WO2015137452A1 - 圧粉磁心の製造方法および圧粉磁心 - Google Patents

圧粉磁心の製造方法および圧粉磁心 Download PDF

Info

Publication number
WO2015137452A1
WO2015137452A1 PCT/JP2015/057309 JP2015057309W WO2015137452A1 WO 2015137452 A1 WO2015137452 A1 WO 2015137452A1 JP 2015057309 W JP2015057309 W JP 2015057309W WO 2015137452 A1 WO2015137452 A1 WO 2015137452A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic material
material powder
powder
dust core
Prior art date
Application number
PCT/JP2015/057309
Other languages
English (en)
French (fr)
Inventor
西村 和則
野口 伸
敏男 三原
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2015539994A priority Critical patent/JP5892356B2/ja
Priority to US15/124,942 priority patent/US10354790B2/en
Priority to EP15760682.3A priority patent/EP3118868B1/en
Priority to CN201580013307.8A priority patent/CN106104727B/zh
Priority to KR1020167028129A priority patent/KR102195952B1/ko
Priority to EP19193189.8A priority patent/EP3591677A1/en
Publication of WO2015137452A1 publication Critical patent/WO2015137452A1/ja
Priority to US16/430,816 priority patent/US11636970B2/en
Priority to US16/430,857 priority patent/US11508512B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%

Definitions

  • the present invention relates to a dust core composed of soft magnetic material powder and a method for manufacturing the dust core.
  • the coil component includes a magnetic core and a coil wound around the magnetic core.
  • ferrite having excellent magnetic properties, flexibility in shape and price is widely used.
  • the adoption of powder magnetic cores using metallic magnetic powder with high saturation magnetic flux density is advancing.
  • the metal magnetic powder for example, Fe—Si, Fe—Ni, Fe—Si—Al, and the like are used.
  • Patent Document 1 discloses an example in which an Fe—Cr—Al-based magnetic powder is used as a magnetic powder capable of self-generation of a high electrical resistance material serving as an insulating coating.
  • Patent Literature 1 a magnetic powder is obtained by oxidizing a magnetic powder to generate an oxide film having a high electrical resistance on the surface of the magnetic powder, and solidifying and molding the magnetic powder by discharge plasma sintering.
  • Patent Document 2 generates an oxide layer formed by oxidizing the particles on the surface of soft magnetic alloy particles containing iron, chromium, and silicon, and the oxide layer contains more chromium than the alloy particles.
  • a configuration is disclosed in which the particles are bonded to each other through the oxide layer.
  • Patent Document 1 does not require the high pressure as described above, it is a manufacturing method that requires complicated equipment and a lot of time. In addition, a process for pulverizing the agglomerated powder after the oxidation treatment of the magnetic powder is required, which makes the process complicated.
  • the method disclosed in Patent Document 1 is advantageous in increasing the insulation and strength, but it has been difficult to produce a magnetic core having a complicated shape such as a drum shape.
  • the configuration disclosed in Patent Document 2 forms an insulating layer by heat treatment in an oxidizing atmosphere, and although the insulating layer can be easily formed, it does not provide a manufacturing method suitable for a magnetic core having a complicated shape. .
  • the present invention provides a method for manufacturing a dust core that can cope with a complex shape while ensuring high strength and insulation in a method for manufacturing a dust core by simple pressure molding.
  • the purpose is to provide.
  • Another object of the present invention is to provide a dust core having high strength and insulation in a drum-shaped dust core that is a typical complex shape.
  • the method for manufacturing a powder magnetic core according to the present invention is a method for manufacturing a powder magnetic core using a metal-based soft magnetic material powder, wherein the first step of mixing the soft magnetic material powder and a binder, A second step of pressure-molding the mixture obtained through the steps, a third step of subjecting the molded body obtained through the second step to at least one of grinding and cutting, and the third And a fourth step of heat-treating the molded body that has undergone the above step, and by heat-treating the molded body in the fourth step, the elements contained in the soft magnetic material powder on the surface of the soft magnetic material powder An oxide layer containing is formed.
  • the first step includes a step of spray-drying a slurry containing the soft magnetic material powder and a binder.
  • the soft magnetic material powder is preferably a Fe—Cr—Al based soft magnetic material powder.
  • a preheating step of heating the molded body to a temperature lower than the heat treatment temperature in the fourth step between the second step and the third step is preferable to have.
  • a space factor of the molded body provided for the third step is 78 to 90%.
  • the processing applied to the molded body obtained through the second step is cutting.
  • the shape of the said powder magnetic core is a drum shape which has a collar part in the both ends side of the said conducting wire winding part.
  • the dust core of the present invention is a dust core made of metal-based soft magnetic material powder, and has a drum shape having a conductor winding portion and flanges on both ends of the conductor winding portion.
  • the arithmetic mean roughness of the surface of the conductive wire winding part is larger than the arithmetic mean roughness of the outer surface of the flange, and the metal-based soft magnetic material powder is an oxidation containing an element contained in the soft magnetic material powder.
  • the conductive wire winding part surface is a processed surface and has an oxide layer containing an element contained in the soft magnetic material powder.
  • the maximum dimension of at least one of the flanges on both ends is larger than the dimension in the axial direction.
  • the soft magnetic material powder is preferably an Fe—Cr—Al based soft magnetic material powder.
  • the manufacturing method of the powder magnetic core using simple press molding the manufacturing method which can respond also to a complicated shape can be provided, ensuring high intensity
  • a dust core having a high strength and insulation can be provided in a drum core having a typical drum shape as a complex shape.
  • FIG. 1 is a process flow chart for explaining an embodiment of a method for producing a dust core according to the present invention.
  • the manufacturing method shown in FIG. 1 is a manufacturing method of a powder magnetic core using a metal-based soft magnetic material powder, the first step of spray drying after mixing the soft magnetic material powder and a binder, A second step of pressure-molding the mixture obtained through the first step, and at least one of grinding and cutting (hereinafter referred to as “grinding or the like”) on the molded body obtained through the second step. And a fourth step of heat-treating the molded body that has undergone the third step. In the fourth step, the molded body is heat-treated to form an oxide layer containing the elements contained in the soft magnetic material powder on the surface of the soft magnetic material powder.
  • the soft magnetic material powder is bonded and insulated, and a dust core having high strength and high insulation is obtained. Since the oxide layer having insulating properties can be formed on the surface of the soft magnetic material powder simply by heat-treating the molded body, the insulating coating forming process is also simplified.
  • One of the features of the present invention is that a third step of performing a grinding process or the like for obtaining a predetermined shape, dimension, etc. is performed before the fourth step of imparting high strength to the dust core. There is one.
  • a high-strength powder magnetic core is provided by the oxide layer formed by the heat treatment in the fourth step. On the contrary, processing after the heat treatment becomes difficult because of the high strength.
  • the processing is performed after the heat treatment, the metal portion of the soft magnetic material powder is exposed at that portion, so that insulation cannot be secured as it is. Therefore, a flow is adopted in which a grinding process or the like for forming a predetermined shape is completed before the fourth step, followed by heat treatment to form an oxide layer.
  • the crushing strength of the compact immediately after the second step is, for example, about 5 to 15 MPa, which is about 1/10 or less of the crushing strength of the magnetic core subjected to the heat treatment in the fourth step. Therefore, grinding or the like is easy in the state of the molded body immediately after the second step. Moreover, even if the metal portion is exposed by performing grinding or the like, the portion is covered with the oxide layer through the heat treatment in the fourth step. Therefore, by adopting the above flow, workability problems and insulation problems are solved together.
  • the soft magnetic material powder used in the first step will be described.
  • the metal-based soft magnetic material powder has a magnetic property capable of forming a dust core and can form an oxide layer containing elements contained in the soft magnetic material powder on the surface of the soft magnetic material powder
  • a preferred form of the metal-based soft magnetic material powder is, for example, an Fe—Cr—M system (M is at least one of Al and Si). Since the Fe—Cr—M alloy powder contains Cr in addition to the base element Fe, it has superior corrosion resistance compared to, for example, an Fe—Si alloy powder.
  • the Fe—Cr—M system (M is one of Al and Si) containing at least one of Al and Si in addition to Cr.
  • At least one kind of alloy powder is suitable as the soft magnetic material powder.
  • Fe-Cr-Al-based or Fe-Cr-Al-Si-based alloy powders containing Al as M have excellent corrosion resistance compared to Fe-Si-based and Fe-Si-Cr-based alloy powders. Almost plastically deformed. That is, if an Fe—Cr—Al or Fe—Cr—Al—Si alloy powder is used, a dust core having a high space factor and strength can be obtained even at a low molding pressure. Therefore, the enlargement and complexity of the molding machine can be avoided. In addition, since molding can be performed at a low pressure, damage to the mold is suppressed and productivity is improved.
  • an insulating oxide is formed on the surface of the soft magnetic material powder by heat treatment after molding, as will be described later. Things can be formed. Therefore, it is possible to omit the step of forming the insulating oxide before molding, and the method for forming the insulating coating is simplified, so that productivity is improved in this respect.
  • Fe—Cr—M alloy powder is used as a specific example of the soft magnetic material powder.
  • Fe-Cr-M-based (M is at least one of Al and Si) Fe-based soft magnetic material powder has Fe as the base element with the largest content, followed by Cr and M (Cr and M are in no particular order) Is a soft magnetic alloy powder with a large content of.
  • the specific composition of the Fe—Cr—M soft magnetic material powder is not particularly limited as long as it can constitute a dust core.
  • Cr is an element that improves corrosion resistance and the like. From this viewpoint, for example, Cr is preferably 1.0% by mass or more. More preferably, Cr is 2.5 mass% or more. On the other hand, the Cr content is preferably 9.0% by mass or less because the saturation magnetic flux density is lowered when the amount is too large. More preferably, the Cr amount is 7.0% by mass or less, and further preferably 4.5% by mass or less.
  • Al like Cr, is an element that improves corrosion resistance and the like, and contributes to the formation of surface oxides. Furthermore, the intensity
  • Si has an effect of improving magnetic properties, and can be contained instead of or in addition to the above Al.
  • the Si content is preferably 1.0% by mass or more.
  • strength of a powder magnetic core will fall when Si amount increases too much, 3.0 mass% or less is preferable.
  • Si is preferably at an inevitable impurity level.
  • Si is preferably regulated to less than 0.5% by mass.
  • the remainder other than Cr and M is mainly composed of Fe, but may contain other elements as long as the Fe-Cr-M soft magnetic material powder exhibits advantages such as formability. However, since the saturation magnetic flux density and the like of the nonmagnetic element is lowered, it is more preferably 1.0% by mass or less excluding inevitable impurities.
  • the Fe—Cr—M soft magnetic material powder is more preferably composed of Fe, Cr and M excluding inevitable impurities.
  • the average particle diameter of the soft magnetic material powder (here, the median diameter d50 in the cumulative particle size distribution is used) is not limited to this, but for example, a powder having an average particle diameter of 1 ⁇ m or more and 100 ⁇ m or less should be used. Can do. By reducing the average particle size, the strength, core loss, and high frequency characteristics of the powder magnetic core are improved. Therefore, the median diameter d50 is more preferably 30 ⁇ m or less, and even more preferably 15 ⁇ m or less. On the other hand, when the average particle size is small, the magnetic permeability is low, so the median diameter d50 is more preferably 5 ⁇ m or more.
  • the form of the soft magnetic material powder is not particularly limited.
  • Atomization methods such as gas atomization and water atomization are suitable for producing powders of alloys that have high malleability and ductility and are difficult to grind.
  • the atomization method is also suitable for obtaining a substantially spherical soft magnetic material powder.
  • the binder binds the powders during pressure molding, and imparts strength to the molded body to withstand grinding after the molding and handling.
  • various organic organic binders such as polyethylene, polyvinyl alcohol (PVA), an acrylic resin, can be used.
  • the organic binder is thermally decomposed by heat treatment after molding. Therefore, an inorganic binder such as a silicone resin that solidifies and remains after the heat treatment and binds the powders may be used in combination.
  • the oxide layer formed in the fourth step has an action of binding soft magnetic material powders, and thus the use of the above inorganic binder is omitted. Thus, it is preferable to simplify the process.
  • the amount of the binder added may be an amount that can be sufficiently distributed between the soft magnetic material powders and can secure a sufficient compact strength. On the other hand, if the amount is too large, the density and strength are lowered.
  • the amount is preferably 0.25 to 3.0 parts by weight with respect to 100 parts by weight of the soft magnetic material powder. In order to withstand the grinding process performed in the third step, 0.5 to 1.5 parts by weight is more preferable.
  • the mixing method of the soft magnetic material powder and the binder in the first step is not particularly limited.
  • the mixture obtained by mixing is preferably subjected to a granulation process from the viewpoint of moldability and the like.
  • the first step includes a spray drying step as a granulation process after mixing the soft magnetic material powder and the binder.
  • a spray drying step a slurry-like mixture containing soft magnetic material powder and binder and a solvent such as water is spray dried using a spray dryer.
  • a granulated powder having a sharp particle size distribution and a small average particle size can be obtained.
  • the workability after molding described later is improved.
  • the average of the arithmetic average roughness Ra of the non-processed surface (for example, the end surface in the axial direction, the outer surface of the buttocks)
  • the ratio R MD / R AS of the average R MD of the arithmetic average roughness Ra of the processed surface (for example, the surface of the conductive wire winding part) with respect to R AS can be made 5 or less. More preferably, the ratio R MD / R AS is 3 or less.
  • the average particle diameter (median diameter d50) of the granulated powder is preferably 40 to 150 ⁇ m, more preferably 60 to 100 ⁇ m.
  • spray-drying granulation is not essential as a granulation method (FIG. 2).
  • the Fe—Cr—Al soft magnetic material powder in which M is Al is particularly excellent in moldability, so that a high-strength compact can be subjected to grinding or the like. For this reason, chipping or the like in grinding or the like is suppressed.
  • a method other than spray drying is applied as a granulation method such as rolling granulation, for example, in a state where a binder is mixed, the mixed powder becomes an agglomerated powder having a wide particle size distribution due to its binding action. Yes.
  • a granulated powder having a desired secondary particle size suitable for molding can be obtained.
  • a lubricant such as stearic acid or stearate
  • the addition amount of the lubricant is preferably 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the soft magnetic material powder.
  • the lubricant can be applied to or sprayed on the mold.
  • the mixture obtained in the first step is preferably granulated as described above and subjected to the second step.
  • the granulated mixture is pressure-molded into a predetermined shape such as a cylindrical shape, a rectangular parallelepiped shape or a toroidal shape using a molding die.
  • the molding in the second step may be room temperature molding or warm molding performed by heating to such an extent that the organic binder does not disappear.
  • the machining such as grinding is a process for making the formed body into a predetermined shape and size. Grinding can be performed using a rotating grindstone or the like, and cutting can be performed using a cutting tool. Grinding or the like includes processing for the purpose of deburring using a brush with abrasive grains, but is preferably applied to at least the conductor winding portion of the dust core. This is because if the processing for obtaining a predetermined shape or the like, such as processing of the conductive wire winding portion, is performed after the heat treatment described later, the processing process becomes complicated. More preferably, the third step is applied to a powder magnetic core having a concave shape that is difficult to process after heat treatment, such as a drum shape having flanges on both ends of the wire winding portion.
  • the space factor of the molded body subjected to the third step is preferably 78 to 90%, more preferably 79 to 88%, and still more preferably 81 to 86%. Further, by using Fe—Cr—Al soft magnetic material powder having excellent moldability, it is possible to increase the space factor of the molded body used in the third step to 82% or more even at a low molding pressure. In the second step, the space factor of the molded body can be adjusted to such a range by adjusting the molding pressure or the like.
  • the space factor (relative density) of the compact used for the third step is calculated by dividing the density of the compact by the true density of the soft magnetic material powder.
  • the mass of the binder or lubricant contained in the molded body is subtracted from the mass of the molded body based on the amount added.
  • the true density of the soft magnetic material powder may be the density of an ingot prepared by melting with the same composition.
  • the said drum shape is a shape which has the collar part (flange part) which protruded so that it might protrude in the both ends of a column-shaped conducting wire winding part.
  • the conductor winding part is cylindrical and the flanges on both ends thereof are disk-shaped
  • the conductor winding part is cylindrical
  • the flange on one end is disk-shaped
  • the other end is square-plate
  • a wire winding part having a cylindrical shape and a hook plate on both ends thereof having a square plate shape a wire winding part having a square pillar shape and a hook portion on both ends thereof having a square plate shape, etc. It is not something.
  • the configuration of the present invention When the configuration of the present invention is applied to a flat drum-shaped dust core in which the maximum dimension of at least one of the flanges at both ends is larger than the height of the drum shape, that is, the dimension in the axial direction, the effect is remarkable. It is. Furthermore, it is more effective to apply to a deep drum-shaped powder magnetic core with a narrow recess, such as a shape in which the maximum dimension of the collar portion is twice or more the core diameter (diameter of the wire winding portion). . This is because these shapes are difficult to form both by integral molding and by grinding or the like.
  • the maximum dimension means, for example, a diameter when the collar portion is disk-shaped, a long diameter when the ellipsoidal plate shape is formed, and a diagonal direction dimension when the rectangular plate shape is formed.
  • the shape which has a collar part only in the one end side of a conducting wire winding part is also applicable.
  • a method for obtaining the drum shape for example, in the second step, a cylindrical or prismatic molded body is produced, and by grinding or the like, the side surface direction of the molded body such as the cylindrical shape is directed toward the central axis. A recess is formed. Since the molded body after the second step is in a stage before the later-described oxide layer that imparts high strength to the powder magnetic core is formed, grinding and the like are easy, and the machining process is greatly increased. Simplified.
  • the compact subjected to the third step is subjected to heat treatment.
  • M is at least one of Al and Si
  • M is at least one of Al and Si
  • the following configuration is obtained.
  • M is Si
  • Cr is concentrated in the oxide layer
  • Fe, Cr and M An oxide layer having a high ratio of Cr to the sum of Si
  • Al is contained as M
  • Al is concentrated in the oxide layer
  • the surface of the soft magnetic material powder is an oxide having a higher ratio of Al to the sum of Fe, Cr and M than the internal alloy phase.
  • a layer is formed.
  • such a heat treatment can be expected to relieve stress strain introduced by molding or the like and obtain good magnetic properties.
  • the heat treatment can be performed in an atmosphere in which oxygen exists, such as in the air or in a mixed gas of oxygen and an inert gas. Further, the heat treatment can be performed in an atmosphere in which water vapor exists, such as in a mixed gas of water vapor and inert gas. Of these, heat treatment in the air is simple and preferable. Further, the pressure of the heat treatment atmosphere is not particularly limited, but is preferably an atmospheric pressure that does not require pressure control.
  • the soft magnetic material powder is oxidized, and the oxide layer as described above is formed on the surface thereof. Such an oxide layer constitutes a grain boundary phase between the soft magnetic material powders, and improves the insulation and corrosion resistance of the soft magnetic material powders.
  • this oxide layer is formed after forming a molded object, it contributes also to the coupling
  • grinding or cutting is performed, so that the internal alloy phase of the soft magnetic material powder on the processed surface is exposed.
  • the portion of the alloy phase exposed by the heat treatment in the fourth step is covered with the oxide layer, the insulation of the processed surface is ensured. Since the heat treatment in the fourth step can also serve to remove distortion during molding, to bond soft magnetic material powders and to form an insulating layer on the processed surface, efficient production of a high-strength, high-insulating dust core Is possible.
  • the heat treatment in the fourth step may be performed at a temperature at which the oxide layer is formed. By such heat treatment, a dust core having excellent strength can be obtained. Furthermore, the heat treatment in the fourth step is preferably performed at a temperature at which the soft magnetic material powder is not significantly sintered. When the soft magnetic material powder is significantly sintered, the core loss also increases. Specifically, a range of 600 to 900 ° C. is preferable, and a range of 700 to 800 ° C. is more preferable.
  • the holding time is appropriately set according to the size of the dust core, the processing amount, the allowable range of characteristic variation, and the like. For example, 0.5 to 3 hours are preferable.
  • a powder magnetic core having a complicated shape or a powder magnetic core having a thin portion is manufactured, if there is a concern about the damage of the powder magnetic core in the third step, molding for the third step is performed. It is preferable to increase the strength of the body as compared to the as-molded state. Specifically, as shown in FIG. 9, a preheating step of heating the molded body to a temperature lower than the heat treatment temperature in the fourth step is included between the second step and the third step described above. It is preferable.
  • the heating temperature in the preheating step is set higher than room temperature, whereas if the heating temperature is too high, the processing in the third step becomes difficult. Therefore, when the preheating is performed, it is performed at a temperature lower than the heat treatment temperature in the fourth step.
  • the heating temperature is such that Al, Cr, etc.
  • the temperature below the temperature at which the grain boundary is concentrated is preferable, and 300 ° C. or lower is more preferable. If the heating temperature is 300 ° C. or lower, it is also preferable in that it can be applied to other soft magnetic material powders as well as Fe—Cr—M soft magnetic material powders. Moreover, in order to raise the strength improvement effect by heating, it is preferable that heating temperature is 100 degreeC or more. When the heating holding time is too short, the effect of increasing the strength of the molded article is small, and when it is longer than necessary, the productivity is lowered. For example, it is preferably 10 minutes or longer and 4 hours or shorter. More preferably, it is 30 minutes or more and 3 hours or less.
  • the atmosphere at the time of preheating is not limited to an oxidizing atmosphere. The atmosphere is preferable in the atmosphere because the process becomes simple. By passing through the preheating step, the strength of the molded body provided for the third step can be made higher than 15 MPa.
  • a preliminary step of forming an insulating film on the soft magnetic material powder by heat treatment or sol-gel method may be added before the first step.
  • the oxide layer can be formed on the surface of the soft magnetic material powder by the fourth step, and thus the preliminary step as described above is omitted. It is more preferable to simplify.
  • the oxide layer itself is not easily plastically deformed. Therefore, by adopting the process of forming the oxide layer after forming, the high forming that the Fe-Cr-Al-based or Fe-Cr-Al-Si-based alloy powder has in particular in the pressure forming of the second step Sex can be used effectively.
  • the magnetic core obtained through the fourth step may have burrs, or dimension adjustment may be necessary.
  • the powder magnetic core obtained through the fourth step and the powder magnetic core obtained through the fifth step are subjected to a fifth step in which at least one of grinding and cutting is further applied to the powder magnetic core obtained through the fourth step.
  • an oxide layer containing the element contained in the soft magnetic material powder can be formed on the surface processed in the fifth step by the heat treatment of the sixth step. .
  • the dust core obtained as described above exhibits an excellent effect in itself. That is, high strength and insulation are realized in a dust core having a drum shape which is a typical complex shape.
  • the specific configuration is, for example, a dust core made of metal-based soft magnetic material powder, and has a drum shape having a conductor winding portion and flanges on both ends of the conductor winding portion.
  • the metal-based soft magnetic material powder is bonded via an oxide layer containing an element contained in the soft magnetic material powder, the surface of the conductive wire winding portion is a processed surface, and the soft magnetic material powder This is a dust core having an oxide layer containing the element contained in the material powder.
  • the surface of the conductive wire winding portion is a processed surface means that the conductive wire winding portion is formed by machining such as grinding or cutting, and the surface of the conductive wire winding portion itself does not matter. That is, also when the oxide layer is formed on the surface of the conductive wire winding part formed by machining, the surface of the conductive wire winding part is a processed surface. In this case, the arithmetic average roughness of the surface of the conducting wire winding portion is larger than the arithmetic average roughness of the outer surface of the collar portion. In addition, the fact that the metal-based soft magnetic material powder is bonded through the oxide layer containing the element contained in the soft magnetic material powder ensures high strength and insulation even when machined.
  • the surface of the conductive wire winding part has an oxide layer containing the element contained in the soft magnetic material powder, even if the conductive wire winding part is formed by processing, the insulation property of the surface of the conductive wire winding part is also improved. Secured.
  • the surface has a surface that has been processed and a surface that has not been processed, and the arithmetic average roughness Ra of the surface that has not been processed (for example, an axial end surface).
  • the average for the R aS, surface through the processing can also be obtained dust core ratio R MD / R aS average R MD arithmetic mean roughness Ra is less than 5%. More preferably, the ratio R MD / R AS is 3 or less.
  • the average of the maximum diameter of each particle of the soft magnetic material powder is preferably 15 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the average of the maximum diameter is more preferably 0.5 ⁇ m or more from the viewpoint of suppressing a decrease in magnetic permeability.
  • the average of the maximum diameter may be calculated by polishing the cross section of the powder magnetic core and observing under a microscope, reading the maximum diameter of particles present in a visual field of a certain area, and taking the number average. At this time, it is preferable to take an average of 30 or more particles.
  • the Fe—Cr—M system (M is at least one of Al and Si) as the metal-based soft magnetic material powder
  • M is at least one of Al and Si
  • the moldability is excellent, and a high space factor and dust core strength are realized.
  • the space factor (relative density) of the dust core can be increased with a low molding pressure, and the strength of the dust core can be improved.
  • the space factor of the soft magnetic material powder in the dust core subjected to the heat treatment be within the range of 80 to 92% by utilizing such action.
  • the reason why such a range is preferable is that the magnetic characteristics are improved by increasing the space factor, but if the space factor is excessively increased, the equipment and cost are increased.
  • a more preferable range of the space factor is 84 to 90%.
  • the above-described configuration of the powder magnetic core is suitable for a flat drum shape in which at least one diameter or one side of the flanges on both ends is larger than the dimension in the axial direction. This is because it is difficult to realize such a shape only by mold molding.
  • a coil component is provided using the above-described dust core and a coil wound around the dust core.
  • the coil may be configured by winding a conductive wire around a powder magnetic core, or may be configured by winding it around a bobbin.
  • a coil component having the dust core and the coil is used as, for example, a choke, an inductor, a reactor, a transformer, or the like.
  • the powder magnetic core may be manufactured in the form of a powder magnetic core formed by pressing only the soft magnetic material powder mixed with the binder as described above, or the soft magnetic material powder and the coil may be integrated. You may press-mold and manufacture with the form of the powder magnetic core of a coil enclosure structure.
  • the characteristics of various soft magnetic material powders used in the method for producing a dust core were confirmed as follows.
  • As the Fe—Cr—Al based soft magnetic material powder a spherical atomized powder having an alloy composition (composition A) of Fe-4.0% Cr-5.0% Al by mass percentage was prepared.
  • the mixture was mixed with 100 parts by weight of the soft magnetic material powder at a ratio of 2.0 parts by weight of an acrylic resin binder (Polysol AP-604, solid content 40%, Showa Polymer Co., Ltd.) as a binder.
  • the mixed powder was dried at 120 ° C. for 1 hour, passed through a sieve to obtain granulated powder, and the average particle diameter (d50) was set in the range of 60 to 80 ⁇ m.
  • zinc stearate was added and mixed at a ratio of 0.4 parts by weight with respect to 100 parts by weight of the soft magnetic material powder to obtain a mixture for molding.
  • the obtained mixture was pressure molded at room temperature with a molding pressure of 0.91 GPa using a press machine.
  • the space factor evaluated with the molded body was 84.6%.
  • the obtained toroidal shaped molded body was heat-treated in the atmosphere at a heat treatment temperature of 800 ° C. for 1.0 hour to obtain a dust core (No. 1).
  • an Fe-4.0% Cr-3.5% Si alloy composition (composition B) as a mass percentage as Fe-Cr-Si based soft magnetic material powder, and a mass as Fe-Si based soft magnetic material powder.
  • composition C an alloy composition of Fe-3.5% Si in percentage, each was mixed and pressure-molded under the same conditions as in the case of No. 1 to obtain a compact. Heat treatment was performed under conditions of 700 ° C. and 500 ° C., respectively, to obtain a dust core (No. 2 and 3).
  • a heat treatment temperature of 500 ° C. was adopted.
  • the density of the dust core produced by the above steps was calculated from its dimensions and mass, and the space factor (relative density) was calculated by dividing the density of the dust core by the true density of the soft magnetic material powder. Further, a load was applied in the radial direction of the toroidal powder magnetic core, the maximum load P (N) at the time of fracture was measured, and the crushing strength ⁇ r (MPa) was obtained from the following equation.
  • ⁇ r P (Dd) / (Id 2 ) (Where D is the outer diameter (mm) of the magnetic core, d is the radial thickness (mm) of the magnetic core, and I is the height (mm) of the magnetic core.) Further, the primary side and the secondary side were wound by 15 turns, respectively, and the core loss Pcv was measured with a BH analyzer SY-8232 manufactured by Iwatatsu Measurement Co., Ltd. under the conditions of a maximum magnetic flux density of 30 mT and a frequency of 300 kHz. The initial permeability ⁇ i was measured at a frequency of 100 kHz by winding a conducting wire 30 turns around the toroidal powder magnetic core and using 4284A manufactured by Hewlett-Packard Company.
  • the No. 1 and No. 2 dust cores using Fe—Cr—M soft magnetic powder as the soft magnetic powder are No. 3 dust cores using Fe—Si soft magnetic alloy powder.
  • the crushing strength increased while exhibiting the same or better magnetic properties. That is, according to the structure which concerns on No1 and 2, it was possible to provide the powder magnetic core which has high intensity
  • the No. 1 dust core produced using the Fe—Cr—Al based soft magnetic material powder includes the No. 3 dust core using the Fe—Si based soft magnetic material powder and the Fe—Cr—Si based soft magnetic material. Compared with the No. 2 dust core using powder, the space factor and permeability were significantly increased. In addition, the crushing strength of the No.
  • FIG. (A) is an SEM image, and it can be seen that a phase having a black color tone is formed on the surface of the soft magnetic material powder (soft magnetic material particle) 1 having a light gray color tone.
  • FIGS. 3B to 3E are mappings showing the distribution of O (oxygen), Fe (iron), Al (aluminum), and Cr (chromium), respectively. The brighter the color, the greater the number of target elements.
  • FIG. 3 shows that the surface of the soft magnetic material powder is rich in oxygen and oxides are formed, and that each soft magnetic material particle, which is an alloy, is bonded through the oxides.
  • the Fe magnetic surface has a lower Fe concentration on the surface of the soft magnetic material powder, and Cr does not show a large concentration distribution.
  • the concentration of Al at the soft magnetic material grain boundary is remarkably high.
  • an oxide layer containing the elements contained in the soft magnetic material powder is formed at the grain boundary of the soft magnetic material powder, and the oxide layer is more Al than the inner alloy phase than the sum of Fe, Cr, and Al. It was confirmed that the oxide layer had a high ratio.
  • the concentration distribution of each constituent element as shown in FIG. 3 was not observed, and it was also found that the oxide layer was formed by the heat treatment. It can also be seen that the oxide layers at each grain boundary having a high Al ratio are connected to each other.
  • FIG. (A) is an SEM image, and it can be seen that a phase having a black color tone is formed on the surface of the soft magnetic material powder 1 having a light gray color tone.
  • FIGS. 4B to 4E are mappings showing the distribution of O (oxygen), Fe (iron), Cr (chromium), and Si (silicon), respectively.
  • the grain boundaries of the soft magnetic material powder are rich in oxygen and oxides are formed, and the soft magnetic material powders are bonded through the oxides. You can see how it is. Further, the soft magnetic material powder also has a lower Fe concentration at the grain boundary than the inside, and Si does not show a large concentration distribution. On the other hand, the concentration of Cr on the surface of the soft magnetic material powder is remarkably high. As a result, an oxide layer containing the elements contained in the soft magnetic material powder is formed on the surface of the soft magnetic material powder, and the oxide layer contains Cr with respect to the sum of Fe, Cr, and Si rather than the internal alloy phase. It was confirmed that the oxide layer had a high ratio.
  • the powder magnetic cores of Fe-Cr-M soft magnetic material powders No. 1 and 2 both contain Cr, but when M does not contain Al, Cr is concentrated at the grain boundary of the soft magnetic material powder, and M is Al. In the case of containing Al, it was found that Al is more concentrated at the grain boundaries than Cr.
  • an Fe-Cr-M soft magnetic material powder having a different Si amount from the composition A an alloy composition of Fe-3.9% Cr-4.9% Al-1.9Si in mass percentage (composition D) And a spherical atomized powder having an alloy composition (composition E) of Fe-3.8% Cr-4.8% Al-2.9Si by mass percentage as follows:
  • a dust core was prepared.
  • the average particle size (median diameter d50) measured with a laser diffraction / scattering particle size distribution analyzer (LA-920 manufactured by Horiba, Ltd.) is 14.7 ⁇ m for atomized powder of composition D and 11.6 ⁇ m for atomized powder of composition E. there were.
  • Composition D and Composition E For each of Composition D and Composition E, 100 parts by weight of soft magnetic material powder was mixed with PVA (Poval PVA-205 manufactured by Kuraray Co., Ltd .; solid content 10%) as a binder at a ratio of 2.5 parts by weight. The obtained mixture was dried at 120 ° C. for 1 hour, and then passed through a sieve to obtain a granulated powder. The average particle size (d50) was set in the range of 60 to 80 ⁇ m. Further, 0.4 parts by weight of zinc stearate was added to 100 parts by weight of the granulated powder and mixed to obtain a molding mixture.
  • PVA Porous aluminum oxide
  • the obtained mixture was press-molded at a room temperature with a molding pressure of 0.74 GPa using a press machine to obtain a toroidal shaped compact having an inner diameter of 7.8 mm, an outer diameter of 13.5 mm, and a thickness of 4.3 mm. It was.
  • the space factor evaluated by the molded body was 80.9% (composition D) and 78.3% (composition E), respectively.
  • the molded body obtained as described above was heat-treated in the atmosphere at a heat treatment temperature of 750 ° C. for 1.0 hour to obtain a dust core (No. 4 and 5).
  • Table 2 shows the results of evaluating magnetic characteristics and the like in the same manner as in Nos. 1 to 3 above.
  • the No. 4 and No. 5 dust cores using Fe—Cr—Al—Si based soft magnetic material powder as the soft magnetic material powder are compared with the No. 1 dust core by adding Si. Improved magnetic properties.
  • the crushing strength is slightly lower than that of the No. 1 dust core, it can also be seen that a sufficient crushing strength of 100 MPa or more can be obtained even under a reduced molding pressure. That is, although containing Si is disadvantageous in obtaining high-pressure ring strength, it has been confirmed that high pressure-ring strength can be ensured by including Al simultaneously.
  • Example 1 Examples of the present invention having the first to fourth steps will be described below.
  • drum-shaped dust cores were produced as follows (No. 6 and No. 7, respectively).
  • PVA Porous PVA-205 manufactured by Kuraray Co., Ltd .; solid content 10%
  • the obtained mixture was dried at 120 ° C. for 1 hour, and then passed through a sieve to obtain a granulated powder.
  • the average particle size (d50) was set in the range of 60 to 80 ⁇ m.
  • the shape of the molded body before processing in the third step is shown in FIG. 7A, and the shape after processing is shown in FIG. 7B.
  • the shape of the molded body 6 after the grinding process is a drum shape in which the dug portions are the conductive wire winding portions 7 and the flange portions 8 are provided on both end sides thereof.
  • the diameter of the collar portion was 10.2 mm, the height was 7.5 mm, and the diameter of the conductor winding portion was 4.8 mm. There was no problem of chipping and the processability was good.
  • the molded body obtained as described above was heat-treated in the atmosphere at a heat treatment temperature of 750 ° C. for 1.0 hour (fourth step) to obtain a dust core.
  • the resistance of the drum-shaped dust core obtained as described above was evaluated as follows.
  • An electrode 9 was formed by applying a silver paste 3 mm apart on the circular surface of one of the ridges (FIG. 8A), and the resistance in the ridge surface was measured (in-plane resistance).
  • the electrode 10 is formed by applying a silver paste at a distance of 4 mm on both sides of the wire winding portion across the shaft (FIG. 8B), and the resistance of the shaft portion subjected to grinding is measured. (Conductor winding resistance).
  • Table 3 shows the results of resistance measurement, which was evaluated by a two-terminal method with a measurement voltage of 300 V, using 8340A manufactured by ADC Corporation.
  • the resistance of the conductor winding portion subjected to grinding showed a high resistance value equivalent to the in-plane resistance of the collar portion, and it was found that sufficient insulation was ensured.
  • an oxide layer containing the elements contained in the soft magnetic material powder is formed on the surface of the soft magnetic material powder, and the oxide layer is made of Fe, Cr, and Si rather than the internal alloy phase.
  • the oxide layer had a high ratio of Cr to the sum.
  • a similar oxide layer was also formed on the surface of the conductor winding part.
  • an attempt was made to produce a drum shape with the above dimensions by grinding after heat treatment, but the dust core after heat treatment was hard and could not be processed into a predetermined shape.
  • Example 2 Using a soft magnetic material powder having the same composition as that of No. 1 (composition A), a drum-shaped dust core was produced as follows. To 100 parts by weight of the soft magnetic material powder, PVA (Poval PVA-205 manufactured by Kuraray Co., Ltd .; solid content 10%) is added at a ratio of 10.0 parts by weight, and ion-exchanged water is added as a solvent. Mix to make a slurry. The slurry concentration is 80% by mass. The slurry was sprayed inside the apparatus with a spray dryer, and the slurry was instantly dried with hot air adjusted to 240 ° C. to collect granulated granules (first step). The obtained mixture was dried at 120 ° C.
  • PVA Porous aluminum oxide
  • the average particle size (d50) was set in the range of 60 to 80 ⁇ m. Further, 0.4 parts by weight of zinc stearate was added to 100 parts by weight of the granulated powder and mixed to obtain a mixture to be subjected to pressure molding. The obtained mixture was pressure-molded at room temperature with a molding pressure of 0.74 GPa using a press machine to obtain a cylindrical molded body (second step). The dimension of the obtained molded body is ⁇ 10.2 ⁇ 7.5 mm. Moreover, the space factor evaluated with the molded object was 82.5%.
  • the outer peripheral side surface of the cylindrical molded body obtained through the second step was subjected to grinding using a rotating grindstone (third step).
  • the diameter of the drum-shaped collar portion was 10.2 mm
  • the height was 7.5 mm
  • the diameter of the conductor winding portion was 4.8 mm.
  • the obtained molded body was heat-treated in the atmosphere at a heat treatment temperature of 750 ° C. for 1.0 hour to obtain a dust core.
  • An oxide layer containing the elements contained in the soft magnetic material powder is formed on the surface of the soft magnetic material powder of the obtained dust core, and the oxide layer is made of Fe, Cr, and Si rather than the internal alloy phase.
  • the oxide layer had a high ratio of Cr to the sum.
  • a similar oxide layer was also formed on the surface of the conductor winding part.
  • the processed surface of the obtained dust core was smoother than the dust core of Example 1.
  • the arithmetic average roughness Ra of the machined surface (conductor winding portion surface) and the non-machined surface (molding punch surface: axial end surface) are measured using an ultra-deep shape measuring microscope VK-8500 manufactured by KEYENCE. Was measured. Measurement is performed at two locations on each surface (“central part” on the non-machined surface (molded punch surface) and “axially central part” on the machined surface (conductor winding surface)) with respect to the five dust cores. A total of 10 locations were conducted.
  • the evaluation area around one place was 0.32 mm 2 .
  • the arithmetic average roughness Ra of the non-processed surface (molding punch surface) was in the range of 1.10 to 2.01 ⁇ m, and the average was 1.40 ⁇ m. That is, the arithmetic average roughness Ra of the non-processed surface (molding punch surface) was suppressed to a range of 2 ⁇ m or less.
  • the arithmetic average roughness Ra of the processed surface was in the range of 3.17 to 4.99 ⁇ m, and the average was 4.11 ⁇ m.
  • the ratio R MD / R AS was suppressed to about 2.9.
  • a drum-shaped dust core was produced as follows. To 100 parts by weight of the soft magnetic material powder, PVA (Poval PVA-205 manufactured by Kuraray Co., Ltd .; solid content 10%) is added at a ratio of 10.0 parts by weight, and ion-exchanged water is added as a solvent. Mix to make a slurry. The slurry concentration is 80% by mass. The slurry was sprayed inside the apparatus with a spray dryer, and the slurry was instantly dried with hot air adjusted to 240 ° C. to collect granulated granules (first step).
  • PVA Porous 205 manufactured by Kuraray Co., Ltd .
  • solid content 10% ion-exchanged water
  • the obtained mixture was dried at 120 ° C. for 1 hour, and then passed through a sieve to obtain a granulated powder.
  • the average particle size (d50) was set in the range of 60 to 80 ⁇ m. Further, 0.4 parts by weight of zinc stearate was added to and mixed with 100 parts by weight of the granulated powder.
  • the obtained mixed powder was press-molded at room temperature with a molding pressure of 0.74 GPa using a press machine to obtain a cylindrical molded body (second step).
  • the size of the obtained molded body is a toroidal shape having an inner diameter of 7.8 mm, an outer diameter of 13.5 mm, and a thickness of 4.3 mm.
  • the space factor of the obtained molded body was 81.3%.
  • Table 4 and FIG. 10 show the preheating temperature dependency of the compact strength.
  • the strength of the molded body increased as the preheating temperature increased.
  • the preheating temperature was 100 ° C. or higher, a molded body strength exceeding 15 MPa was obtained.
  • a temperature range of 300 ° C. or less which is considered to be mainly due to the hardening of the binder
  • a temperature range of 500 ° C. or more in which an oxide that firmly bonds metal-based soft magnetic material powders is formed It was found that the gradient of intensity change with respect to the preheating temperature changed.
  • a temperature range of 300 ° C. or lower in which the gradient of the intensity change is small and the absolute value of the intensity is not too large, is particularly suitable as the temperature for the preheating treatment.
  • the raw material powder which performed the preliminary evaluation of the above-mentioned molded object strength was used.
  • Using a press machine it was pressure-molded at a molding pressure of 0.74 GPa at room temperature to obtain a cylindrical shaped body (second step).
  • the dimension of the obtained molded body is ⁇ 4 ⁇ 1 mm.
  • the space factor of the obtained molded body was 81.5%.
  • a drum-shaped powder magnetic core was produced.
  • a drum-shaped dust core was manufactured by a manufacturing method that did not go through a preheating step.
  • the heat treatment in the fourth step was performed under the same conditions as No. 6 described above.
  • An oxide layer containing the elements contained in the soft magnetic material powder is formed on the surface of the soft magnetic material powder of the obtained dust core, and the oxide layer is made of Fe, Cr, and Si rather than the internal alloy phase.
  • the oxide layer had a high ratio of Cr to the sum.
  • a similar oxide layer was also formed on the surface of the conductor winding part.
  • the dust core subjected to the preheating step did not crack, chip, or chip. That is, even in a drum-shaped dust core having a high flatness in which the diameter (maximum dimension) of the flanges on both ends is twice or more of the dimension in the axial direction, high quality without defects could be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 簡易な加圧成形による製造方法において、高強度と絶縁性を確保しながら、複雑な形状に対応も可能な圧粉磁心の製造方法を提供する。本発明は、金属系の軟磁性材料粉を用いた圧粉磁心の製造方法であって、軟磁性材料粉とバインダを混合した後、噴霧乾燥する第1の工程と、前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、前記第2の工程を経て得られた成形体に研削加工および切削加工の少なくとも一方を施す第3の工程と、前記第3の工程を経た成形体を熱処理する第4の工程とを有し、前記第4の工程において前記成形体を熱処理することによって、前記軟磁性材料粉の表面に、該軟磁性材料粉の含有元素を含む酸化物層を形成することを特徴とする。

Description

圧粉磁心の製造方法および圧粉磁心
 本発明は、軟磁性材料粉を用いて構成された圧粉磁心および圧粉磁心の製造方法に関する。
 従来から、家電機器、産業機器、車両など多種多様な用途において、インダクタ、トランス、チョーク等のコイル部品が用いられている。コイル部品は、磁性コアと、磁性コアの周囲に巻回されたコイルで構成される。かかる磁性コアには、磁気特性、形状自由度、価格に優れるフェライトが広く用いられている。
 近年、電子機器等の電源装置の小型化が進んだ結果、小型・低背で、かつ大電流に対しても使用可能なコイル部品の要求が強くなり、その磁性コアとしては、フェライトと比較して飽和磁束密度が高い金属系磁性粉末を使用した圧粉磁心の採用が進んでいる。金属系磁性粉末としては、例えばFe-Si系、Fe-Ni系、Fe-Si-Al系などが用いられている。
 また、Fe-Si系などの金属系の磁性粉末を圧密化して得られる圧粉磁心は、飽和磁束密度が高い反面、金属系磁性粉末であるため電気抵抗率が低い。そのため、磁性粉末表面に絶縁性被覆を形成したのち成形するなど、磁性粉末間の絶縁性を高める方法が適用されている。また、特許文献1には、絶縁性被覆となる高電気抵抗物質の自己生成が可能な磁性粉末としてFe-Cr-Al系の磁性粉末を用いた例が開示されている。特許文献1では、磁性粉末を酸化処理することで、高電気抵抗の酸化皮膜を磁性粉末の表面に生成し、かかる磁性粉末を放電プラズマ焼結によって固化成形することで圧粉磁心を得ている。
 また、特許文献2には、鉄、クロムおよびケイ素を含む軟磁性合金粒子の表面に当該粒子を酸化して形成した酸化層が生成され、当該酸化層は当該合金粒子に比較してクロムを多く含み、粒子同士は当該酸化層を介して結合されている構成が開示されている。
特開2005-220438号公報 特開2011-249836号公報
 コイル部品として、加圧成形して得られた小型の圧粉磁心にコイルを巻装した構造を用いる場合には、圧粉磁心の強度が不足して巻線時に圧粉磁心が破損しやすい。圧粉磁心の強度を高めるためには、大きな成形圧が必要となることから、高圧を発生するための装置が大型化したり、高圧が適用されることで成形用の金型が破損しやすくなるなど、製造設備上の問題もあった。そのため、実用上得られる圧粉磁心の強度には限界があった。また、上述のような合金粉末表面に絶縁性被覆を形成したのち成形する場合は、得られる成形体の形状自由度は比較的高いものの、成形体強度を高めるために成形圧を上げると磁性粉末間の絶縁性被覆が損傷し絶縁性が低下するという問題もあった。
 一方、特許文献1に記載の構成は、上記のような高圧は必要としないものの、複雑な設備と多くの時間を必要とする製法である。その上、磁性粉末の酸化処理後に凝集した粉末を粉砕するための工程が必要になるため、工程が煩雑なものとなってしまう。また、特許文献1に示す方法は、絶縁性と強度を高める上では有利であるが、例えばドラム形状のような複雑な形状の磁心を作製することが困難であった。
 特許文献2に開示された構成は、酸化性雰囲気で熱処理することで絶縁層を形成し、絶縁層形成は容易になるものの、複雑な形状の磁心に好適な製造方法を提供するものではなかった。
 そこで、上記問題点に鑑み、本発明は、簡易な加圧成形による圧粉磁心の製造方法において、高強度と絶縁性を確保しながら、複雑な形状に対応も可能な圧粉磁心の製造方法を提供することを目的とする。また、本発明は、複雑な形状として代表的なドラム形状の圧粉磁心において、高い強度と絶縁性を備えた圧粉磁心を提供することを目的とする。
 本発明の圧粉磁心の製造方法は、金属系の軟磁性材料粉を用いた圧粉磁心の製造方法であって、軟磁性材料粉とバインダを混合する第1の工程と、前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、前記第2の工程を経て得られた成形体に研削加工および切削加工の少なくとも一方を施す第3の工程と、前記第3の工程を経た成形体を熱処理する第4の工程とを有し、前記第4の工程において前記成形体を熱処理することによって、前記軟磁性材料粉の表面に、該軟磁性材料粉の含有元素を含む酸化物層を形成することを特徴とする。
 また、前記圧粉磁心の製造方法において、前記第1の工程が、前記軟磁性材料粉とバインダとを含むスラリーを噴霧乾燥する工程を有することが好ましい。
 また、前記軟磁性材料粉がFe-Cr-Al系の軟磁性材料粉であることが好ましい。
 また、前記圧粉磁心の製造方法において、前記第2の工程と前記第3の工程との間に、前記成形体を前記第4の工程における熱処理温度よりも低い温度に加熱する予備加熱工程を有することが好ましい。
 また、前記圧粉磁心の製造方法において、前記第3の工程に供する前記成形体の占積率が78~90%であることが好ましい。また、前記第3の工程において、前記第2の工程を経て得られた成形体に施す加工が切削加工であることが好ましい。
 また、前記圧粉磁心の製造方法において、前記研削加工および切削加工の少なくとも一方を、少なくとも圧粉磁心の導線巻回部に施すことが好ましい。さらに、前記圧粉磁心の製造方法において、前記圧粉磁心の形状が、前記導線巻回部の両端側に鍔部を有するドラム形状であることが好ましい。
 本発明の圧粉磁心は、金属系の軟磁性材料粉を用いて構成された圧粉磁心であって、導線巻回部と、前記導線巻回部の両端側に鍔部を有するドラム形状であり、前記導線巻回部表面の算術平均粗さが前記鍔部の外側の面の算術平均粗さよりも大きく、前記金属系の軟磁性材料粉は、該軟磁性材料粉の含有元素を含む酸化物層を介して結合されており、前記導線巻回部表面は加工面であるとともに、前記軟磁性材料粉の含有元素を含む酸化物層を有することを特徴とする。
 また、前記圧粉磁心において、前記ドラム形状において、軸方向の寸法よりも、両端側の鍔部の少なくとも一方の最大寸法の方が大きいことが好ましい。
 また、前記圧粉磁心において、前記軟磁性材料粉がFe-Cr-Al系の軟磁性材料粉であることが好ましい。
 本発明によれば、簡易な加圧成形を用いた圧粉磁心の製造方法において、高強度と絶縁性を確保しながら、複雑な形状にも対応可能な製造方法を提供することができる。
 また、本発明によれば、複雑な形状として代表的なドラム形状の圧粉磁心において、高い強度と絶縁性を備えた圧粉磁心を提供することができる。
本発明に係る圧粉磁心の製造方法の実施形態を説明するための工程フロー図である。 本発明に係る圧粉磁心の製造方法の他の実施形態を説明するための工程フロー図である。 圧粉磁心の断面のSEM写真である。 圧粉磁心の断面のSEM写真である。 圧粉磁心の断面のSEM写真である。 圧粉磁心の断面のSEM写真である。 加工前の成形体および加工後の成形体(圧粉磁心)の形状を示す斜視図である。 圧粉磁心の抵抗測定のための電極配置を示す斜視図である。 本発明に係る圧粉磁心の製造方法の他の実施形態を説明するための工程フロー図である。 予備加熱処理温度と圧粉磁心の強度との関係を示すグラフである。
 以下、本発明に係る圧粉磁心および圧粉磁心の製造方法の実施形態を具体的に説明するが、本発明はこれに限定されるものではない。
 図1は本発明に係る圧粉磁心の製造方法の実施形態を説明するための工程のフロー図である。図1に示す製造方法は、金属系の軟磁性材料粉を用いた圧粉磁心の製造方法であって、軟磁性材料粉とバインダを混合した後、噴霧乾燥する第1の工程と、前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、前記第2の工程を経て得られた成形体に研削加工および切削加工の少なくとも一方(以下、「研削加工等」ともいう)を施す第3の工程と、前記第3の工程を経た成形体を熱処理する第4の工程とを有する。第4の工程において前記成形体を熱処理することによって、軟磁性材料粉の表面に、該軟磁性材料粉の含有元素を含む酸化物層を形成する。
 第4の工程の熱処理においてかかる酸化物層が形成されることによって、軟磁性材料粉同士の結合と絶縁が実現され、高強度、高絶縁性を備える圧粉磁心が得られる。成形体に熱処理を行うだけで、軟磁性材料粉表面に絶縁性を有する酸化物層を形成することができるため、絶縁性被覆の形成工程も簡易なものとなる。そして、圧粉磁心に高強度が付与される第4の工程の前に、所定の形状、寸法等を得るための研削加工等を施す第3の工程を経る点に、本発明の特徴の一つがある。
 第4の工程の熱処理で形成される酸化物層によって高強度の圧粉磁心が提供されるが、逆に高強度が故に熱処理後の加工は困難になる。しかも、熱処理後に加工を行うと、その部分は軟磁性材料粉の金属部分が露出するため、そのままでは絶縁性が確保できない。そこで、第4の工程前に所定の形状にするための研削加工等を済ませておき、その後に熱処理を行って酸化物層を形成するフローを採用する。第2の工程を経た直後の成形体の圧環強度は、例えば5~15MPa程度であり、第4の工程の熱処理を経た磁心の圧環強度の1/10以下程度である。したがって、第2の工程を経た直後の成形体の状態では、研削加工等は容易である。しかも、研削加工等を行って金属部分が露出しても、その部分は第4の工程の熱処理を経ることで酸化物層に覆われる。したがって、上記フローを採用することによって、加工性の問題や絶縁性の問題がまとめて解決される。
 まず、第1の工程に供する軟磁性材料粉について説明する。金属系の軟磁性材料粉は、圧粉磁心を構成できる磁気特性を有し、かつ軟磁性材料粉の表面に軟磁性材料粉の含有元素を含む酸化物層を形成し得るものであれば、これを特に限定するものではなく、各種の強磁性元金属、強磁性合金を用いることができる。金属系の軟磁性材料粉の好ましい形態は、例えば、Fe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)である。Fe-Cr-M系の合金粉は、ベース元素であるFeの他にCrを含むため、例えばFe-Si系の合金粉に比べて耐食性に優れる。さらに、AlおよびSiは透磁率等の磁気特性を改善する元素であるため、上記Crに加えてAlまたはSiのうちの少なくとも一種を含むFe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)の合金粉が軟磁性材料粉として好適である。なかでもMとしてAlを含むFe-Cr-Al系またはFe-Cr-Al-Si系の合金粉は、Fe-Si系やFe-Si-Cr系の合金粉に比べて耐食性に優れるうえに、塑性変形しやすい。すなわち、Fe-Cr-Al系またはFe-Cr-Al-Si系の合金粉を用いれば、低い成形圧でも高い占積率と強度を備えた圧粉磁心を得ることができる。そのため、成形機の大型化・複雑化も回避することができる。また、低圧で成形できるため、金型の破損も抑制され、生産性が向上する。
 さらに、軟磁性材料粉としてFe-Cr-M系の合金粉等の金属系の軟磁性材料粉を用いる場合は、後述するように、成形後の熱処理によって軟磁性材料粉表面に絶縁性の酸化物を形成することができる。したがって、成形前に絶縁性酸化物を形成する工程を省略することが可能であるうえ、絶縁性被覆の形成方法も簡易になるため、かかる点においても生産性が向上する。
 軟磁性材料粉の具体例としてFe-Cr-M系の合金粉を用いる場合について以下説明する。
 Fe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)のFe基軟磁性材料粉は、最も含有量が多いベース元素をFeとし、それについでCrおよびM(CrとMは順不同)の含有量が多い軟磁性合金粉である。Fe-Cr-M系の軟磁性材料粉の具体的な組成は、圧粉磁心を構成できるものであれば、これを特に限定するものではない。Crは耐食性等を高める元素である。かかる観点から、例えばCrは1.0質量%以上が好ましい。より好ましくは、Crは2.5質量%以上である。一方、Crは、これが多くなりすぎると飽和磁束密度が低下するため、9.0質量%以下が好ましい。より好ましくはCr量は7.0質量%以下、さらに好ましくは4.5質量%以下である。
 AlはCrと同様に耐食性等を高める元素であり、表面酸化物の形成にも寄与する。さらに、上述のようにAlを含有することで、圧粉磁心の強度が顕著に向上する。これらの観点から、例えば、Al量は2.0質量%以上が好ましい。Al量はより好ましくは5.0質量%以上である。一方、Alもこれが多くなりすぎると飽和磁束密度が低下するため、10.0質量%以下が好ましい。より好ましくは8.0質量%以下、さらに好ましくは6.0質量%以下である。また、上記耐食性等の観点からはCrとAlは合計で6.0質量%以上が好ましく、9.0質量%以上がより好ましい。
 Siは磁気特性向上の効果があり、上記Alに代えてまたは加えて含有させることができる。かかる磁気特性向上の観点からSiを含有する場合は、Si量は1.0質量%以上が好ましい。一方、Si量が多くなり過ぎると圧粉磁心の強度が低下するため、Si量は3.0質量%以下が好ましい。要求特性として強度が優先される場合には、Siは不可避的不純物レベルであることが好ましい。例えば、Siは0.5質量%未満に規制することが好ましい。
 上記Cr、M以外の残部は主にFeで構成されるが、Fe-Cr-M系の軟磁性材料粉が持つ成形性等の利点を発揮する限りにおいて、他の元素を含むこともできる。但し、非磁性元素は飽和磁束密度等が低下するため、不可避的不純物を除き、1.0質量%以下であることがより好ましい。Fe-Cr-M系の軟磁性材料粉は、不可避的不純物を除きFe、CrおよびMで構成されることがさらに好ましい。
 軟磁性材料粉の平均粒径(ここでは、累積粒度分布におけるメジアン径d50を用いる)は、これを限定するものではないが、例えば、1μm以上、100μm以下の平均粒径を有するものを用いることができる。平均粒径を小さくすることで、圧粉磁心の強度、コアロス、高周波特性が改善されるので、メジアン径d50はより好ましくは30μm以下、さらに好ましくは15μm以下である。一方、平均粒径が小さい場合は透磁率が低くなるため、メジアン径d50はより好ましくは5μm以上である。
 また、軟磁性材料粉の形態もこれを特に限定するものではない。例えば、流動性等の観点からはアトマイズ粉に代表される粒状粉を用いることが好ましい。ガスアトマイズ、水アトマイズ等のアトマイズ法は、展性や延性が高く、粉砕しにくい合金の粉末作製に好適である。また、アトマイズ法は略球状の軟磁性材料粉を得る上でも好適である。
 次に、第1の工程において用いるバインダについて説明する。バインダは、加圧成形する際、粉体同士を結着させ、成形後の研削加工等やハンドリングに耐える強度を成形体に付与する。バインダの種類は、これを限定するものではないが、例えば、ポリエチレン、ポリビニルアルコール(PVA)、アクリル樹脂等の熱可塑性の各種有機バインダを用いることができる。有機バインダは成形後の熱処理により、熱分解する。そのため、熱処理後においても固化、残存して粉末同士を結着する、シリコーン樹脂などの無機系バインダを併用してもよい。但し、本発明に係る圧粉磁心の製造方法においては、第4の工程で形成される酸化物層が軟磁性材料粉同士を結着する作用があるため、上記の無機系バインダの使用を省略して、工程を簡略化することが好ましい。
 バインダの添加量は、軟磁性材料粉間に十分に行きわたり、十分な成形体強度を確保できる量にすればよい。一方、これが多すぎると密度や強度が低下するようになる。例えば、軟磁性材料粉100重量部に対して、0.25~3.0重量部にすることが好ましい。第3の工程で行う研削加工等に耐えるためには、0.5~1.5重量部がより好ましい。
 第1の工程における軟磁性材料粉とバインダとの混合方法はこれを特に限定するものではない。混合して得られた混合物は、成形性等の観点から、造粒プロセスに供することが好ましい。かかる造粒プロセスにも種々の方法が適用可能であるが、第1の工程が、軟磁性材料粉とバインダとの混合後の造粒プロセスとして噴霧乾燥工程を有することが、特に好ましい。かかる噴霧乾燥工程では、軟磁性材料粉およびバインダと、さらに水等の溶媒を含むスラリー状の混合物をスプレードライヤを用いて噴霧乾燥する。噴霧乾燥によれば、粒径分布がシャープで、平均粒径が小さい造粒粉が得られる。かかる造粒粉を用いることで、後述する成形後の加工性が向上する。粒径が細かくそろった造粒粉を用いることで、研削加工等の際に造粒粉の粒界で削られても加工面の凹凸が小さく、チッピング等も抑制される。造粒を噴霧乾燥によって行うことで、第4の工程の熱処理後の圧粉磁心において、非加工面(例えば、軸方向端面である、鍔部の外側の面)の算術平均粗さRaの平均RASに対する、加工面(例えば、導線巻回部表面)の算術平均粗さRaの平均RMDの比RMD/RASを5以下にすることができる。より好ましくは、比RMD/RASは3以下である。加工面の凹凸を小さくすることで、該凹凸を起点とする破損リスクの低減が期待できる。なお、算術平均粗さとしては、超深度形状測定顕微鏡を用いて一箇所当たり0.3mm以上の面積で複数箇所で評価してその平均値を用いる。また、噴霧乾燥によれば、略球形の造粒粉を得ることができるので、成形の際の給粉性(粉の流動性)も高くなる。造粒粉の平均粒径(メジアン径d50)は40~150μmが好ましく、60~100μmがより好ましい。
 一方、造粒方法として噴霧乾燥造粒は必須ではない(図2)。例えば、MがAlであるFe-Cr-Al系軟磁性材料粉は、成形性が特に優れるため、強度の高い成形体を研削加工等に供することができる。そのため、研削加工等におけるチッピング等が抑制される。
 転動造粒等、造粒方法として噴霧乾燥以外の方法を適用する場合、例えば、バインダが混合された状態では、その結着作用により、混合粉は広い粒度分布をもった凝集粉となっている。かかる混合粉を、例えば振動篩等を用いて篩に通すことによって、成形に適した所望の二次粒子径の造粒粉を得ることができる。
 加圧成形時の粉末と金型との摩擦を低減させるために、ステアリン酸、ステアリン酸塩等の潤滑剤を造粒粉に添加することが好ましい。潤滑剤の添加量は、軟磁性材料粉100重量部に対して0.1~2.0重量部とすることが好ましい。一方、潤滑剤は、金型に塗布する、または吹き付けることも可能である。
 次に、第1の工程を経て得られた混合物を加圧成形する第2の工程について説明する。第1の工程で得られた混合物は、好適には上述のように造粒されて、第2の工程に供される。造粒された混合物は、成形金型を用いて、円柱形状、直方体形状、トロイダル形状等の所定形状に加圧成形される。第2の工程における成形は、室温成形でもよいし、有機バインダが消失しない程度に加熱して行う温間成形でもよい。
 第2の工程においては、必ずしもニアネットシェイプの成形体を得る必要は無い。後述する第3の工程で研削加工等を行うからである。
 次に、前記第2の工程を経て得られた成形体に研削加工および切削加工の少なくとも一方を施す第3の工程について説明する。かかる研削加工等の機械加工は、成形体を所定の形状、寸法にするための加工である。研削加工は回転砥石等を用い、切削加工は切削工具を用いて行うことができる。研削加工等は、砥粒付のブラシを用いたバリ取り等の目的の加工も含むが、少なくとも圧粉磁心の導線巻回部に施すことが好ましい。導線巻回部の加工のように所定の形状等にするための加工を後述する熱処理後に行おうとすると、加工工程が煩雑になるからである。導線巻回部の両端側に鍔部を有するドラム形状のように、熱処理後の加工が困難な凹部を有する形状の圧粉磁心に第3の工程を適用することがより好ましい。
 第3の工程の加工時のチッピング等を防ぎ、加工精度を上げるためには、第3の工程に供する成形体の占積率を高めることが有効である。一方で、成形体の占積率を過度に高めることは量産性に劣る。第3の工程に供する成形体の占積率は78~90%であることが好ましく、79~88%がより好ましく、81~86%がさらに好ましい。また、成形性に優れるFe-Cr-Al系の軟磁性材料粉を用いることで、低い成形圧でも第3の工程に供する成形体の占積率を82%以上に高めることも可能である。第2の工程において、成形圧等の調整によって、成形体の占積率をかかる範囲に調整することができる。なお、第3の工程に供する成形体の占積率(相対密度)は、成形体の密度を軟磁性材料粉の真密度で除して算出する。この場合、成形体に含まれるバインダや潤滑剤の質量分は、その添加量を基にして成形体の質量から差し引く。また、軟磁性材料粉の真密度は、同組成で溶解して作製したインゴットの密度を用いればよい。
 上記ドラム形状は、柱状の導線巻回部の両端に、はみ出すように出っ張った鍔部(フランジ部)を有する形状である。例えば、導線巻回部が円柱状でその両端側の鍔部が円板状のもの、導線巻回部が円柱状でその一端側の鍔部が円板状、他端側が方形板状のもの、導線巻回部が円柱状でその両端側の鍔部が方形板状のもの、導線巻回部が四角柱状でその両端側の鍔部が方形板状のもの等があるがこれに限定されるものではない。ドラム形状の高さ、すなわち軸方向の寸法よりも、両端側の鍔部の少なくとも一方の最大寸法の方が大きい偏平のドラム形状の圧粉磁心に本発明の構成を適用すると、その効果が顕著である。さらには、鍔部の最大寸法が芯径(導線巻回部の直径)の二倍以上である形状のように、凹部が細く、深いドラム形状の圧粉磁心への適用がより効果的である。これらの形状は、一体成形による場合、研削等の加工による場合のいずれにおいても形成が困難だからである。最大寸法とは、例えば、鍔部が円板状であれば直径、楕円板状であれば長径、方形板状であれば対角線方向寸法を意味する。なお、導線巻回部の一端側のみに鍔部を有する形状も適用することができる。
 ドラム形状を得る方法としては、例えば、第2の工程で、円柱状または角柱状の成形体を作製し、研削加工等によって、かかる円柱状等の成形体の側面方向から中心軸方向に向かって凹部を形成する。第2の工程を経た段階での成形体は、圧粉磁心に高強度を付与する後述の酸化物層が形成される前段階にあるため、研削加工等は容易であり、加工工程が大幅に簡略化される。
 次に、前記第3の工程を経た成形体を熱処理する第4の工程について説明する。成形体を構成する金属系の軟磁性材料粉の表面に、該軟磁性材料粉の含有元素を含む酸化物層を形成するために、第3の工程を経た成形体に対して熱処理が施される。例えば、金属系の軟磁性材料粉としてFe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)を用いる場合、以下の構成が得られる。MがSiの場合、すなわちAlを積極的に添加していない場合は、特にCrが前記酸化物層に濃化し、軟磁性材料粉の表面に、内部の合金相よりもFe、CrおよびM(Si)の和に対するCrの比率が高い酸化物層が形成される。一方、MとしてAlを含む場合は、特にAlが前記酸化物層に濃化し、軟磁性材料粉の表面に、内部の合金相よりもFe、CrおよびMの和に対するAlの比率が高い酸化物層が形成される。また、かかる熱処理によって、成形等で導入された応力歪を緩和して良好な磁気特性を得る効果も期待できる。
 熱処理は、大気中、酸素と不活性ガスの混合気体中など、酸素が存在する雰囲気中で行うことができる。また、水蒸気と不活性ガスの混合気体中など、水蒸気が存在する雰囲気中で熱処理を行うこともできる。これらのうち大気中の熱処理が簡便であり好ましい。また、熱処理雰囲気の圧力もこれを特に限定するものではないが、圧力制御を必要としない大気圧下が好ましい。
 上記の熱処理によって軟磁性材料粉が酸化されて、その表面に上記のような酸化物層が形成される。かかる酸化物層は軟磁性材料粉間の粒界相を構成し、軟磁性材料粉の絶縁性および耐食性が向上する。また、かかる酸化物層は、成形体を構成した後に形成されるため、該酸化物層を介した軟磁性材料粉同士の結合にも寄与する。
 上述のように第3の工程では、研削加工または切削加工が行われるため、加工面の軟磁性材料粉は内部の合金相が露出する。これに対して、第4の工程の熱処理を経ることで露出した合金相の部分が酸化物層に覆われるため、加工面の絶縁性が確保される。第4の工程の熱処理は、成形時の歪み除去、軟磁性材料粉同士の結合および加工面の絶縁層形成を兼ねることができるため、高強度、高絶縁性の圧粉磁心の効率的な製造が可能になる。
 第4の工程の熱処理は、上記酸化物層が形成される温度で行えばよい。かかる熱処理によって強度に優れた圧粉磁心が得られる。さらに、第4の工程の熱処理は、軟磁性材料粉が著しく焼結しない温度で行うことが好ましい。軟磁性材料粉が著しく焼結すると、コアロスも増加するようになる。具体的には、600~900℃の範囲が好ましく、700~800℃の範囲がより好ましい。保持時間は、圧粉磁心の大きさ、処理量、特性ばらつきの許容範囲などによって適宜設定される。例えば0.5~3時間が好ましい。
 なお、第1~第4の各工程の前後に他の工程を追加することも可能である。
 例えば、複雑な形状の圧粉磁心、薄い部分を有する圧粉磁心を製造する場合のように、第3の工程における圧粉磁心の破損が懸念される場合には、第3の工程に供する成形体の強度を成形されたままの状態よりも高めておくことが好ましい。具体的には、図9に示すように、上述の第2の工程と第3の工程との間に、成形体を第4の工程における熱処理温度よりも低い温度に加熱する予備加熱工程を有することが好ましい。第4の工程の熱処理によって、軟磁性材料粉の表面に該軟磁性材料粉の含有元素を含む酸化物層が形成され、得られる圧粉磁心の強度が顕著に増加するが、かかる熱処理の温度よりも低い温度への加熱でも成形体の強度は増加する。加熱の実効性から、予備加熱工程における加熱温度は室温よりも高く設定する一方、加熱の温度が高すぎると第3の工程における加工が困難になる。そこで、上記予備加熱を行う場合は、第4の工程における熱処理温度よりも低い温度で行う。加熱温度は、例えばFe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)の場合であれは、前記軟磁性材料粉の含有元素のうちFe以外のAl、Cr等が酸化し、粒界に濃化する温度以下が好ましく、300℃以下がより好ましい。加熱温度が300℃以下であれば、Fe-Cr-M系の軟磁性材料粉とともに、それ以外の軟磁性材料粉にも適用可能となる点でも好ましい。また、加熱による強度向上効果を高めるためには加熱温度は100℃以上であることが好ましい。加熱の保持時間は、短すぎると成形体強度増加の効果が少なく、必要以上に長いと生産性が低下するため、例えば10分以上、4時間以下であることが好ましい。より好ましくは30分以上、3時間以下である。予備加熱時の雰囲気は酸化性雰囲気には限定されない。工程が簡易になることから雰囲気としては大気中が好ましい。
 上記予備加熱工程を経ることによって、第3の工程に供する成形体の強度を15MPa超とすることができる。
 また、第1の工程の前に、熱処理やゾルゲル法等によって軟磁性材料粉に絶縁被膜を形成する予備工程を付加してもよい。但し、本発明に係る圧粉磁心の製造方法においては、第4の工程によって軟磁性材料粉の表面に酸化物層を形成することができるため、上記のような予備工程を省略して製造工程を簡略化することがより好ましい。また、酸化物層自体は塑性変形しにくい。そのため、酸化物層を成形後に形成するプロセスを採用することで、第2の工程の加圧成形において、特にFe-Cr-Al系またはFe-Cr-Al-Si系の合金粉が持つ高い成形性を有効に利用することができる。
 また、第4の工程を経て得られた磁心がバリを有する場合や、寸法調整が必要な場合がある。その場合には、第4の工程を経て得られた圧粉磁心に、さらに研削加工および切削加工の少なくとも一方を施す第5の工程と、前記第5の工程を経て得られた圧粉磁心を熱処理する第6の工程とを追加し、前記第6の工程の熱処理によって、前記第5の工程で加工された面に該軟磁性材料粉の含有元素を含む酸化物層を形成することもできる。
 上記のようにして得られる圧粉磁心は、圧粉磁心自体優れた効果を発揮する。すなわち、複雑な形状として代表的なドラム形状の圧粉磁心において、高い強度と絶縁性が実現される。その具体的な構成は、例えば、金属系の軟磁性材料粉を用いて構成された圧粉磁心であって、導線巻回部と、前記導線巻回部の両端側に鍔部を有するドラム形状であり、前記金属系の軟磁性材料粉は、該軟磁性材料粉の含有元素を含む酸化物層を介して結合されており、前記導線巻回部表面は加工面であるとともに、前記軟磁性材料粉の含有元素を含む酸化物層を有する圧粉磁心である。
 「導線巻回部表面は加工面である」とは、導線巻回部が研削加工、切削加工等の機械加工によって形成されたことを示し、導線巻回部の表面自体の性状は問わない。すなわち、機械加工によって形成された導線巻回部表面に酸化物層が形成されている場合も、導線巻回部表面は加工面である。この場合、導線巻回部表面の算術平均粗さが鍔部の外側の面の算術平均粗さよりも大きくなる。また、金属系の軟磁性材料粉が、軟磁性材料粉の含有元素を含む酸化物層を介して結合されていることは、記機械加工を行った場合でも、高強度と絶縁性が確保されていることを示す。さらに、導線巻回部表面にも軟磁性材料粉の含有元素を含む酸化物層を有するため、導線巻回部が加工によって形成された場合であっても、導線巻回部表面の絶縁性も確保される。
 また、上述の噴霧乾燥等の工程を経ることで、表面に加工を経た面と加工を経ていない面を有するとともに、加工を経ていない面(例えば、軸方向端面)の算術術平均粗さRaの平均RASに対する、加工を経た面(例えば、導線巻回部表面)の算術平均粗さRaの平均RMDの比RMD/RASが5以下である圧粉磁心を得ることもできる。より好ましくは、比RMD/RASは3以下である。
 前記圧粉磁心は、その断面観察像において軟磁性材料粉の各粒子の最大径の平均が15μm以下であることが好ましく、8μm以下がより好ましい。圧粉磁心を構成する軟磁性材料粉が細かいことで、特に高周波特性が改善される。一方、透磁率の低下を抑える観点からは最大径の平均は0.5μm以上であることがより好ましい。最大径の平均は、圧粉磁心の断面を研磨して顕微鏡観察し、一定の面積の視野内に存在する粒子について最大径を読み取り、その個数平均を取って算出すればよい。このとき、30個以上の粒子についての平均をとることが好ましい。成形後の軟磁性材料粉は塑性変形しているものの、断面観察ではほとんどの粒子が中心以外の部分の断面で露出するため、上記最大径の平均は粉末状態で評価したメジアン径d50よりも小さい値となる。
 また、上述のように金属系の軟磁性材料粉としてFe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)を用いることで、耐食性に優れた圧粉磁心が実現できる。さらに、MとしてAlを含むFe-Cr-Al系またはFe-Cr-Al-Si系の軟磁性材料粉を用いた場合は、成形性に優れ、高い占積率と圧粉磁心強度を実現する上で好適である。特にFe-Cr-Al系の軟磁性材料粉を用いると、低い成形圧で圧粉磁心の占積率(相対密度)を高めることができ、圧粉磁心の強度も向上する。かかる作用を利用して、熱処理を経た圧粉磁心における軟磁性材料粉の占積率を80~92%の範囲内にすることがより好ましい。かかる範囲が好ましい理由は、占積率を高めることで磁気特性が向上する一方、過度に占積率を高めようとすると、設備的、コスト的な負荷が大きくなるからである。さらに好ましい占積率の範囲は、84~90%である。
 上述の圧粉磁心の構成は、軸方向の寸法よりも、両端側の鍔部の少なくとも一方の直径または一辺の方が大きい偏平なドラム形状に好適である。かかる形状を金型成形だけで実現することは困難だからである。
 上記の圧粉磁心と、該圧粉磁心の周囲に巻装されたコイルとを用いてコイル部品が提供される。コイルは導線を圧粉磁心に巻回して構成してもよいし、ボビンに巻回して構成してもよい。前記圧粉磁心と前記コイルとを有するコイル部品は、例えばチョーク、インダクタ、リアクトル、トランス等として用いられる。
 なお、圧粉磁心は、上述のようにバインダ等を混合した軟磁性材料粉末だけを加圧成形した圧粉磁心単体の形態で製造してもよいし、軟磁性材料粉末とコイルとを一体で加圧成形してコイル封入構造の圧粉磁心の形態で製造してもよい。
(構成元素の違いによる特性差の評価)
 以下のようにして、まず圧粉磁心の製造方法に用いる各種軟磁性材料粉の特性を確認した。Fe-Cr-Al系軟磁性材料粉として、質量百分率でFe-4.0%Cr-5.0%Alの合金組成(組成A)を有する球状のアトマイズ粉を準備した。また、レーザー回折散乱式粒度分布測定装置(堀場製作所製LA-920)で測定した平均粒径(メジアン径d50)は18.5μmであった。
 前記軟磁性材料粉100重量部に対して、バインダとしてエマルジョンのアクリル樹脂系のバインダ(昭和高分子株式会社製ポリゾールAP-604 固形分40%)2.0重量部の割合で混合した。混合粉は120℃で1時間乾燥し、篩に通して造粒粉を得て、その平均粒径(d50)を60~80μmの範囲内とした。この造粒粉に、軟磁性材料粉100重量部に対して0.4重量部の割合でステアリン酸亜鉛を添加、混合して成形用の混合物を得た。
 得られた混合物は、プレス機を使用して、0.91GPaの成形圧で室温にて加圧成形した。成形体で評価した占積率は84.6%であった。得られたトロイダル形状の成形体に、大気中、800℃の熱処理温度で1.0時間熱処理を施し、圧粉磁心を得た(No1)
 同様にして、Fe-Cr-Si系の軟磁性材料粉として質量百分率でFe-4.0%Cr-3.5%Siの合金組成(組成B)、Fe-Si系軟磁性材料粉として質量百分率でFe-3.5%Siの合金組成(組成C)を用いて、それぞれ上記No1の場合と同様の条件で混合、加圧成形し、成形体を得た。それぞれ700℃、500℃の条件で熱処理を行い、圧粉磁心を得た(No2、3)。なお、Fe-Si系軟磁性材料粉を用いた場合は、500℃を超える温度で熱処理するとコアロスが劣化するため、500℃の熱処理温度を採用した。
 以上の工程により作製した圧粉磁心の密度をその寸法および質量から算出し、圧粉磁心の密度を軟磁性材料粉の真密度で除して占積率(相対密度)を算出した。また、トロイダル形状の圧粉磁心の径方向に荷重をかけ、破壊時の最大加重P(N)を測定し、次式から圧環強度σr(MPa)を求めた。
σr=P(D-d)/(Id
(ここで、D:磁心の外径(mm)、d:磁心の径方向の肉厚(mm)、I:磁心の高さ(mm)である。)
 さらに、一次側と二次側それぞれ巻線を15ターン巻回し、岩通計測株式会社製B-HアナライザーSY-8232により、最大磁束密度30mT、周波数300kHzの条件でコアロスPcvを測定した。また、初透磁率μiは、前記トロイダル形状の圧粉磁心に導線を30ターン巻回し、ヒューレット・パッカード社製4284Aにより、周波数100kHzで測定した。
Figure JPOXMLDOC01-appb-T000001
 
 
 表1に示すように軟磁性材料粉としてFe-Cr-M系の軟磁性材料粉を用いたNo1および2の圧粉磁心は、Fe-Si系軟磁性合金粉を用いたNo3の圧粉磁心に比べて、同等以上の磁気特性を発揮しつつ、圧環強度が高くなった。すなわち、No1および2に係る構成によれば、簡易な加圧成形によって高い強度を有する圧粉磁心の提供が可能であった。さらに、Fe-Cr-Al系軟磁性材料粉を用いて作製したNo1の圧粉磁心は、Fe-Si系軟磁性材料粉を用いたNo3の圧粉磁心およびFe-Cr-Si系軟磁性材料粉を用いたNo2の圧粉磁心に比べて、占積率および透磁率が大幅に高くなった。また、No1の圧粉磁心の圧環強度は100MPa以上の高い値を示し、No2のFe-Cr-Si系軟磁性材料粉の圧粉磁心に比べても二倍以上の値を示した。すなわちFe-Cr-Al系軟磁性材料粉を用いた構成が高圧環強度を得るうえできわめて有利であることが分かった。また、別途塩水噴霧試験によって耐食性を評価したところ、Fe-Si系軟磁性合金粉を用いたNo3の圧粉磁心は、腐食が顕著で、過酷な腐食環境に対しては耐食性に関して不十分なものであった。したがって、Fe-Si系軟磁性合金粉を用いたNo3の圧粉磁心は、低コアロスが要求される一方、高耐食性が必要とされない用途に用いることが好適であることがわかった。腐食が抑制されていたNo1および2の圧粉磁心のうち、No1の圧粉磁心はNo2の圧粉磁心に比べても良好な耐食性を示した。
 No1の圧粉磁心について、走査電子顕微鏡(SEM/EDX)を用いて圧粉磁心の断面観察を行い、同時に各構成元素の分布を調べた。結果を図3に示す。(a)はSEM像であり、明るいグレーの色調を有する軟磁性材料粉(軟磁性材料粒)1の表面に黒の色調を有する相が形成されていることがわかる。SEM像を用いて30個以上の軟磁性材料粒について最大径の平均を算出したところ8.8μmであった。図3(b)~(e)はそれぞれ、O(酸素)、Fe(鉄)、Al(アルミニウム)、Cr(クロム)の分布を示すマッピングである。明るい色調ほど対象元素が多いことを示す。
 図3から、軟磁性材料粉の表面には酸素が多く、酸化物が形成されていること、および合金である各軟磁性材料粒同士がかかる酸化物を介して結合している様子がわかる。また、軟磁性材料粉の表面では内部に比べてFeの濃度が低く、Crは大きな濃度分布を示していない。一方、Alは軟磁性材料粉粒界での濃度が顕著に高くなっている。これらのことから、軟磁性材料粉の粒界に該軟磁性材料粉の含有元素を含む酸化物層が形成され、該酸化物層は内部の合金相よりもFe、CrおよびAlの和に対するAlの比率が高い酸化物層であることが確認された。熱処理前は、図3に示すような各構成元素の濃度分布は観察されず、上記酸化物層が、熱処理によって形成されたこともわかった。また、Alの比率が高い、各粒界の酸化物層は互いに連結していることもわかる。
 No2の圧粉磁心についても、走査電子顕微鏡(SEM/EDX)を用いて圧粉磁心の断面観察を行い、同時に各構成元素の分布を調べた。結果を図4に示す。(a)はSEM像であり、明るいグレーの色調を有する軟磁性材料粉1の表面上に黒の色調を有する相が形成されていることがわかる。図4(b)~(e)はそれぞれ、O(酸素)、Fe(鉄)、Cr(クロム)、Si(ケイ素)の分布を示すマッピングである。
 図4から、No2の圧粉磁心においても、軟磁性材料粉の粒界には酸素が多く、酸化物が形成されていること、および各軟磁性材料粉同士がかかる酸化物を介して結合している様子がわかる。また、軟磁性材料粉も粒界では内部に比べてFeの濃度が低く、Siは大きな濃度分布を示していない。一方、Crは軟磁性材料粉の表面での濃度が顕著に高くなっている。これらのことから、軟磁性材料粉の表面に該軟磁性材料粉の含有元素を含む酸化物層が形成され、該酸化物層は内部の合金相よりもFe、CrおよびSiの和に対するCrの比率が高い酸化物層であることが確認された。熱処理前は、図4に示すような各構成元素の濃度分布は観察されず、上記酸化物層が、熱処理によって形成されたこともわかった。また、Crの比率が高い、各粒界の酸化物層は互いに連結していることもわかる。
 Fe-Cr-M系の軟磁性材料粉No1および2の圧粉磁心はいずれもCrを含むものの、MとしてAlを含まない場合はCrが軟磁性材料粉の粒界に濃化し、MとしてAlを含む場合はCrよりもAlの方が顕著に粒界に濃化することがわかった。
 次に、組成AとはSi量が異なるFe-Cr-M系の軟磁性材料粉として、質量百分率でFe-3.9%Cr-4.9%Al-1.9Siの合金組成(組成D)を有する球状のアトマイズ粉と、質量百分率でFe-3.8%Cr-4.8%Al-2.9Siの合金組成(組成E)を有する球状のアトマイズ粉を準備し、以下のようにして圧粉磁心を作製した。なお、レーザー回折散乱式粒度分布測定装置(堀場製作所製LA-920)で測定した平均粒径(メジアン径d50)は組成Dのアトマイズ粉が14.7μm、組成Eのアトマイズ粉が11.6μmであった。
 組成Dおよび組成Eそれぞれについて、軟磁性材料粉100重量部に対して、バインダとしてPVA(株式会社クラレ製ポバールPVA-205;固形分10%)を2.5重量部の割合で混合した。得られた混合物を120℃で1時間乾燥した後、篩に通して造粒粉を得て、その平均粒径(d50)を60~80μmの範囲内とした。また、造粒粉100重量部に対して、ステアリン酸亜鉛を0.4重量部添加し、混合して成形用の混合物を得た。得られた混合物を、プレス機を使用して0.74GPaの成形圧で室温にて加圧成形し、内径φ7.8mm、外径φ13.5mm、厚み4.3mmのトロイダル形状の成形体を得た。成形体で評価した占積率はそれぞれ80.9%(組成D)、78.3%(組成E)であった。上記のようにして得られた成形体に、大気中、750℃の熱処理温度で1.0時間熱処理を施し、圧粉磁心を得た(No4および5)。上記No1~3と同様にして磁気特性等を評価した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 
 表2に示すように軟磁性材料粉としてFe-Cr-Al-Si系の軟磁性材料粉を用いたNo4および5の圧粉磁心は、Siを添加することでNo1の圧粉磁心に比べて磁気特性が向上した。一方、No1の圧粉磁心よりも圧環強度はやや低下するものの、成形圧を下げた条件でも100MPa以上の十分な圧環強度が得られることもわかる。すなわち、Siを含有することは高圧環強度を得る上では不利であるものの、Alを同時に含むことによって、高い圧環強度が確保できることが確認された。
 なお、No4および5の圧粉磁心について、走査電子顕微鏡(SEM/EDX)を用いて圧粉磁心の断面観察を行ったところ、No1の圧粉磁心と同様に、軟磁性材料粉の粒界には酸素が多く、酸化物が形成されていること、および各軟磁性材料粉同士がかかる酸化物を介して結合している様子が確認された(図5、図6)。また、軟磁性材料粉粒界では内部に比べてFeの濃度が低く、Crは大きな濃度分布を示していない点、Alは軟磁性材料粉粒界での濃度が顕著に高くなっている点も確認された。
 以上のように、金属系の軟磁性材料粉を用いた圧粉磁心のうち、特にFe-Cr-M系(MはAlおよびSiのうちの少なくとも一種)の軟磁性材料粉を用いた圧粉磁心において、成形体を熱処理することで、軟磁性材料粉の表面に、該軟磁性材料粉の含有元素を含む酸化物層を形成することの優位性が確認された。
(実施例1)
 以下、第1~第4の工程を有する本発明の実施例について説明する。No1と同様の組成(組成A)およびNo4と同様の組成(組成D)の軟磁性材料粉を用いて以下のようにしてドラム形状の圧粉磁心を作製した(それぞれ、No6、No7)。軟磁性材料粉100重量部に対して、バインダとしてPVA(株式会社クラレ製ポバールPVA-205;固形分10%)を2.5重量部の割合で混合した(第1の工程)。得られた混合物を120℃で1時間乾燥した後、篩に通して造粒粉を得て、その平均粒径(d50)を60~80μmの範囲内とした。また、造粒粉100重量部に対して、ステアリン酸亜鉛を0.4重量部添加し、混合して、加圧成形に供する混合物を得た。得られた混合物を、プレス機を使用して0.74GPaの成形圧で室温にて加圧成形し、円柱状の成形体を得た(第2の工程)。得られた成形体の寸法はφ10.2×7.5mmである。また、成形体で評価した占積率はNo6の圧粉磁心が84.0%、No7の圧粉磁心が82.3%であった。
 第2の工程を経て得られた円柱状の成形体の外周側面に、回転砥石を用いた研削加工を施した(第3の工程)。第3の工程の加工前の成形体の形状を図7(a)に、加工後の形状を図7(b)に示した。前記研削加工では、円柱状の成形体5を、軸方向両端部分を除き、側面方向から彫り込んだ。研削加工後の成形体6の形状は、掘り込まれた部分を導線巻回部7とし、その両端側に鍔部8を有するドラム形状である。鍔部の直径は10.2mm、高さは7.5mm、導線巻回部の直径は4.8mmとした。チッピングの問題もなく、加工性は良好であった。
 上記のようにして得られた成形体に、大気中、750℃の熱処理温度で1.0時間熱処理を施し(第4の工程)、圧粉磁心を得た。
 上記のようにして得られたドラム形状の圧粉磁心の抵抗を以下のようにして評価した。一方の鍔部の円形面に、3mm隔てて銀ペーストを塗布して電極9を形成し(図8(a))、鍔面内での抵抗を測定した(鍔面内抵抗)。また、導線巻回部の、軸を挟んだ両側の部分に4mm隔てて銀ペーストを塗布して電極10を形成し(図8(b))、研削加工が施された軸部分の抵抗を測定した(導線巻回部抵抗)。抵抗測定は株式会社エーディーシー製8340Aを用いて、測定電圧300Vの二端子法で評価した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 
 表3に示すように研削加工を施した導線巻回部の抵抗は、鍔部の面内の抵抗と同等レベルの高い抵抗値を示し、十分な絶縁性が確保されていることがわかった。No6および7の圧粉磁心とも、軟磁性材料粉の表面に該軟磁性材料粉の含有元素を含む酸化物層が形成され、該酸化物層は内部の合金相よりもFe、CrおよびSiの和に対するCrの比率が高い酸化物層であった。また、導線巻回部の表面にも同様の酸化物層が形成されていた。一方、比較のために、熱処理後に研削加工することによって上記寸法のドラム形状を作製することを試みたが、熱処理後の圧粉磁心が硬く所定形状に加工することができなかった。また、加工面は導通してしまい、絶縁性が確保できないことも確認された。また、No4および5の圧粉磁心についても熱処理後に円環表面を研削加工したところ、加工面は導通してしまい、絶縁性が確保できないことが確認された。
 (実施例2)
 No1と同様の組成(組成A)の軟磁性材料粉を用いて以下のようにしてドラム形状の圧粉磁心を作製した。軟磁性材料粉100重量部に対して、バインダとしてPVA(株式会社クラレ製ポバールPVA-205;固形分10%)を10.0重量部の割合で添加し、溶媒としてイオン交換水を投入し、混合してスラリーとした。スラリー濃度は80質量%である。スラリーをスプレードライヤにより装置内部で噴霧し、240℃に温度調整された熱風でスラリーを瞬時に乾燥させて、粒状になった顆粒を回収した(第1の工程)。得られた混合物を120℃で1時間乾燥した後、篩に通して造粒粉を得て、その平均粒径(d50)を60~80μmの範囲内とした。また、造粒粉100重量部に対して、ステアリン酸亜鉛を0.4重量部添加し、混合して、加圧成形に供する混合物を得た。得られた混合物を、プレス機を使用して0.74GPaの成形圧で室温にて加圧成形し、円柱状の成形体を得た(第2の工程)。得られた成形体の寸法はφ10.2×7.5mmである。また、成形体で評価した占積率は82.5%であった。
 実施例1と同様にして、第2の工程を経て得られた円柱状の成形体の外周側面に、回転砥石を用いた研削加工を施した(第3の工程)。ドラム形状の鍔部の直径は10.2mm、高さは7.5mm、導線巻回部の直径は4.8mmとした。チッピングの問題もなく、加工性は良好であった。得られた成形体に、大気中、750℃の熱処理温度で1.0時間熱処理を施し、圧粉磁心を得た。得られた圧粉磁心の軟磁性材料粉の表面に該軟磁性材料粉の含有元素を含む酸化物層が形成されており、該酸化物層は内部の合金相よりもFe、CrおよびSiの和に対するCrの比率が高い酸化物層であった。また、導線巻回部の表面にも同様の酸化物層が形成されていた。得られた圧粉磁心の加工面は、実施例1の圧粉磁心に比べて滑らかなものであった。なお、KEYENCE社製超深度形状測定顕微鏡VK-8500を用い、加工面(導線巻回部表面)の算術平均粗さRaおよび非加工面(成形パンチ面:軸方向端面)の算術平均粗さRaを測定した。測定は、五つの圧粉磁心に対して各面で2箇所(非加工面(成形パンチ面)では「中央部」、加工面(導線巻回部表面)では「軸方向の中央部」)について、合計10箇所で行った。一箇所辺りの評価面積は0.32mmであった。非加工面(成形パンチ面)の算術平均粗さRaは1.10~2.01μmの範囲で、その平均は1.40μmであった。すなわち、非加工面(成形パンチ面)の算術平均粗さRaは2μm以下の範囲に抑えられていた。これに対して、加工面の算術平均粗さRaは3.17~4.99μmの範囲で、その平均は4.11μmであった。すなわち、加工面(導線巻回部表面)の算術平均粗さRaの平均RMDは5μm以下であり、非加工面(軸方向端面)の算術平均粗さRaの平均RASよりも大きい一方、比RMD/RASは2.9程度に抑えられていた。
 (実施例3)
<強度の予備評価>
 No1と同様の組成(組成A)の軟磁性材料粉を用いて以下のようにしてドラム形状の圧粉磁心を作製した。軟磁性材料粉100重量部に対して、バインダとしてPVA(株式会社クラレ製ポバールPVA-205;固形分10%)を10.0重量部の割合で添加し、溶媒としてイオン交換水を投入し、混合してスラリーとした。スラリー濃度は80質量%である。スラリーをスプレードライヤにより装置内部で噴霧し、240℃に温度調整された熱風でスラリーを瞬時に乾燥させて、粒状になった顆粒を回収した(第1の工程)。得られた混合物を120℃で1時間乾燥した後、篩に通して造粒粉を得て、その平均粒径(d50)を60~80μmの範囲内とした。また、造粒粉100重量部に対して、ステアリン酸亜鉛を0.4重量部添加し、混合した。得られた混合粉を、プレス機を使用して0.74GPaの成形圧で室温にて加圧成形し、円柱状の成形体を得た(第2の工程)。得られた成形体の寸法は内径φ7.8mm、外径φ13.5mm、厚み4.3mmのトロイダル形状である。得られた成形体の占積率は81.3%であった。表4に示す150~900℃の温度で保持時間を2時間とした予備加熱処理を行った後、上述のNo1~5の圧粉磁心と同様にして強度の評価を行った。
 成形体強度の予備加熱温度依存性を表4および図10に示す。図10に示すように予備加熱処理温度の上昇に伴い成形体強度が上昇した。予備加熱温度が100℃以上では15MPaを超える成形体強度が得られた。また、強度向上が主にバインダの硬化によると考えられる300℃以下の温度範囲と、金属系の軟磁性材料粉同士を強固に結合する酸化物が形成される500℃以上の温度範囲とで、予備加熱温度に対する強度の変化の勾配が変化していることがわかった。加工を施すことを考慮すると、強度変化の勾配が小さく、強度の絶対値も大きすぎない、300℃以下の温度範囲が予備加熱処理の温度として特に好適であることがわかった。
Figure JPOXMLDOC01-appb-T000004
 
 
<ドラム形状コアの評価>
 図10に示す結果から予備加熱温度を200℃に設定して、ドラム形状の圧粉磁心を作製した。上述の成形体強度の予備評価を行った原料粉末を用いた。プレス機を使用して0.74GPaの成形圧で室温にて加圧成形し、円柱状の成形体を得た(第2の工程)。得られた成形体の寸法はφ4×1mmである。得られた成形体の占積率は81.5%であった。予備加熱工程として200℃で2時間保持したのち、刃幅0.35mmのダイヤモンドホイールで芯径(導線巻回部の直径)が1.75mmになるように研削加工して(第3の工程)、ドラム形状の圧粉磁心を作製した。また、比較のために予備加熱工程を経ない製造方法でドラム形状の圧粉磁心を作製した。第4の工程における熱処理は、上述のNo6等と同様の条件で行った。得られた圧粉磁心の軟磁性材料粉の表面に該軟磁性材料粉の含有元素を含む酸化物層が形成されており、該酸化物層は内部の合金相よりもFe、CrおよびSiの和に対するCrの比率が高い酸化物層であった。また、導線巻回部の表面にも同様の酸化物層が形成されていた。
 予備加熱工程を経ない製造方法で作製した圧粉磁心は、鍔部と芯部(導線巻回部)との境界部分にクラックが発生したり、鍔外周部にチッピングや欠けが発生したが、予備加熱工程を実施した圧粉磁心はクラック、チッピングや欠けは発生しなかった。すなわち、両端側の鍔部の直径(最大寸法)が軸方向の寸法の二倍以上の、偏平性の高いドラム形状の圧粉磁心においても、欠陥のない高品質を実現することができた。
1~4:軟磁性材料粉(軟磁性材料粒) 5:成形体 6:(研削加工後の)成形体
7:導線巻回部 8:鍔部 9:電極 10:電極 

Claims (10)

  1.  金属系の軟磁性材料粉を用いた圧粉磁心の製造方法であって、
     軟磁性材料粉とバインダを混合する第1の工程と、
     前記第1の工程を経て得られた混合物を加圧成形する第2の工程と、
     前記第2の工程を経て得られた成形体に研削加工および切削加工の少なくとも一方を施す第3の工程と、
     前記第3の工程を経た成形体を熱処理する第4の工程とを有し、
     前記第4の工程において前記成形体を熱処理することによって、前記軟磁性材料粉の表面に、該軟磁性材料粉の含有元素を含む酸化物層を形成することを特徴とする圧粉磁心の製造方法。
  2.  前記第1の工程が、前記軟磁性材料粉とバインダとを含むスラリーを噴霧乾燥する工程を有することを特徴とする請求項1に記載の圧粉磁心の製造方法。
  3.  前記軟磁性材料粉がFe-Cr-Al系の軟磁性材料粉であることを特徴とする請求項1または2に記載の圧粉磁心の製造方法。
  4.  前記第2の工程と前記第3の工程との間に、前記成形体を前記第4の工程における熱処理温度よりも低い温度に加熱する予備加熱工程を有することを特徴とする請求項1~3のいずれか一項に記載の圧粉磁心の製造方法。
  5.  前記第3の工程に供する前記成形体の占積率が78~90%であることを特徴とする請求項1~4のいずれか一項に記載の圧粉磁心の製造方法。
  6.  前記研削加工および切削加工の少なくとも一方を、少なくとも圧粉磁心の導線巻回部に施すことを特徴とする請求項1~5のいずれか一項に記載の圧粉磁心の製造方法。
  7.  前記圧粉磁心の形状が、前記導線巻回部の両端側に鍔部を有するドラム形状であることを特徴とする請求項6に記載の圧粉磁心の製造方法。
  8.  金属系の軟磁性材料粉を用いて構成された圧粉磁心であって、
     導線巻回部と、前記導線巻回部の両端側に鍔部を有するドラム形状であり、
     前記金属系の軟磁性材料粉は、該軟磁性材料粉の含有元素を含む酸化物層を介して結合されており、
     前記導線巻回部表面は加工面であるとともに、前記軟磁性材料粉の含有元素を含む酸化物層を有することを特徴とする圧粉磁心。
  9.  前記ドラム形状において、軸方向の寸法よりも、両端側の鍔部の少なくとも一方の最大寸法の方が大きいことを特徴とする請求項8に記載の圧粉磁心。
  10.  前記軟磁性材料粉がFe-Cr-Al系の軟磁性材料粉であることを特徴とする請求項8または9に記載の圧粉磁心。
     
PCT/JP2015/057309 2014-03-13 2015-03-12 圧粉磁心の製造方法および圧粉磁心 WO2015137452A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015539994A JP5892356B2 (ja) 2014-03-13 2015-03-12 圧粉磁心の製造方法および圧粉磁心
US15/124,942 US10354790B2 (en) 2014-03-13 2015-03-12 Method for manufacturing powder magnetic core with a metallic soft magnetic material powder
EP15760682.3A EP3118868B1 (en) 2014-03-13 2015-03-12 Powder magnetic core manufacturing method
CN201580013307.8A CN106104727B (zh) 2014-03-13 2015-03-12 压粉磁芯的制造方法以及压粉磁芯
KR1020167028129A KR102195952B1 (ko) 2014-03-13 2015-03-12 압분 자심의 제조 방법 및 압분 자심
EP19193189.8A EP3591677A1 (en) 2014-03-13 2015-03-12 Powder magnetic core
US16/430,816 US11636970B2 (en) 2014-03-13 2019-06-04 Method for manufacturing powder magnetic core, and powder magnetic core
US16/430,857 US11508512B2 (en) 2014-03-13 2019-06-04 Method for manufacturing powder magnetic core

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-050032 2014-03-13
JP2014050032 2014-03-13
JP2014-144884 2014-07-15
JP2014144884 2014-07-15

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/124,942 A-371-Of-International US10354790B2 (en) 2014-03-13 2015-03-12 Method for manufacturing powder magnetic core with a metallic soft magnetic material powder
US16/430,816 Division US11636970B2 (en) 2014-03-13 2019-06-04 Method for manufacturing powder magnetic core, and powder magnetic core
US16/430,857 Continuation US11508512B2 (en) 2014-03-13 2019-06-04 Method for manufacturing powder magnetic core

Publications (1)

Publication Number Publication Date
WO2015137452A1 true WO2015137452A1 (ja) 2015-09-17

Family

ID=54071889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057309 WO2015137452A1 (ja) 2014-03-13 2015-03-12 圧粉磁心の製造方法および圧粉磁心

Country Status (6)

Country Link
US (3) US10354790B2 (ja)
EP (2) EP3591677A1 (ja)
JP (2) JP5892356B2 (ja)
KR (1) KR102195952B1 (ja)
CN (3) CN106104727B (ja)
WO (1) WO2015137452A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069391A (ja) * 2015-09-30 2017-04-06 太陽誘電株式会社 磁性体の製造方法、及びその磁性体を用いたコイル部品の製造方法
JP2017108028A (ja) * 2015-12-11 2017-06-15 株式会社村田製作所 セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
JP2017108027A (ja) * 2015-12-11 2017-06-15 株式会社村田製作所 セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
JP2017108029A (ja) * 2015-12-11 2017-06-15 株式会社村田製作所 セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
CN113284689A (zh) * 2021-05-14 2021-08-20 宁波新弘精密零部件有限公司 粉末冶金电机离合软磁材料
JP7133114B1 (ja) 2022-03-24 2022-09-07 株式会社トーキン 磁性体及び磁性素子

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892356B2 (ja) 2014-03-13 2016-03-23 日立金属株式会社 圧粉磁心の製造方法および圧粉磁心
JPWO2017047764A1 (ja) * 2015-09-16 2018-07-05 日立金属株式会社 圧粉磁心の製造方法
JP6477592B2 (ja) 2016-05-13 2019-03-06 株式会社村田製作所 セラミックコア、巻線型電子部品及びセラミックコアの製造方法
JP6577970B2 (ja) * 2017-03-31 2019-09-18 太陽誘電株式会社 コモンモードチョークコイル及びその製造方法、回路基板。
CN107240495B (zh) * 2017-06-26 2018-11-16 重庆正峰电子有限公司 一种高密度高稳定性网络小磁环制备方法
US20190013125A1 (en) * 2017-07-05 2019-01-10 Panasonic Intellectual Property Management Co., Ltd. Soft magnetic powder, method for producing same, and dust core using soft magnetic powder
JP2019016777A (ja) * 2017-07-05 2019-01-31 パナソニックIpマネジメント株式会社 軟磁性粉末とその製造方法、およびそれを用いた圧粉磁心
CN111161935B (zh) * 2018-11-07 2022-03-04 山东精创磁电产业技术研究院有限公司 高强度高磁导率高饱和磁通密度软磁复合材料的烧结方法
JPWO2020145047A1 (ja) * 2019-01-08 2021-11-25 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法、圧粉磁心、コイル部品および造粒粉
US20200227202A1 (en) * 2019-01-11 2020-07-16 Kyocera Corporation Core component, method of manufacturing same, and inductor
KR102665048B1 (ko) * 2019-07-25 2024-05-13 교세라 가부시키가이샤 성형 몰드 및 그 제조 방법
CN111863367B (zh) * 2020-08-04 2024-09-10 山东东泰方思电子有限公司 一种锰锌铁氧体磁芯的制造方法
WO2022077150A1 (zh) * 2020-10-12 2022-04-21 昆山磁通新材料科技有限公司 磁性复合材料及其制备方法、电感及其制备方法
JP2023045961A (ja) * 2021-09-22 2023-04-03 株式会社トーキン 合金粉末
CN114242440A (zh) * 2021-12-31 2022-03-25 浙江先丰电子科技有限公司 一种加工效率高的贴片式电感磁芯加工方法和设备
AT526763B1 (de) * 2022-12-12 2024-10-15 Miba Sinter Austria Gmbh Verfahren zum Herstellen eines Bauteils mit weichmagnetischen Eigenschaften
CN117936216B (zh) * 2024-03-06 2024-09-13 江苏得正新材料科技有限公司 一种高频低功耗磁粉芯及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147959A (ja) * 2004-11-22 2006-06-08 Daido Steel Co Ltd 圧粉磁芯および圧粉磁芯の製造方法
JP2013010685A (ja) * 2011-05-30 2013-01-17 Kyocera Corp フェライト焼結体およびこれを備えるノイズフィルタ
JP2013084701A (ja) * 2011-10-07 2013-05-09 Taiyo Yuden Co Ltd 電子部品及びその製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242760A (en) * 1990-10-09 1993-09-07 Mitsui Petrochemical Industries Ltd. Magnetic ribbon and magnetic core
JPH04186803A (ja) * 1990-11-21 1992-07-03 Tokin Corp 磁性粉末成形体,その脱脂方法,および磁性粉末成形体用バインダー
US5575830A (en) * 1994-12-21 1996-11-19 Sumitomo Special Metals Co., Ltd. Fabrication methods and equipment for granulated powders
JP3435223B2 (ja) * 1994-08-26 2003-08-11 住友特殊金属株式会社 センダスト系焼結合金の製造方法
WO1998016338A1 (en) * 1996-10-15 1998-04-23 Zenith Sintered Products, Inc. Surface densification of machine components made by powder metallurgy
JPH11204322A (ja) * 1998-01-19 1999-07-30 Tokin Corp 圧粉磁芯、その製造方法、及び巻線部品
US6059898A (en) * 1998-05-01 2000-05-09 Dana Corporation Induction hardening of heat treated gear teeth
JPH11341756A (ja) * 1998-05-28 1999-12-10 Db Seiko:Kk 鉄心の塗装方法
JP4540791B2 (ja) * 2000-03-30 2010-09-08 株式会社タンガロイ 切削工具用サーメット
US6646532B2 (en) 2002-02-26 2003-11-11 Nec Tokin Corporation Powder core and reactor using the same
US20060237096A1 (en) * 2003-07-30 2006-10-26 Haruhisa Toyoda Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core
JP2005220438A (ja) 2004-01-06 2005-08-18 Hitachi Metals Ltd Fe−Cr−Al系磁性粉末と、Fe−Cr−Al系磁性粉末成形体およびその製造方法
JP4849545B2 (ja) * 2006-02-02 2012-01-11 Necトーキン株式会社 非晶質軟磁性合金、非晶質軟磁性合金部材、非晶質軟磁性合金薄帯、非晶質軟磁性合金粉末、及びそれを用いた磁芯ならびにインダクタンス部品
US8123872B2 (en) 2006-02-22 2012-02-28 General Electric Company Carburization process for stabilizing nickel-based superalloys
DE102006032517B4 (de) * 2006-07-12 2015-12-24 Vaccumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von Pulververbundkernen und Pulververbundkern
JP2008251735A (ja) * 2007-03-29 2008-10-16 Nippon Zeon Co Ltd 磁性シートの製造方法
JP4845800B2 (ja) * 2007-04-26 2011-12-28 東邦亜鉛株式会社 巻線インダクタ及びその製造方法
JP2008272774A (ja) * 2007-04-26 2008-11-13 Sumitomo Electric Ind Ltd 粉末成形用金型および該粉末成形用金型で成形された圧粉成形体
JP2009228107A (ja) * 2008-03-25 2009-10-08 Kobe Steel Ltd 圧粉磁心用鉄基軟磁性粉末およびその製造方法ならびに圧粉磁心
WO2009139368A1 (ja) * 2008-05-16 2009-11-19 日立金属株式会社 圧粉磁心及びチョーク
JP4866971B2 (ja) 2010-04-30 2012-02-01 太陽誘電株式会社 コイル型電子部品およびその製造方法
JP5492155B2 (ja) 2010-04-30 2014-05-14 太陽誘電株式会社 コイル型電子部品
US8878642B2 (en) 2010-05-19 2014-11-04 Sumitomo Electric Industries, Ltd. Dust core and method for producing the same
US20130038420A1 (en) * 2011-03-09 2013-02-14 Sumitomo Electric Sintered Alloy, Ltd. Green compact, method of manufacturing the same, and core for reactor
US20130020097A1 (en) * 2011-07-21 2013-01-24 Schlumberger Technology Corporation Downhole fluid-flow communication technique
JP5997424B2 (ja) * 2011-07-22 2016-09-28 住友電気工業株式会社 圧粉磁心の製造方法
EP2741595B1 (en) * 2011-07-26 2018-05-30 Seiji Kagawa Electromagnetic wave absorption film having high heat dissipation properties
JP5769549B2 (ja) 2011-08-25 2015-08-26 太陽誘電株式会社 電子部品及びその製造方法
CN104379640B (zh) * 2011-12-05 2017-09-05 Csir公司 一种耐火的人工制品及其制造方法
CN103219120B (zh) * 2012-01-18 2016-02-10 株式会社神户制钢所 压粉磁芯的制造方法以及由该制造方法而得的压粉磁芯
JP5942537B2 (ja) * 2012-03-29 2016-06-29 セイコーエプソン株式会社 脱脂体の製造方法および焼結体の製造方法
JP6089430B2 (ja) * 2012-03-30 2017-03-08 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心および磁性素子
EP2842665A4 (en) * 2012-04-23 2016-03-09 Aida Eng Ltd HIGH DENSITY MOLDING DEVICE AND METHOD FOR HIGH DENSITY MOLDING OF MIXED POWDER
JP2013256684A (ja) * 2012-06-12 2013-12-26 Panasonic Corp ボンド磁石の製造方法
JP5833983B2 (ja) * 2012-07-20 2015-12-16 株式会社神戸製鋼所 圧粉磁心用粉末、および圧粉磁心
JP5892356B2 (ja) 2014-03-13 2016-03-23 日立金属株式会社 圧粉磁心の製造方法および圧粉磁心

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147959A (ja) * 2004-11-22 2006-06-08 Daido Steel Co Ltd 圧粉磁芯および圧粉磁芯の製造方法
JP2013010685A (ja) * 2011-05-30 2013-01-17 Kyocera Corp フェライト焼結体およびこれを備えるノイズフィルタ
JP2013084701A (ja) * 2011-10-07 2013-05-09 Taiyo Yuden Co Ltd 電子部品及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3118868A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11551863B2 (en) 2015-09-30 2023-01-10 Taiyo Yuden Co., Ltd Dram-type magnetic body having pair of flange parts on both ends of shaft part
CN107039151A (zh) * 2015-09-30 2017-08-11 太阳诱电株式会社 磁性体的制造方法、及使用其磁性体的线圈部件的制造方法
CN107039151B (zh) * 2015-09-30 2018-11-13 太阳诱电株式会社 磁性体的制造方法、及使用其磁性体的线圈部件的制造方法
US10475572B2 (en) 2015-09-30 2019-11-12 Taiyo Yuden Co., Ltd Method of manufacturing magnetic body
JP2017069391A (ja) * 2015-09-30 2017-04-06 太陽誘電株式会社 磁性体の製造方法、及びその磁性体を用いたコイル部品の製造方法
JP2017108028A (ja) * 2015-12-11 2017-06-15 株式会社村田製作所 セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
JP2017108027A (ja) * 2015-12-11 2017-06-15 株式会社村田製作所 セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
JP2017108029A (ja) * 2015-12-11 2017-06-15 株式会社村田製作所 セラミックコアのバリ取り方法、バリ取り装置、及びセラミックコアの製造方法
CN113284689A (zh) * 2021-05-14 2021-08-20 宁波新弘精密零部件有限公司 粉末冶金电机离合软磁材料
CN113284689B (zh) * 2021-05-14 2024-05-10 宁波新弘精密零部件有限公司 粉末冶金电机离合软磁材料
JP7133114B1 (ja) 2022-03-24 2022-09-07 株式会社トーキン 磁性体及び磁性素子
WO2023181902A1 (ja) * 2022-03-24 2023-09-28 株式会社トーキン 磁性体及び磁性素子
JP2023141675A (ja) * 2022-03-24 2023-10-05 株式会社トーキン 磁性体及び磁性素子

Also Published As

Publication number Publication date
EP3118868B1 (en) 2020-10-07
US11508512B2 (en) 2022-11-22
EP3118868A4 (en) 2017-11-29
US20170025215A1 (en) 2017-01-26
US11636970B2 (en) 2023-04-25
CN110021476A (zh) 2019-07-16
US20190355503A1 (en) 2019-11-21
EP3591677A1 (en) 2020-01-08
CN110021477A (zh) 2019-07-16
KR20160132937A (ko) 2016-11-21
CN110021476B (zh) 2021-10-22
CN106104727A (zh) 2016-11-09
CN106104727B (zh) 2019-03-29
KR102195952B1 (ko) 2020-12-28
US20190355504A1 (en) 2019-11-21
JPWO2015137452A1 (ja) 2017-04-06
EP3118868A1 (en) 2017-01-18
CN110021477B (zh) 2021-08-31
JP5915920B1 (ja) 2016-05-11
JP2016129230A (ja) 2016-07-14
JP5892356B2 (ja) 2016-03-23
US10354790B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP5915920B1 (ja) 圧粉磁心の製造方法
JP6447938B2 (ja) 磁心およびそれを用いたコイル部品
JP6260508B2 (ja) 圧粉磁心
JP6369749B2 (ja) 磁心およびそれを用いたコイル部品
JP6384752B2 (ja) 磁心およびそれを用いたコイル部品
WO2018052107A1 (ja) 磁心およびコイル部品
JP6846016B2 (ja) 圧粉磁心
US11192183B2 (en) Method for manufacturing powder magnetic core
JP6471882B2 (ja) 磁心およびコイル部品
JP6478141B2 (ja) 磁心の製造方法、磁心およびそれを用いたコイル部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539994

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028129

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015760682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760682

Country of ref document: EP