CN109592861A - 一种印染废水深度处理方法与设备 - Google Patents

一种印染废水深度处理方法与设备 Download PDF

Info

Publication number
CN109592861A
CN109592861A CN201910101147.2A CN201910101147A CN109592861A CN 109592861 A CN109592861 A CN 109592861A CN 201910101147 A CN201910101147 A CN 201910101147A CN 109592861 A CN109592861 A CN 109592861A
Authority
CN
China
Prior art keywords
fenton
sedimentation basin
reaction
coagulation
pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910101147.2A
Other languages
English (en)
Inventor
吴乾元
胡洪营
杜鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201910101147.2A priority Critical patent/CN109592861A/zh
Publication of CN109592861A publication Critical patent/CN109592861A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种印染废水深度处理方法与设备,该方法包括:在调节池进行芬顿反应前pH调节,在调节池尾端进行催化剂投加;在芬顿反应池前期进行双氧水投加,在芬顿反应池中后期根据水质条件进行PFS投加,在芬顿反应池尾端投加碱液对出水pH进行调节;在沉淀池的混凝段进行PAC投加并在随后进行PAM投加,发生混凝反应,在沉淀池的沉淀段进行泥水分离;在生物活性炭滤池对所述沉淀池的出水进行生物降解、吸附过滤处理。本发明提供了一种低成本、处理高效的印染废水深度处理方的方法与设备。

Description

一种印染废水深度处理方法与设备
技术领域
本发明涉及水处理领域,特别是涉及一种印染废水深度处理方法与设备。
背景技术
随着工业的迅速发展,产生了诸多难降解的废水,其中犹如纺织染整等所产生的废水具有难降解、重金属残留等特点,此类工业废水进入环境水体后对水体生物甚至人类健康产生严重的危害。为了去除废水中难降解有机物可生化性,并对其中部分难降解有机物进行讲解,芬顿工艺被广泛应用。芬顿工艺能对很多种类的有机物进行氧化降解,这是由于芬顿反应的本质是H2O2在Fe2+的催化作用下能生成氧化还原电位仅次于F2的·OH,能有效将难降解的高分子有机物氧化成小分子有机物,并降解部分有机物。
往往印染等工业废水不仅存在难降解的问题,还存在诸如锑等毒害污染物的残留。为保证水体生态安全,在控制出水常规污染物浓度的同时,印染废水排放对锑等有毒有害污染物提出了控制要求。
纺织染整行业的工业废水排放量居中国工业废水排放量第三,将印染废水深度处理后经过超滤车间后进行中水回用能够有效缓解水资源短缺,但是普通深度处理对水质的改善程度有限。
发明内容
本发明的主要针对现有技术的不足,提供一种高效、低成本的印染废水深度处理方法与设备。
为实现上述目的,本发明采用以下技术方案:
一种印染废水深度处理方法,包括以下步骤:
芬顿/混凝/沉淀处理阶段:在调节池进行芬顿反应前pH调节,在调节池尾端进行催化剂投加;在芬顿反应池前期进行双氧水投加,在芬顿反应池中后期根据水质条件进行PFS投加,在芬顿反应池尾端投加碱液对出水pH进行调节;在沉淀池的混凝段进行PAC投加并在随后进行PAM投加,发生混凝反应,在沉淀池的沉淀段进行泥水分离;
生物活性过滤处理阶段:在生物活性炭滤池对所述沉淀池的出水进行生物降解、吸附过滤处理。
进一步地:
所述芬顿/混凝/沉淀处理阶段还包括:在污泥调理池对所述沉淀池泥水分离得到的污泥部分进行预处理后回流至所述芬顿反应池和所述沉淀池的混凝段,利用回流絮体在所述芬顿反应池发生酸性预混凝反应,利用回流絮体在所述沉淀池发生二次中性混凝反应。
所述芬顿反应池前端进行较弱的机械或鼓泡搅拌,中后段投加PFS后进行较强的机械或鼓泡搅拌,尾端投加碱液后再次进行较弱的搅拌。
所述催化剂包括亚铁药剂。
所述生物活性炭滤池包括铁氧化物填料以及生物活性炭填料。
一种印染废水深度处理设备,包括:
芬顿/混凝/沉淀系统,所述芬顿/混凝/沉淀系统包括调节池、芬顿反应池和沉淀池,在所述调节池进行芬顿反应前pH调节,在所述调节池尾端进行催化剂投加;在所述芬顿反应池前期进行双氧水投加,在所述芬顿反应池中后期根据水质条件进行PFS投加,在所述芬顿反应池尾端投加碱液对出水pH进行调节;在所述沉淀池的混凝段进行PAC投加并在随后进行PAM投加,发生混凝反应,在所述沉淀池的沉淀段进行泥水分离;
生物活性炭滤池,对所述沉淀池的出水进行生物降解、吸附过滤处理。
所述芬顿/混凝/沉淀系统还包括污泥调理池,在所述污泥调理池对所述沉淀池泥水分离得到的污泥部分进行预处理后回流至所述芬顿反应池和所述沉淀池的混凝段,利用回流絮体在所述芬顿反应池发生酸性预混凝反应,利用回流絮体在所述沉淀池发生二次中性混凝反应。
所述芬顿反应池前期进行较弱的机械或鼓泡搅拌,中后期投加PFS后进行较强的机械或鼓泡搅拌,尾端投加碱液后进行中等强度的搅拌。
所述生物活性炭滤池包括铁氧化物填料以及生物活性炭填料。
所述铁氧化物包括磁铁矿石。
本发明具有如下有益效果:
本发明提供了一种低成本、高效的印染废水深度处理方法与设备。经过常规处理后的印染废水二级出水经过酸化后,进行芬顿反应,芬顿反应过程中将处理后的化学污泥回流,经过调节pH后进行混凝-絮体吸附反应,沉淀后通过新型生物炭滤池处理后出水。采用生物活性炭滤池,对出水进行最优化处理。芬顿反应能有效将大分子难降解有机物氧化为小分子有机物,但单纯芬顿反应对有机物的降解存在一定限度,面对日益严格的工业废水排放标准,单纯的芬顿反应难以使出水COD稳定达标,因此,结合生物活性炭滤池能对小分子有机物进一步降解的机理,将新型芬顿反应后的出水经过高效沉淀池后,通过生物活性炭二次生物降解、吸附过滤后出水。利用活性炭的吸附及微生物降解作用共同去除有机物,能最大发挥活性炭的吸附作用,又能通过生物降解降低活性炭吸附负荷,延长活性炭使用周期,减少炭的再生频率,降低运行成本。
本发明实施例中,利用芬顿反应以及混凝反应所产生化学污泥进行预处理后回流,不仅能够提高混凝剂使用效率,而且能够降低混凝剂用量及降低化学污泥处理成本。可以采用出水在线监测铁离子、COD,通过出水水质反馈芬顿投加量以及混凝剂投加量。将芬顿/混凝后的化学污泥进行沉降分离后,超声搅拌后能有效增强污泥吸附效果,具有较高的利用价值。生物活性炭滤池填料中添加磁铁矿等铁氧化物,针对单纯生物活性炭滤池运行过程中容易堵塞、生物膜难以形成等问题,通过加入磁铁矿等矿石,重新对生物活性炭进行排布,有效降低污染物对生物膜的堵塞风险;并且由于磁铁矿能溶解出微量亚铁离子及铁离子等,对生物具有一定促进作用以及对出水中的重金属进行进一步去除。
附图说明
图1为本发明一种实施例采用芬顿/混凝/沉淀系统-生物活性炭滤池的设备组成框图。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
参阅图1,在一种实施例中,一种印染废水深度处理设备,包括芬顿/混凝/沉淀系统和生物活性炭滤池。
所述芬顿/混凝/沉淀系统包括调节池、芬顿反应池和沉淀池,在所述调节池进行芬顿反应前pH调节,在所述调节池尾端进行催化剂投加;在所述芬顿反应池前期进行双氧水投加,在所述芬顿反应池中后期根据水质条件进行PFS投加,在所述芬顿反应池尾端投加碱液对出水pH进行调节;在所述沉淀池的混凝段进行PAC投加并在随后进行PAM投加,发生混凝反应,在所述沉淀池的沉淀段进行泥水分离。
生物活性炭滤池,在所述生物活性炭滤池对所述沉淀池的出水进行生物降解、吸附过滤处理。
在优选的实施例中,所述芬顿/混凝/沉淀系统还包括污泥调理池,在所述污泥调理池对所述沉淀池泥水分离得到的污泥部分进行预处理后回流至所述芬顿反应池和所述沉淀池的混凝段,利用回流絮体在所述芬顿反应池发生酸性预混凝反应,利用回流絮体在所述沉淀池发生二次中性混凝反应。
在优选的实施例中,所述芬顿反应池前期进行较弱的机械或鼓泡搅拌,中后期投加PFS后进行较强的机械或鼓泡搅拌,尾端投加碱液后进行中等强度的搅拌。
在优选的实施例中,所述催化剂包括亚铁药剂。
在优选的实施例中,所述生物活性炭滤池包括铁氧化物填料以及生物活性炭填料。
在优选的实施例中,所述芬顿/混凝/沉淀系统还包括酸储罐和亚铁药剂罐,所述酸储罐和所述亚铁药剂罐连接所述调节池。
在优选的实施例中,所述芬顿/混凝/沉淀系统还包括双氧水药剂罐、PFS药剂罐和碱储罐,所述双氧水药剂罐、所述PFS药剂罐和所述碱储罐连接所述芬顿反应池。
在优选的实施例中,所述芬顿/混凝/沉淀系统还包括PAC储罐和PAM储罐,所述PAC储罐和所述PAM储罐连接所述混凝段。
参阅图1,在另一种实施例中,一种印染废水深度处理方法,包括以下步骤:
芬顿/混凝/沉淀处理阶段:在调节池进行芬顿反应前pH调节,在调节池尾端进行催化剂投加;在芬顿反应池前期进行双氧水投加,在芬顿反应池中后期根据水质条件进行PFS投加,在芬顿反应池尾端投加碱液对出水pH进行调节;在沉淀池的混凝段进行PAC投加并在随后进行PAM投加,发生混凝反应,在沉淀池的沉淀段进行泥水分离;
生物活性过滤处理阶段:在生物活性炭滤池对所述沉淀池的出水进行生物降解、吸附过滤处理。
在优选的实施例中,所述芬顿/混凝/沉淀处理阶段还包括:在污泥调理池对所述沉淀池泥水分离得到的污泥部分进行预处理后回流至所述芬顿反应池和所述沉淀池的混凝段,利用回流絮体在所述芬顿反应池发生酸性预混凝反应,利用回流絮体在所述沉淀池发生二次中性混凝反应。
较佳地,在芬顿/混凝/沉淀处理阶段按照以下工艺参数进行:在调节池进行芬顿反应前pH调节,在调节池尾端进行催化剂投加;在芬顿反应池前期(5-10min)进行双氧水投加,曝气量0.5-0.6m3/(h*m3)池容或1.5-1.8m3/(h*㎡)池表面积(池深度以3m计,后同),在芬顿反应池中后期(3h-3.5h)根据水质条件进行PFS(0-0.6%)以及化学污泥(3%-5%)投加,曝气量0.9-1.0m3/(h*m3)池容,在芬顿反应池尾端(4h后)投加碱液对出水pH进行调节,曝气量0.6-0.9m3/(h*m3)池容;在沉淀池的混凝段进行PAC(0.3-0.5mmol/L,0.8%-1%)投加并在随后进行PAM(0.2-0.5mg/L)以及化学污泥(3%-5%)的投加,发生混凝反应,在沉淀池的沉淀段进行泥水分离。
在优选的实施例中,所述芬顿反应池前期进行较弱的机械或鼓泡搅拌,中后期投加PFS后进行较强的机械或鼓泡搅拌,尾端投加碱液后进行中等强度(强度介于较弱和较强之间)的搅拌。形成非均匀式曝气,不仅能够有效避免由于过量曝气削弱芬顿试剂处理效果,而且能够最大化节约曝气搅拌成本。
在一些具体实施例中,芬顿/混凝/沉淀系统包括混凝/絮体回用强化混凝系统以及沉淀系统,混凝/絮体回流包括混凝反应、絮体回流吸附、PAM助凝等,能够节约药剂成本,降低污泥产生量。
芬顿/混凝/沉淀系统的投药系统前段采用正常芬顿反应投药系统,中后段投加PFS进行酸性混凝,并投加絮体进行吸附助凝,尾端投加碱液后进行中和反应出水。
调节池进行芬顿反应前pH调节,尾端进行亚铁等催化剂投加;芬顿反应池内首端进行双氧水投加,中后部(碱中和前)根据水质条件进行PFS投加,并与随后回流絮体发生酸性预混凝反应,尾端投加碱液对出水pH进行调节。高效沉淀池分为混凝段以及沉淀段,混凝段投加适量PAC并与随后的PAM及回流絮体发生二次中性混凝反应,沉淀段进行泥水分离。生物处理池对高效沉淀池出水进行COD、锑、浊度及色度、苯胺等进一步去除。污泥调理池对芬顿及混凝后的污泥部分进行预处理后回流至各阶段。
(1)减弱芬顿反应前中期搅拌强度
一般工业条件下,芬顿反应过程采用鼓泡搅拌过程;大幅度搅动容易加快过氧化氢的分解,并降低亚铁盐离子的催化效率,造成其生成容易产生出使芬顿出水发黄的铁离子。由于芬顿反应过程仅需保证反应体系混匀过程,因此对于实际鼓泡搅拌中,应尽量减小过曝气过程对芬顿试剂效率的影响。
(2)短暂增强芬顿反应中后段搅拌强度增加或增大鼓泡量。
芬顿反应条件处于酸性条件,当水解度较高时,被发现铁盐水合物对锑等重金属混凝去除的效果更优。芬顿反应中将亚铁氧化为三价铁,但由于混凝反应所需要的G值高于芬顿反应,因此将改变芬顿反应中搅拌强度,在芬顿反应中后段短时间增加搅拌强度,将芬顿与混凝反应结合,形成新型芬顿反应,并且由于具有较高的曝气强度,能够有效将残留的过氧化氢分解,降低出水环境风险。
(3)芬顿-混凝化学污泥预处理后回流
芬顿/混凝反应后,所产生的化学污泥中含有大量铁的水合氧化物,该水合氧化物被发现具有良好的重金属吸附特性,吸附速率高,并且具有较高的助凝作用,考虑到如果单独将该水合氧化物直接用于处理含重金属的废水,所需的搅拌设备管理运行费用以及构筑物的占地费用等,将该水合氧化物回流到新型芬顿混凝部分以及高效沉淀池混凝部分,不仅能有效提高对锑等重金属的去除,也能明显降低出水色度及浊度。能有效降低芬顿反应容易产生出水发黄等风险。
将芬顿/混凝后的化学污泥进行沉降分离后,超声搅拌后能有效增强污泥吸附效果,具有较高的利用价值。
(4)芬顿/混凝-生物活性炭滤池联用
芬顿反应能有效将大分子难降解有机物氧化为小分子有机物,但单纯芬顿反应对有机物的降解存在一定限度,面对日益严格的工业废水排放标准,单纯的芬顿反应难以使出水COD稳定达标,因此,结合生物活性炭滤池能对小分子有机物进一步降解的机理,将新型芬顿反应后的出水经过高效沉淀池后,通过生物活性炭二次生物降解、吸附过滤后出水。
(5)生物活性炭滤池填料中添加磁铁矿等铁氧化物
针对单纯生物活性炭滤池运行过程中容易堵塞、生物膜难以形成等问题,通过加入磁铁矿等矿石,重新对生物活性炭进行排布,有效降低污染物对生物膜的堵塞风险;并且由于磁铁矿能溶解出微量亚铁离子及铁离子等,对生物具有一定促进作用以及对出水中的重金属进行进一步去除。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

Claims (10)

1.一种印染废水深度处理方法,其特征在于,包括以下步骤:
芬顿/混凝/沉淀处理阶段:在调节池进行芬顿反应前pH调节,在调节池尾端进行催化剂投加;在芬顿反应池前期进行双氧水投加,在芬顿反应池中后期根据水质条件进行PFS投加,在芬顿反应池尾端投加碱液对出水pH进行调节;在沉淀池的混凝段进行聚铝(PAC)投加并在随后进行聚丙烯酰胺(PAM)投加,发生混凝反应,在沉淀池的沉淀段进行泥水分离;
生物活性过滤处理阶段:在生物活性炭滤池对所述沉淀池的出水进行生物降解、吸附过滤处理。
2.如权利要求1所述的印染废水深度处理方法,其特征在于,所述芬顿/混凝/沉淀处理阶段还包括:在污泥调理池对所述沉淀池泥水分离得到的污泥部分进行预处理后回流至所述芬顿反应池和所述沉淀池的混凝段,利用回流絮体在所述芬顿反应池发生酸性预混凝反应,利用回流絮体在所述沉淀池发生二次中性混凝反应。
3.如权利要求1或2所述的印染废水深度处理方法,其特征在于,所述芬顿反应池前端进行较弱的机械或鼓泡搅拌,中后段投加PFS后进行较强的机械或鼓泡搅拌,尾端投加碱液后再次进行较弱的搅拌。
4.如权利要求1或2所述的印染废水深度处理方法,其特征在于,所述催化剂包括亚铁药剂。
5.如权利要求1至4任一项所述的印染废水深度处理方法,其特征在于,所述生物活性炭滤池包括铁氧化物填料以及生物活性炭填料。
6.一种印染废水深度处理设备,其特征在于,包括:
芬顿/混凝/沉淀系统,所述芬顿/混凝/沉淀系统包括调节池、芬顿反应池和沉淀池,在所述调节池进行芬顿反应前pH调节,在所述调节池尾端进行催化剂投加;在所述芬顿反应池前期进行双氧水投加,在所述芬顿反应池中后期根据水质条件进行PFS投加,在所述芬顿反应池尾端投加碱液对出水pH进行调节;在所述沉淀池的混凝段进行PAC投加并在随后进行PAM投加,在所述沉淀池的沉淀段进行泥水分离;
生物活性炭滤池,对所述沉淀池的出水进行生物降解、吸附过滤处理。
7.如权利要求6所述的印染废水深度处理设备,其特征在于,所述芬顿/混凝/沉淀系统还包括污泥调理池,在所述污泥调理池对所述沉淀池泥水分离得到的污泥部分进行预处理后回流至所述芬顿反应池和所述沉淀池的混凝段,利用回流絮体在所述芬顿反应池发生酸性预混凝反应,利用回流絮体在所述沉淀池发生二次中性混凝反应。
8.如权利要求6或7所述的印染废水深度处理设备,其特征在于,所述芬顿反应池前期进行较弱的机械或鼓泡搅拌,中后期投加PFS后进行较强的机械或鼓泡搅拌,尾端投加碱液后进行中等强度的搅拌。
9.如权利要求6至8任一项所述的印染废水深度处理设备,其特征在于,生物活性炭滤池包括铁氧化物填料以及生物活性炭填料。
10.如权利要求9所述的印染废水深度处理设备,其特征在于,所述铁氧化物包括磁铁矿石。
CN201910101147.2A 2019-01-31 2019-01-31 一种印染废水深度处理方法与设备 Pending CN109592861A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910101147.2A CN109592861A (zh) 2019-01-31 2019-01-31 一种印染废水深度处理方法与设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910101147.2A CN109592861A (zh) 2019-01-31 2019-01-31 一种印染废水深度处理方法与设备

Publications (1)

Publication Number Publication Date
CN109592861A true CN109592861A (zh) 2019-04-09

Family

ID=65967233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910101147.2A Pending CN109592861A (zh) 2019-01-31 2019-01-31 一种印染废水深度处理方法与设备

Country Status (1)

Country Link
CN (1) CN109592861A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282813A (zh) * 2019-05-17 2019-09-27 兴源环境科技股份有限公司 一种皮革印染废水处理系统及工艺
CN112340929A (zh) * 2020-04-12 2021-02-09 连江明杰信息技术有限公司 一种印染废水的深度处理方法
CN112661348A (zh) * 2020-12-02 2021-04-16 苏州清然环保科技有限公司 印染废水的处理方法及处理系统
CN114804500A (zh) * 2022-05-27 2022-07-29 中建环能科技股份有限公司 一种活性炭吸附池再生方法及再生系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159374A (zh) * 2011-12-16 2013-06-19 王炜 一种对含丙烯腈类物质的有机废水的处理工艺
CN103755093A (zh) * 2013-12-13 2014-04-30 盐城工学院 芬顿流化床-ibac联用深度处理纺织染整废水工艺
CN106007080A (zh) * 2016-07-01 2016-10-12 南京大学 一种生化尾水梯级氧化深度净化的方法
WO2018095124A1 (zh) * 2016-11-25 2018-05-31 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN108911268A (zh) * 2018-08-24 2018-11-30 江苏沃尔特环保有限公司 高集成多功能原位修复土壤成套设备及其水处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159374A (zh) * 2011-12-16 2013-06-19 王炜 一种对含丙烯腈类物质的有机废水的处理工艺
CN103755093A (zh) * 2013-12-13 2014-04-30 盐城工学院 芬顿流化床-ibac联用深度处理纺织染整废水工艺
CN106007080A (zh) * 2016-07-01 2016-10-12 南京大学 一种生化尾水梯级氧化深度净化的方法
WO2018095124A1 (zh) * 2016-11-25 2018-05-31 中冶赛迪工程技术股份有限公司 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
CN108911268A (zh) * 2018-08-24 2018-11-30 江苏沃尔特环保有限公司 高集成多功能原位修复土壤成套设备及其水处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张振家等: ""工厂废水处理站工艺原理与维护管理"", 化学工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282813A (zh) * 2019-05-17 2019-09-27 兴源环境科技股份有限公司 一种皮革印染废水处理系统及工艺
CN112340929A (zh) * 2020-04-12 2021-02-09 连江明杰信息技术有限公司 一种印染废水的深度处理方法
CN112661348A (zh) * 2020-12-02 2021-04-16 苏州清然环保科技有限公司 印染废水的处理方法及处理系统
CN114804500A (zh) * 2022-05-27 2022-07-29 中建环能科技股份有限公司 一种活性炭吸附池再生方法及再生系统

Similar Documents

Publication Publication Date Title
Moradi et al. Various wastewaters treatment by sono-electrocoagulation process: a comprehensive review of operational parameters and future outlook
Lin et al. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review
CN109592861A (zh) 一种印染废水深度处理方法与设备
CN105923735B (zh) 一种基于高铁酸盐的复合水处理药剂及其制备方法
CN101088938B (zh) 重金属污水的处理方法
US20110127220A1 (en) Method for Treating Water by Advanced Oxidation and Ballasted Flocculation, and Corresponding Treatment Plant
CN102701496A (zh) 一种用于处理高浓度难降解有机废水的方法与工艺
CN104163539A (zh) 一种煤化工废水的处理方法
CN209957618U (zh) 医药综合废水处理系统
CN104402166A (zh) 一种工业污水处理工艺
CN103641230B (zh) 利用铁炭-Fenton一体化反应器进行有机废水预处理的方法
CN109574387A (zh) 一种处理高浓度难降解有机废水的组合工艺方法
CN107540135A (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CA1332475C (en) Process for the treatment of effluents containing cyanide and toxic metals, using hydrogen peroxide and trimercaptotriazine
Hasan et al. Molecular and ionic-scale chemical mechanisms behind the role of nitrocyl group in the electrochemical removal of heavy metals from sludge
KR20050120011A (ko) 산화철 분말을 이용한 고농도 유기성 폐수의 처리방법 및장치
CN111847764A (zh) 一种基于臭氧催化氧化处理印染废水的方法
CN105152459A (zh) 一种再生scr脱硝催化剂废水处理工艺
CN104961272A (zh) 一种黄金行业氰化尾矿浆处理方法
CN110054363A (zh) 一种准地表ⅳ类水标准深度处理催化剂系统、处理方法及设备
CN102452762A (zh) 一种己内酰胺生产废水的处理方法
CN209493459U (zh) 一种印染废水深度处理设备
CN1286739C (zh) 含有机物与重金属的废水综合性处理方法
CN103011455A (zh) 2,4-d农药废水预处理的方法
CN110498547A (zh) 一种多段多效催化高级氧化焦化废水深度处理方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination