WO2015152041A1 - 金属積層材の製造方法 - Google Patents
金属積層材の製造方法 Download PDFInfo
- Publication number
- WO2015152041A1 WO2015152041A1 PCT/JP2015/059598 JP2015059598W WO2015152041A1 WO 2015152041 A1 WO2015152041 A1 WO 2015152041A1 JP 2015059598 W JP2015059598 W JP 2015059598W WO 2015152041 A1 WO2015152041 A1 WO 2015152041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- aluminum
- metal laminate
- metal
- producing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/227—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
- B23K20/2275—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer the other layer being aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/04—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/24—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/16—Composite materials, e.g. fibre reinforced
- B23K2103/166—Multilayered materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/20—Ferrous alloys and aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/24—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/30—Iron, e.g. steel
Definitions
- This invention relates to the manufacturing method of the metal laminated material which laminated
- the present invention also relates to a metal laminate obtained by this manufacturing method.
- Metal laminates (cladding materials) in which two or more metal plates are laminated have composite properties that cannot be obtained with a single material, and are therefore used in various fields.
- metal laminate for example, metal laminates using copper / nickel, copper / aluminum, and stainless steel / aluminum are known.
- stainless steel and aluminum metal laminates have both the lightness of aluminum and the strength of stainless steel, and have higher formability and thermal conductivity than stainless steel single material. Widely used.
- Patent Document 1 discloses that in a vacuum chamber, a joint surface of dissimilar metal plates is activated in advance under specific conditions, and then the dissimilar metal plates are polymerized. A method of manufacturing a clad metal plate that performs cold rolling joining is described.
- the conventional metal laminate cannot produce a metal laminate having a sufficient bonding force unless the surface adsorbate and oxide film on the surface of the metal plate to be laminated are completely removed during the production. .
- an object of the present invention is to provide a production method for efficiently producing a metal laminate having a high bonding strength.
- the present inventors left an oxide film on the surface of each joining surface of stainless steel and aluminum in the production of a metal laminate in which stainless steel and aluminum were laminated. It has been found that by performing temporary bonding in a state and then performing heat treatment at a specific temperature, it is possible to efficiently produce a metal laminate having high bonding strength and preventing the softening of stainless steel. Completed the invention. That is, the gist of the present invention is as follows.
- a method for producing a metal laminate comprising: a heat treatment at a temperature lower than a recrystallization temperature of stainless steel, and a step of thermally diffusing at least a metal element contained in the stainless steel into aluminum.
- the temporarily bonded laminated material is heat-treated at a temperature lower than the recrystallization temperature of stainless steel to thermally diffuse the metal element and aluminum contained in the stainless steel (1) or (2) Manufacturing method for metal laminates.
- FIG. 1 is a diagram showing a process for producing a metal laminate of the present invention.
- FIG. 2 is a diagram showing the results of AES analysis of the temporarily joined laminated materials of Example 1 and Comparative Example 3.
- FIG. 3 is a graph showing the peel strength before and after heat treatment of the metal laminates of Example 1 and Comparative Example 4.
- FIG. 4 is a diagram showing the relationship between the sputter etching amount and the surface adsorbate layer for stainless steel.
- FIG. 5 is a diagram showing the relationship between the sputter etching amount for aluminum and the adsorbate layer on the surface.
- the metal laminate of the present invention is a metal laminate obtained by laminating stainless steel and aluminum.
- the metal laminate of the present invention may be a laminate of stainless steel on only one side of aluminum, a laminate of stainless steel on both sides of aluminum, or a laminate of aluminum on both sides of stainless steel. .
- Stainless steel that can be used for the metal laminate of the present invention is not particularly limited, and examples thereof include plate materials such as SUS304, SUS201, SUS316, SUS316L, and SUS430.
- the thickness of these stainless steels is usually applicable as long as it is 0.01 mm or more, and is preferably 0.01 mm to 1 mm from the viewpoint of mechanical strength and workability of the obtained metal laminate. It is not limited to this range.
- the aluminum that can be used for the metal laminate of the present invention is not particularly limited, and pure aluminum or an aluminum alloy can be used.
- aluminum alloy aluminum alloys such as 1000 series, 3000 series, and 5000 series defined in JIS can be used.
- the thickness of aluminum is usually applicable if it is 0.01 mm or more, and from the viewpoint of mechanical strength and workability of the obtained metal laminate, it is preferably 0.01 mm to 1 mm. It is not limited.
- the manufacturing method of the metal laminated material of this invention is demonstrated with reference to FIG.
- the metal laminate 5 of the present invention includes (1) a step of sputter etching the joining surfaces of the stainless steel 1 and the aluminum 2 so that the oxide film 3 remains, and (2) the joining of the stainless steel 1 and the aluminum 2.
- step (1) of the method for producing a metal laminate according to the present invention sputter etching is performed so that an oxide film remains on each joining surface of stainless steel and aluminum.
- the metal laminate manufacturing method of the present invention is characterized in that the adsorbate on the surface of each joint surface of stainless steel and aluminum is completely removed by sputter etching, but the oxide film remains.
- the sputter etching process time is greatly reduced and the productivity of metal laminates is significantly reduced compared to conventional metal laminate production methods that completely remove surface adsorbates and surface oxide films by sputter etching. Can be improved.
- the sputter etching process was prepared by using stainless steel and aluminum as a long coil having a width of 100 mm to 600 mm, and the stainless steel and aluminum having a joint surface were grounded and grounded as one electrode, and were insulated and supported.
- An alternating current of 1 MHz to 50 MHz is applied to another electrode to generate a glow discharge, and the area of the electrode exposed in the plasma generated by the glow discharge is 1/3 or less of the area of the other electrode.
- the grounded electrode is in the form of a cooling roll to prevent the temperature of each conveying material from rising.
- the adsorbed material on the surface is completely removed and the oxide film on the surface is left by sputtering the surface where the stainless steel and aluminum are joined under vacuum with an inert gas.
- an inert gas argon, neon, xenon, krypton, or a mixed gas containing at least one of these can be used.
- the adsorbate on the surface can be completely removed with an etching amount of about 1 nm.
- the sputter etching process for stainless steel can be performed under vacuum, for example, with a plasma output of 100 W to 10 KW and a line speed of 1 m / min to 30 m / min.
- the degree of vacuum at this time is preferably higher in order to prevent re-adsorption on the surface, but it may be, for example, 1 ⁇ 10 ⁇ 5 Pa to 10 Pa.
- the temperature of the stainless steel is preferably kept at room temperature to 150 ° C. from the viewpoint of preventing softening.
- the stainless steel in which the oxide film remains on the surface can be obtained by setting the etching amount of the stainless steel to 1 nm to 10 nm, for example.
- the sputter etching process for aluminum can be performed under vacuum, for example, with a plasma output of 100 W to 10 KW and a line speed of 1 m / min to 30 m / min.
- the degree of vacuum at this time is preferably higher in order to prevent re-adsorbed substances on the surface, but may be 1 ⁇ 10 ⁇ 5 Pa to 10 Pa.
- the aluminum in which the oxide film on the surface remains can be obtained by setting the etching amount of aluminum to 1 nm to 10 nm.
- step (2) of the method for producing a metal laminate according to the present invention the sputter-etched stainless steel and aluminum joint surfaces are temporarily joined by roll pressure welding.
- the rolling line load of roll pressure welding for temporarily joining the joining surfaces of stainless steel and aluminum is not particularly limited, and is, for example, 0.1 to 10 tf / cm.
- the temperature at the time of temporary joining by roll pressure welding is not particularly limited, and is, for example, room temperature to 150 ° C.
- Temporary bonding by roll pressure welding should be performed in a non-oxidizing atmosphere, for example, an inert gas atmosphere such as Ar, in order to prevent the bonding strength between the two from decreasing due to re-adsorption of oxygen to the stainless steel and aluminum surfaces. Is preferred.
- a non-oxidizing atmosphere for example, an inert gas atmosphere such as Ar
- step (3) of the method for producing a metal laminate of the present invention heat treatment is performed on the temporarily joined stainless steel and aluminum laminate.
- This heat treatment needs to be performed below the recrystallization temperature of stainless steel.
- the recrystallization temperature of stainless steel is 533.85 ° C. This is to prevent the stainless steel from being softened by recrystallization.
- this heat treatment needs to be performed at a temperature at which at least the metallic element of stainless steel is thermally diffused into aluminum.
- This metal element is, for example, Fe, Cr, Ni.
- This thermal diffusion improves the bonding force.
- at least Fe element contained in the stainless steel diffuses by 8 atomic% or more at a point of 5 nm in the aluminum direction from the joining interface between the stainless steel and the aluminum laminate by the heat treatment. Thereby, the joining force of the obtained metal laminate is further improved.
- the metal element contained in the stainless steel and aluminum may be thermally diffused to each other.
- heat treatment can be performed at a temperature of 100 ° C. to 500 ° C.
- the heat treatment temperature is within this range, the metal laminate obtained by thermal diffusion has a high bonding strength and a high reinforcing material hardness, and softening of stainless steel due to recrystallization due to heating can be prevented.
- the heat treatment temperature is preferably 200 ° C. to 400 ° C. from the viewpoint of further improving the bonding strength and at the same time preventing the softening of the stainless steel.
- the heat treatment time varies depending on the temperature. For example, if it is 300 ° C., it is preferable to hold it for about 1 second (not including the temperature rise time) to about 240 minutes.
- the present invention also relates to a metal laminate obtained by the above production method.
- the metal laminate of the present invention includes a step of sputter etching the stainless steel and aluminum joining surfaces so that an oxide film remains, and the stainless steel and aluminum joining surfaces are rolled. It is obtained by a production method including a step of temporarily joining by pressure welding and a step of heat-treating the temporarily joined laminated material at a temperature of 100 ° C. to 500 ° C., preferably 200 ° C. to 400 ° C.
- Example 1 SUS304-BA (thickness 0.05 mm) was used as stainless steel, and A1050-H18 (thickness 0.18 mm) was used as aluminum.
- AES scanning Auger electron spectrometer
- the thickness of the oxide film of SUS304-BA was 10 to 15 nm
- the thickness of the oxide film of A1050-H18 was The thickness was 80 to 150 nm.
- Sputter etching was performed on SUS304-BA and A1050-H18.
- Sputter etching for SUS304-BA was performed under 0.1 Pa with a plasma output of 800 W and a line speed of 3.5 m / min, and sputter etching for A1050-H18 under 0.1 Pa with a plasma output of 2600 W, The operation was carried out at a line speed of 3.5 m / min to completely remove the adsorbate on the surfaces of SUS304-BA and A1050-H18.
- the etching amount of SUS304-BA was about 2 nm, and the etching amount of A1050-H18 was about 6 nm.
- SUS304-BA and A1050-H18 after the sputter etching treatment were temporarily joined by roll pressure welding at a rolling line load of 2 tf / cm (rolling load 0.4 MN) at room temperature to form a laminated material.
- FIG. 2 shows the results of AES analysis of the temporarily bonded laminated material of Example 1 and the temporarily bonded laminated material of Comparative Example 3 described later. 2. From FIG. 2, peaks derived from oxygen (O) were observed before and after the interface of the temporarily bonded laminated material, and it was confirmed that oxide films remained on the surfaces of SUS304-BA and A1050-H18.
- the temporarily joined laminated material was heat-treated at 240 ° C. for 30 minutes.
- the peel strength (90 °) of the obtained metal laminate was measured.
- Comparative Example 1 The same procedure as in Example 1 was performed except that the heat treatment of the temporarily bonded laminated material was not performed.
- Example 2 Example 1 was performed except that the sputter etching process was not performed.
- the oxide film and the adsorbate remained on the respective surfaces of SUS304-BA and A1050-H18.
- SUS304-BA thickness 0.05 mm
- A1050-H18 thickness 0.17 mm
- Sputter etching was performed on SUS304-BA and A1050-H18.
- Sputter etching for SUS304-BA was performed under 0.1 Pa, with a plasma output of 700 W and a sputter irradiation time on the bonding surface of 180 minutes.
- Sputter etching for A1050-H18 was performed under 0.1 Pa under plasma The output was 700 W, and the sputter irradiation time on the bonding surface was 180 minutes (the sputter etching was performed with the plate stopped without moving.
- the adsorbate and oxide film on the surface of SUS304-BA and A1050-H18 were completely removed.
- the etching amount of SUS304-BA was about 600 nm, and the etching amount of A1050-H18 was about 460 nm.
- SUS304-BA and A1050-H18 after the sputter etching treatment were temporarily joined by roll pressure welding at a rolling line load of 2 tf / cm (rolling load 0.4 MN) at room temperature to form a laminated material.
- the peel strength (90 °) of the obtained temporarily joined laminated material was measured.
- Comparative Example 4 The temporarily bonded laminated material obtained in the same manner as in Comparative Example 3 was heat-treated at 240 ° C. for 30 minutes. The peel strength of the obtained metal laminate was measured.
- Table 1 shows the peel strength of the metal laminates of Example 1 and Comparative Example 1-4.
- FIG. 3 shows the peel strength before and after heat treatment of the metal laminates of Example 1 and Comparative Example 4.
- the laminated materials before heat treatment of the metal laminated materials of Example 1 and Comparative Example 4 correspond to the laminated materials of Comparative Examples 1 and 3, respectively.
- Example 1 the peel strength of the metal laminate of Example 1 was improved by heat treatment (Example 1 and Comparative Example 1). Further, in the metal laminated material of Example 1 obtained by leaving the oxide film on the surface of SUS304-BA and A1050-H18, the comparison was obtained by completely removing the oxide film from the surface of SUS304-BA and A1050-H18. A peel strength equivalent to that of the metal laminate of Example 4 was obtained. Further, in Example 1, the sputter etching time was shortened by about 63 times compared to Comparative Example 4 (Example 1 has a line speed converted value of 5.6 ⁇ compared to 3.5 m / min in line speed). Calculated from 10 ⁇ 3 m / min). In addition, as shown in FIG.
- Example 2-6 and Comparative Examples 5 and 6 the metal laminate material of Example 1 showed a greater improvement in peel strength before and after heat treatment than the metal laminate material of Comparative Example 4.
- Example 2-6 and Comparative Examples 5 and 6 the influence of the heat treatment temperature on the temporarily joined laminated material on the peel strength and hardness of the obtained metal laminated material was examined.
- Example 2-6 and Comparative Examples 5 and 6 SUS304-BA with a thickness of 0.1 mm was used instead of SUS304-BA with a thickness of 0.05 mm, and A1050-H18 with a thickness of 0.18 mm was used. Then, using AL1050 (H24) with a thickness of 0.4 mm, sputter etching was changed from a line speed of 3.5 m / min to a line speed of 3.0 m / min, and temporary joining by roll pressure welding was performed with a rolling line load of 2 tf / min. A laminated material temporarily joined was obtained in the same manner as in Example 1 except that the rolling line load was changed from cm to about 2.8 tf / cm.
- the etching amount of SUS304-1 / 2H was 3 nm, and the etching amount of AL1050 (H24) was 5 nm.
- the obtained temporarily joined laminated material was heat-treated at a predetermined temperature for 240 minutes.
- the heat treatment temperatures in Example 2-6 and Comparative Examples 5 and 6 are shown in Table 2.
- the amount of iron (Fe), peel strength (90 °), and SUS side hardness at a 5 nm point from the joining interface of the metal laminated material into the aluminum layer were measured. The results are shown in Table 2.
- the metal laminate of Example 2-6 having a heat treatment temperature of 100 ° C. to 500 ° C. is compared with the metal laminates of Comparative Examples 5 and 6 in which the heat treatment temperature is outside this temperature range.
- the peel strength was high and the hardness was also high.
- the amount of iron (Fe) at the 5 nm point from the joining interface of the metal laminate into the aluminum layer the diffusion of iron, which is a component of stainless steel, into the aluminum layer increases as the heat treatment temperature increases within the measured range. As a result, it is presumed that the peel strength of the metal laminate was increased.
- the heat treatment temperature was in the range of 100 ° C. to 500 ° C., the higher the heat treatment temperature, the higher the peel strength.
- the amount of iron (Fe) at the 5 nm point from the bonding interface of the metal laminate material to the aluminum layer is more preferably 8 atomic% or more, and it is considered that there is an effect of improving the bonding force.
- Removal of surface adsorption layer For each of stainless steel (SUS316) and aluminum (A1050), the relationship between the sputter etching amount and the surface adsorbate layer was examined.
- FIG. 4 shows the results for stainless steel
- FIG. 5 shows the results for aluminum. 4 and 5, the surface adsorbate layer was completely removed by etching of about 1 nm in both stainless steel and aluminum.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
Abstract
Description
(1)ステンレス鋼とアルミニウムの各接合面を酸化膜が残存するようにスパッタエッチングする工程と、前記ステンレス鋼と前記アルミニウムの接合面をロール圧接により仮接合する工程と、仮接合した積層材をステンレス鋼の再結晶温度未満で熱処理して、少なくともステンレス鋼に含まれる金属元素をアルミニウムに熱拡散させる工程とを含む金属積層材の製造方法。
(2)前記熱拡散させる工程では、少なくともステンレス鋼に含まれるFe元素が、接合界面からアルミニウム方向に5nmの地点で8原子%以上拡散している(1)の金属積層材の製造方法。
(3)前記熱拡散させる工程が、仮接合した積層材をステンレス鋼の再結晶温度未満で熱処理してステンレス鋼に含まれる金属元素とアルミニウムとを相互に熱拡散させる(1)又は(2)の金属積層材の製造方法。
(4)熱処理温度が100℃~500℃である(1)~(3)のいずれかの金属積層材の製造方法。
(5)熱処理温度が200℃~400℃である(1)~(4)のいずれかの金属積層材の製造方法。
(6)ステンレス鋼の接合面の表面のエッチング量が1nm~10nmである(1)~(5)のいずれかの金属積層材の製造方法。
(7)アルミニウムの接合面の表面のエッチング量が1nm~10nmである(1)~(6)のいずれかの金属積層材の製造方法。
(8)(1)~(7)のいずれかの製造方法で得られた金属積層材。
(実施例1)
ステンレス鋼としてSUS304-BA(厚さ0.05mm)を用い、アルミニウムとしてA1050-H18(厚さ0.18mm)を用いた。SUS304-BA及びA1050-H18の表面について走査型オージェ電子分光分析装置(AES)により測定を行ったところ、SUS304-BAの酸化膜の厚さは10~15nmであり、A1050-H18の酸化膜の厚さは80~150nmであった。SUS304-BAとA1050-H18に対してスパッタエッチング処理を施した。SUS304-BAについてのスパッタエッチングは、0.1Pa下で、プラズマ出力800W、ライン速度3.5m/分にて実施し、A1050-H18についてのスパッタエッチングは、0.1Pa下で、プラズマ出力2600W、ライン速度3.5m/分にて実施し、SUS304-BA及びA1050-H18の表面の吸着物を完全に除去した。SUS304-BAのエッチング量は約2nmであり、A1050-H18のエッチング量は約6nmであった。スパッタエッチング処理後のSUS304-BAとA1050-H18を、常温で圧延線荷重2tf/cm(圧延荷重0.4MN)にてロール圧接により仮接合して積層材を形成させた。
(比較例1)
仮接合した積層材の熱処理を行わない以外は実施例1と同様にした。
(比較例2)
スパッタエッチング処理を行わない以外は実施例1と同様にした。仮接合後の積層材の界面において、SUS304-BAとA1050-H18のそれぞれの表面には酸化膜と吸着物が存在したままであった。
(比較例3)
ステンレス鋼としてSUS304-BA(厚さ0.05mm)を用い、アルミニウムとしてA1050-H18(厚さ0.17mm)を用いた。SUS304-BAとA1050-H18に対してスパッタエッチング処理を施した。SUS304-BAについてのスパッタエッチングは、0.1Pa下で、プラズマ出力を700W、接合面へのスパッタ照射時間を180分として実施し、A1050-H18についてのスパッタエッチングは、0.1Pa下で、プラズマ出力を700W、接合面へのスパッタ照射時間を180分(板は動かさずに止まった状態でスパッタエッチングを実施した。実施例1のようにラインを通しながらだと、ライン速度はライン速度5.6×10-3m/分に換算できる。)として実施し、SUS304-BA及びA1050-H18の表面の吸着物及び酸化膜を完全に除去した。SUS304-BAのエッチング量は約600nmであり、A1050-H18のエッチング量は約460nmであった。スパッタエッチング処理後のSUS304-BAとA1050-H18を常温で圧延線荷重2tf/cm(圧延荷重0.4MN)にてロール圧接により仮接合して積層材を形成させた。得られた仮接合した積層材のピール強度(90°)を測定した。
(比較例4)
比較例3と同様にして得られた仮接合した積層材を240℃で30分間熱処理した。得られた金属積層材のピール強度を測定した。
(実施例2―6及び比較例5、6)
実施例2-6及び比較例5、6において、仮接合した積層材に対する熱処理温度の、得られる金属積層材のピール強度及び硬度に対する影響を調べた。
(表面吸着層の除去)
ステンレス鋼(SUS316)及びアルミニウム(A1050)のそれぞれについて、スパッタエッチング量と表面の吸着物層についての関係を調べた。図4にステンレス鋼における結果を示し、図5にアルミニウムにおける結果を示す。図4及び図5より、ステンレス鋼及びアルミニウムのいずれにおいても、約1nm程度のエッチングで表面の吸着物層は完全に除去された。
2 アルミニウム
3 酸化膜
4 積層材
5 金属積層材
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
Claims (8)
- ステンレス鋼とアルミニウムの各接合面を酸化膜が残存するようにスパッタエッチングする工程と、
前記ステンレス鋼と前記アルミニウムの接合面をロール圧接により仮接合する工程と、
仮接合した積層材をステンレス鋼の再結晶温度未満で熱処理して、少なくともステンレス鋼に含まれる金属元素をアルミニウムに熱拡散させる工程と、
を含む金属積層材の製造方法。 - 前記熱拡散させる工程では、少なくともステンレス鋼に含まれるFe元素が、接合界面からアルミニウム方向に5nmの地点で8原子%以上拡散している請求項1の金属積層材の製造方法。
- 前記熱拡散させる工程が、仮接合した積層材をステンレス鋼の再結晶温度未満で熱処理してステンレス鋼に含まれる金属元素とアルミニウムとを相互に熱拡散させる請求項1又は2の金属積層材の製造方法。
- 熱処理温度が100℃~500℃である請求項1~3のいずれか1項の金属積層材の製造方法。
- 熱処理温度が200℃~400℃である請求項1~4のいずれか1項の金属積層材の製造方法。
- ステンレス鋼の接合面の表面のエッチング量が1nm~10nmである請求項1~5のいずれか1項の金属積層材の製造方法。
- アルミニウムの接合面の表面のエッチング量が1nm~10nmである請求項1~6のいずれか1項の金属積層材の製造方法。
- 請求項1~7のいずれか1項の製造方法で得られた金属積層材。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167025156A KR102325939B1 (ko) | 2014-04-01 | 2015-03-27 | 금속 적층재의 제조 방법 |
US15/300,874 US10259073B2 (en) | 2014-04-01 | 2015-03-27 | Method for producing metal laminate material |
EP15774429.3A EP3127648B1 (en) | 2014-04-01 | 2015-03-27 | Method for producing metal laminate material |
CN201580013990.5A CN106132625B (zh) | 2014-04-01 | 2015-03-27 | 金属层叠材料的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-075602 | 2014-04-01 | ||
JP2014075602A JP6381944B2 (ja) | 2014-04-01 | 2014-04-01 | 金属積層材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015152041A1 true WO2015152041A1 (ja) | 2015-10-08 |
Family
ID=54240367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059598 WO2015152041A1 (ja) | 2014-04-01 | 2015-03-27 | 金属積層材の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10259073B2 (ja) |
EP (1) | EP3127648B1 (ja) |
JP (1) | JP6381944B2 (ja) |
KR (1) | KR102325939B1 (ja) |
CN (1) | CN106132625B (ja) |
WO (1) | WO2015152041A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017084887A (ja) * | 2015-10-26 | 2017-05-18 | 日立オートモティブシステムズ株式会社 | 多結晶材表面の加工方法およびそれを用いて加工された多結晶材の接合方法 |
CN107755878A (zh) * | 2016-08-23 | 2018-03-06 | 张颖 | 一种制备金属层叠材料的方法 |
CN108481838A (zh) * | 2017-03-29 | 2018-09-04 | 东洋钢钣株式会社 | 电子设备用轧制接合体及电子设备用壳体 |
US11305512B2 (en) | 2017-03-29 | 2022-04-19 | Toyo Kohan Co., Ltd. | Roll-bonded laminate and method for producing the same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6543439B2 (ja) * | 2014-04-01 | 2019-07-10 | 東洋鋼鈑株式会社 | 金属積層材の製造方法 |
WO2017057665A1 (ja) * | 2015-09-30 | 2017-04-06 | 東洋鋼鈑株式会社 | 金属積層材及びその製造方法 |
KR102392479B1 (ko) * | 2017-03-14 | 2022-04-28 | 아너 디바이스 컴퍼니 리미티드 | 단말기 하우징 및 단말기 |
WO2018181721A1 (ja) * | 2017-03-29 | 2018-10-04 | 東洋鋼鈑株式会社 | 圧延接合体 |
JP6382434B1 (ja) * | 2017-07-31 | 2018-08-29 | 東洋鋼鈑株式会社 | 電子機器用圧延接合体及び電子機器用筐体 |
JP6382436B1 (ja) * | 2017-07-31 | 2018-08-29 | 東洋鋼鈑株式会社 | 電子機器用圧延接合体及び電子機器用筐体 |
WO2018181702A1 (ja) * | 2017-03-29 | 2018-10-04 | 東洋鋼鈑株式会社 | 電子機器用圧延接合体及び電子機器用筐体 |
JP6382435B1 (ja) * | 2017-06-20 | 2018-08-29 | 東洋鋼鈑株式会社 | 圧延接合体 |
WO2018181688A1 (ja) * | 2017-03-29 | 2018-10-04 | 東洋鋼鈑株式会社 | 圧延接合体 |
CN108501471B (zh) * | 2017-03-29 | 2019-08-06 | 东洋钢钣株式会社 | 电子设备用轧制接合体及电子设备用壳体 |
US10766097B2 (en) * | 2017-04-13 | 2020-09-08 | Raytheon Company | Integration of ultrasonic additive manufactured thermal structures in brazements |
JP7502642B2 (ja) | 2020-12-16 | 2024-06-19 | 日本製鉄株式会社 | クラッド材および製造方法 |
DE102021213935A1 (de) * | 2021-12-08 | 2023-06-15 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Blechpakets einer elektrischen Maschine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4815652A (en) * | 1988-02-12 | 1989-03-28 | Kvavle Robert C | Method for forming composite metal articles |
JPH02133563A (ja) * | 1988-11-14 | 1990-05-22 | Nisshin Steel Co Ltd | 高Al含有ステンレス鋼板の製造法 |
JPH0970918A (ja) * | 1995-09-04 | 1997-03-18 | Kobe Steel Ltd | フッ素加工性が優れたアルミニウム合金/ステンレス鋼クラッド材及びその製造方法 |
JP2004306458A (ja) * | 2003-04-08 | 2004-11-04 | Toyo Kohan Co Ltd | 硬軟積層材および硬軟積層材を用いた部品 |
JP2005074913A (ja) * | 2003-09-02 | 2005-03-24 | Toyo Kohan Co Ltd | 軽重積層材の製造方法および軽重積層材を用いた部品の製造方法 |
JP2006159797A (ja) * | 2004-12-10 | 2006-06-22 | Toyo Kohan Co Ltd | 空洞構造形成体、および空洞構造形成体に用いる空洞構造形成材と、空洞構造形成材に用いる積層材、並びに空洞構造体を用いた部品 |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2809422A (en) * | 1954-05-21 | 1957-10-15 | Gen Motors Corp | Method of making a composite article |
US3210840A (en) * | 1961-08-08 | 1965-10-12 | Composite Metal Products Inc | Stainless steel clad aluminum and methods of making same |
US3295197A (en) * | 1964-05-14 | 1967-01-03 | Revere Copper & Brass Inc | Stainless steel clad with aluminum |
US3386161A (en) * | 1965-06-24 | 1968-06-04 | Gen Motors Corp | Method of making bearing material |
US3261724A (en) * | 1965-06-28 | 1966-07-19 | Composite Metal Products Inc | Stainless steel clad aluminum and methods of making same |
US3620880A (en) * | 1969-04-07 | 1971-11-16 | Jerome H Lemelson | Apparatus and method for producing composite materials |
US4046304A (en) * | 1973-09-12 | 1977-09-06 | Teikoku Piston Ring Co., Ltd. | Process for producing metal composite material |
DE2909418C3 (de) * | 1978-03-10 | 1982-04-08 | Furukawa Aluminium Co., Ltd., Tokyo | Verfahren zur Herstellung von mit Aluminium oder Aluminiumlegierungen plattiertem Stahlblech |
US4245768A (en) * | 1978-07-28 | 1981-01-20 | The Unites States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of cold welding using ion beam technology |
DE3211943A1 (de) * | 1982-03-31 | 1983-10-13 | Sundwiger Eisenhütte Maschinenfabrik Grah & Co, 5870 Hemer | Verfahren und vorrichtung zum walzplattieren von baendern |
US4452389A (en) * | 1982-04-05 | 1984-06-05 | The Bendix Corporation | Method for welding with the help of ion implantation |
DE3327657A1 (de) * | 1983-07-30 | 1985-02-07 | Kolbenschmidt AG, 7107 Neckarsulm | Verfahren zur herstellung von aluminium-verbundwerkstoffen |
JPS6156786A (ja) * | 1984-08-24 | 1986-03-22 | Hitachi Zosen Corp | ステンレス鋼とアルミ青銅の拡散接合法 |
JPS61286078A (ja) * | 1985-06-13 | 1986-12-16 | Mitsubishi Electric Corp | クラツド材の製造方法 |
US4699309A (en) * | 1986-05-29 | 1987-10-13 | Kawasaki Jukogyo Kabushiki Kaisha | Method of bonding dissimilar materials |
JPS63194880A (ja) * | 1987-02-09 | 1988-08-12 | Nippon Steel Corp | ステンレスクラツドアルミ帯板の製造法 |
JPH0755384B2 (ja) | 1988-03-02 | 1995-06-14 | 東洋鋼板株式会社 | クラッド金属板の製造法及びその装置 |
JPH02220788A (ja) * | 1989-02-23 | 1990-09-03 | Kawasaki Steel Corp | ステンレス鋼―アルミニウムクラッド材の製造方法 |
JPH038587A (ja) * | 1989-03-11 | 1991-01-16 | Sumitomo Metal Ind Ltd | ステンレス鋼―Al合金クラッド材の製造法 |
US4896813A (en) * | 1989-04-03 | 1990-01-30 | Toyo Kohan Co., Ltd. | Method and apparatus for cold rolling clad sheet |
JPH0323087A (ja) * | 1989-06-21 | 1991-01-31 | Sumitomo Metal Ind Ltd | アルミニウム被覆鋼板の製造方法 |
JP2903658B2 (ja) * | 1989-07-19 | 1999-06-07 | 住友電気工業株式会社 | 弗素樹脂被覆物 |
JPH0686024B2 (ja) * | 1990-03-07 | 1994-11-02 | 株式会社神戸製鋼所 | アルミニウムクラッド鋼板の製造方法 |
JPH0433783A (ja) * | 1990-05-28 | 1992-02-05 | Kobe Steel Ltd | せん断強度の優れたアルミクラッド鋼板の製造方法 |
JP2543430B2 (ja) * | 1990-06-08 | 1996-10-16 | 東洋鋼板株式会社 | アルミニウム積層鋼板の製造法 |
GB9208223D0 (en) * | 1992-04-14 | 1992-06-03 | British Aerospace | Diffusion bonding of aluminium and aluminium alloys |
JPH07223081A (ja) * | 1994-02-10 | 1995-08-22 | Kobe Steel Ltd | 深絞り性に優れた成形加工用クラッド板およびその製造方法 |
JPH11319970A (ja) * | 1998-05-21 | 1999-11-24 | Nisshin Steel Co Ltd | 深絞り成形性に優れたフェライト系ステンレス鋼/アルミニウムクラッド板 |
KR100376555B1 (ko) * | 2001-05-28 | 2003-03-17 | 배동현 | 스테인레스-알루미늄의 3중 클래드판 제조 방법 |
JP4181063B2 (ja) * | 2004-02-17 | 2008-11-12 | 日産自動車株式会社 | 異種金属薄板の液相拡散接合方法 |
JP4555160B2 (ja) * | 2005-06-01 | 2010-09-29 | 株式会社神戸製鋼所 | アルミニウム材との異材溶接接合用鋼板および異材接合体 |
EP1987904B1 (en) * | 2006-02-23 | 2015-08-12 | Kabushiki Kaisha Kobe Seiko Sho | Joint product between steel product and aluminum material |
TW200901869A (en) * | 2007-06-21 | 2009-01-01 | Metal Ind Res & Dev Ct | Electronic casing and method of manufacturing the same |
JP2009061500A (ja) * | 2007-08-10 | 2009-03-26 | Nissan Motor Co Ltd | 異種金属接合部材及び異種金属接合方法 |
JP2009082934A (ja) * | 2007-09-28 | 2009-04-23 | Honda Motor Co Ltd | 異種材接合方法 |
KR101238087B1 (ko) * | 2008-06-13 | 2013-02-27 | 가부시키가이샤 고베 세이코쇼 | 이재 접합용 강재, 이재 접합체 및 이재 접합 방법 |
JP5517196B2 (ja) * | 2009-11-20 | 2014-06-11 | 東洋鋼鈑株式会社 | 超電導化合物用基板及びその製造方法 |
US9644865B2 (en) * | 2010-03-23 | 2017-05-09 | Solarreserve Technology, Llc | Thermal shield for solar receiver |
US9266189B2 (en) * | 2013-01-11 | 2016-02-23 | GM Global Technology Operations LLC | Structure, method of making a structure, and method of reducing galvanic corrosion |
JP6543439B2 (ja) * | 2014-04-01 | 2019-07-10 | 東洋鋼鈑株式会社 | 金属積層材の製造方法 |
-
2014
- 2014-04-01 JP JP2014075602A patent/JP6381944B2/ja active Active
-
2015
- 2015-03-27 WO PCT/JP2015/059598 patent/WO2015152041A1/ja active Application Filing
- 2015-03-27 KR KR1020167025156A patent/KR102325939B1/ko active IP Right Grant
- 2015-03-27 EP EP15774429.3A patent/EP3127648B1/en active Active
- 2015-03-27 CN CN201580013990.5A patent/CN106132625B/zh active Active
- 2015-03-27 US US15/300,874 patent/US10259073B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4815652A (en) * | 1988-02-12 | 1989-03-28 | Kvavle Robert C | Method for forming composite metal articles |
JPH02133563A (ja) * | 1988-11-14 | 1990-05-22 | Nisshin Steel Co Ltd | 高Al含有ステンレス鋼板の製造法 |
JPH0970918A (ja) * | 1995-09-04 | 1997-03-18 | Kobe Steel Ltd | フッ素加工性が優れたアルミニウム合金/ステンレス鋼クラッド材及びその製造方法 |
JP2004306458A (ja) * | 2003-04-08 | 2004-11-04 | Toyo Kohan Co Ltd | 硬軟積層材および硬軟積層材を用いた部品 |
JP2005074913A (ja) * | 2003-09-02 | 2005-03-24 | Toyo Kohan Co Ltd | 軽重積層材の製造方法および軽重積層材を用いた部品の製造方法 |
JP2006159797A (ja) * | 2004-12-10 | 2006-06-22 | Toyo Kohan Co Ltd | 空洞構造形成体、および空洞構造形成体に用いる空洞構造形成材と、空洞構造形成材に用いる積層材、並びに空洞構造体を用いた部品 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017084887A (ja) * | 2015-10-26 | 2017-05-18 | 日立オートモティブシステムズ株式会社 | 多結晶材表面の加工方法およびそれを用いて加工された多結晶材の接合方法 |
CN107755878A (zh) * | 2016-08-23 | 2018-03-06 | 张颖 | 一种制备金属层叠材料的方法 |
CN108481838A (zh) * | 2017-03-29 | 2018-09-04 | 东洋钢钣株式会社 | 电子设备用轧制接合体及电子设备用壳体 |
US11305512B2 (en) | 2017-03-29 | 2022-04-19 | Toyo Kohan Co., Ltd. | Roll-bonded laminate and method for producing the same |
US11691386B2 (en) | 2017-03-29 | 2023-07-04 | Toyo Kohan Co., Ltd. | Roll-bonded laminate and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
EP3127648B1 (en) | 2020-08-19 |
US10259073B2 (en) | 2019-04-16 |
JP6381944B2 (ja) | 2018-08-29 |
KR20160138957A (ko) | 2016-12-06 |
CN106132625B (zh) | 2019-05-14 |
JP2015196179A (ja) | 2015-11-09 |
CN106132625A (zh) | 2016-11-16 |
US20170014941A1 (en) | 2017-01-19 |
EP3127648A4 (en) | 2017-11-22 |
KR102325939B1 (ko) | 2021-11-12 |
EP3127648A1 (en) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6381944B2 (ja) | 金属積層材の製造方法 | |
WO2015152040A1 (ja) | 金属積層材の製造方法 | |
JP6865172B2 (ja) | 金属積層材及びその製造方法 | |
WO2017057698A1 (ja) | 金属積層材及びその製造方法 | |
JP2010094683A (ja) | アルミニウム合金の拡散接合法 | |
JP7375131B2 (ja) | 圧延接合体及び圧延接合体の製造方法 | |
JP6637200B2 (ja) | 圧延接合体及びその製造方法 | |
KR20170018569A (ko) | 티타늄- 금속 클래드재의 제조방법 | |
JP7162960B2 (ja) | 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材 | |
WO2020031956A1 (ja) | 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材 | |
JP6863332B2 (ja) | クラッド鋼板の製造方法およびクラッド鋼板の製造設備 | |
KR101506891B1 (ko) | 알루미늄-마그네슘-알루미늄 하이브리드 판재 및 이의 제조 방법 | |
JP6478822B2 (ja) | 極厚ステンレス鋼板およびその製造方法 | |
JPH071161A (ja) | 複合金属板の製法 | |
RU2537407C2 (ru) | Способ изготовления диффузионной сваркой стоистой тонкостенной конструкции из титановых листовых материалов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15774429 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167025156 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15300874 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015774429 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015774429 Country of ref document: EP |