CN107540135A - 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺 - Google Patents

一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺 Download PDF

Info

Publication number
CN107540135A
CN107540135A CN201710966050.9A CN201710966050A CN107540135A CN 107540135 A CN107540135 A CN 107540135A CN 201710966050 A CN201710966050 A CN 201710966050A CN 107540135 A CN107540135 A CN 107540135A
Authority
CN
China
Prior art keywords
class fenton
processing
flocculation
iron
concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710966050.9A
Other languages
English (en)
Other versions
CN107540135B (zh
Inventor
陈少华
楚东原
陈明亮
冯华良
张召基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Institute of Urban Environment of CAS
Original Assignee
University of Chinese Academy of Sciences
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences, Institute of Urban Environment of CAS filed Critical University of Chinese Academy of Sciences
Priority to CN201710966050.9A priority Critical patent/CN107540135B/zh
Publication of CN107540135A publication Critical patent/CN107540135A/zh
Application granted granted Critical
Publication of CN107540135B publication Critical patent/CN107540135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供了一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺,所述组合工艺包括铁基絮凝沉淀处理、类电Fenton高级氧化和活性炭吸附处理三个过程。所述铁基絮凝沉淀处理是通过控制铁盐投加量达到絮凝适宜pH,以强化絮凝效果。所述类电Fenton高级氧化中,是利用絮凝上清液残余Fe3+作为催化剂前驱物,使其对有机物降解的效果较普通电解得到明显提升。通过设置活性炭吸附过程,其可同时高效吸附前两步处理后剩余的小分子有机物和类电Fenton过程所产生的有毒副产物,最终实现浓缩液的安全高效处理,从而有效解决水污染控制领域中垃圾渗滤液纳滤浓缩液处理难、出水毒性大的问题。

Description

一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
技术领域
本发明专利涉及水污染控制领域,特别是指一种处理垃圾渗滤液纳滤浓缩液的组合工艺。
背景技术
《生活垃圾填埋场污染控制标准》(GB16889-2008)对垃圾渗滤液的排放标准作了严格规定。为达标排放,全国大型垃圾填埋场普遍采用“膜生物反应器-纳滤-反渗透工艺(MBR-NF-RO工艺,简称全膜工艺)”,虽然可以保证尾水达标排放,但由于纳滤(NF)、反渗透(RO)仅仅起到物理过滤作用,所以在透过液达标的同时,会产生20-30%体积的膜过滤浓缩液。其中纳滤浓缩液难降解有机物及重金属含量很高,同时含有高浓度的盐分,处理难度大,成本高,是全膜法工艺遇到的最困难的问题。
目前,纳滤浓缩液常采用回灌填埋场、膜浓缩、蒸发-结晶、絮凝沉淀-高级氧化等方法进行处理。回灌填埋场不能从根本上治理污染,且易产生二次污染问题。专利CN103964609A和CN1923875A公开了一种利用膜浓缩法处理纳滤浓缩液的方法,但二者均存在能耗及运行压力高,产水率低的问题,且新产生的膜浓缩液仍需处理,从而使处理成本增加。专利CN104211245A和CN103570157A采用蒸发工艺处理,其运行操作比较方便,处理彻底,且大部分污染物形成晶体,但该工艺腐蚀结垢问题严重,且运行费用高。高级氧化方法可借助于所产生自由基的强氧化性实现有机污染物的高效去除,逐渐成为专利开发的热点。专利CN105130088B、CN104478157B和CN104478157A均采用包含絮凝沉淀-高级氧化的组合工艺处理纳滤浓缩液,但上述两步物化处理不能使纳滤浓缩液达标排放。为强化处理,前两个专利在明显降低有机负荷和提高可生化性后排入生物处理系统进一步处理,而专利CN104478157A采用两步高级氧化,即电解和臭氧氧化串联工艺进行处理,虽可强化效果,但浓缩液中腐殖酸同时会与电解过程中产生的活性氯反应生成有毒副产物,导致更强毒性。因此,开发一种用于纳滤浓缩液处理的高效且安全的组合工艺就显得很有必要。
发明内容
有鉴于此,本发明专利的目的在于提出一种安全高效地处理垃圾渗滤液纳滤浓缩液的组合工艺,该工艺能高效地去除渗滤液浓缩液中难降解有机物和重金属的污染,并明显降低有毒副产物的浓度,提高出水的安全性。
基于上述目的,本发明专利提供的一种垃圾渗滤液纳滤浓缩液处理组合工艺,本工艺包括铁基絮凝沉淀处理、类电Fenton高级氧化和活性炭吸附处理三个过程,具体包括:
(1)铁基絮凝沉淀处理:根据本发明专利的一种安全高效的渗滤液纳滤浓缩液处理组合工艺,首先向装有渗滤液纳滤浓缩液的搅拌槽中加入聚合硫酸铁、氯化铁、硝酸铁中的一种或多种铁基絮凝剂,借助Fe3+的水解反应,适量铁基絮凝剂的投加同时为絮凝反应提供了适宜的pH条件,接着辅以短暂快速搅拌使之充分反应。然后加入助凝剂聚丙烯酰胺或壳聚糖中的至少一种,并利用较长时间的慢速搅拌强化助凝效果。该絮凝过程可高效去除浓缩液中腐殖酸等有机物,同时借助于重金属与有机物的结合,实现重金属的去除。反应结束并静置后取上清液进入下一步处理过程。
(2)类电Fenton高级氧化:根据本发明专利的一种安全高效的渗滤液纳滤浓缩液处理组合工艺,类电Fenton所利用的铁基催化剂前驱物由絮凝反应上清液中剩余的溶解性Fe3+提供。溶解性Fe3+首先通过阴极的还原转化为Fe2+, 然后催化阳极氧化产生的活性氯产生•OH,进而降解有机物。本发明专利类电Fenton过程所用阳极为钌系混合金属电极,阴极为不锈钢电极,并通过调整极板数量、间距、电流密度等参数实现合适的活性氯及Fe2+产率,从而达到比直接电解更高效的COD去除效果。催化氧化过程中发生的主要反应如式(1)~(4)。
阴极:Fe3++e→Fe2+ (1)
阳极:2Cl-2e→Cl2(aq) (2)
溶液:Cl2(aq)+H2O→HClO+Cl+H+ (3)
HClO+Fe2+→Fe3++•OH+Cl (4)
(3)活性炭吸附:基于本发明专利提供的一种安全高效的渗滤液纳滤浓缩液处理组合工艺,将类电Fenton高级氧化出水泵入活性炭吸附床,吸附絮凝和高级氧化处理后剩余或新生成的小分子有机物,同时吸附类电Fenton过程中产生的有毒副产物,实现浓缩液的安全高效处理。
从上面所述可以看出,本发明专利提供的渗滤液浓缩液处理组合工艺具有如下有益效果:
1. 絮凝效率高,污泥沉降性好。本发明专利通过选择合适的絮凝剂,可实现有机物及重金属的高效去除。此外,助凝剂的投加可明显提升所产生铁泥的沉降性。
2. 节省酸碱试剂。利用Fe3+的水解反应,投加适量所选絮凝剂可获得絮凝反应所需的适宜pH,同时,絮凝出水pH值亦适于类电Fenton过程,因此可大大节省酸碱试剂。
3. 高效降解COD。絮凝前处理过程可去除大部分有机污染物,其所需设备简单,药剂成本低。借助于Fe2+的催化,第二步的类电Fenton过程电流效率明显提高,同时由于设置活性炭吸附小分子有机物,类电Fenton过程主要是降低有机物分子量,进而提高活性炭吸附效率,因此其通电时间短,耗电量低。
4. 出水安全,有毒副产物含量低。一方面,由于絮凝过程去除了大量腐殖酸物质,使得生成的有毒副产物量减少,另一方面,本发明专利同时设置活性炭吸附有毒副产物,出水安全性进一步提高。
5. 流程紧凑,各步骤之间衔接良好。第一步絮凝反应一方面主要去除腐殖酸等大分子有机物,而小分子物质可通过下面的类电Fenton和活性炭吸附过程完成去除;另一方面其上清液中剩余Fe3+可作为类电Fenton过程的催化剂前驱物,避免了催化剂的二次投加。第二步类电Fenton不但可实现有机物的直接矿化,而且可降低仍不能完全矿化有机物的分子量,提高第三步活性炭吸附的效率。第三步中活性炭可对类电Fenton过程产生的有毒副产物进行吸附,实现安全高效处理。
附图说明
下面结合附图和具体实施方式对本发明做进一步说明。
附图1是本发明专利实施例的连接示意图。
其中:1—絮凝反应槽;2—絮凝沉淀池;3—沉淀上清液储存槽;4—1#提升泵;5—类电Fenton反应槽;6—2#提升泵;7—中间水槽;8—3#提升泵;9—活性炭吸附床。
附图2是本发明专利实施例的工艺流程图。
具体实施方式
为使本发明专利的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明专利进一步详细说明。
本发明的渗滤液浓缩液处理组合工艺,主要包括铁基絮凝沉淀处理、类电Fenton高级氧化及活性炭吸附处理。如图1所示,本发明中渗滤液纳滤浓缩液首先进行铁基絮凝沉淀处理,具体地:将浓缩液泵入絮凝搅拌槽1中,然后投加0.2~15 g/L的铁基絮凝剂,并在pH1~7、搅拌速度50~500 r/min下快速搅拌2~30 min,接着向溶液中投加0.5~15 mg/L的助凝剂,并在搅拌速度20~200 r/min下缓慢搅拌2~100 min。絮凝反应后的水样进入沉淀池2中进行沉淀,沉淀所得上清液排入清液槽3中待下一步反应。利用1#提升泵4将清液槽3中絮凝上清液泵入类电Fenton反应槽5中进行类电Fenton反应,具体地:在上述适宜的絮凝反应pH条件下,上清液中剩余Fe3+占投加量的10~70%,浓度为0.5~5 mmol/L,该部分Fe3+为类电Fenton过程提供了适宜浓度的催化剂前驱物。类电Fenton过程所用阳极为钌系混合金属电极,阴极为不锈钢电极,电极片数量2-12片,厚度0.5~3 mm,间距0.5~10 cm,电流密度5~30mA/cm2。在通电反应过程中,阳极氧化Cl-不断产生活性氯,并在阴极还原产生的Fe2+的催化下产生•OH,进而进行有机物的降解。类电Fenton反应过程中,需同时利用搅拌器快速搅拌以加速传质,进而提高降解效率,适宜的搅拌速度为100~500 r/min。类电Fenton反应完成的水样由2#提升泵6泵入中间水槽7暂存。中间水槽7中水样经3#提升泵8的提升连续进入活性炭吸附床9,吸附床中活性炭填充层的水力停留时间为20~60 min。
实施例1
渗滤液纳滤浓缩液取自中国东部某老龄城市生活垃圾填埋场,其渗滤液处理采用MBR生化系统(A/O工艺)+外置式超滤(UF)+纳滤(NF)处理工艺,其所产生纳滤浓缩液色度为4000倍,COD为2450 mg/L,BOD5为100 mg/L,盐度为14000 mg/L,电导率为17690 μS/cm,重金属浓度如表1所示。首先向装有上述纳滤浓缩液的絮凝搅拌槽中加入5 mmol/L的FeCl3 .6H2O(1.35 g/L),并在200 r/min搅拌速度下快速搅拌7 min,然后向反应后的溶液中投加5 mg/L的聚丙烯酰胺,并在50 r/min搅拌速度下缓慢搅拌20 min。絮凝出水流入沉淀池沉淀铁泥后,其上清液相对于原水COD去除60%,色度去除60%,Fe3+剩余约3 mmol/L。清液槽中絮凝上清液经提升泵泵入类电Fenton反应槽中,类电Fenton反应槽中平行排列2片电极片,二者间距2 cm,通入电流密度为25 mA/cm2,搅拌速度150 r/min,反应时间100 min,其出水COD在絮凝上清液的基础上去除55%,色度去除65%,但同时产生约40 μmol/L的三卤甲烷THMs。类电Fenton出水由中间水槽连续泵入活性炭吸附床,所用活性炭吸附床高度为40 cm,上升水流速度1 cm/min,水力停留时间40 min,其出水COD在类电Fenton降解的基础上去除95%,色度去除100%,三卤甲烷THMs去除50%。总体来说,三步处理后,其出水COD约为30 mg/L,各种重金属均实现了有效去除(见表1),且澄清无色。
表1本发明实施例1中工艺处理前后重金属浓度变化(mg/L)
元素 Cr Ni As Cu Zn Se Sb Hg
处理前 737.61 877.80 246.31 75.82 530.15 19.16 64.13 7.88
处理后 110.26 178.28 12.00 29.12 388.25 12.18 25.65 0
实施例2
渗滤液纳滤浓缩液取自中国中部某城市生活垃圾填埋场,其渗滤液处理采用生物膜法+外置式超滤(UF)+纳滤(NF)处理工艺,其所产生纳滤浓缩液色度为3500倍,COD为3350 mg/L,BOD5为120 mg/L,盐度为13800 mg/L,电导率为16690 μS/cm,重金属浓度如表2所示。首先向装有上述纳滤浓缩液的絮凝搅拌槽中加入10 mmol/L的Fe(NO3)3 .9H2O(4.04 g/L),并在400 r/min搅拌速度下快速搅拌18 min,然后向反应后的溶液中投加10 mg/L的聚丙烯酰胺,并在120 r/min搅拌速度下缓慢搅拌70 min。絮凝出水流入沉淀池沉淀铁泥后,其上清液相对于原水COD去除65%,色度去除60%,Fe3+剩余约1.5 mmol/L。清液槽中絮凝上清液经提升泵泵入类电Fenton反应槽中,类电Fenton反应槽中平行排列四片单极电极,电极片两两间距5 cm,通入电流密度为15 mA/cm2,搅拌速度300 r/min,反应时间180 min,其出水COD在絮凝上清液的基础上去除50%,色度去除70%,但同时产生约50 μmol/L的三卤甲烷THMs。类电Fenton出水由中间水槽连续泵入活性炭吸附床,所用活性炭吸附床高度为60 cm,上升水流速度2 cm/min,水力停留时间30 min,其出水在类电Fenton降解的基础上去除90%,色度去除100%,三卤甲烷THMs去除60%。总体来说,三步处理后,其出水COD约为50 mg/L,各种重金属均实现了有效去除(见表2),且澄清无色。
表2本发明实施例2中工艺处理前后重金属浓度变化(μg/L)
元素 Cr Ni As Cu Zn Se Sb Hg
处理前 856.25 856.36 300.23 85.62 682.30 15.26 55.28 6.26
处理后 129.63 169.66 21.25 27.86 400.25 11.25 23.69 0.53
实施例3
渗滤液纳滤浓缩液取自中国南方某城市生活垃圾填埋场,其渗滤液处理采用中温厌氧系统+硝化/反硝化+外置式超滤(UF)+纳滤(NF)处理工艺,其所产生纳滤浓缩液色度为4500倍,COD为4200 mg/L,BOD5为160 mg/L,盐度为15000 mg/L,电导率为17500 μS/cm,重金属浓度如表3所示。首先向装有上述纳滤浓缩液的絮凝搅拌槽中加入10.00 g/L的聚合硫酸铁,并在100 r/min搅拌速度下快速搅拌10 min,然后向反应后的溶液中投加15 mg/L的壳聚糖,并在200 r/min搅拌速度下缓慢搅拌100 min。絮凝出水流入沉淀池沉淀铁泥后,其上清液相对于原水COD去除60%,色度去除65%,Fe3+剩余约4.0 mmol/L。清液槽中絮凝上清液经提升泵泵入类电Fenton反应槽中,类电Fenton反应槽中平行排列8片单极电极,电极片两两间距3 cm,通入电流密度为8 mA/cm2,搅拌速度100 r/min,反应时间60 min,其出水COD在絮凝上清液的基础上去除63%,色度去除62%,但同时产生约80 μmol/L的三卤甲烷THMs。类电Fenton出水由中间水槽连续泵入活性炭吸附床,所用活性炭吸附床高度为100 cm,上升水流速度5 cm/min,水力停留时间20 min,其出水在类电Fenton降解的基础上去除92%,色度去除100%,三卤甲烷THMs去除60%。总体来说,三步处理后,其出水COD约为50 mg/L,各种重金属均实现了有效去除(见表3),且澄清无色。
表3本发明实施例3中工艺处理前后重金属浓度变化(μg/L)
元素 Cr Ni As Cu Zn Se Sb Hg
处理前 756.25 905.63 280.36 108.58 751.26 20.89 48.95 7.26
处理后 138.29 225.38 20.56 31.89 251.29 8.76 18.95 0.33
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明专利的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本发明专利的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明专利的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明专利的保护范围之内。

Claims (5)

1.一种安全高效地处理垃圾渗滤液纳滤浓缩液的组合工艺,其特征在于,包括铁基絮凝沉淀处理、类电Fenton高级氧化和活性炭吸附三步依次的处理过程。
2.根据权利要求1所述的铁基絮凝沉淀处理过程,其特征在于,首先向装有渗滤液纳滤浓缩液的搅拌槽中加入聚合硫酸铁、氯化铁、硝酸铁中的一种或多种铁基絮凝剂,其投加量为0.2~15 g/L,反应的最适宜pH为1~7,接着在50~500 r/min搅拌速度下搅拌2~30 min以充分反应;再加入助凝剂聚丙烯酰胺或壳聚糖中的至少一种,投加量为0.5~15 mg/L,在20~200 r/min搅拌速度下搅拌2~100 min,然后静置沉淀。
3.根据权利要求1所述的类电Fenton高级氧化过程,其特征在于,类电Fenton所利用的铁基催化剂前驱物为絮凝反应上清液中剩余的溶解性Fe3+,类电Fenton过程所需Fe3+的适宜浓度为0.5~5 mmol/L。
4.根据权利要求3所述的的类电Fenton高级氧化过程,其特征在于,电解过程所用阳极为钌系混合金属电极,阴极为不锈钢电极,电极片数量2-12片,厚度0.5~3 mm,间距0.5~10cm,电流密度5~30 mA/cm2
5.根据权利要求1所述的的活性炭吸附过程,其特征在于,吸附床中活性炭填充层的水力停留时间为20~60 min。
CN201710966050.9A 2017-10-17 2017-10-17 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺 Active CN107540135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710966050.9A CN107540135B (zh) 2017-10-17 2017-10-17 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710966050.9A CN107540135B (zh) 2017-10-17 2017-10-17 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺

Publications (2)

Publication Number Publication Date
CN107540135A true CN107540135A (zh) 2018-01-05
CN107540135B CN107540135B (zh) 2020-07-07

Family

ID=60967124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710966050.9A Active CN107540135B (zh) 2017-10-17 2017-10-17 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺

Country Status (1)

Country Link
CN (1) CN107540135B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019960A (zh) * 2018-08-13 2018-12-18 常州民生环保科技有限公司 一种污染土壤的渗透水的处理方法
CN111252964A (zh) * 2020-02-18 2020-06-09 中国恩菲工程技术有限公司 高浓度cod废水的处理方法
CN111333235A (zh) * 2020-03-09 2020-06-26 广州市环境保护工程设计院有限公司 一种垃圾渗滤液处理系统和工艺
CN113087318A (zh) * 2021-05-19 2021-07-09 江苏中鹏环保集团有限公司 一种垃圾渗滤液深度处理方法
CN113479976A (zh) * 2021-07-27 2021-10-08 南京理工大学 一种集成化的废水处理装置及其应用
CN115043526A (zh) * 2022-06-24 2022-09-13 广西碧源生态科技服务有限公司 一种老龄垃圾渗滤液的处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698550A (zh) * 2009-10-30 2010-04-28 华南理工大学 一种垃圾渗滤液深度处理方法
CN104370403A (zh) * 2014-11-26 2015-02-25 武汉大学 一种垃圾渗滤液深度处理装置及方法
CN105130131A (zh) * 2015-09-25 2015-12-09 河海大学 一种填埋场垃圾渗滤液的处理系统及方法
CN105293771A (zh) * 2015-11-10 2016-02-03 南京润中生物技术有限公司 一种垃圾渗透液处理方法
CN105906142A (zh) * 2016-04-29 2016-08-31 安徽华骐环保科技股份有限公司 一种垃圾渗滤液深度处理系统及处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698550A (zh) * 2009-10-30 2010-04-28 华南理工大学 一种垃圾渗滤液深度处理方法
CN104370403A (zh) * 2014-11-26 2015-02-25 武汉大学 一种垃圾渗滤液深度处理装置及方法
CN105130131A (zh) * 2015-09-25 2015-12-09 河海大学 一种填埋场垃圾渗滤液的处理系统及方法
CN105293771A (zh) * 2015-11-10 2016-02-03 南京润中生物技术有限公司 一种垃圾渗透液处理方法
CN105906142A (zh) * 2016-04-29 2016-08-31 安徽华骐环保科技股份有限公司 一种垃圾渗滤液深度处理系统及处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔庆波: "电-Fenton法处理难降解有机废水的应用", 《资源节约与环保》 *
林恒等: "电-Fenton及类电-Fenton技术处理水中有机污染物", 《化学进展》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019960A (zh) * 2018-08-13 2018-12-18 常州民生环保科技有限公司 一种污染土壤的渗透水的处理方法
CN111252964A (zh) * 2020-02-18 2020-06-09 中国恩菲工程技术有限公司 高浓度cod废水的处理方法
CN111333235A (zh) * 2020-03-09 2020-06-26 广州市环境保护工程设计院有限公司 一种垃圾渗滤液处理系统和工艺
CN113087318A (zh) * 2021-05-19 2021-07-09 江苏中鹏环保集团有限公司 一种垃圾渗滤液深度处理方法
CN113479976A (zh) * 2021-07-27 2021-10-08 南京理工大学 一种集成化的废水处理装置及其应用
CN115043526A (zh) * 2022-06-24 2022-09-13 广西碧源生态科技服务有限公司 一种老龄垃圾渗滤液的处理方法

Also Published As

Publication number Publication date
CN107540135B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN102786183B (zh) 垃圾渗滤液的处理方法
CN107540135A (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CN104016547B (zh) 一种焦化污水深度处理零排放工艺
CN102260009B (zh) 染料废水的处理方法
CN105110570B (zh) 一种高盐高浓度有机废水的处理方法及其处理系统
US20130264197A1 (en) Nanocatalytic electrolysis and flocculation apparatus
CN102786182B (zh) 垃圾渗滤液的处理装置
US20170113957A1 (en) Systems and methods for reduction of total organic compounds in wastewater
CN205933558U (zh) 一种废水的处理装置
CN102701496A (zh) 一种用于处理高浓度难降解有机废水的方法与工艺
CN107857401B (zh) 一种垃圾渗滤液纳滤浓缩液处理组合装置
CN102120678B (zh) 基于电解和mbr技术的污水循环利用装置及其方法
CN107337301B (zh) 一种外加过氧化氢的电芬顿处理废水的方法
CN104163539A (zh) 一种煤化工废水的处理方法
CN105540947A (zh) 一种处理钻井废水的方法和系统
CN209957618U (zh) 医药综合废水处理系统
CN106800356A (zh) 一种基于生化与电解技术的污水深度处理再生利用装置
CN107935258A (zh) 一种黑臭水体的处理装置及其使用方法
CN107698037A (zh) 三维电化学偶联三维电生物深度处理垃圾渗滤液反渗透浓水的方法
CN107055937A (zh) 一种基于生化与电解技术的污水深度处理再生利用方法
CN105174633A (zh) 市政污水处理厂排放水由一级b到一级a的全面提标方法
CN105174632A (zh) 超声强化内电解耦合生物法处理船舶污水的装置及方法
CN107445392A (zh) 有机硅生产废水的高效处理方法
CN105174663A (zh) 染料废水的处理方法
CN102295389B (zh) 一种工业废水处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant