WO2017057665A1 - 金属積層材及びその製造方法 - Google Patents

金属積層材及びその製造方法 Download PDF

Info

Publication number
WO2017057665A1
WO2017057665A1 PCT/JP2016/078988 JP2016078988W WO2017057665A1 WO 2017057665 A1 WO2017057665 A1 WO 2017057665A1 JP 2016078988 W JP2016078988 W JP 2016078988W WO 2017057665 A1 WO2017057665 A1 WO 2017057665A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
layer
aluminum
metal laminate
foil
Prior art date
Application number
PCT/JP2016/078988
Other languages
English (en)
French (fr)
Inventor
南部 光司
哲平 黒川
貴史 神代
岡山 浩直
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to US15/764,381 priority Critical patent/US10864596B2/en
Priority to JP2017543608A priority patent/JP6865172B2/ja
Priority to CN201680056569.7A priority patent/CN108136729B/zh
Priority to KR1020187007716A priority patent/KR20180059437A/ko
Publication of WO2017057665A1 publication Critical patent/WO2017057665A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the present invention relates to a metal laminate and a manufacturing method thereof.
  • Metal materials are used in various fields, for example, heat dissipation members for electronic devices such as mobile electronic devices.
  • the metal material used for the heat radiating member is required to have light weight, high strength, high heat radiating property, and moldability.
  • a metal material at present, a high-strength aluminum material or a laminated material obtained by laminating stainless steel and a carbon sheet is widely used.
  • a high-strength aluminum material is lightweight and has excellent heat dissipation, but has poor moldability.
  • a laminated material of stainless steel and a carbon sheet is excellent in moldability, the carbon sheet is extremely expensive, and heat dissipation is inferior as compared with an aluminum material.
  • a metal laminate (cladding material) obtained by laminating two or more metal plates or metal foils has been studied.
  • a metal laminate of stainless steel and aluminum has been studied.
  • the metal laminate material of stainless steel and aluminum is excellent in that it has characteristics of both lightness and heat dissipation of aluminum and moldability of stainless steel.
  • Patent Documents 1 to 3 are known as metal laminates of stainless steel and aluminum.
  • Patent Document 1 in a hard / soft laminate formed by laminating a hard layer and a soft layer, at least one joint surface of the hard / soft laminate is in contact with each other by activating the respective surfaces to be joined.
  • the hard and soft laminates are characterized by being laminated and bonded, and the hard layer is made of a stainless steel layer and the soft layer is made of an aluminum layer.
  • Patent Document 2 describes a heat sink material for an electronic device having a three-layer clad structure characterized in that an outer layer material is an aluminum material and a core material is made of stainless steel.
  • Patent Document 3 discloses a clad material in which a hard aluminum plate made of an Al-based metal containing Al as a main component is bonded to one surface of a stainless steel plate, and the hardness of the stainless steel plate is Hv400 or less, while the hard steel plate An aluminum / stainless steel clad material is described in which the hardness of the aluminum plate is Hv40 or higher and the bonding strength between the stainless steel plate and the hard aluminum plate is 0.3 kgf / cm or higher.
  • the metal laminate material of stainless steel and aluminum is manufactured by cold rolling, the stainless steel and aluminum become hard due to work hardening, and the moldability deteriorates.
  • the work-hardened aluminum can be softened by heat treatment and recrystallization.
  • the recrystallization temperature of stainless steel is higher than the melting point of aluminum, recrystallization of stainless steel is difficult.
  • heat treatment is performed in a possible temperature range, aluminum is melted. For this reason, it is not possible to recrystallize both work-hardened stainless steel and aluminum after production in a metal laminate made of stainless steel and aluminum produced by cold rolling, and to obtain a material having sufficient formability.
  • the metal laminate can have some formability even if the hardness of the stainless steel increases, but the thickness of the metal laminate is, for example, 500 ⁇ m If it is thin as follows, the moldability will be low.
  • JP 2004-306458 A Japanese Patent Laying-Open No. 2015-62922 JP 2000-312979 A
  • the metal laminate As described above, in the case of a metal laminate of stainless steel and aluminum, when the thickness is thin, the metal laminate has both the characteristics of stainless excellent in moldability and the characteristics of aluminum excellent in heat dissipation and light weight, and has sufficient strength. It was difficult to get.
  • an object of the present invention is to provide a metal laminate having both sufficient moldability, light weight and heat dissipation and sufficient strength.
  • the present inventors have found that in a metal laminate of stainless steel and aluminum, a metal laminate material having specific mechanical properties is formed by a processability, a heat dissipation property and a light weight. And found that it has sufficient strength, and completed the invention. That is, the gist of the present invention is as follows.
  • TS tensile strength
  • the average crystal grain size of the stainless steel layer is 1.5 ⁇ m to 10 ⁇ m, and the number of shear bands crossing a straight line having a length of 10 ⁇ m along the sample coordinate system ND in the cross-sectional observation image from the sample coordinate system TD is 5
  • the metal laminate material according to (1) or (2), which is less than (4) A method for producing a metal laminate having a stainless steel layer / aluminum layer two-layer structure according to any one of (1) to (3) above, wherein a stainless steel foil having a surface hardness Hv of 300 or less is sputtered.
  • An etching step a step of sputter etching an aluminum foil having a surface hardness Hv of 20 or more, a pressure contact of the stainless steel foil and the sputter-etched surface of the aluminum foil at a rolling reduction of 10% or less, and a stainless steel layer / aluminum layer And a step of obtaining a metal laminate having a two-layer structure.
  • the step of sputter etching and the reduction ratio of the sputter-etched surface of the two-layer material and the second stainless steel foil are 10 Pressed below, and a step of obtaining a metal laminate having a three-layer structure of the first stainless steel layer / aluminum layer / second stainless steel layer, the manufacturing method of the metal laminate.
  • 6 is a graph showing the relationship between the surface hardness and the overhang height in the metal laminates obtained in Examples 4 to 5 and Comparative Example 3.
  • 6 is a graph showing the relationship between the tensile strength and the overhang height in the metal laminates obtained in Examples 4 to 5 and Comparative Example 3.
  • 6 is a graph showing the relationship between elongation and overhang height in metal laminates obtained in Examples 4 to 5 and Comparative Example 3. It is a cross-sectional observation image of the scanning electron microscope (SEM) used for calculation of an average crystal grain diameter.
  • SEM scanning electron microscope
  • FIG. 10A shows the stainless steel foil 2 alone, and FIG. 10B shows the stainless steel layer of the metal laminate (Example 2-2) after joining and heat treatment. It is a cross-sectional observation image of the scanning electron microscope (SEM) used for evaluation of a shear zone.
  • FIG. 11A shows the stainless steel foil 1 alone, and FIG. 11B shows the stainless steel layer of the metal laminate (Example 1-2) after joining and heat treatment. It is a cross-sectional observation image of the scanning electron microscope (SEM) used for evaluation of a shear zone.
  • FIG. 12A shows the stainless steel foil 3 alone, and FIG. 12B shows the stainless steel layer of the metal laminate (Comparative Example 1-2) after joining and heat treatment.
  • the metal laminate of the present invention is a metal laminate having a stainless steel layer and an aluminum layer in which stainless steel and aluminum are laminated.
  • the metal laminate of the present invention is a metal laminate having a two-layer structure of stainless steel layer / aluminum layer (two-layer material) in which stainless steel is laminated only on one surface of aluminum, or stainless steel is laminated on both surfaces of aluminum.
  • This is a metal laminate (three-layer material) having a three-layer structure of first stainless steel layer / aluminum layer / second stainless steel layer.
  • the three-layer material of the present invention in which stainless steel is laminated on both surfaces of aluminum is superior in molding processability and corrosion resistance as compared with the three-layer material in which aluminum is laminated on both surfaces of stainless steel.
  • the two-layer material of the present invention Since the two-layer material of the present invention has an aluminum surface, it is excellent in heat dissipation compared with a three-layer material having the same thickness and thickness ratio. In addition, the two-layer material of the present invention is advantageous in terms of productivity and cost because it has fewer manufacturing steps than the three-layer material.
  • the three-layer material of the present invention is excellent in scratch resistance and corrosion resistance because both surfaces of the laminated material are stainless steel layers.
  • a two-layer material or a three-layer material can be selected according to the use of the metal laminate material and the intended characteristics. I. Material Stainless steel used in the metal laminate of the present invention is not particularly limited, and examples thereof include stainless steel foils such as SUS304, SUS201, SUS316, SUS316L, and SUS430.
  • the thickness of the stainless steel used for the metal laminate of the present invention is not particularly limited, but is usually 5 ⁇ m to 400 ⁇ m, the lower limit is preferably 10 ⁇ m or more, and when the surface hardness Hv of the stainless steel is 249 or less, From the viewpoint of handling, 20 ⁇ m or more is more preferable, and the upper limit is preferably less than 300 ⁇ m, more preferably less than 210 ⁇ m. The thicker the stainless steel used, the higher the tensile strength, elongation and moldability of the metal laminate.
  • the surface hardness Hv of the stainless steel used for the metal laminate of the present invention is preferably 300 or less, more preferably 280 or less from the viewpoint of good moldability and handling, and more moldability is required. 249 or less is particularly preferable. It should be noted that when pressed against aluminum, processing strain is introduced into the stainless steel, and the surface hardness Hv usually increases. However, the surface hardness Hv of the stainless steel before joining and the surface hardness Hv of the stainless steel layer after joining with aluminum. The difference is preferably within 100, more preferably within 80, and even more preferably within 50. If the hardness difference exceeds 100, the processing strain of the stainless steel layer is too large and the molding processability deteriorates, which is not preferable. In the present invention, the surface hardness Hv can be measured according to JIS Z 2244 (Vickers hardness test-test method) using, for example, a micro Vickers hardness meter (load 100 gf).
  • the stainless steel used in the metal laminate of the present invention has an average crystal grain size defined below of 1.5 ⁇ m to 10 ⁇ m, and the number of shear bands crossing a straight line having a length of 10 ⁇ m along the sample coordinate system ND is 5. It is preferable that it is less than.
  • the average crystal grain size and the number of shear bands are measured by the same method as in the case of the following metal laminate.
  • the tensile strength TS (MPa) is 200 ⁇ TS ⁇ 550 and the elongation EL is 15% or more by controlling the rolling reduction within the following specific range in the production of the metal laminate.
  • TS tensile strength
  • the elongation EL is 15% or more by controlling the rolling reduction within the following specific range in the production of the metal laminate.
  • the aluminum used in the metal laminate of the present invention is not particularly limited, and a pure aluminum or aluminum alloy foil can be used.
  • aluminum alloy aluminum alloys such as 1000 series, 3000 series and 5000 series defined in JIS can be used.
  • the thickness of the aluminum used for the metal laminate of the present invention is not particularly limited, and is usually 10 ⁇ m to 490 ⁇ m, the lower limit is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and the upper limit is preferably 470 ⁇ m or less. Preferably it is 450 micrometers or less.
  • the surface hardness Hv of aluminum used in the metal laminate of the present invention is not particularly limited, and for example, the lower limit is 20 or more, and from the viewpoint of handling and scratch resistance, it is preferably 40 or more, and the upper limit is 150. Hereinafter, it is preferably 100 or less. II. As shown in FIG. 1, the two-layer material 1 of the present invention has a two-layer structure of a stainless steel layer 21 / aluminum layer 10 in which a stainless steel layer 21 is bonded to only one surface of an aluminum layer 10.
  • the three-layer material 2 of the present invention includes a first stainless steel layer 21 / aluminum layer 10 / second material in which a first stainless steel layer 21 and a second stainless steel layer 22 are joined to both surfaces of an aluminum layer 10.
  • the stainless steel layer 22 has a three-layer structure.
  • the thickness of the metal laminate of the present invention is not particularly limited, but is usually 50 ⁇ m to 500 ⁇ m, preferably 50 ⁇ m to 400 ⁇ m, more preferably 50 ⁇ m or more and less than 300 ⁇ m, and particularly preferably 50 ⁇ m to 200 ⁇ m.
  • the thickness of the metal laminated material means the total thickness of the stainless steel layer and the aluminum layer in the case of the two-layer material, and in the case of the three-layer material, the thickness of the first stainless steel layer, the aluminum layer and the second stainless steel layer. Refers to the total thickness.
  • the metal laminate of the present invention has a surprising effect that it has good moldability even if it is thin.
  • the ratio of the aluminum layer thickness to the stainless steel layer thickness is, for example, 0.1 to 100, preferably 0.3 to 50. is there.
  • the ratio of the thickness of the aluminum layer to the thickness of the stainless steel layer is within the above range, the strength is sufficient while the weight is low, the moldability and the adhesion between the aluminum layer and the stainless steel layer. Can have.
  • the metal laminate of the present invention has a tensile strength TS (MPa) of 200 ⁇ TS ⁇ 550, and preferably 200 ⁇ TS ⁇ 500 from the viewpoint that the metal laminate has good strength and moldability.
  • TS tensile strength
  • the tensile strength TS can be measured according to JIS Z 2241 (metal material tensile test method) using, for example, Autograph AGS-5kNX (manufactured by Shimadzu Corporation).
  • the metal laminate of the present invention has an elongation EL of 15% or more, and preferably 25% or more, more preferably 30% or more from the viewpoint of good moldability.
  • the elongation EL can be measured using, for example, a test piece of a tensile strength test in accordance with the measurement of elongation at break described in JIS Z 2241.
  • the surface hardness Hv of the stainless steel layer is 300 or less, and preferably 280 or less from the viewpoint of good moldability.
  • the metal laminated material of the present invention is a three-layer material, both the first stainless steel layer and the second stainless steel layer have the surface hardness Hv. If the surface hardness Hv of the stainless steel layer is 280 or less, the metal laminate material has a higher formability because it is less affected by solid solution elements, precipitates and processing strain that cause the surface hardness to be higher. The molding processability is not likely to be insufficient.
  • the metal laminate of the present invention has good moldability by having the mechanical properties such as tensile strength, elongation and surface hardness of the stainless steel layer.
  • the metal laminate material of the present invention has an overhang height (Ericsen value) of 4.6 mm or more, preferably 5.0 mm or more, more preferably 6.0 mm or more as measured by the Eriksen test. Has moldability.
  • the overhang height by the Eriksen test should be measured according to JIS Z 2247 (Eriksen test method) using, for example, a mechanical Erichsen tester ESM-1 (CAP 2 mm, manufactured by Tokyo Henki Tester Co., Ltd.). Can do.
  • the metal laminate according to the present invention has the above-described mechanical properties such as tensile strength, elongation, and surface hardness of the stainless steel layer even when the thickness of the metal laminate is thin (for example, 50 ⁇ m to 500 ⁇ m). It has a surprising effect of having sex.
  • the average crystal grain size of the stainless steel layer is 1.5 ⁇ m to 10 ⁇ m, and in the cross-sectional observation image from the sample coordinate system TD (Transverse Direction), the sample coordinate system ND (Normal Direction) It is preferred that the number of shear bands across a straight line with a length of 10 ⁇ m along is less than 5. Thereby, high moldability can be obtained.
  • the average crystal grain size is more preferably 1.5 ⁇ m to 8.0 ⁇ m, particularly preferably 2.0 ⁇ m to 6.0 ⁇ m. Further, the number of shear bands crossing a straight line having a length of 10 ⁇ m is more preferably 3 or less, still more preferably 1 or less, and particularly preferably 0.
  • the average crystal grain size was measured for one crystal grain by arbitrarily selecting 30 crystal grains in a cross-sectional observation image by a scanning electron microscope (SEM) from the sample coordinate system TD of the metal laminate.
  • SEM scanning electron microscope
  • the average value of the major axis and the minor axis is defined as the grain size of the crystal grain, it means the average grain size of the 30 crystal grains.
  • the number of shear bands to be traversed is a straight line having a length of 10 ⁇ m along the thickness direction of the metal laminate (sample coordinate system ND) in the cross-sectional observation image by SEM from the sample coordinate system TD of the metal laminate. Is a value obtained by averaging the number of shear bands crossing one straight line with respect to 10 straight lines.
  • RD Rolling Direction
  • TD Transverse Direction
  • ND Normal Direction
  • the two-layer material of the present invention is a step of sputter etching a stainless steel foil having a surface hardness Hv of 300 or less (step 1) and a step of sputter etching an aluminum foil having a surface hardness Hv of 20 or more.
  • Step 2 and the step of pressing the sputter-etched surfaces of the stainless steel foil and the aluminum foil at a rolling reduction of 10% or less to obtain a metal laminate having a stainless steel layer / aluminum layer two-layer structure (Step 3), It can manufacture by the method containing.
  • Steps 1 and 2 of the method for producing a two-layer material of the present invention the joining surfaces of the stainless steel foil and the aluminum foil are sputter etched.
  • stainless steel foil and aluminum foil are prepared as long coils having a width of 100 mm to 600 mm, and the stainless steel foil and aluminum foil each having a bonding surface are grounded and grounded as one electrode, and are insulated and supported.
  • a glow discharge is generated by applying an alternating current of 1 MHz to 50 MHz to the other electrode formed, and the area of the electrode exposed in the plasma generated by the glow discharge is reduced to 1 / of the area of the other electrode. 3 or less.
  • the grounded electrode is in the form of a cooling roll to prevent the temperature of each conveying material from rising.
  • the surface where the stainless steel foil and the aluminum foil are joined is sputtered with an inert gas under vacuum to completely remove the adsorbed material on the surface and remove part or all of the oxide film on the surface.
  • the oxide film does not necessarily need to be completely removed, and a sufficient bonding force can be obtained even if it remains partially.
  • the inert gas argon, neon, xenon, krypton, or a mixed gas containing at least one of these can be used.
  • the adsorbate on the surface can be completely removed with an etching amount of about 1 nm.
  • the sputter etching process for the stainless steel foil can be performed under vacuum, for example, with a plasma output of 100 W to 10 KW and a line speed of 1 m / min to 30 m / min.
  • the degree of vacuum at this time is preferably higher in order to prevent re-adsorption on the surface, but it may be, for example, 1 ⁇ 10 ⁇ 5 Pa to 10 Pa.
  • the temperature of the stainless steel foil is preferably maintained at room temperature to 150 ° C. from the viewpoint of preventing the aluminum foil from being softened.
  • the stainless steel foil in which a part of the oxide film remains on the surface can be obtained by setting the etching amount of the stainless steel foil to 1 nm to 10 nm, for example. If necessary, the etching amount may exceed 10 nm.
  • the sputter etching process for the aluminum foil can be performed under vacuum, for example, with a plasma output of 100 W to 10 KW and a line speed of 1 m / min to 30 m / min.
  • the degree of vacuum at this time is preferably higher in order to prevent re-adsorbed substances on the surface, but may be 1 ⁇ 10 ⁇ 5 Pa to 10 Pa.
  • aluminum in which a part of the surface oxide film remains can be obtained by setting the etching amount of aluminum to, for example, 1 nm to 10 nm. If necessary, the etching amount may exceed 10 nm.
  • step 3 of the method for producing a two-layer material of the present invention the surface of the stainless steel foil that has been sputter-etched and the surface of the aluminum foil that has been sputter-etched are pressed at a rolling reduction of 10% or less, for example, by roll pressure welding.
  • Join foil and aluminum foil Join foil and aluminum foil.
  • the rolling line load for roll pressure welding is not particularly limited, and can be set to, for example, 0.1 to 10 tf / cm.
  • the temperature at the time of joining by roll pressure welding is not particularly limited, and is, for example, room temperature to 150 ° C.
  • the rolling reduction when pressing the stainless steel foil and the aluminum foil is 10% or less, preferably 3% or less.
  • the rolling reduction is 10% or less, it is possible to avoid a large amount of processing strain from entering the stainless steel layer and the aluminum layer, and the moldability of the resulting metal laminate is improved.
  • the rolling reduction is 10% or less, it is possible to avoid a decrease in molding processability due to an increase in the number of shear bands in the stainless steel layer.
  • the lower limit value of the rolling reduction is 0%.
  • Bonding by roll pressure welding should be performed in a non-oxidizing atmosphere, for example, an inert gas atmosphere such as Ar, in order to prevent the bonding strength between the stainless steel foil and aluminum foil from re-adsorbing to the surface due to oxygen re-adsorption. Is preferred.
  • a non-oxidizing atmosphere for example, an inert gas atmosphere such as Ar
  • the three-layer material of the present invention is a step of performing sputter etching on the surface of the aluminum layer of the two-layer material obtained by the above-described manufacturing method (step 4) and the second stainless steel foil having a surface hardness Hv of 300 or less by sputter etching.
  • the step (step 5) and the sputter-etched surface of the two-layer material and the second stainless steel foil are brought into pressure contact with a reduction ratio of 10% or less to have a three-layer structure of first stainless steel layer / aluminum layer / second stainless steel layer. It can manufacture by the method including the process (process 6) of obtaining a metal laminated material.
  • the first stainless foil having a surface hardness Hv of 300 or less is sputter-etched (step 1), and the aluminum foil having a surface hardness Hv of 20 or more is sputter-etched.
  • a step (step 2) a step of pressing the sputter-etched surfaces of the first stainless steel foil and the aluminum foil at a rolling reduction of 10% or less to obtain a first stainless steel layer / aluminum layer two-layer material (step 3); , A step of sputter-etching the surface of the aluminum layer of the two-layer material (step 4), a step of sputter-etching a second stainless steel foil having a surface hardness Hv of 300 or less (step 5), the two-layer material and the The sputter-etched surface of the second stainless steel foil is pressed with a reduction ratio of 10% or less, and the first stainless steel layer / aluminum layer / second steel layer is pressed. It can be prepared by a method comprising a step (step 6) to obtain a metal laminate having a three-layered structure of less layers.
  • step 4 and step 5 of the method for manufacturing a three-layer material of the present invention the surface of the aluminum layer of the two-layer material and each joint surface of the second stainless steel foil are sputter-etched.
  • the sputter etching process can be performed in the same manner as in Step 2 of the above-described method for manufacturing a two-layer material for Step 4, and is performed in the same manner as Step 1 of the above-described method for manufacturing a two-layer material. be able to.
  • step 6 of the method for producing a three-layer material of the present invention the surface of the obtained aluminum layer of the two-layer material subjected to the sputter etching process and the surface of the second stainless steel foil subjected to the sputter-etching process are pressed at a reduction rate of 10% or less. Then, the surface of the aluminum layer of the two-layer material and the stainless steel foil are joined.
  • This step can be performed in the same manner as step 3 in the above-described method for producing a two-layer material.
  • it is preferable that the total rolling reduction from the thickness of the original test material to the final laminated material is 10% or less.
  • the two-layer material and the three-layer material of the present invention obtained by the above production method may be further heat-treated as necessary.
  • heat treatment the processing strain of the aluminum layer is removed, and the adhesion between the layers can be improved.
  • This heat treatment is preferably performed at a temperature at which aluminum does not melt.
  • the heat treatment is preferably performed at a temperature of 500 ° C. or lower.
  • this heat treatment is preferably performed at a temperature at which the metal element of the stainless steel layer is thermally diffused into the aluminum layer.
  • the metal element that thermally diffuses include Fe, Cr, and Ni. This thermal diffusion improves the bonding force. Note that the metal element and aluminum contained in the stainless steel layer may be thermally diffused to each other.
  • the metal laminate can be heat-treated at a temperature of 100 ° C. to 500 ° C.
  • the heat treatment temperature is within this range, the resulting metal laminate can have a high bonding strength due to thermal diffusion.
  • the heat treatment temperature is preferably 200 ° C. to 400 ° C. from the viewpoint of further improving the bonding force.
  • the heat treatment time varies depending on the temperature, for example, if it is 300 ° C., it is preferable to hold it for about 1 second (not including the temperature rise time) to about 240 minutes.
  • Example 1 to 3 and Comparative Examples 1 to 2 A metal laminate having a three-layer structure using any one of the stainless steel foils 1 to 5 shown in Table 1 below as the first stainless steel foil and the second stainless steel foil, and using the aluminum foil 1 or 2 shown in Table 1 below as the aluminum foil. The material was manufactured. Table 1 shows the characteristic values of each test material.
  • the tensile strength TS, the elongation EL, the surface hardness Hv, and the overhang height (Ericsen value) of the material or metal laminate were measured as follows.
  • [Elongation EL] It measured according to the measurement of elongation at break described in JIS Z 2241 using the test piece of the tensile strength test.
  • [Surface hardness Hv] Using a micro Vickers hardness tester (load 100 gf), the measurement was performed according to JIS Z 2244 (Vickers hardness test-test method).
  • the first stainless steel foil and the aluminum foil were subjected to a sputter etching process.
  • Sputter etching for the first stainless steel foil was performed at 0.1 Pa under a plasma output of 800 W and a line speed of 3.5 m / min
  • sputter etching for the aluminum foil was performed at 0.1 Pa under a plasma output of 2600 W
  • the operation was performed at a line speed of 3.5 m / min to completely remove the adsorbate on the surfaces of the first stainless steel foil and the aluminum foil.
  • the etching amount of the first stainless steel foil was about 2 nm
  • the etching amount of the aluminum foil was about 6 nm.
  • the first stainless steel foil and the aluminum foil after the sputter etching treatment are joined by roll pressure welding at a rolling line load of 2 tf / cm (rolling load 0.4 MN) at a rolling reduction of 0 to 1% at room temperature.
  • a two-layer material of stainless steel layer / aluminum layer was obtained.
  • the surface of the aluminum layer in the two-layer material and the second stainless steel foil were subjected to sputter etching.
  • Sputter etching for the two-layer material was performed at 0.1 Pa, plasma output of 2600 W, and line speed of 3.5 m / min.
  • Sputter etching for the second stainless steel foil was performed at 0.1 Pa, plasma output of 800 W.
  • the line speed was 3.5 m / min, and the adsorbate on the surface of the two-layer aluminum layer and the second stainless steel foil was completely removed.
  • the etching amount of the two-layer aluminum layer was about 6 nm, and the etching amount of the second stainless steel foil was about 2 nm.
  • the obtained metal laminate (as clad) was further heat-treated at 250 ° C. for 30 minutes to obtain the corresponding metal laminates of Examples 1-2, 2-2 and Comparative Example 1-2.
  • metal laminates of Example 3-2 and Comparative Example 2-2 were obtained.
  • Table 3 shows the characteristic values measured for the metal laminate after the heat treatment. Further, the relationship between the surface hardness Hv, tensile strength TS and elongation EL of the stainless steel layer in the metal laminate, and the overhang height by the Erichsen test, the metal laminate (as clad) before heat treatment, and the metal laminate after heat treatment Are collectively shown in FIGS.
  • the thickness of the metal laminate is as large as 595 ⁇ m (Comparative Example 2-2), even if the surface hardness Hv of the stainless steel layer exceeds 300 in the obtained metal laminate, the overhang height by the Erichsen test The thickness was 4.6 mm or more, and it was found that high moldability was exhibited.
  • Examples 4 to 5 and Comparative Example 3 A metal laminate having a two-layer structure was manufactured using any one of the stainless steel foils 1 to 3 shown in Table 1 as the stainless steel foil and the aluminum foil 3 shown in Table 1 as the aluminum foil.
  • sputter etching was performed on the stainless steel foil and the aluminum foil.
  • Sputter etching for stainless steel foil was performed at 0.1 Pa, plasma output 800 W, line speed 3.5 m / min, and sputter etching for aluminum foil was 0.1 Pa, plasma output 2600 W, line speed It implemented at 3.5 m / min and the adsorption
  • the etching amount of the stainless steel foil was about 2 nm, and the etching amount of the aluminum foil was about 6 nm.
  • the stainless steel foil and aluminum foil after the sputter etching treatment are joined by roll pressure welding at a rolling line load of 2 tf / cm (rolling load 0.4 MN) at a rolling reduction of 0 to 1% at room temperature.
  • a metal laminate having a two-layer structure of layers was obtained.
  • Table 4 shows the characteristic values measured for the obtained metal laminate (as-clad) of Example 4-1.
  • Example 4-1 As shown in Table 4, the metal laminate of Example 4-1 in which the tensile strength TS is 200 ⁇ TS ⁇ 550, the elongation EL is 15% or more, and the surface hardness Hv of the stainless steel layer is 300 or less.
  • the overhang height according to the Eriksen test was 4.6 mm or more, and high moldability was exhibited.
  • Example 4-1 The obtained metal laminate (as clad) of Example 4-1 was further heat-treated at 250 ° C. for 30 minutes to obtain a metal laminate of Example 4-2. Similarly, metal laminates of Example 5-2 and Comparative Example 3-2 were obtained. Table 5 shows the characteristic values measured for the metal laminate after the heat treatment. In addition, the relationship between the surface hardness Hv, tensile strength TS, and elongation EL of the stainless steel layer in the metal laminate and the overhang height (the overhang height (mm) (average) in Tables 4 and 5) of the Erichsen test is shown.
  • FIGS. 6 to 8 collectively show the metal laminate before heat treatment (as (clad) and the metal laminate after heat treatment.
  • Example 6 In order to estimate a preferable reduction ratio when the stainless steel foil and the aluminum foil or the two-layer material are joined by pressure welding, the metal laminate obtained in Example 3-2 was rolled while changing the reduction ratio. About the metal laminated material after rolling, the overhang height by an Erichsen test was measured. The results are shown in Table 6. In Table 6, the rolling reduction of 0% corresponds to the metal laminate of Example 3-2.
  • each metal laminate sample was immersed in aqua regia diluted to about 1/3 as a corrosive solution for about 10 to 15 minutes to etch the stainless steel layer. Thereafter, the etched stainless steel layer was subjected to cross-sectional observation from the sample coordinate system TD using a SEM (manufactured by Hitachi High-Technologies Corporation, field emission scanning electron microscope SU8020). The average crystal grain size was calculated from the observed image according to the above definition. For reference, the average crystal grain size was also measured for the stainless steel foil 1 and the stainless steel foil 2 before joining. Table 7 shows the measurement results.
  • SEM observation images of the stainless steel foil 1 alone, after joining the stainless steel foil 1 (as clad, corresponding to Example 1-1), and after joining the stainless steel foil 1 and heat treatment (corresponding to Example 1-2) are shown. 9A to 9C, respectively.
  • SEM observation images of the stainless steel foil 2 alone and after the stainless steel foil 2 is joined and heat-treated are shown in FIGS. 10A and 10B, respectively.
  • the portion surrounded by a frame represents a crystal grain.
  • the average crystal grain size of the stainless steel layers of the metal laminates of Examples 1-1, 1-2, and 2-1 having good moldability was in the range of 1.5 ⁇ m to 10 ⁇ m. .
  • the stainless steel foil 3 (SUS316L H material) used for the metal laminated material of the comparative example 1 the shear zone exists and it was difficult to measure the crystal grain size.
  • a shear band that crosses a straight line having a length of 10 ⁇ m along the sample coordinate system ND in the cross-sectional observation image of the stainless steel layer from the sample coordinate system TD. was measured according to the above definition.
  • the apparatus used for the measurement is the same as that used in the evaluation of the average crystal grain size.
  • the number of shear bands was similarly measured for the stainless steel foil 1 and the stainless steel foil 3 before joining.
  • Table 8 shows the measurement results.
  • SEM observation images of the stainless steel foil 1 and the stainless steel foil 1 after joining and heat treatment are shown in FIGS. 11A and 11B, respectively.
  • SEM observation images of the stainless steel foil 3 alone and after the stainless steel foil 3 is joined and heat-treated are shown in FIGS.
  • the arrow has shown the location where the shear zone has crossed the straight line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本発明は、成形加工性と、軽量性及び放熱性とを兼ね備え、十分な強度を有する金属積層材を提供することを目的とする。 ステンレス層/アルミニウム層の2層構造又は第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材であって、引張強度TS(MPa)が、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である、前記金属積層材。

Description

金属積層材及びその製造方法
 本発明は金属積層材及びその製造方法に関する。
 金属材料は様々な分野で利用されており、例えば、モバイル電子機器などの電子機器用の放熱部材に用いられている。放熱部材に用いられる金属材料には、軽量性、高強度、高放熱性及び成形加工性が要求される。このような金属材料として、現在、高強度アルミニウム材や、ステンレスとカーボンシートを積層した積層材が広く用いられている。
 しかし、高強度アルミニウム材は、軽量であり、放熱性に優れるものの、成形加工性に乏しい。一方、ステンレス及びカーボンシートの積層材は、成形加工性に優れるものの、カーボンシートが極めて高価であり、また、アルミニウム材と比較して放熱性が劣る。
 放熱部材用の他の金属材料として、2つ以上の金属板又は金属箔を積層した金属積層材(クラッド材)も検討されており、例えば、ステンレスとアルミニウムの金属積層材が検討されている。ステンレスとアルミニウムの金属積層材は、アルミニウムの軽量性及び放熱性と、ステンレスの成形加工性の両方の特性を有する点で優れている。ステンレスとアルミニウムの金属積層材として、例えば、特許文献1~3のものが知られている。
 特許文献1には、硬質層と軟質層とを積層してなる硬軟積層材において、硬軟積層材の少なくとも1つの接合面が、接合されるそれぞれの面を活性化処理して当接し、重ね合わせて積層接合してなることを特徴とする硬軟積層材が記載されており、硬質層がステンレス層からなり、軟質層がアルミニウム層からなることも記載されている。
 特許文献2には、外層材をアルミニウム材として、芯材をステンレス鋼からなることを特徴とする3層クラッド構造を有する電子機器用放熱板素材が記載されている。
 特許文献3には、ステンレス鋼板の一方の表面にAlを主成分とするAl基金属からなる硬質アルミニウム板を接合したクラッド材であって、前記ステンレス鋼板の硬度がHv400以下であり、一方前記硬質アルミニウム板の硬度がHv40以上であり、且つステンレス鋼板と硬質アルミニウム板との接合強度が0.3kgf/cm以上であるアルミニウム・ステンレス鋼クラッド材が記載されている。
 ステンレスとアルミニウムの金属積層材は、冷間圧延で製造すると、ステンレス及びアルミニウムが加工硬化により硬くなり、成形加工性が悪くなってしまう。得られた金属積層材において、加工硬化したアルミニウムは、熱処理をして再結晶することで軟質化することができるが、ステンレスの再結晶温度はアルミニウムの融点よりも高いため、ステンレスの再結晶が可能な温度域にて熱処理を行うとアルミニウムが溶融してしまう。このため、冷間圧延で製造したステンレスとアルミニウムの金属積層材では、製造後に、加工硬化したステンレス及びアルミニウムの両方を再結晶することはできず、十分な成形加工性を有するものを得ることは難しく、特に、金属積層材の厚みがある程度厚い場合には、金属積層材は、ステンレスの硬度が上昇してもある程度の成形加工性を有することができるが、金属積層材の厚みが、例えば500μm以下と薄い場合には、成形加工性が低くなってしまう。
特開2004-306458号公報 特開2015-62922号公報 特開2000-312979号公報
 前記の通り、ステンレスとアルミニウムの金属積層材では、厚みが薄い場合、成形加工性に優れるステンレスの特性と、放熱性及び軽量性に優れるアルミニウムの特性とを兼ね備え、十分な強度を有する金属積層材を得ることは難しかった。
 そこで本発明は、成形加工性と、軽量性及び放熱性とを兼ね備え、十分な強度を有する金属積層材を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討を行った結果、ステンレスとアルミニウムの金属積層体において、特定の機械特性を有する金属積層材が、成形加工性と、放熱性及び軽量性とを兼ね備え、十分な強度を有することを見出し、発明を完成した。すなわち、本発明の要旨は以下の通りである。
(1)ステンレス層/アルミニウム層の2層構造又は第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材であって、引張強度TS(MPa)が、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である、前記金属積層材。
(2)厚みが50μm~500μmである、上記(1)に記載の金属積層材。
(3)ステンレス層の平均結晶粒径が1.5μm~10μmであり、且つ試料座標系TDからの断面観察像において試料座標系NDに沿った長さ10μmの直線を横切る剪断帯の数が5未満である、上記(1)又は(2)に記載の金属積層材。
(4)上記(1)~(3)のいずれかに記載のステンレス層/アルミニウム層の2層構造を有する金属積層材の製造方法であって、表面硬度Hvが300以下であるステンレス箔をスパッタエッチングする工程と、表面硬度Hvが20以上であるアルミニウム箔をスパッタエッチングする工程と、前記ステンレス箔及び前記アルミニウム箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、ステンレス層/アルミニウム層の2層構造を有する金属積層材を得る工程とを含む、前記金属積層材の製造方法。
(5)上記(1)~(3)のいずれかに記載の第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材の製造方法であって、表面硬度Hvが300以下である第1ステンレス箔をスパッタエッチングする工程と、表面硬度Hvが20以上であるアルミニウム箔をスパッタエッチングする工程と、前記第1ステンレス箔及び前記アルミニウム箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層の2層材を得る工程と、前記2層材のアルミニウム層の面をスパッタエッチングする工程と、表面硬度Hvが300以下である第2ステンレス箔をスパッタエッチングする工程と、前記2層材及び前記第2ステンレス箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材を得る工程とを含む、前記金属積層材の製造方法。
(6)得られた金属積層材を、さらに100~500℃で熱処理を行う工程を含む、上記(4)又は(5)に記載の金属積層材の製造方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-193075号の開示内容を包含する。
 本発明によれば、成形加工性と、放熱性及び軽量性とを兼ね備え、十分な強度を有する金属積層材を提供することができる。
本発明の金属積層材(2層材)の一実施形態を模式的に示す断面図である。 本発明の金属積層材(3層材)の一実施形態を模式的に示す断面図である。 実施例1~3及び比較例1~2で得られた金属積層材における表面硬度と張出高さとの関係を示すグラフである。 実施例1~3及び比較例1で得られた金属積層材における引張強度と張出高さとの関係を示すグラフである。 実施例1~3及び比較例1で得られた金属積層材における伸びと張出高さとの関係を示すグラフである。 実施例4~5及び比較例3で得られた金属積層材における表面硬度と張出高さとの関係を示すグラフである。 実施例4~5及び比較例3で得られた金属積層材における引張強度と張出高さとの関係を示すグラフである。 実施例4~5及び比較例3で得られた金属積層材における伸びと張出高さとの関係を示すグラフである。 平均結晶粒径の算出に用いた走査電子顕微鏡(SEM)の断面観察像である。図9Aはステンレス箔1単体、図9Bは接合後(as clad)の金属積層材(実施例1-1)のステンレス層、図9Cは接合し熱処理した後の金属積層材(実施例1-2)のステンレス層を示す。 平均結晶粒径の算出に用いた走査電子顕微鏡(SEM)の断面観察像である。図10Aはステンレス箔2単体、図10Bは接合し熱処理した後の金属積層材(実施例2-2)のステンレス層を示す。 剪断帯の評価に用いた走査電子顕微鏡(SEM)の断面観察像である。図11Aはステンレス箔1単体、図11Bは接合し熱処理した後の金属積層材(実施例1-2)のステンレス層を示す。 剪断帯の評価に用いた走査電子顕微鏡(SEM)の断面観察像である。図12Aはステンレス箔3単体、図12Bは接合し熱処理した後の金属積層材(比較例1-2)のステンレス層を示す。
 以下、本発明を詳細に説明する。
 本発明の金属積層材は、ステンレスとアルミニウムを積層した、ステンレス層とアルミニウム層とを有する金属積層材である。本発明の金属積層材は、アルミニウムの片面のみにステンレスを積層させた、ステンレス層/アルミニウム層の2層構造を有する金属積層材(2層材)、又はアルミニウムの両面にステンレスを積層させた、第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材(3層材)である。アルミニウムの両面にステンレスを積層させた本発明の3層材は、ステンレスの両面にアルミニウムを積層させた3層材と比較して、成形加工性及び耐食性に優れる。
 本発明の2層材は、アルミニウム表面を有するため、厚み及び厚み比率が同じ3層材と比較して放熱性に優れる。また、本発明の2層材は、3層材と比較して製造工程が少ないため、生産性及びコストの点で有利である。本発明の3層材は、積層材の両表面がステンレス層であるため、耐疵付き性及び耐食性に優れる。本発明において、金属積層材の用途や目的とする特性に応じて2層材又は3層材を選択できる。
I.材料
 本発明の金属積層材に用いられるステンレスとしては、特に限定されずに、SUS304、SUS201、SUS316、SUS316L及びSUS430などのステンレス箔を挙げることができる。
 本発明の金属積層材に用いられるステンレスの厚みは、特に限定されずに、通常5μm~400μmであり、下限は好ましくは10μm以上であり、さらにステンレスの表面硬度Hvが249以下の場合には、ハンドリングの観点から20μm以上がより好ましく、上限は好ましくは300μm未満であり、より好ましくは210μm未満である。用いるステンレスの厚みが厚いほど、金属積層材の引張強度、伸び及び成形加工性を高くすることができる。
 本発明の金属積層材に用いられるステンレスの表面硬度Hvは、好ましくは300以下であり、良好な成形加工性及びハンドリングの観点から、より好ましくは280以下であり、より成形性を求める場合には249以下が特に好ましい。なお、アルミニウムと圧接すると、ステンレスには加工ひずみが導入され、通常は表面硬度Hvが上昇するが、接合前のステンレスの表面硬度Hvと、アルミニウムとの接合後のステンレス層の表面硬度Hvとの差は100以内であることが好ましく、より好ましくは80以内、さらに好ましくは50以内である。硬度差が100を超えるとステンレス層の加工ひずみが大き過ぎ、成形加工性が悪化するため好ましくない。本発明において、表面硬度Hvは、例えばマイクロビッカース硬度計(荷重100gf)を用い、JIS Z 2244(ビッカース硬さ試験-試験方法)に準じて測定することができる。
 本発明の金属積層材に用いられるステンレスは、下記に定義した平均結晶粒径が1.5μm~10μmであり、且つ試料座標系NDに沿った長さ10μmの直線を横切る剪断帯の数が5未満であることが好ましい。平均結晶粒径及び剪断帯の数は、下記の金属積層材の場合と同様の方法により測定する。このようなステンレスを用い、金属積層材の製造において圧下率を下記の特定の範囲内に制御することにより、引張強度TS(MPa)が、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である金属積層材を確実に得ることができる。接合前のステンレスにおいて剪断帯の数が多い場合、または金属積層材の製造における圧下率が高い場合は、積層後のステンレス層においても剪断帯の数が多くなり、成形加工性が低下するおそれがある。
 本発明の金属積層材に用いられるアルミニウムとしては、特に限定されずに、純アルミニウム又はアルミニウム合金の箔を用いることができる。アルミニウム合金としては、JISに規定の1000系、3000系及び5000系などのアルミニウム合金を用いることができる。
 本発明の金属積層材に用いられるアルミニウムの厚みは、特に限定されずに、通常10μm~490μmであり、下限は好ましくは15μm以上、さらに好ましくは20μm以上であり、上限は好ましくは470μm以下、より好ましくは450μm以下である。
 本発明の金属積層材に用いられるアルミニウムの表面硬度Hvは、特に限定されずに、例えば下限は20以上であり、ハンドリングおよび耐疵付き性の観点から、好ましくは40以上であり、上限は150以下、好ましくは100以下である。
II.金属積層材
 図1に示すように、本発明の2層材1は、アルミニウム層10の片面のみにステンレス層21が接合された、ステンレス層21/アルミニウム層10の2層構造を有する。
 図2に示すように、本発明の3層材2は、アルミニウム層10の両面に第1ステンレス層21及び第2ステンレス層22が接合された、第1ステンレス層21/アルミニウム層10/第2ステンレス層22の3層構造を有する。
 本発明の金属積層材の厚みは、特に限定されずに、通常50μm~500μmであり、好ましくは50μm~400μmであり、より好ましくは50μm以上300μm未満であり、特に好ましくは50μm~200μmである。本発明において、金属積層材の厚みとは、2層材の場合にはステンレス層及びアルミニウム層の総厚みをいい、3層材の場合には第1ステンレス層、アルミニウム層及び第2ステンレス層の総厚みをいう。本発明の金属積層材は、厚みが薄くても良好な成形加工性を有するという驚くべき効果を奏する。
 本発明の金属積層材において、アルミニウム層の厚みとステンレス層の厚みとの比(アルミニウム層の厚み/ステンレス層の厚み)は、例えば0.1~100であり、好ましくは0.3~50である。本発明の金属積層材において、アルミニウム層の厚みとステンレス層の厚みとの比が前記の範囲であると、軽量でありながら、十分な強度、成形加工性及びアルミニウム層とステンレス層との密着性を有することができる。
 本発明の金属積層材は、引張強度TS(MPa)が200≦TS≦550であり、金属積層材が良好な強度及び成形加工性を有するという観点から、好ましくは200≦TS≦500である。金属積層材の引張強度TSが200以上であると、金属積層材は十分な強度を有することができ、引張強度TSが550以下であると、金属積層材は高い強度及び十分な成形加工性を有することができる。引張強度TSは、例えばオートグラフAGS-5kNX((株)島津製作所製)を用い、JIS Z 2241(金属材料引張試験方法)に準じて測定することができる。
 本発明の金属積層材は、伸びELが15%以上であり、良好な成形加工性の観点から、好ましくは25%以上であり、より好ましくは30%以上である。伸びELはJIS Z 2241に記載される破断伸びの測定に準じて、例えば引張強度試験の試験片を用いて測定することができる。
 本発明の金属積層材は、ステンレス層の表面硬度Hvが300以下であり、良好な成形加工性の観点から、好ましくは280以下である。本発明の金属積層材が3層材である場合、第1ステンレス層及び第2ステンレス層のいずれもが前記の表面硬度Hvを有する。ステンレス層の表面硬度Hvが280以下であると、金属積層材において、その表面硬度が高くなる原因となる固溶元素、析出物や加工ひずみによる影響が少ないため、より高い成形性を有することができ、成形加工性が不十分となるおそれが低い。
 本発明の金属積層材は、前記の引張強度、伸び及びステンレス層の表面硬度という機械特性を有することにより、良好な成形加工性を有する。具体的には、本発明の金属積層材は、エリクセン試験による張出高さ(エリクセン値)が4.6mm以上であり、好ましくは5.0mm以上であり、より好ましくは6.0mm以上という高い成形加工性を有する。本発明において、エリクセン試験による張出高さは、例えば機械式エリクセン試験機ESM-1(CAP2mm、(株)東京衡機試験機製)を用い、JIS Z 2247(エリクセン試験方法)に準じて測定することができる。本発明の金属積層材は、金属積層材の厚みが薄い場合(例えば50μm~500μm)であっても、前記の引張強度、伸び及びステンレス層の表面硬度の機械特性を有することにより、高い成形加工性を有するという驚くべき効果を奏する。
 また、本発明の金属積層材においては、ステンレス層の平均結晶粒径が1.5μm~10μmであり、且つ試料座標系TD(Transverse Direction)からの断面観察像において試料座標系ND(Normal Direction)に沿った長さ10μmの直線を横切る剪断帯の数が5未満であることが好ましい。これにより、高い成形加工性を得ることができる。平均結晶粒径は、より好ましくは1.5μm~8.0μm、特に好ましくは2.0μm~6.0μmである。また、長さ10μmの直線を横切る剪断帯の数は、より好ましくは3以下、さらに好ましくは1以下、特に好ましくは0である。
 なお、上記平均結晶粒径は、金属積層材の試料座標系TDからの走査型電子顕微鏡(SEM)による断面観察像において、結晶粒を30個任意に選択し、1個の結晶粒について測定した長径及び短径の平均値をその結晶粒の粒径としたとき、30個の結晶粒の粒径の平均値をいう。また、本発明において、横切る剪断帯の数は、金属積層材の試料座標系TDからのSEMによる断面観察像において、金属積層材の厚み方向(試料座標系ND)に沿って長さ10μmの直線を10本引き、1本の直線を横切る剪断帯の数を10本の直線について平均した値をいう。
 ここで、本発明においては、RD(Rolling Direction)は圧延方向に、TD(Transverse Direction)は圧延直角方向に、ND(Normal Direction)は圧延面(板面)法線方向に一致する。
III.金属積層材の製造方法
 本発明の2層材は、表面硬度Hvが300以下であるステンレス箔をスパッタエッチングする工程(工程1)と、表面硬度Hvが20以上であるアルミニウム箔をスパッタエッチングする工程(工程2)と、前記ステンレス箔及び前記アルミニウム箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、ステンレス層/アルミニウム層の2層構造を有する金属積層材を得る工程(工程3)とを含む方法によって製造することができる。
 本発明の2層材の製造方法の工程1及び2では、ステンレス箔及びアルミニウム箔の各接合面をスパッタエッチングする。
 スパッタエッチング処理は、具体的には、ステンレス箔及びアルミニウム箔を、幅100mm~600mmの長尺コイルとして用意し、接合面を有するステンレス箔及びアルミニウム箔をそれぞれアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積を前記の他の電極の面積の1/3以下として行う。スパッタエッチング処理中は、アース接地した電極が冷却ロールの形をとっており、各搬送材料の温度上昇を防いでいる。
 スパッタエッチング処理では、真空下でステンレス箔及びアルミニウム箔の接合する面を不活性ガスによりスパッタすることにより、表面の吸着物を完全に除去し、且つ表面の酸化膜の一部又は全部を除去する。酸化膜は必ずしも完全に除去する必要はなく、一部残存した状態であっても十分な接合力を得ることができる。酸化膜を一部残存させることにより、完全に除去する場合に比べてスパッタエッチング処理時間を大幅に減少させ、金属積層材の生産性を向上させることができる。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトンなどや、これらを少なくとも1種類含む混合気体を適用することができる。ステンレス箔とアルミニウム箔のいずれについても、表面の吸着物は、エッチング量約1nm程度で完全に除去することができる。
 ステンレス箔についてのスパッタエッチング処理は、真空下で、例えば、100W~10KWのプラズマ出力、ライン速度1m/分~30m/分で行うことができる。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、例えば、1×10-5Pa~10Paであればよい。スパッタエッチング処理において、ステンレス箔の温度は、アルミニウム箔軟化防止の観点から、好ましくは常温~150℃に保たれる。
 表面に酸化膜が一部残存するステンレス箔は、ステンレス箔のエッチング量を、例えば1nm~10nmにすることによって得られる。必要に応じて、10nmを超えるエッチング量としても良い。
 アルミニウム箔についてのスパッタエッチング処理は、真空下で、例えば、100W~10KWのプラズマ出力、ライン速度1m/分~30m/分で行うことができる。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、1×10-5Pa~10Paであればよい。
 本発明において、表面の酸化膜が一部残存するアルミニウムは、アルミニウムのエッチング量を、例えば1nm~10nmにすることによって得られる。必要に応じて、10nmを超えるエッチング量としても良い。
 本発明の2層材の製造方法の工程3では、ステンレス箔のスパッタエッチング処理した面と、アルミニウム箔のスパッタエッチング処理した面とを圧下率10%以下で、例えばロール圧接により圧接して、ステンレス箔とアルミニウム箔を接合する。ロール圧接の圧延線荷重は、特に限定されずに、例えば0.1~10tf/cmとすることができる。また、ロール圧接による接合時の温度は、特に限定されずに、例えば常温~150℃である。
 本発明の2層材の製造方法では、ステンレス箔とアルミニウム箔を圧接する際の圧下率は10%以下であり、好ましくは3%以下である。圧下率が10%以下であると、ステンレス層及びアルミニウム層に加工ひずみが多く入ることを回避することができ、得られる金属積層材の成形加工性が高くなる。また、圧下率が10%以下であると、ステンレス層の剪断帯の数が多くなることにより成形加工性が低下することを回避することができる。なお、圧接の前後で各層の厚さは変わらなくても良いため、圧下率の下限値は0%である。
 ロール圧接による接合は、ステンレス箔とアルミニウム箔表面への酸素の再吸着によって両者間の接合強度が低下するのを防止するため、非酸化雰囲気中、例えばArなどの不活性ガス雰囲気中で行うことが好ましい。
 本発明の3層材は、前記の製造方法で得られる2層材のアルミニウム層の面をスパッタエッチングする工程(工程4)と、表面硬度Hvが300以下である第2ステンレス箔をスパッタエッチングする工程(工程5)と、前記2層材及び前記第2ステンレス箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材を得る工程(工程6)とを含む方法によって製造することができる。
 具体的には、本発明の3層材は、表面硬度Hvが300以下である第1ステンレス箔をスパッタエッチングする工程(工程1)と、表面硬度Hvが20以上であるアルミニウム箔をスパッタエッチングする工程(工程2)と、前記第1ステンレス箔及び前記アルミニウム箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層の2層材を得る工程(工程3)と、前記2層材のアルミニウム層の面をスパッタエッチングする工程(工程4)と、表面硬度Hvが300以下である第2ステンレス箔をスパッタエッチングする工程(工程5)と、前記2層材及び前記第2ステンレス箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材を得る工程(工程6)とを含む方法によって製造することができる。
 本発明の3層材の製造方法の工程4及び工程5では、2層材のアルミニウム層の面及び第2ステンレス箔の各接合面をスパッタエッチングする。スパッタエッチング処理は、工程4については前記の2層材の製造方法の工程2と同様にして行うことができ、工程5については、前記の2層材の製造方法の工程1と同様にして行うことができる。
 本発明の3層材の製造方法の工程6では、得られた2層材のスパッタエッチング処理したアルミニウム層の面と、第2ステンレス箔のスパッタエッチング処理した面とを圧下率10%以下で圧接して、2層材のアルミニウム層の面と、ステンレス箔とを接合する。この工程は、前記の2層材の製造方法の工程3と同様にして行うことができる。なお、元の供試材の厚みから最終の積層材へのトータルの圧下率を10%以下とするのが好ましい。
 前記の製造方法で得られた本発明の2層材及び3層材は、必要に応じて、さらに熱処理を行ってもよい。熱処理によって、アルミニウム層の加工ひずみが除かれ、各層の間の密着性を向上させることができる。この熱処理は、アルミニウムが溶融しない温度で行うことが好ましく、例えば500℃以下の温度で熱処理を行うことが好ましい。
 さらに、この熱処理は、少なくともステンレス層の金属元素がアルミニウム層に熱拡散する温度で行うことが好ましい。熱拡散する金属元素は、例えば、Fe、Cr、Niである。この熱拡散により接合力が向上する。なお、ステンレス層に含まれる金属元素とアルミニウムとを相互に熱拡散させてもよい。
 具体的には、100℃~500℃の温度で金属積層材の熱処理を行うことができる。熱処理温度がこの範囲であると、熱拡散により、得られる金属積層材が高い接合力を有することができる。熱処理温度は、より接合力を向上させる観点から、好ましくは200℃~400℃である。熱処理時間は、温度によって異なるが、例えば300℃であれば1秒(昇温時間は含まない。)~240分程度保持するとよい。
 以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1~3及び比較例1~2)
 第1ステンレス箔及び第2ステンレス箔として下記表1に示すステンレス箔1~5のいずれかを用い、アルミニウム箔として下記表1に示すアルミニウム箔1又は2を用いて、3層構造を有する金属積層材を製造した。各供試材の特性値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 材料又は金属積層材の引張強度TS、伸びEL、表面硬度Hv及びエリクセン試験による張出高さ(エリクセン値)は以下の通りにして測定した。
[引張強度TS]
 オートグラフAGS-5kNX((株)島津製作所製)を用い、JIS Z 2241(金属材料引張試験方法)に準じて測定した。
[伸びEL]
 引張強度試験の試験片を用い、JIS Z 2241に記載される破断伸びの測定に準じて測定した。
[表面硬度Hv]
 マイクロビッカース硬度計(荷重100gf)を用い、JIS Z 2244(ビッカース硬さ試験-試験方法)に準じて測定した。
[エリクセン試験による張出高さ]
 機械式エリクセン試験機ESM-1(CAP2mm、(株)東京衡機試験機製)を用い、JIS Z 2247(エリクセン試験方法)に準じて測定した。
 まず、第1ステンレス箔とアルミニウム箔に対してスパッタエッチング処理を施した。第1ステンレス箔についてのスパッタエッチングは、0.1Pa下で、プラズマ出力800W、ライン速度3.5m/分にて実施し、アルミニウム箔についてのスパッタエッチングは、0.1Pa下で、プラズマ出力2600W、ライン速度3.5m/分にて実施し、第1ステンレス箔及びアルミニウム箔の表面の吸着物を完全に除去した。第1ステンレス箔のエッチング量は約2nmであり、アルミニウム箔のエッチング量は約6nmであった。スパッタエッチング処理後の第1ステンレス箔とアルミニウム箔とを、常温で、圧延線荷重2tf/cm(圧延荷重0.4MN)で、圧下率0~1%にてロール圧接により接合して、第1ステンレス層/アルミニウム層の2層材を得た。
 次に、2層材におけるアルミニウム層の面と、第2ステンレス箔に対してスパッタエッチング処理を施した。2層材についてのスパッタエッチングは、0.1Pa下で、プラズマ出力2600W、ライン速度3.5m/分にて実施し、第2ステンレス箔についてのスパッタエッチングは、0.1Pa下で、プラズマ出力800W、ライン速度3.5m/分にて実施し、2層材のアルミニウム層及び第2ステンレス箔の表面の吸着物を完全に除去した。2層材のアルミニウム層のエッチング量は約6nmであり、第2ステンレス箔のエッチング量は約2nmであった。続いて、2層材のアルミニウム層と第2ステンレス箔とを、常温で、圧延線荷重2tf/cm(圧延荷重0.4MN)で、圧下率0~1%にてロール圧接により接合し、第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材を得た。最終的に得られた積層材の圧下率は下記式1より算出され、約1%であった。
[式1]
 (供試材の各厚みの総和-積層材の厚み)/(供試材の各厚みの総和)×100(%)
 得られた実施例1-1、2-1及び比較例1-1の金属積層材(as clad)について測定した特性値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、引張強度TSが、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である金属積層材(実施例1-1及び2-1)では、エリクセン試験による張出高さは4.6mm以上であり、高い成形加工性を示した。一方、引張強度TS、伸びEL及びステンレス層の表面硬度Hvが前記の範囲でない金属積層材(比較例1-1)では、エリクセン試験による張出高さは4.6mm未満であり、成形加工性は十分でなかった。
 得られた金属積層材(as clad)を、さらに250℃で30分間熱処理して、対応する実施例1-2、2-2及び比較例1-2の金属積層材を得た。また、同様にして実施例3-2及び比較例2-2の金属積層材を得た。熱処理後の金属積層材について測定した特性値を表3に示す。また、金属積層材におけるステンレス層の表面硬度Hv、引張強度TS及び伸びELと、エリクセン試験による張出高さとの関係を、熱処理前の金属積層材(as clad)と、熱処理後の金属積層材についてまとめて図3~図5に示す。
Figure JPOXMLDOC01-appb-T000003
 表3及び図3~図5に示すように、引張強度TSが、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である金属積層材(実施例1-2~3-2)では、いずれもエリクセン試験による張出高さが4.6mm以上となり、高い成形加工性を示した。一方、引張強度TS、伸びEL及び表面硬度Hvが前記の範囲でない金属積層材(比較例1-2)では、エリクセン試験による張出高さは4.6mm未満であり、成形加工性は十分でなかった。また、金属積層材の厚みが595μmと厚い場合(比較例2-2)には、得られた金属積層材において、ステンレス層の表面硬度Hvが300超であっても、エリクセン試験による張出高さは4.6mm以上となり、高い成形加工性を示すことがわかった。
 また、表2及び表3より、熱処理を施すことによって、エリクセン試験による張出高さがやや高くなり、成形加工性が向上することがわかった。
(実施例4~5及び比較例3)
 ステンレス箔として前記表1に示すステンレス箔1~3のいずれかを用い、アルミニウム箔として前記表1に示すアルミニウム箔3を用いて、2層構造を有する金属積層材を製造した。
 まず、ステンレス箔とアルミニウム箔に対してスパッタエッチング処理を施した。ステンレス箔についてのスパッタエッチングは、0.1Pa下で、プラズマ出力800W、ライン速度3.5m/分にて実施し、アルミニウム箔についてのスパッタエッチングは、0.1Pa下で、プラズマ出力2600W、ライン速度3.5m/分にて実施し、ステンレス箔及びアルミニウム箔の表面の吸着物を完全に除去した。ステンレス箔のエッチング量は約2nmであり、アルミニウム箔のエッチング量は約6nmであった。スパッタエッチング処理後のステンレス箔とアルミニウム箔とを、常温で、圧延線荷重2tf/cm(圧延荷重0.4MN)で、圧下率0~1%にてロール圧接により接合して、ステンレス層/アルミニウム層の2層構造を有する金属積層材を得た。 
 得られた実施例4-1の金属積層材(as clad)について測定した特性値を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、引張強度TSが、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である実施例4-1の金属積層材は、エリクセン試験による張出高さが4.6mm以上であり、高い成形加工性を示した。
 得られた実施例4-1の金属積層材(as clad)を、さらに250℃で30分間熱処理して、実施例4-2の金属積層材を得た。また、同様にして実施例5-2及び比較例3-2の金属積層材を得た。熱処理後の金属積層材について測定した特性値を表5に示す。また、金属積層材におけるステンレス層の表面硬度Hv、引張強度TS及び伸びELと、エリクセン試験による張出高さ(表4及び表5の張出高さ(mm)(平均))との関係を、熱処理前の金属積層材(as clad)と、熱処理後の金属積層材についてまとめて図6~図8に示す。
Figure JPOXMLDOC01-appb-T000005
 表5及び図6~図8に示すように、引張強度TSが、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である金属積層材(実施例4-2~5-2)では、エリクセン試験による張出高さが4.6mm以上となり、高い成形加工性を示した。一方、伸びEL及びステンレス層の表面硬度Hvが前記の範囲でない金属積層材(比較例3-2)では、エリクセン試験による張出高さは4.6mm未満であり、成形加工性は十分でなかった。
(実施例6)
 ステンレス箔と、アルミニウム箔又は2層材とを圧接して接合する際の好ましい圧下率を推定するために、実施例3-2で得られた金属積層材を、圧下率を変えて圧延し、圧延後の金属積層材について、エリクセン試験による張出高さを測定した。結果を表6に示す。表6において、圧下率0%のものが実施例3-2の金属積層材に相当する。
Figure JPOXMLDOC01-appb-T000006
 表6より、圧下率が20%以上の場合、金属積層材のエリクセン試験による張出高さが4.6mm未満となり、金属積層材の成形加工性が十分ではないが、圧下率が10%以下の場合には、金属積層材のエリクセン試験による張出高さが4.6mm以上となり、成形加工性が十分であることが示された。このことから、ステンレス箔と、アルミニウム箔又は2層材とを圧接する際の圧下率は10%以下であることが好ましいと推定される。
(実施例7)
<平均結晶粒径の評価>
 上記実施例1-1、1-2及び2-2の金属積層材について、ステンレス層の平均結晶粒径を以下のようにして測定した。まず、各金属積層材のサンプルを、腐食液として約1/3に希釈した王水に10~15分程度浸漬し、ステンレス層をエッチングした。その後、エッチングを施した各サンプルのステンレス層を試料座標系TDからSEM(日立ハイテクノロジーズ社製、電解放出型走査電子顕微鏡SU8020)にて断面観察を行った。観察像から上記の定義に従って平均結晶粒径を算出した。また、参考のため、接合前のステンレス箔1及びステンレス箔2についても平均結晶粒径を測定した。測定結果を表7に示す。また、ステンレス箔1単体、ステンレス箔1を接合後(as clad、実施例1-1に相当)、及びステンレス箔1を接合し熱処理した後(実施例1-2に相当)のSEM観察像を図9A~Cにそれぞれ示す。さらに、ステンレス箔2単体、及びステンレス箔2を接合し熱処理した後(実施例2-2に相当)のSEM観察像を図10A~Bにそれぞれ示す。図中、枠で囲まれた部分は結晶粒を表している。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、成形加工性が良好な実施例1-1、1-2及び2-1の金属積層材のステンレス層の平均結晶粒径は1.5μm~10μmの範囲内であった。なお、比較例1の金属積層材に用いたステンレス箔3(SUS316L H材)については、剪断帯が存在し、結晶粒径の測定は困難であった。
<剪断帯の評価>
 次に、上記実施例1-2及び比較例1-2の金属積層材について、ステンレス層の試料座標系TDからの断面観察像において試料座標系NDに沿った長さ10μmの直線を横切る剪断帯の数を、上記の定義に従って測定した。測定に用いた装置は、上記の平均結晶粒径の評価において用いたものと同一である。また、参考のため、接合前のステンレス箔1及びステンレス箔3についても同様に剪断帯の数を測定した。測定結果を表8に示す。また、ステンレス箔1単体及びステンレス箔1を接合し熱処理した後(実施例1-2に相当)のSEM観察像を図11のA~Bにそれぞれ示す。さらに、ステンレス箔3単体、及びステンレス箔3を接合し熱処理した後(比較例1-2に相当)のSEM観察像を図12のA~Bにそれぞれ示す。図12中、矢印は、剪断帯が直線を横切っている箇所を示している。
Figure JPOXMLDOC01-appb-T000008
 表8及び図11に示すように、実施例1-2の金属積層材のステンレス層については、直線を横切る剪断帯は観測されず、接合前のステンレス箔1にも剪断帯は確認されなかった。剪断帯を有しないステンレス層によって、金属積層材の高い成形加工性が得られたものと推測される。一方、成形加工性が十分でなかった比較例1-2の金属積層材のステンレス層には16本もの剪断帯が観測され、接合前のステンレス箔3においても6本もの剪断帯が観測された。
1 金属積層材
2 金属積層材
10 アルミニウム層
21 (第1)ステンレス層
22 第2ステンレス層
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (6)

  1.  ステンレス層/アルミニウム層の2層構造又は第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材であって、
     引張強度TS(MPa)が、200≦TS≦550であり、伸びELが15%以上であり、ステンレス層の表面硬度Hvが300以下である、前記金属積層材。
  2.  厚みが50μm~500μmである、請求項1に記載の金属積層材。
  3.  ステンレス層の平均結晶粒径が1.5μm~10μmであり、且つ試料座標系TDからの断面観察像において試料座標系NDに沿った長さ10μmの直線を横切る剪断帯の数が5未満である、請求項1又は2に記載の金属積層材。
  4.  請求項1~3のいずれか1項に記載のステンレス層/アルミニウム層の2層構造を有する金属積層材の製造方法であって、
      表面硬度Hvが300以下であるステンレス箔をスパッタエッチングする工程と、
      表面硬度Hvが20以上であるアルミニウム箔をスパッタエッチングする工程と、
      前記ステンレス箔及び前記アルミニウム箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、ステンレス層/アルミニウム層の2層構造を有する金属積層材を得る工程と、
    を含む、前記金属積層材の製造方法。
  5.  請求項1~3のいずれか1項に記載の第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材の製造方法であって、
      表面硬度Hvが300以下である第1ステンレス箔をスパッタエッチングする工程と、
      表面硬度Hvが20以上であるアルミニウム箔をスパッタエッチングする工程と、
      前記第1ステンレス箔及び前記アルミニウム箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層の2層材を得る工程と、
      前記2層材のアルミニウム層の面をスパッタエッチングする工程と、
      表面硬度Hvが300以下である第2ステンレス箔をスパッタエッチングする工程と、
      前記2層材及び前記第2ステンレス箔におけるスパッタエッチングした面を圧下率10%以下で圧接し、第1ステンレス層/アルミニウム層/第2ステンレス層の3層構造を有する金属積層材を得る工程と、
    を含む、前記金属積層材の製造方法。
  6.  得られた金属積層材を、さらに100~500℃で熱処理を行う工程を含む、請求項4又は5に記載の金属積層材の製造方法。
PCT/JP2016/078988 2015-09-30 2016-09-30 金属積層材及びその製造方法 WO2017057665A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/764,381 US10864596B2 (en) 2015-09-30 2016-09-30 Metal laminate material and production method therefor
JP2017543608A JP6865172B2 (ja) 2015-09-30 2016-09-30 金属積層材及びその製造方法
CN201680056569.7A CN108136729B (zh) 2015-09-30 2016-09-30 金属层叠材料及其制造方法
KR1020187007716A KR20180059437A (ko) 2015-09-30 2016-09-30 금속 적층재 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015193075 2015-09-30
JP2015-193075 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057665A1 true WO2017057665A1 (ja) 2017-04-06

Family

ID=58427715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078988 WO2017057665A1 (ja) 2015-09-30 2016-09-30 金属積層材及びその製造方法

Country Status (5)

Country Link
US (1) US10864596B2 (ja)
JP (1) JP6865172B2 (ja)
KR (1) KR20180059437A (ja)
CN (1) CN108136729B (ja)
WO (1) WO2017057665A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375048B1 (ja) * 2017-06-20 2018-08-15 東洋鋼鈑株式会社 圧延接合体
JP6382435B1 (ja) * 2017-06-20 2018-08-29 東洋鋼鈑株式会社 圧延接合体
JP6382436B1 (ja) * 2017-07-31 2018-08-29 東洋鋼鈑株式会社 電子機器用圧延接合体及び電子機器用筐体
JP6382434B1 (ja) * 2017-07-31 2018-08-29 東洋鋼鈑株式会社 電子機器用圧延接合体及び電子機器用筐体
WO2018181721A1 (ja) * 2017-03-29 2018-10-04 東洋鋼鈑株式会社 圧延接合体
WO2018220891A1 (ja) * 2017-06-02 2018-12-06 日立金属株式会社 板材および板材の製造方法
WO2018230226A1 (ja) * 2017-06-13 2018-12-20 東洋鋼鈑株式会社 圧延接合体及びその製造方法
WO2019130684A1 (ja) * 2017-12-29 2019-07-04 東洋鋼鈑株式会社 電子機器用筐体及びその製造方法
WO2020031956A1 (ja) * 2018-08-06 2020-02-13 東洋鋼鈑株式会社 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
JP2020022992A (ja) * 2018-08-06 2020-02-13 東洋鋼鈑株式会社 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
CN112020406A (zh) * 2018-04-10 2020-12-01 东洋钢钣株式会社 轧制接合体及轧制接合体的制造方法
WO2023190944A1 (ja) * 2022-03-31 2023-10-05 日本製鉄株式会社 クラッド板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543439B2 (ja) * 2014-04-01 2019-07-10 東洋鋼鈑株式会社 金属積層材の製造方法
JP6816938B2 (ja) * 2015-07-27 2021-01-20 日東電工株式会社 撥油性が付与された通気フィルタ
GB202004947D0 (en) * 2020-04-03 2020-05-20 Rolls Royce Plc Joining component bodies
CN113635625A (zh) * 2020-05-11 2021-11-12 华为机器有限公司 层状复合材料及其制备方法、结构件和终端
RU2762696C1 (ru) * 2021-01-22 2021-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВО "МГТУ им. Г.И. Носова") Способ получения слоистого проката

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195883A (ja) * 1987-10-08 1989-04-13 Kawasaki Steel Corp ステンレス鋼−アルミニウムクラッド材の製造方法
JPH01317692A (ja) * 1988-06-20 1989-12-22 Sumitomo Special Metals Co Ltd アルミニウムクラッド鋼からなるプレス成形有底円筒状ケース用素材及びプレス成形有底円筒状ケースの製造方法
JPH0839269A (ja) * 1994-07-26 1996-02-13 Sumitomo Metal Ind Ltd ステンレス鋼・アルミニウムクラッド材の製造方法
JPH11241770A (ja) * 1998-02-25 1999-09-07 Daido Steel Co Ltd 金属ガスケット材と金属ガスケット及びこれらの製造方法
JP2000312979A (ja) * 1999-04-30 2000-11-14 Sumitomo Special Metals Co Ltd アルミニウム・ステンレス鋼クラッド材およびその製造方法
JP2004306458A (ja) * 2003-04-08 2004-11-04 Toyo Kohan Co Ltd 硬軟積層材および硬軟積層材を用いた部品
JP2004351460A (ja) * 2003-05-29 2004-12-16 Neomax Co Ltd アルミニウム・ニッケル・ステンレス鋼クラッド材、その製造方法および電池用ケース
JP2015196179A (ja) * 2014-04-01 2015-11-09 東洋鋼鈑株式会社 金属積層材の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117813A (ja) * 1991-04-18 1993-05-14 Nisshin Steel Co Ltd 成形加工性および疲労特性に優れたメタルガスケツト用ステンレス鋼およびその製造方法
JPH07223081A (ja) * 1994-02-10 1995-08-22 Kobe Steel Ltd 深絞り性に優れた成形加工用クラッド板およびその製造方法
US8387228B2 (en) * 2004-06-10 2013-03-05 Ati Properties, Inc. Clad alloy substrates and method for making same
JP2015062922A (ja) 2013-09-25 2015-04-09 株式会社特殊金属エクセル 3層クラッド構造を有する電子機器用放熱板素材およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195883A (ja) * 1987-10-08 1989-04-13 Kawasaki Steel Corp ステンレス鋼−アルミニウムクラッド材の製造方法
JPH01317692A (ja) * 1988-06-20 1989-12-22 Sumitomo Special Metals Co Ltd アルミニウムクラッド鋼からなるプレス成形有底円筒状ケース用素材及びプレス成形有底円筒状ケースの製造方法
JPH0839269A (ja) * 1994-07-26 1996-02-13 Sumitomo Metal Ind Ltd ステンレス鋼・アルミニウムクラッド材の製造方法
JPH11241770A (ja) * 1998-02-25 1999-09-07 Daido Steel Co Ltd 金属ガスケット材と金属ガスケット及びこれらの製造方法
JP2000312979A (ja) * 1999-04-30 2000-11-14 Sumitomo Special Metals Co Ltd アルミニウム・ステンレス鋼クラッド材およびその製造方法
JP2004306458A (ja) * 2003-04-08 2004-11-04 Toyo Kohan Co Ltd 硬軟積層材および硬軟積層材を用いた部品
JP2004351460A (ja) * 2003-05-29 2004-12-16 Neomax Co Ltd アルミニウム・ニッケル・ステンレス鋼クラッド材、その製造方法および電池用ケース
JP2015196179A (ja) * 2014-04-01 2015-11-09 東洋鋼鈑株式会社 金属積層材の製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840045B2 (en) 2017-03-29 2023-12-12 Toyo Kohan Co., Ltd. Roll-bonded laminate
KR102511594B1 (ko) 2017-03-29 2023-03-17 도요 고한 가부시키가이샤 압연 접합체
CN110446602B (zh) * 2017-03-29 2021-07-27 东洋钢钣株式会社 轧制接合体
WO2018181721A1 (ja) * 2017-03-29 2018-10-04 東洋鋼鈑株式会社 圧延接合体
KR20190134669A (ko) * 2017-03-29 2019-12-04 도요 고한 가부시키가이샤 압연 접합체
CN110446602A (zh) * 2017-03-29 2019-11-12 东洋钢钣株式会社 轧制接合体
JP6460285B1 (ja) * 2017-06-02 2019-01-30 日立金属株式会社 板材および板材の製造方法
WO2018220891A1 (ja) * 2017-06-02 2018-12-06 日立金属株式会社 板材および板材の製造方法
KR20200028387A (ko) 2017-06-13 2020-03-16 도요 고한 가부시키가이샤 압연 접합체 및 그 제조방법
JP2019000902A (ja) * 2017-06-13 2019-01-10 東洋鋼鈑株式会社 圧延接合体及びその製造方法
WO2018230226A1 (ja) * 2017-06-13 2018-12-20 東洋鋼鈑株式会社 圧延接合体及びその製造方法
US11590603B2 (en) 2017-06-13 2023-02-28 Toyo Kohan Co., Ltd. Roll-bonded body and method for producing same
JP2019005806A (ja) * 2017-06-20 2019-01-17 東洋鋼鈑株式会社 圧延接合体
JP2019005805A (ja) * 2017-06-20 2019-01-17 東洋鋼鈑株式会社 圧延接合体
JP6382435B1 (ja) * 2017-06-20 2018-08-29 東洋鋼鈑株式会社 圧延接合体
JP6375048B1 (ja) * 2017-06-20 2018-08-15 東洋鋼鈑株式会社 圧延接合体
JP2019025543A (ja) * 2017-07-31 2019-02-21 東洋鋼鈑株式会社 電子機器用圧延接合体及び電子機器用筐体
JP2019025542A (ja) * 2017-07-31 2019-02-21 東洋鋼鈑株式会社 電子機器用圧延接合体及び電子機器用筐体
JP6382436B1 (ja) * 2017-07-31 2018-08-29 東洋鋼鈑株式会社 電子機器用圧延接合体及び電子機器用筐体
JP6382434B1 (ja) * 2017-07-31 2018-08-29 東洋鋼鈑株式会社 電子機器用圧延接合体及び電子機器用筐体
WO2019130684A1 (ja) * 2017-12-29 2019-07-04 東洋鋼鈑株式会社 電子機器用筐体及びその製造方法
CN112020406B (zh) * 2018-04-10 2022-06-24 东洋钢钣株式会社 轧制接合体及轧制接合体的制造方法
CN112020406A (zh) * 2018-04-10 2020-12-01 东洋钢钣株式会社 轧制接合体及轧制接合体的制造方法
JP7162960B2 (ja) 2018-08-06 2022-10-31 東洋鋼鈑株式会社 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
JP2020022992A (ja) * 2018-08-06 2020-02-13 東洋鋼鈑株式会社 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
WO2020031956A1 (ja) * 2018-08-06 2020-02-13 東洋鋼鈑株式会社 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
WO2023190944A1 (ja) * 2022-03-31 2023-10-05 日本製鉄株式会社 クラッド板

Also Published As

Publication number Publication date
JPWO2017057665A1 (ja) 2018-07-26
KR20180059437A (ko) 2018-06-04
US10864596B2 (en) 2020-12-15
JP6865172B2 (ja) 2021-04-28
US20180281103A1 (en) 2018-10-04
CN108136729A (zh) 2018-06-08
CN108136729B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
JP6865172B2 (ja) 金属積層材及びその製造方法
WO2017057698A1 (ja) 金属積層材及びその製造方法
WO2015152041A1 (ja) 金属積層材の製造方法
WO2018066413A1 (ja) 放熱部品用銅合金板、放熱部品、及び放熱部品の製造方法
JP7375131B2 (ja) 圧延接合体及び圧延接合体の製造方法
JP6637200B2 (ja) 圧延接合体及びその製造方法
WO2018181717A1 (ja) 電子機器用圧延接合体及び電子機器用筐体
JP7026017B2 (ja) 圧延接合体及びその製造方法
JP6375048B1 (ja) 圧延接合体
JP6382434B1 (ja) 電子機器用圧延接合体及び電子機器用筐体
JP7162960B2 (ja) 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
WO2018181721A1 (ja) 圧延接合体
WO2020031956A1 (ja) 圧延接合体及びその製造方法、並びに電子機器用の放熱補強部材
JP2019112718A (ja) 積層薄板の製造方法及び積層薄板
JP2019034453A (ja) 積層薄板の製造方法および積層薄板
JPH05386A (ja) アルミニウム/インバー/アルミニウムクラツド材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007716

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017543608

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764381

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851834

Country of ref document: EP

Kind code of ref document: A1