煤化工废水深度处理系统及其处理方法
CN109279715A (zh) * 2018-11-27 2019-01-29 安徽省绿巨人环境技术有限公司 一种高浓度洗煤气废水高效处理系统
CN109879535A (zh) * 2019-03-10 2019-06-14 南昌市国昌环保科技有限公司 一种焦化废水降氰的方法
CN110204084A (zh) * 2019-05-08 2019-09-06 江苏物网慧农科技集团有限公司 一种阿维菌素废水的处理方法
CN110282798B (zh) * 2019-06-14 2022-03-25 广东省科学院化工研究所 一种合成取代苯并咪唑的有机废水的处理方法
CN110668602A (zh) * 2019-09-30 2020-01-10 东莞市优力帕克包装有限公司 一种废水处理工艺
CN111268824A (zh) * 2020-03-13 2020-06-12 哈德逊(苏州)水技术有限公司 一种采用高级氧化技术处理农药废水中cod的方法
CN111268827A (zh) * 2020-03-13 2020-06-12 哈德逊(苏州)水技术有限公司 处理染料中间体废水中cod的方法
CN112337963A (zh) * 2020-11-05 2021-02-09 中国石油化工股份有限公司 土壤氰化物的去除方法及装置
CN112551753B (zh) * 2020-12-09 2022-02-11 同济大学 一种应用于高有机物高含盐废水的生化预处理方法
CN112794561A (zh) * 2020-12-25 2021-05-14 苏州市环境保护有限公司 一种危险废液提标深度处理方法
CN113003795B (zh) * 2021-04-30 2023-02-10 中持水务股份有限公司 废水耦合处理设备及废水处理方法
CN114853205B (zh) * 2022-04-11 2024-02-06 甘肃酒钢集团宏兴钢铁股份有限公司 一种焦化硫泡沫制酸过程中产生稀硫酸的无害化处理方法
CN114988610A (zh) * 2022-06-15 2022-09-02 西安瑞美德水业科技有限公司 一种去除垃圾渗滤液处理出水中难生化有机物的方法
CN115385474A (zh) * 2022-08-17 2022-11-25 四川省工业环境监测研究院 一种焦化废水的深度处理方法
CN116675395A (zh) * 2023-07-27 2023-09-01 天辰齐翔新材料有限公司 含氰废水的预处理方法
CN117865327B (zh) * 2024-03-11 2024-06-18 中国科学院大学 超重力高级氧化废水处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169071A (ja) * 1991-12-17 1993-07-09 Kurita Water Ind Ltd シアン含有廃水の処理方法
CN102464415A (zh) * 2010-10-29 2012-05-23 新奥科技发展有限公司 煤气化废水的深度处理工艺
CN104628229A (zh) * 2015-02-05 2015-05-20 四川立新瑞德水处理有限责任公司 化工废水的深度处理系统和工艺
WO2015159653A1 (ja) * 2014-04-16 2015-10-22 栗田工業株式会社 シアン及びアンモニア含有排水の処理方法
CN105948408A (zh) * 2016-06-29 2016-09-21 盐城工学院 Ifbr-egsb-cass工艺处理化工废水的方法
CN106745961A (zh) * 2016-11-25 2017-05-31 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN206219348U (zh) * 2016-11-25 2017-06-06 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169071A (ja) * 1991-12-17 1993-07-09 Kurita Water Ind Ltd シアン含有廃水の処理方法
CN102464415A (zh) * 2010-10-29 2012-05-23 新奥科技发展有限公司 煤气化废水的深度处理工艺
WO2015159653A1 (ja) * 2014-04-16 2015-10-22 栗田工業株式会社 シアン及びアンモニア含有排水の処理方法
CN104628229A (zh) * 2015-02-05 2015-05-20 四川立新瑞德水处理有限责任公司 化工废水的深度处理系统和工艺
CN105948408A (zh) * 2016-06-29 2016-09-21 盐城工学院 Ifbr-egsb-cass工艺处理化工废水的方法
CN106745961A (zh) * 2016-11-25 2017-05-31 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN206219348U (zh) * 2016-11-25 2017-06-06 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理系统

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862739A (zh) * 2018-08-22 2018-11-23 南京科盛环保技术有限公司 一种用于湿式煤气柜水封水的处理系统和方法
CN109592861A (zh) * 2019-01-31 2019-04-09 清华大学深圳研究生院 一种印染废水深度处理方法与设备
CN110282811A (zh) * 2019-08-02 2019-09-27 山西省应用化学研究所(有限公司) 松香改性酚醛树脂工业废水的处理方法及设备
CN112759107A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 一种处理含重金属污水的方法
CN111392907A (zh) * 2020-04-03 2020-07-10 贺利氏贵金属技术(中国)有限公司 处理废水的方法
CN111302573A (zh) * 2020-04-16 2020-06-19 清有生态科技(上海)有限公司 一种制罐废水处理方法
CN111704230A (zh) * 2020-06-28 2020-09-25 南通大学 一种生物质气化洗焦污水脱色方法
CN112142241A (zh) * 2020-10-28 2020-12-29 绍兴柯桥和兴印染有限公司 一种高浓印染污水处理工艺及装置
CN112551677A (zh) * 2020-11-20 2021-03-26 联合环境技术(天津)有限公司 一种新型芬顿氧化法工业废水处理工艺
CN113149259A (zh) * 2020-12-31 2021-07-23 中节能大地(杭州)环境修复有限公司 适用于低浓度垃圾渗滤液的无浓缩液处置方法及处置设备
CN112939274A (zh) * 2021-02-01 2021-06-11 淄博正河净水剂有限公司 印染废水的处理方法
CN113117680A (zh) * 2021-05-25 2021-07-16 齐鲁工业大学 一种纳米偏钛酸亚铁-硅胶颗粒芬顿催化剂及其制备方法和使用方法
CN113117680B (zh) * 2021-05-25 2022-05-10 齐鲁工业大学 一种纳米偏钛酸亚铁-硅胶颗粒芬顿催化剂及其制备方法和使用方法
CN113213673A (zh) * 2021-06-09 2021-08-06 山东潍坊润丰化工股份有限公司 一种庚烯酮焦油废水的处理方法
CN115536186A (zh) * 2021-06-30 2022-12-30 中国石油化工股份有限公司 含膦含氯苯废水处理方法及装置
CN113461212A (zh) * 2021-07-20 2021-10-01 中原环保股份有限公司 一种废旧塑料加工废水处理装置和方法
CN113880358A (zh) * 2021-10-19 2022-01-04 云南能投硅材科技发展有限公司 一种有机硅废水中有效去除硅氧烷和cod的方法
CN113880358B (zh) * 2021-10-19 2023-09-05 江苏江南环境工程设计院有限公司 一种有机硅废水中有效去除硅氧烷和cod的方法
CN114212917A (zh) * 2021-12-21 2022-03-22 河南力诚环保科技有限公司 一种有效的餐厨垃圾厌氧消化后沼液处理方法
CN114288834A (zh) * 2021-12-27 2022-04-08 深圳职业技术学院 基于碳活化过硫酸盐处理有机废气的高级氧化系统及方法
CN114590935A (zh) * 2022-03-08 2022-06-07 刘小明 一种硫化染料生产废水的脱色方法
CN114804408A (zh) * 2022-04-07 2022-07-29 广州珠江天然气发电有限公司 一种电厂燃机水洗废液的处理与回用方法及其装置
CN115180736A (zh) * 2022-06-30 2022-10-14 上海宝汇环境科技有限公司 一种焦化废水除氰药剂及处理焦化废水的方法
CN115159744A (zh) * 2022-07-22 2022-10-11 东华工程科技股份有限公司 一种污水电吸附-还原耦合芬顿处理系统及工艺方法
CN115571970A (zh) * 2022-12-07 2023-01-06 河北协同水处理技术有限公司 一种焦化废水智能一体化预处理装置及工艺
CN116081903A (zh) * 2023-04-10 2023-05-09 山东省资源环境建设集团有限公司 一种Fenton深度处理废水的方法

Also Published As

Publication number Publication date
CN106745961A (zh) 2017-05-31
CN106745961B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018095124A1 (zh) 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN206219348U (zh) 一种焦化废水深度处理系统
CN107555701B (zh) 一种低成本处理焦化废水的方法
CN101698530B (zh) Fenton反应处理废水方法
WO2015120735A1 (zh) 一种亚铁盐活化过硫酸盐或单过氧硫酸氢盐高级氧化深度处理造纸废水的方法
CN109502809B (zh) 含铜废水处理工艺及应用
CN109775896B (zh) 一种臭氧催化氧化耦合混凝沉淀深度净化生化尾水的装置及方法
WO2022135310A1 (zh) 一种增强型Fenton氧化工艺处理焦化废水的方法
US11834360B2 (en) Integrated device and method for treating toxic and refractory wastewater
CN105601036A (zh) 基于臭氧氧化及生化技术处理化学镀镍废水的方法
CN110642418A (zh) 一种芬顿工艺处理pcb生产中产生的高有机废水的方法
CN112794555A (zh) 一种新型强化混凝处理废水的方法
CN110759578B (zh) 一种煤化工洗涤废水的处理方法
CN107265777B (zh) 一种对垃圾渗滤液膜滤浓缩液的处理方法
CN104609652A (zh) 一种稳定提高焦化废水可生化性的耦合处理工艺
CN101648762A (zh) 焦化废水处理方法
CN111285491A (zh) 一种浓水的处理方法及处理装置
CN109704510B (zh) 一种垃圾渗滤液生化出水深度处理工艺
CN112551744A (zh) 一种利用酸性混凝的芬顿氧化处理废水的方法
CN111875129A (zh) 一种高总磷浓度的有机磷废水组合处理工艺
CN111018169A (zh) 一种氰氟复合污染废水深度处理方法
CN110746037A (zh) 一种高浓度有机废水的预处理方法
CN107935319A (zh) 一种焦化废水深度处理系统
CN111320302B (zh) 一种半导体行业低浓度含铜废水达标排放及高效沉降工艺
CN112645427A (zh) 一种基于零价铁-亚铁催化类芬顿氧化处理废水方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874310

Country of ref document: EP

Kind code of ref document: A1