WO2023181902A1 - 磁性体及び磁性素子 - Google Patents

磁性体及び磁性素子 Download PDF

Info

Publication number
WO2023181902A1
WO2023181902A1 PCT/JP2023/008472 JP2023008472W WO2023181902A1 WO 2023181902 A1 WO2023181902 A1 WO 2023181902A1 JP 2023008472 W JP2023008472 W JP 2023008472W WO 2023181902 A1 WO2023181902 A1 WO 2023181902A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic material
material according
magnetic
resin
powder
Prior art date
Application number
PCT/JP2023/008472
Other languages
English (en)
French (fr)
Inventor
覚 松澤
亜希子 大島
千恵子 藤本
悠 金森
かほり 大平
Original Assignee
株式会社トーキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トーキン filed Critical 株式会社トーキン
Publication of WO2023181902A1 publication Critical patent/WO2023181902A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or Groups 14 to 16 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core

Definitions

  • the present invention relates to a magnetic material and a magnetic element.
  • a so-called plastic magnet is one example of the magnetic material used in the magnetic element.
  • a plastic magnet is formed into a predetermined shape by injection molding or the like from a binder resin in which soft magnetic metal powder is dispersed. According to plastic magnets, a magnetic body having a desired shape can be obtained relatively easily.
  • Patent Document 1 discloses a magnetic core using a composite fluororesin containing a perfluorofluororesin having excellent heat resistance.
  • Patent Document 2 discloses a method for manufacturing an inductor in which a coil is placed in a cavity and then a composition containing a thermoplastic element and magnetic powder is filled into the cavity.
  • An integrally molded inductor also has the advantage of suppressing leakage magnetic flux without shielding.
  • An object of the present invention is to provide a magnetic material and a magnetic element that have excellent long-term heat resistance in a high-temperature environment of 180°C.
  • the magnetic material according to the present invention includes soft magnetic powder and a cured resin,
  • the radial crushing strength after being held for 1000 hours in an environment of 180°C is 30 MPa or more.
  • One embodiment of the magnetic material has a strength retention rate of 50% or more after being held for 1000 hours in an environment of 180°C.
  • One embodiment of the magnetic material has a volume resistivity of 10 6 ⁇ cm or more after being held for 1000 hours in a 180° C. environment.
  • One embodiment of the magnetic material has a radial crushing strength of 50 MPa or more after being held in a 180° C. environment for 1000 hours.
  • One embodiment of the magnetic material has a weight change rate of 1% or less after being held in a 180° C. environment for 1000 hours.
  • the average major diameter of the pores in the cured resin material after being held in a 180° C. environment for 1000 hours is 2 ⁇ m or less.
  • the average distance between the soft magnetic powder and the cured resin material is 1 ⁇ m or less after being held in a 180° C. environment for 1000 hours.
  • the cured resin has an imide bond.
  • the cured resin includes polyesterimide.
  • the ratio of the cured resin is 2 to 6 parts by mass based on 100 parts by mass of the soft magnetic powder.
  • the cured resin includes a cured thermosetting resin composition containing a polyester resin, an epoxy resin, and a polyimide resin.
  • the polyester resin has a carboxy group.
  • the polyimide resin has an ethylenic double bond.
  • thermosetting resin composition further contains peroxide.
  • the soft magnetic powder includes iron alloy powder.
  • the iron alloy powder includes a Fe--Si alloy.
  • the Fe-Si alloy contains 4 to 10% by mass of Si.
  • the iron alloy powder further includes one or more selected from Cr and Al.
  • the soft magnetic powder has an inorganic insulating layer on its surface.
  • the inorganic insulating layer includes one or more selected from phosphates and silicates.
  • the proportion of the inorganic insulating layer is 0.1 to 3 parts by mass based on 100 parts by mass of the pre-soft magnetic powder.
  • the inorganic insulating layer has an average thickness of 10 to 100 nm.
  • the soft magnetic powder has an average particle size of 5 to 30 ⁇ m.
  • the magnetic element according to the present invention includes the magnetic body according to the present invention; A coil embedded in the magnetic material.
  • the present invention provides a magnetic material and a magnetic element that have excellent long-term heat resistance in a high-temperature environment of 180°C.
  • FIG. 2 is a schematic cross-sectional view showing an example of a magnetic material.
  • 1 is a schematic transparent view of a magnetic element according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III in FIG. 2; 3 is a cross-sectional SEM image of the magnetic material of Example 5.
  • 3 is a cross-sectional SEM image of the magnetic material of Example 6. It is a cross-sectional SEM image of the magnetic material of Example 7. It is a cross-sectional SEM image of the magnetic material of Example 8.
  • magnetic material immediately after production includes magnetic material that has been stored at room temperature for about 24 hours after production.
  • FIG. 1 is a schematic cross-sectional view showing an example of a magnetic material.
  • the magnetic body 10 (hereinafter also referred to as the present magnetic body) in the example of FIG. It is.
  • This magnetic material is characterized by a radial crushing strength of 30 MPa or more after being held in a 180°C environment for 1000 hours, and has excellent long-term heat resistance in a 180°C high-temperature environment.
  • the radial crushing strength is a value determined according to the radial crushing strength testing method of JIS Z2507.
  • the radial crushing strength of this magnetic material after being held in a 180° C. environment for 1000 hours is preferably 40 MPa or more, more preferably 50 MPa or more.
  • the magnetic material preferably has a strength retention rate of 50% or more after being held for 1000 hours in an environment of 180°C.
  • the strength retention rate is determined by the following formula (1) from the radial crushing strength K 0 (MPa) of the magnetic material immediately after manufacture and the radial crushing strength K (MPa) of the magnetic material after being held for 1000 hours in an environment of 180°C. This is the calculated value.
  • Strength maintenance rate (%) K/K 0 ⁇ 100
  • the strength retention rate is preferably 55% or more, and preferably 60% or more.
  • the radial crushing strength of the present magnetic material immediately after production is preferably 60 MPa or more, more preferably 70 MPa or more, and still more preferably 80 MPa or more.
  • the magnetic material maintains its insulation properties in a high-temperature environment.
  • the volume resistivity of the present magnetic material after being held for 1000 hours in an environment of 180° C. is preferably 10 6 ⁇ cm or more, more preferably 10 7 ⁇ cm or more.
  • the volume resistivity of the present magnetic body immediately after production is preferably 10 6 ⁇ cm or more, more preferably 10 7 cm ⁇ or more, and even more preferably 10 8 ⁇ cm or more.
  • the weight change rate of this magnetic material after being held for 1000 hours in a 180°C environment is preferably 1% or less, more preferably 0.9% or less, and even more preferably 0.8% or less. preferable.
  • the weight change rate is calculated by the following formula (2) from the weight W 0 (g) of the magnetic material immediately after manufacture and the weight W (g) of the magnetic material after being held for 1000 hours in an environment of 180°C. This is the value.
  • Weight change rate (%)
  • FIG. 5 is a cross-sectional SEM image of a magnetic material of Example 6, which will be described later.
  • the cured resin material around the magnetic powder may decompose, and in this case, the radial crushing strength tends to decrease significantly.
  • the average distance between the soft magnetic powder and the cured resin material be 1 ⁇ m or less after being held in a 180° C. environment for 1000 hours, and 0. More preferably, the thickness is 5 ⁇ m or less.
  • the above-mentioned average distance is the average value of the width of the gap between the magnetic material and the resin in the cross-sectional SEM image of the magnetic material.
  • the average major diameter of the pores in the cured resin material is preferably 2 ⁇ m or less, and 1.5 ⁇ m or less after being held in a 180°C environment for 1000 hours. It is more preferable that there be.
  • the average major axis exceeds 2 ⁇ m, there is a tendency for the strength retention rate to decrease.
  • the above-mentioned average major axis is the average value of the major axis measured from each hole in a cross-sectional SEM image of the magnetic material.
  • the magnetic material may have a radial crushing strength of 30 MPa or more after being held for 1000 hours in an environment of at least 180°C.
  • the method for achieving the above-mentioned long-term heat resistance is not particularly limited, but it can be achieved, for example, by selecting the soft magnetic powder or cured resin that constitutes the present magnetic body. Each component that can be included in the present magnetic material will be explained below.
  • the soft magnetic powder can be appropriately selected from materials exhibiting soft magnetism. From the point of view of magnetic properties, it is preferable that the material contains iron, and it may be iron alone or an alloy containing iron and other elements.
  • the soft magnetic powder include carbonyl iron, Fe-Si alloy, Fe-Ni alloy, Fe-Si-Cr alloy, Fe-Si-Al alloy, Fe-based amorphous alloy powder containing at least Fe-B, and at least Fe- It is preferable to include iron alloy powder such as Fe-based nanocrystalline alloy containing BP-Cu.
  • the Fe-based amorphous alloy refers to an amorphous Fe-based alloy that does not have a crystal structure.
  • the Fe-based nanocrystalline alloy refers to an alloy obtained by subjecting the Fe-based amorphous alloy to heat treatment to precipitate fine ⁇ -Fe crystals in the amorphous phase.
  • One type of soft magnetic powder can be used alone or two or more types can be used in combination.
  • the iron alloy powder contains an Fe-Si alloy. Furthermore, by using the Fe--Si alloy, a magnetic material with high magnetic permeability and low core loss can be obtained.
  • the proportion of Si in the Fe--Si alloy is preferably 4 to 10% by mass based on the total amount of the Fe--Si alloy. Furthermore, from the viewpoint of heat resistance of the magnetic material, the proportion of Si is preferably 4.5% by mass or more, more preferably 5% by mass or more. On the other hand, from the viewpoint of suppressing the deterioration of magnetic properties and suppressing the hardness and brittleness of the Fe-Si alloy, the proportion of Si is preferably 10% by mass or less, preferably 8% by mass or less, and 7% by mass or less. % or less is more preferable. Furthermore, the Fe--Si alloy may further contain other elements such as Cr, Al, Mn, Ni, C, O, N, S, P, B, and Cu.
  • the Fe--Si alloy powder contains one or more selected from Cr and Al. Since Cr and Al form a passive layer on the surface of the Fe-Si alloy powder, oxidation of the soft magnetic powder is suppressed in high-temperature environments, and contact between the cured resin and iron is suppressed, resulting in the hardening of the cured resin. oxidation is also suppressed. From the viewpoint of heat resistance and rust prevention, the proportion of Cr or Al in the Fe-Si alloy is preferably 0.5 to 10 parts by mass, more preferably 3 to 8 parts by mass, based on 100 parts by mass of Fe-Si alloy powder. .
  • the total mass is within the above range.
  • the total content of other elements other than Cr and Al is preferably 1 part by mass or less, and preferably 0.5 part by mass or less, based on 100 parts by mass of the soft magnetic powder.
  • the shape of the soft magnetic powder can be spherical, elliptical, acicular, rod-shaped, plate-like, etc., which improves the filling properties of the mold when molding this magnetic material and reduces the contact area with cured resin, etc. From this point of view, a spherical shape is preferable.
  • the average particle size of the soft magnetic powder is preferably 1 to 100 ⁇ m from the viewpoint of heat resistance, more preferably 3 to 60 ⁇ m, and more preferably 5 to 30 ⁇ m from the viewpoint of skin effect when used in a frequency band of 1 MHz or higher. More preferred.
  • the method for producing the soft magnetic powder is not particularly limited, and may be appropriately selected from known methods such as an atomization method, a melt spinning method, a rotating electrode method, a mechanical alloying method, and a chemical precipitation method by reduction. .
  • the atomization method is preferred because spherical particles can be suitably obtained.
  • Examples of the atomization method include gas atomization method, water atomization method, centrifugal force atomization method, plasma atomization method, etc. From the viewpoint of mass production stability and productivity, gas atomization method or water atomization method is preferable.
  • the water atomization method is preferred because it is easy to obtain.
  • the soft magnetic powder may further have an inorganic insulating layer.
  • an inorganic insulating layer By providing the inorganic insulating layer, it is possible to suppress contact between the soft magnetic powders to ensure insulation, and also suppress contact between the soft magnetic powder and the cured resin material, thereby suppressing thermal decomposition of the cured resin material. Furthermore, by using an inorganic insulating layer, the heat resistance of the insulating layer itself is further improved.
  • Insulating materials for the inorganic insulating layer include, for example, inorganic oxides such as SiO 2 (silicic acid), Al 2 O 3 (alumina), and ZrO 2 , nitrides such as Si 3 N 4 and BN, silicate glass, and borium. Examples include glass materials such as acid glass, borosilicate glass, phosphate glass, and bismuth glass, and minerals such as mica and clay. Among them, phosphates and silicates are preferably included.
  • the insulating materials in the inorganic insulating layer can be used alone or in combination of two or more.
  • the inorganic insulating layer is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more based on 100 parts by mass of the soft magnetic powder, from the viewpoint of ensuring insulation resistance and suppressing oxidation of the cured resin product. More preferably, the amount is 0.5 parts by mass or more.
  • the amount of the inorganic insulating layer may be 3 parts by mass or less based on 100 parts by mass of the soft magnetic powder, preferably 2.5 parts by mass or less, and more preferably 2.0 parts by mass or less from the viewpoint of magnetic properties.
  • the average thickness of the inorganic insulating layer is preferably 10 to 100 nm, more preferably 10 to 60 nm, from the viewpoint of ensuring insulation resistance and suppressing oxidation of the cured resin product.
  • the thickness of the inorganic insulating layer can be determined by observing the surface of the soft magnetic powder using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the inorganic insulating layer can be calculated from the following formulas (3) and (4). The average thickness of can be calculated.
  • Formula (3): Specific surface area of soft magnetic powder (m 2 /g) 6/[specific gravity of soft magnetic powder (g/m 3 ) x particle size of soft magnetic powder (m)]
  • Formula (4): Inorganic insulating layer thickness (m) mass of insulating material (g) / [mass of soft magnetic powder (g) x specific surface area of soft magnetic powder (m 2 /g) x specific gravity of coated powder (g) / m3 )]
  • the method for providing the inorganic insulating layer on the soft magnetic powder can be appropriately selected from, for example, a powder mixing method, a dipping method, a sol-gel method, a CVD method, a PVD method, or various known methods other than the above.
  • This magnetic material includes a cured resin material.
  • the cured resin product is a cured product of a resin used as a binder component.
  • the resin may be curable either singly or by using a plurality of components, and examples thereof include thermosetting resins and photocuring resins.
  • the curable resin in this magnetic body is preferably a thermosetting resin from the viewpoint of achieving both workability during heat molding and heat resistance after manufacture.
  • the term "cured resin” refers to a curable resin in which at least a portion of the resin has undergone a crosslinking reaction. Examples of cured resin products include cured epoxy resins, polyimides, polyamideimides, and the like.
  • decomposition of the imide bond is suppressed even in a high-temperature environment, pores are less likely to be formed, the strength is less likely to decrease after long-term storage, and the insulation property is also maintained.
  • the cured resin product preferably contains polyesterimide.
  • polyesterimide refers to one having two or more ester bonds and two or more imide bonds in the molecule.
  • a cured resin product containing polyesterimide has a three-dimensional structure in which multiple polymer chains are cross-linked, and the cured resin product has a plurality of ester bonds and imide bonds, which stabilizes the structure. Thermal decomposition is further suppressed in a high temperature environment of 180°C.
  • thermosetting resin that is the precursor of the cured resin product is preferably one that forms a cured product containing a polyesterimide structure after curing.
  • a thermosetting resin composition containing a polyester resin, an epoxy resin, and a polyimide resin is preferred because the magnetic body can be easily molded at low temperatures.
  • the heating temperature during molding can be, for example, about 180°C.
  • the polyester resin can be appropriately selected from polymers of polycarboxylic acids and polyols. Among these, polyester resins having carboxyl groups are preferred from the viewpoint of reactivity with epoxy resins.
  • the polycarboxylic acid can be appropriately selected from compounds having two or more carboxylic acids in one molecule, and among them, a dicarboxylic acid having two carboxylic acids in one molecule or an anhydride thereof is preferable. Specific examples of dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, succinic acid, adipic acid, maleic acid, etc., and they can be used alone or in combination of two or more.
  • the polycarboxylic acid contains one or more selected from isophthalic acid and maleic acid.
  • the polyol can be appropriately selected from compounds having two or more hydroxy groups in one molecule. Specific examples of polyols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 3-methyl-1 , 5-pentanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, trimethylolpropane, glycerin, 1,4-cyclohexanediol, cyclohexanedimethanol, bisphenol A, bisphenol F, etc. , can be used alone or in combination of two or more.
  • the polyester resin can be obtained by subjecting the polycarboxylic acid and polyol to a dehydration condensation reaction using a known method. Moreover, a commercially available product having a desired structure may be used.
  • the epoxy resin can be appropriately selected from compounds having one or more epoxy groups in one molecule.
  • Preferred specific examples of epoxy resins include epibis-based epoxy resins obtained by the condensation reaction of epichlorohydrin, bisphenol A, bisphenol F, and alkylene oxide modified products thereof; novolacs obtained by the condensation reaction of epichlorohydrin and phenol resins; Epoxy resins include alkyl glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether, and can be used alone or in combination of two or more.
  • the polyimide resin may be appropriately selected from compounds having two or more imide bonds in one molecule. Among them, those having an ethylenic double bond are preferred from the viewpoint of crosslinkability with other resins, such as N,N'-(4,4'-diphenylmethane) diallylnadimide and N,N'-(m-xylylene). Diallyl nadiimide is preferred. Polyimide resins can be used alone or in combination of two or more.
  • thermosetting resin composition is determined from the viewpoint of heat resistance and mechanical strength of the resulting cured resin, 20 to 50 parts by mass of polyester resin, 1 to 25 parts by mass of epoxy resin, and 1 to 15 parts by mass of polyimide resin. It is preferable that
  • the thermosetting resin composition may further contain other components.
  • Other components include vinyl monomers, epoxy acrylates, curing agents, catalysts, and the like.
  • vinyl monomers include monomers having a vinyl group, (meth)acryloyl group, etc., such as vinyl monomers such as vinyl acetate and styrene; and acrylic monomers such as methyl (meth)acrylate.
  • the (meth)acryloyl group represents an acryloyl group or a methacryloyl group, and the same applies to (meth)acrylate.
  • Examples of epoxy acrylates include compounds obtained by reacting the epoxy groups of various epoxy resins with the carboxyl groups of (meth)acrylic acid.
  • peroxide As the curing agent for promoting the curing reaction of the thermosetting resin composition, peroxide is preferable.
  • peroxides include dicumyl peroxide, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, 2,2-bis(tert-butyldioxy)octane, t-butylperxatate, Dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, t-butyl-cumyl-peroxide , di-t-butyl-peroxide, 2,5-dimethyl,2,5-di(t-butylperoxy)hexane-3, and the like.
  • catalysts for the reaction between carboxyl groups and epoxy groups include imidazole and tertiary amines.
  • the blending ratio is such that the ratio of the total of polyester resin, epoxy resin, and polyimide resin to the total of vinyl monomer and epoxy acrylate is 1 in terms of mass ratio. :3 to 3:1.
  • the present magnetic body can be obtained, for example, by dispersing soft magnetic powder in the thermosetting resin composition, filling the mixture into a mold having a desired shape, and heating the mixture.
  • the heating conditions depend on the reactivity of the thermosetting resin composition, for example, heating at 150 to 200° C. for about 0.5 to 12 hours will allow the crosslinking reaction to proceed sufficiently.
  • the cured resin obtained by curing the thermosetting resin composition in addition to ester bonds and imide bonds, hydroxyl groups derived from the reaction between epoxy groups and carboxy groups are detected.
  • thermosetting resin composition and the soft magnetic powder may be adjusted as appropriate depending on the application, etc., but for example, it is preferably 1 to 10 parts by mass, and 2 to 10 parts by mass, based on 100 parts by mass of the soft magnetic powder. 6 parts by mass is more preferred. If it is at least the above lower limit, the mechanical strength of the magnetic material will improve. On the other hand, if it is below the above upper limit, the magnetic properties are excellent.
  • This magnetic material can be used in known applications where magnetic materials are used. Since this magnetic material has excellent long-term heat resistance in a high-temperature environment of 180° C., it can be suitably used in automotive applications where heat resistance is particularly required, particularly as a core material for inductors placed near the engine.
  • the heat treatment temperature during molding can be set to a relatively low temperature of about 180°C, so it can be suitably used for coil-embedded magnetic elements described below. can.
  • FIG. 2 is a schematic top view of the magnetic element
  • FIG. 3 is a schematic cross-sectional view taken along line III--III in FIG.
  • the terminal portion 12 in FIG. 2 is attached to the magnetic body 10 using an adhesive member 13 in FIG.
  • This magnetic element has a magnetic body 10 and a coil 11 embedded in the magnetic body 10, and the magnetic body 10 is the magnetic body according to the present invention.
  • the terminal portion 12 may be made of copper plated with Sn or the like from the viewpoint of wettability with lead-free solder.
  • the copper of the terminal portion 12 may be joined to the coil 11 or may be integral with the coil 11.
  • the shape of the coil 11 is appropriately selected from among known coils used in magnetic elements, and usually has a winding portion and a terminal portion for connection to a circuit or the like.
  • the material of the coil 11 is not particularly limited, and may be, for example, a copper wire, and the copper wire preferably has an insulating film.
  • As the insulating film a polyamide-imide film, a polyimide film, or the like is preferable from the viewpoint of heat resistance.
  • the coil When manufacturing a coil-embedded magnetic element, the coil may be placed in the mold before or during filling the mold with the magnetic material in the method for manufacturing a magnetic material.
  • a magnetic element manufactured by winding a coil around the present magnetic material also has excellent long-term heat resistance in a high-temperature environment of 180°C.
  • This magnetic element can be suitably used as an inductor for use in power inductors, choke coils, transformers, and the like.
  • thermosetting resin composition (1) A composition containing a polyester resin, an epoxy resin, and a polyimide resin.
  • the soft magnetic powder after the above treatment was passed through a 500 ⁇ m metal mesh, and the particle size was adjusted so that it could be easily filled into a mold and granulated.
  • the granulated powder was filled into a ring-shaped mold with an outer diameter of 13 mm and an inner diameter of 8 mm, and pressure molded at a molding pressure of 5 ton/cm 2 .
  • the obtained ring-shaped sample was thermally cured at a temperature of 180° C. for 2 hours or more in a constant temperature bath to obtain a magnetic material containing a cured resin material having polyesterimide.
  • Example 2 A magnetic material of Example 2 was obtained in the same manner as in Example 1, except that the amount of the phosphoric acid-based inorganic insulating material was changed to 1.5 parts by mass (the thickness of the insulating layer was about 50 nm). .
  • Example 3 In Example 1, except that the amount of phosphoric acid-based inorganic insulating material was changed to 1.5 parts by mass, and the amount of thermosetting resin composition (1) was changed to 2 parts by mass based on 100 parts by mass of soft magnetic powder. A magnetic material of Example 3 was obtained in the same manner as in Example 1.
  • Example 4 A magnetic material of Example 4 was obtained in the same manner as in Example 1 except that the thermosetting resin composition in Example 1 was changed to a thermosetting phenolic resin.
  • Example 5 A magnetic material of Example 5 was obtained in the same manner as in Example 1 except that the insulation coating treatment was not performed.
  • Example 6 Comparative example
  • a magnetic material of Example 6 was obtained in the same manner as in Example 5 except that the thermosetting resin composition in Example 5 was changed to a thermosetting phenolic resin.
  • Example 7 A magnetic material of Example 7 was obtained in the same manner as in Example 5, except that the thermosetting resin composition was changed to an epoxy resin (epoxy resin (1)) having a glass transition temperature of 250° C. or higher.
  • epoxy resin (1) epoxy resin having a glass transition temperature of 250° C. or higher.
  • Example 8 A magnetic material of Example 8 was obtained in the same manner as in Example 5 except that the thermosetting resin composition was changed to a bisphenol A type epoxy resin (epoxy resin (2)).
  • Example 9 Example 1 except that 0.5 parts by mass of the phosphoric acid-based inorganic insulating material in Example 1 was changed to 1 part by mass of the silicate-based insulating material, and a thermosetting phenolic resin was used instead of the thermosetting resin composition.
  • a magnetic material of Example 9 was obtained in the same manner as (the thickness of the insulating layer was about 30 nm).
  • Example 10 was carried out in the same manner as in Example 9, except that the soft magnetic powder was changed to a soft magnetic powder containing 6.5% by mass of Si, 3 to 8% by mass of Cr, and having an average particle size of 10 ⁇ m. A magnetic material was obtained.
  • Example 11 In Example 9, the magnetic powder of Example 11 was prepared in the same manner as in Example 9, except that the soft magnetic powder was changed to a soft magnetic powder containing 0.5% by mass of Si, 1% by mass of Cr, and having an average particle size of 10 ⁇ m. I got a body.
  • the magnetic material of each example was evaluated by the following method.
  • the volume resistivity of the magnetic material was measured using a Keysight resistance meter (B2985A) using electrodes with a diameter of 1 mm on the top and bottom surfaces of a ring-shaped molded body with an outer diameter of 13 mm, an inner diameter of 8 mm, and a height of 5.0 mm to 6.0 mm.
  • the insulation resistance was measured and calculated by applying a voltage of 100V.
  • the radial crushing strength of the magnetic material was evaluated by performing a compression test according to the radial crushing strength test method of JIS Z2507, and calculating it using equation (5).
  • K [F ⁇ (De)]/(L ⁇ e 2 )
  • K Radial crushing strength (MPa)
  • F Maximum load when broken (N)
  • L Length of hollow cylinder (mm)
  • D Outer diameter of hollow cylinder (mm)
  • e Wall thickness of hollow cylinder (mm)
  • Heat resistance evaluation Heat resistance was evaluated by storing each magnetic body in the atmosphere at 180° C. and measuring the volume resistivity, ring strength, and weight in the same manner as above after 1000 hours. The results are shown in Table 1. Note that when the weight change rate value is - (minus), it indicates that the weight has decreased. In addition, the cross section of the magnetic material after being stored at 180° C. for 1000 hours was observed by SEM. Cross-sectional SEM images of the magnetic materials of Examples 5 to 8 are shown in FIGS. 4 to 7.
  • FIG. 5 is a cross-sectional SEM image of Example 6.
  • the magnetic material of Example 6 which is a combination of soft magnetic powder without an inorganic insulating layer and thermosetting phenolic resin, is stored at 180°C for 1000 hours, the resin around the soft magnetic powder decomposes, and the soft magnetic powder and resin are combined. It became clear that voids were generated between the cured product and the cured product. As a result, the strength retention rate was particularly low.
  • 6 and 7 are cross-sectional SEM images of Examples 7 and 8. It was shown that when the magnetic bodies of Examples 7 and 8 using epoxy resin were stored at 180° C. for 1000 hours, pores were generated inside the cured resin products. As a result, the strength retention rate is slightly lower.
  • FIG. 1 is a cross-sectional SEM image of Example 6.
  • Example 4 is a cross-sectional SEM image of Example 5.
  • the magnetic material of Example 5 has a high strength retention rate after being stored at 180° C. for 1000 hours, and also maintains its insulation properties. Similar results were obtained in Examples 1 to 3. Furthermore, Examples 1 to 3 with an inorganic insulating layer had higher volume resistivity and radial crushing strength after storage at 180° C. for 1000 hours than Example 5 without an inorganic insulating layer.
  • the magnetic materials of Examples 9 and 10 in which the proportion of Si in the soft magnetic powder is within the range of 4 to 10 mass%, have excellent heat resistance at 180 ° C. compared to Example 11, in which the proportion of Si is outside the range. A result was obtained in which the decrease in volume resistivity during storage for 1000 hours was suppressed. Note that the radial crushing strength of Examples 9 and 10 after storage at 180° C. for 1000 hours is 30 MPa or more.

Abstract

180℃の高温環境下における長期耐熱性に優れた磁性体及び磁性素子を提供することである。 本発明の一態様に係る磁性体は、軟磁性粉(1)と、樹脂硬化物(2)と、を含み、180℃の高温環境下における長期耐熱性に優れた磁性体である。

Description

磁性体及び磁性素子
 本発明は、磁性体及び磁性素子に関する。
 近年、自動車の電動化に伴い、車載電子部品の需要が増加している。また、車内空間の確保から電子部品はエンジンやモーター近くに配置され更なる耐熱性の向上が求められている。電子部品に用いられる磁性素子についても更なる耐熱性が求められている。また長期間、インダクタの機能を確保するためには、180℃の高温環境下における長期耐熱性と、長期間の振動に対する素子の強度維持が求められている。
 磁性素子に用いる磁性体の一つとして、いわゆるプラスチックマグネットが挙げられる。プラスチックマグネットは、軟磁性金属粉が分散されたバインダー樹脂を射出成型などにより所定の形状に成形されたものである。プラスチックマグネットによれば、所望の形状の磁性体を比較的容易に得ることができる。
 磁性体の耐熱性を向上する手法の一つとして、耐熱性に優れたバインダー樹脂を選択することが検討されている。例えば特許文献1には、耐熱性に優れたパーフルオロフッ素樹脂を含む複合フッ素樹脂が用いられた磁性コアが開示されている。
 またプラスチックマグネットを用いて、磁性体内にコイルを埋設した一体型の磁性素子を製造することが検討されている。例えば特許文献2には、キャビティ内にコイルを配置した後当該キャビティ内に熱可塑性素子と磁性粉とを含有する組成物を充填するインダクタの製造方法が開示されている。一体成型されたインダクタはシールド処理をすることなく漏洩磁束を抑制できるというメリットもある。
特開2017-188680号公報 特開2019-102713号公報
 本発明の課題は、180℃の高温環境下における長期耐熱性に優れた磁性体及び磁性素子を提供することである。
 本発明に係る磁性体は、軟磁性粉と、樹脂硬化物と、を含み、
 180℃の環境下で1000時間保持後の圧環強度が30MPa以上である。
 上記磁性体の一実施形態は、180℃の環境下で1000時間保持後の強度維持率が50%以上である。
 上記磁性体の一実施形態は、180℃の環境下で1000時間保持後の体積抵抗率が10Ωcm以上である。
 上記磁性体の一実施形態は、180℃の環境下で1000時間保持後の圧環強度が50MPa以上である。
 上記磁性体の一実施形態は、180℃の環境下で1000時間保持後の重量変化率が1%以下である。
 上記磁性体の一実施形態は、180℃の環境下で1000時間保持後の前記樹脂硬化物の空孔の平均長径が2μm以下である。
 上記磁性体の一実施形態は、180℃の環境下で1000時間保持後において、前記軟磁性粉と、前記樹脂硬化物との平均距離が1μm以下である。
 上記磁性体の一実施形態は、前記樹脂硬化物がイミド結合を有する。
 上記磁性体の一実施形態は、前記樹脂硬化物が、ポリエステルイミドを有する。
 上記磁性体の一実施形態は、前記樹脂硬化物の割合が、前記軟磁性粉100質量部に対して2~6質量部である。
 上記磁性体の一実施形態は、前記樹脂硬化物が、ポリエステル系樹脂、エポキシ系樹脂、及びポリイミド系樹脂を含む熱硬化性樹脂組成物の硬化物を含む。
 上記磁性体の一実施形態は、前記ポリエステル系樹脂が、カルボキシ基を有する。
 上記磁性体の一実施形態は、前記ポリイミド系樹脂が、エチレン性二重結合を有する。
 上記磁性体の一実施形態は、前記熱硬化性樹脂組成物が、更に過酸化物を含む。
 上記磁性体の一実施形態は、前記軟磁性粉が、鉄合金粉を含む。
 上記磁性体の一実施形態は、前記鉄合金粉がFe-Si合金を含む。
 上記磁性体の一実施形態は、前記Fe-Si合金がSiを4~10質量%含む。
 上記磁性体の一実施形態は、前記鉄合金粉が、更にCr及びAlより選択される1種以上を含む。
 上記磁性体の一実施形態は、前記軟磁性粉が、表面に無機絶縁層を有する。
 上記磁性体の一実施形態は、前記無機絶縁層が、リン酸塩及びケイ酸塩より選択される1種以上を含む。
 上記磁性体の一実施形態は、前記無機絶縁層の割合が、前軟磁性粉100質量部に対して0.1~3質量部である。
 上記磁性体の一実施形態は、前記無機絶縁層の平均厚みが、10~100nmである。
 上記磁性体の一実施形態は、前記軟磁性粉の平均粒径が、5~30μmである。
 本発明に係る磁性素子は、前記本発明に係る磁性体と、
 前記磁性体に埋設されたコイルと、を備える。
 本発明により、180℃の高温環境下における長期耐熱性に優れた磁性体及び磁性素子が提供される。
磁性体の一例を示す模式断面図である。 本発明の一実施形態に係る磁性素子の模式的な透過図である。 図2のIII-III断面を示す模式的な断面図である。 例5の磁性体の断面SEM像である。 例6の磁性体の断面SEM像である。 例7の磁性体の断面SEM像である。 例8の磁性体の断面SEM像である。
 以下、発明の実施の形態を通じて本発明を説明するが、特許請求の範囲に係る発明を以下の実施形態に限定するものではない。
 説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。説明のため図面中の各部材は縮尺が大きく異なることがある。
 なお、数値範囲を示す「~」は特に断りがない限り、その下限値及び上限値を含むものとする。
 また本発明において、「製造直後の磁性体」は、磁性体の製造後、常温で24時間程度保管したものまでを含むものとする。
[磁性体]
 図1は磁性体の一例を示す模式断面図である。図1の例の磁性体10(以下、本磁性体とも記す。)は、軟磁性粉1と、樹脂硬化物2を有し、樹脂硬化物2中に軟磁性粉1が分散された成形体である。
 本磁性体は、180℃の環境下で1000時間保持後の圧環強度が30MPa以上であることを特徴とし、180℃の高温環境下における長期耐熱性に優れている。なお、本実施形態において圧環強度は、JIS Z2507の圧環強さの試験方法に従って求められる値である。
 本磁性体の180℃の環境下で1000時間保持後の圧環強度は、中でも40MPa以上が好ましく、50MPa以上がより好ましい。
 本磁性体は、180℃の環境下で1000時間保持後の強度維持率が50%以上であることが好ましい。ここで強度維持率は、製造直後の磁性体の圧環強度K(MPa)と、180℃の環境下で1000時間保持後の磁性体の圧環強度K(MPa)から、下記式(1)により算出された値である。
 式(1): 強度維持率(%) = K/K×100
 強度維持率は、耐熱性の点から、中でも、55%以上が好ましく、60%以上が好ましい。また、本磁性体の製造直後の圧環強度は60MPa以上が好ましく、70MPa以上がより好ましく、80MPa以上が更に好ましい。
 本磁性体は高温環境下において絶縁性が維持されることが好ましい。このような観点から、本磁性体の180℃の環境下で1000時間保持後の体積抵抗率は10Ωcm以上であることが好ましく、10Ωcm以上がより好ましい。
 また、本磁性体の製造直後の体積抵抗率は、10Ωcm以上であることが好ましく、10cmΩ以上がより好ましく、10Ωcm以上がより好ましい。
 本磁性体は強度維持の観点から、180℃の環境下で1000時間保持後の重量変化率が1%以下であることが好ましく、0.9%以下がより好ましく、0.8%以下が更に好ましい。ここで重量変化率は、製造直後の磁性体の重量W(g)と、180℃の環境下で1000時間保持後の磁性体の重量W(g)から、下記式(2)により算出された値である。
 式(2): 重量変化率(%) = |W-W|/W×100
 また、本磁性体は強度維持の観点から、高温環境下において、磁性粉周辺の樹脂硬化物の分解が抑制されることが好ましい。図5は、後述する例6の磁性体の断面SEM像である。当該図5に示されるように、高温環境下において、磁性粉周辺の樹脂硬化物の分解が進むことがあり、この場合、圧環強度が大きく低下する傾向が見られる。
 具体的には、本磁性体は強度維持の観点から、180℃の環境下で1000時間保持後において、軟磁性粉と、樹脂硬化物との平均距離が1μm以下であることが好ましく、0.5μm以下がより好ましい。ここで上記平均距離は、磁性体の断面SEM像中の磁性体と樹脂との間の空隙の幅を距離とし、その平均値である。
 また、本磁性体は強度維持の観点から、高温環境下において、樹脂硬化物内部への大きな空孔の形成が抑制されることが好ましい。具体的には、本磁性体は強度維持の観点から、180℃の環境下で1000時間保持後において、樹脂硬化物の空孔の平均長径が2μm以下であることが好ましく、1.5μm以下であることがより好ましい。平均長径が2μmを超える場合、強度維持率が低下する傾向が見られる。ここで上記平均長径は、磁性体の断面SEM像中の各空孔から測定した長径の平均値である。
 本磁性体は、少なくとも180℃の環境下で1000時間保持後の圧環強度が30MPa以上であればよい。上記長期耐熱性を達成する方法は特に限定されないが、例えば本磁性体を構成する軟磁性粉や樹脂硬化物の選択により達成することができる。
 以下、本磁性体に含まれ得る各成分について説明する。
<軟磁性粉>
 軟磁性粉は、軟磁性を示す材料の中から適宜選択して用いることができる。磁気特性の点からは、鉄を含むものが好ましく、鉄単体であっても、鉄と他の元素とを含む合金であってもよい。軟磁性粉としては、カルボニル鉄、Fe-Si合金、Fe-Ni合金、Fe-Si-Cr合金、Fe-Si-Al合金、少なくともFe-Bを含むFe基非晶質合金粉末、少なくともFe-B-P-Cuを含むFe基ナノ結晶合金などの鉄合金粉を含むことが好ましい。ここで、前記Fe基非晶質合金とは、Fe基合金の内、結晶組織を持たない非晶質(アモルファス)な合金をいう。また、Fe基ナノ結晶合金とは、前記Fe基非晶質合金に熱処理を実施し、非晶質相中に微細なα-Fe結晶を析出させた合金をいう。軟磁性粉は1種単独で又は2種類以上を組み合わせて用いることができる。
 高温環境下における軟磁性粉中の鉄の酸化が抑制されるとともに、鉄と樹脂硬化物の接触面で生じる鉄の触媒作用が抑制されて樹脂硬化物の熱酸化分解が抑制される点から、鉄合金粉は、Fe-Si合金を含むことが好ましい。またFe-Si合金を用いることで、透磁率が高く、低鉄損の磁性体が得られる。
 Fe-Si合金中のSiの割合は、Fe-Si合金全量に対し4~10質量%が好ましい。更に磁性体の耐熱性の点からは、当該Siの割合が4.5質量%以上であることが好ましく、5質量%以上がより好ましい。一方、磁気特性の低下を抑制し、Fe-Si合金の硬さや脆さを抑制できる点からは、当該Siの割合が10質量%以下であることが好ましく、8質量%以下が好ましく、7質量%以下が更に好ましい。
 また、Fe-Si合金は、更に、Cr、Al、Mn、Ni、C、O、N、S、P、B、Cu等の他の元素を含んでいてもよい。耐熱性の点からは、Fe-Si合金粉がCr及びAlより選択される1種以上を含むことが好ましい。Cr及びAlはFe-Si合金粉の表面に不働態層を形成するため、高温環境下において軟磁性粉の酸化が抑制されるとともに、樹脂硬化物と鉄との接触が抑制されて樹脂硬化物の酸化も抑制される。
 Fe-Si合金中のCr又はAlの割合は、耐熱性と防錆の点から、Fe-Si合金粉100質量部中、0.5~10質量部が好ましく、3~8質量部がより好ましい。なお、CrとAlの両方を含む場合は、合計質量が上記範囲内にあることが好ましい。
 Cr及びAlを除く他の元素の合計の含有割合は、耐熱性や磁気特性の点から、軟磁性粉100質量部中、1質量部以下が好ましく、0.5質量部以下が好ましい。
 軟磁性粉の形状は、球形状、楕円球状、針状、棒状、板状などが挙げられ、本磁性体の成型時における金型への充填性や、樹脂硬化物等との接触面積を小さくする点から、球形状が好ましい。
 また、軟磁性粉の平均粒径は、耐熱性の点から、1~100μmが好ましく、3~60μmがより好ましく、更に、1MHz以上の周波数帯域での使用における表皮効果の点から5~30μmがさらに好ましい。
 軟磁性粉の製造方法は特に限定されず、例えば、アトマイズ法、メルトスピニング法、回転電極法、メカニカルアロイング法や、還元による化学的な析出法など公知の方法の中から適宜選択すればよい。球形状の粒子が好適に得られる点から、アトマイズ法が好ましい。アトマイズ法としては、例えば、ガスアトマイズ法、水アトマイズ法、遠心力アトマイズ法、プラズマアトマイズ法などが挙げられ、量産安定性と生産性の観点からガスアトマイズ法又は水アトマイズ法が好ましく、30μm以下の粉末を得やすい点から、水アトマイズ法が好ましい。
(無機絶縁層)
 上記軟磁性粉は、更に無機絶縁層を有していてもよい。無機絶縁層を備えることにより、軟磁性粉同士の接触を抑制して絶縁性を確保するとともに、軟磁性粉と樹脂硬化物の接触を抑制して更に樹脂硬化物の熱分解を抑制できる。また、無機絶縁層を用いることで絶縁層自体の耐熱性が更に向上する。
 無機絶縁層の絶縁材としては、例えば、SiO(ケイ酸)、Al(アルミナ)、ZrOなどの無機酸化物やSi、BNなどの窒化物、ケイ酸ガラス、ホウ酸ガラス、ホウケイ酸ガラス、リン酸ガラス、ビスマスガラスなどのガラス材や雲母、クレイなどの鉱物が挙げられ、中でも、リン酸塩及びケイ酸塩を含むことが好ましい。無機絶縁層中の絶縁材は、1種単独で又は2種以上を組み合わせて用いることができる。
 無機絶縁層は、絶縁抵抗を確保し、樹脂硬化物の酸化を抑制する点から、軟磁性粉100質量部に対して0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上がさらに好ましい。無機絶縁層は、軟磁性粉100質量部に対して3質量部以下であればよく、磁気特性の点から、2.5質量部以下が好ましく、2.0質量部以下がより好ましい。
 無機絶縁層の平均厚みは絶縁抵抗を確保し、樹脂硬化物の酸化を抑制する点から、10~100nmが好ましく、10~60nmがより好ましい。
 なお無機絶縁層の厚みは、透過型電子顕微鏡(TEM)で軟磁性粉表面を観察して求めることができる。また、簡易的には、軟磁性粉を単一粒径の球形粒子と仮定し、軟磁性粉の比表面積と、絶縁材の比重を用い、下記式(3)及び(4)から無機絶縁層の平均厚みを算出することができる。
 式(3): 軟磁性粉の比表面積(m/g)=6/[軟磁性粉の比重(g/m)×軟磁性粉の粒径(m)]
 式(4): 無機絶縁層厚み(m)=絶縁材の質量(g)/[軟磁性粉の質量(g)×軟磁性粉の比表面積(m/g)×コート粉末の比重(g/m)]
 軟磁性粉に無機絶縁層を設ける方法は、例えば、粉末混合法、浸漬法、ゾルゲル法、CVD法、PVD法、又は前記以外の公知の様々な方法の中から適宜選択することができる。
<樹脂硬化物>
 本磁性体は樹脂硬化物を含む。樹脂硬化物は、バインダー成分として用いられる樹脂の硬化物である。当該樹脂は、単独又は複数成分により硬化性を有していればよく、熱硬化性樹脂、光硬化性樹脂が挙げられる。本磁性体における硬化性樹脂は、加熱成型時の加工性と、製造後の耐熱性を両立する点から、熱硬化性樹脂が好ましい。なお本発明において樹脂硬化物とは、硬化性樹脂の少なくとも一部が架橋反応したものをいう。樹脂硬化物としては、エポキシ樹脂硬化物や、ポリイミド、ポリアミドイミド等が挙げられる。
 本磁性体において樹脂硬化物は、高温環境下における長期耐熱性に優れる点から、イミド結合(-C(=O)-NR-C(=O)-;但し、Rは水素原子又は有機基である)を有することが好ましい。イミド結合を有する樹脂硬化物は、高温環境下においても当該イミド結合の分解が抑制され、空孔が形成されにくく長期保存後の強度が低下しにくく、また絶縁性も維持される。
 更に耐熱性を向上する点から、樹脂硬化物は、ポリエステルイミドを有することが好ましい。本発明においてポリエステルイミドとは、分子内に2以上のエステル結合と、2以上のイミド結合とを有するものをいう。ポリエステルイミドを有する樹脂硬化物は、複数のポリマー鎖が架橋(クロスリンク)した3次元構造を有し、当該樹脂硬化物がエステル結合とイミド結合とを各々複数有することで、構造が安定化し、180℃の高温環境下において熱分解がより抑制される。
 樹脂硬化物の前駆体である熱硬化性樹脂は、硬化後にポリエステルイミド構造を含む硬化物が形成されるものが好ましい。中でも、本磁性体の成型を低温で行いやすい点から、ポリエステル樹脂と、エポキシ樹脂と、ポリイミド樹脂とを含む熱硬化性樹脂組成物が好ましい。当該熱硬化性樹脂組成物を用いることで、成型時の加熱温度を例えば180℃程度とすることができる。
 ポリエステル樹脂は、ポリカルボン酸とポリオールとの重合体の中から適宜選択して用いることができる。中でも、エポキシ樹脂との反応性の点から、カルボキシル基を有するポリエステル樹脂が好ましい。
 ポリカルボン酸は、1分子中に2個以上のカルボン酸を有する化合物の中から適宜選択でき、中でも、1分子中に2個のカルボン酸を有するジカルボン酸又はその無水物であることが好ましい。
 ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、コハク酸、アジピン酸、マレイン酸などが挙げられ、1種単独で、又は2種以上を組み合わせて用いることができる。本発明においては、ポリカルボン酸として、イソフタル酸及びマレイン酸より選択される1種以上を含むことが好ましい。
 ポリオールは、1分子中に2個以上のヒドロキシ基を有する化合物の中から適宜選択ですることができる。ポリオールの具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、トリメチルールプロパン、グリセリン、1,4-シクロヘキサンジオール、シクロヘキサンジメタノール、ビスフェノールA、ビスフェノールF等が挙げられ、1種単独で、又は2種以上を組み合わせて用いることができる。
 ポリエステル樹脂は、上記ポリカルボン酸とポリオールとを公知の方法で脱水縮合反応させることで得られる。また、所望の構造を有する市販品を用いてもよい。
 エポキシ樹脂は、1分子中にエポキシ基を1個以上有する化合物の中から適宜選択することができる。エポキシ樹脂の好適な具体例としては、エピクロルヒドリンと、ビスフェノールA、ビスフェノールF、及びこれらのアルキレンオキサイド変性物との縮合反応により得られるエピビス系エポキシ樹脂;エピクロルヒドリンとフェノール樹脂との縮合反応により得られるノボラック系エポキシ樹脂;メチルグリシジルエーテル、ブチルグリシジルエーテルなどのアルキルグリシジルエーテルなどが挙げられ、1種単独で、又は2種以上を組み合わせて用いることができる。
 ポリイミド樹脂は、1分子中に2個以上のイミド結合を有する化合物の中から適宜選択すればよい。中でも他の樹脂との架橋性の点から、エチレン性二重結合を有するものが好ましく、N,N’-(4,4’-ジフェニルメタン)ジアリルナジイミド及びN,N’-(m-キシリレン)ジアリルナジイミドが好ましい。ポリイミド樹脂は1種単独で、又は2種以上を組み合わせて用いることができる。
 上記熱硬化性樹脂組成物の配合比率は、得られる樹脂硬化物の耐熱性や機械強度の点から、ポリエステル樹脂20~50質量部、エポキシ樹脂1~25質量部、ポリイミド樹脂1~15質量部とすることが好ましい。
 上記熱硬化性樹脂組成物は、更に他の成分を含有してもよい。他の成分としては、ビニル系モノマー、エポキシアクリレート、硬化剤、触媒等が挙げられる。
 ビニル系モノマーとしては、ビニル基、(メタ)アクリロイル基等を有するモノマーが挙げられ、例えば、酢酸ビニル、スチレンなどのビニル系モノマー;メチル(メタ)アクリレートなどのアクリル系モノマーなどが挙げられる。なお(メタ)アクリロイル基とは、アクリロイル基、又はメタクリロイル基を表し、(メタ)アクリレートも同様である。
 エポキシアクリレートとしては、各種エポキシ樹脂のエポキシ基に、(メタ)アクリル酸のカルボキシル基を反応させて得られた化合物などが挙げられる。
 熱硬化性樹脂組成物の硬化反応を促進するための硬化剤としては、過酸化物が好ましい。過酸化物の具体例としては、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、2,2-ビス(tert-ブチルジオキシ)オクタン、t-ブチルペルキサテート、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α、α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン、t-ブチル-クミル-ペルオキサイド、ジ-t-ブチル-ペルオキサイド、2,5-ジメチル,2,5-ジ(t-ブチルペルオキシ)ヘキサン-3などが挙げられる。
 またカルボキシル基とエポキシ基との反応触媒として、イミダゾールや第3級アミン類等が挙げられる。
 熱硬化性樹脂組成物にビニル系モノマー又はエポキシアクリレートを配合する場合、その配合比は、ポリエステル樹脂とエポキシ樹脂とポリイミド樹脂の合計と、ビニル系モノマーとエポキシアクリレート合計との比が質量比で1:3~3:1となるように配合することが好ましい。
 本磁性体は、例えば、前記熱硬化性樹脂組成物中に、軟磁性粉を分散させ、所望の形状の金型に充填して加熱することにより得ることができる。加熱条件は、上記熱硬化性樹脂組成物の反応性にもよるが、例えば、150~200℃で0.5~12時間程度加熱することで、十分に架橋反応が進行する。
 前記熱硬化性樹脂組成物を硬化して得られる樹脂硬化物からは、エステル結合、イミド結合のほか、エポキシ基とカルボキシ基との反応由来のヒドロキシ基が検出される。
 熱硬化性樹脂組成物と軟磁性粉の配合比率は、用途等に応じて適宜調整すればよいものであるが、例えば軟磁性粉100質量部に対し、1~10質量部が好ましく、2~6質量部がより好ましい。上記下限値以上であれば、磁性体の機械強度が向上する。一方上記上限値以下であれば、磁気特性に優れている。
 本磁性体は、磁性体が用いられる公知の用途に用いることができる。本磁性体は180℃の高温環境下における長期耐熱性に優れていることから、特に耐熱性が要求される車載用途、中でもエンジン付近に配置されるインダクタのコア材として好適に用いることができる。
 また、前記熱硬化性樹脂組成物を用いる場合、成型時の加熱処理温度を180℃程度と比較的低い温度とすることができるため、後述するコイル埋設型の磁性素子用途に好適に用いることができる。
[磁性素子]
 図2及び図3を参照して本発明に係る磁性素子(本磁性素子とも記す)の一例について説明する。図2は、磁性素子の模式的な上面透過図であり、図3は、図2の模式的なIII-III断面図である。なお図2の端子部12は、図3において、接着部材13を用いて磁性体10に貼り付けられている。本磁性素子は、磁性体10と、当該磁性体10に埋設されたコイル11とを有し、磁性体10が前記本発明に係る磁性体である。本磁性素子は、少なくともコイル11の巻回部が磁性体10内に埋設されていればよく、コイル11の一部が磁性体10から露出していてもよい。端子部12は例えば、鉛フリー等のはんだの濡れ性などの点からSn等でめっきされた銅などが挙げられる。端子部12の銅はコイル11と接合されていてもよく、一体のものであってもよい。
 コイル11の形状は、磁性素子に用いられるコイルとして公知のものの中から適宜選択されるものであり、通常、巻回部を有し、回路等と接続する端子部を有している。コイル11の材質は特に限定されず、例えば銅線等とすることができ、当該銅線は、絶縁皮膜を有することが好ましい。絶縁被膜としては、耐熱性の点から、ポリアミドイミド膜やポリイミド膜などが好ましい。
 コイル埋設型の磁性素子を製造する場合、前記磁性体の製造方法において、金型に磁性体を充填する前、又は充填中に、金型内にコイルを配置すればよい。
 また、不図示ではあるが、前記本磁性体にコイルを巻回して製造された磁性素子も、180℃の高温環境下における長期耐熱性に優れている。
 本磁性素子は、パワーインダクタ、チョークコイル、トランスなどに用いられるインダクタとして好適に用いることができる。
 以下、実施例及び比較例を挙げて本発明を具体的に説明する。なお、これらの記載により本発明を制限するものではない。
(例1)
 軟磁性粉として、Siを4.5~7質量%、Crを3~8質量%含む平均粒径が10μmのFe-Si-Cr合金を用意した。
 前記軟磁性粉に、当該軟磁性粉100質量部に対して0.5質量部相当のリン酸系無機絶縁材を被覆処理し、絶縁層を形成した(絶縁層の厚みは約10nmである)。当該絶縁層を備える軟磁性粉に、当該軟磁性粉100質量部に対して5質量部相当の下記熱硬化性樹脂組成物(1)を添加し混錬し、熱硬化性樹脂組成物(1)が被覆した鉄合金粉を得た。
 熱硬化性樹脂組成物(1):ポリエステル系樹脂、エポキシ系樹脂、及びポリイミド系樹脂を含む組成物。
 上記処理後の軟磁性粉を500μmの金属メッシュに通し、金型に充填しやすいように粒度を調整し造粒を行った。造粒粉末は外径13mm、内径8mmのリング状の金型内に充填し、5ton/cmの成型圧力で加圧成型を行った。得られたリング状の試料を恒温槽内で180℃の温度で2時間以上熱硬化することでポリエステルイミドを有する樹脂硬化物を含む磁性体を得た。
(例2)
 例1において、リン酸系無機絶縁材の量を1.5質量部に変更した以外は、例1と同様にして、例2の磁性体を得た(絶縁層の厚みは約50nmである)。
(例3)
 例1において、リン酸系無機絶縁材の量を1.5質量部に変更し、熱硬化性樹脂組成物(1)の量を軟磁性粉100質量部に対して2質量部に変更した以外は、例1と同様にして、例3の磁性体を得た。
(例4)
 例1において、熱硬化性樹脂組成物を、熱硬化型フェノール樹脂に変更した以外は、例1と同様にして例4の磁性体を得た。
(例5)
 例1において、絶縁被覆処理を行わなかった以外は、例1と同様にして例5の磁性体を得た。
(例6:比較例)
 例5において、熱硬化性樹脂組成物を、熱硬化型フェノール樹脂に変更した以外は、例5と同様にして例6の磁性体を得た。
(例7)
 例5において、熱硬化性樹脂組成物を、ガラス転移温度が250℃以上のエポキシ樹脂(エポキシ樹脂(1))に変更した以外は、例5と同様にして例7の磁性体を得た。
(例8)
 例5において、熱硬化性樹脂組成物を、ビスフェノールA型エポキシ樹脂(エポキシ樹脂(2))に変更した以外は、例5と同様にして例8の磁性体を得た。
(例9)
 例1において、リン酸系無機絶縁材0.5質量部をケイ酸系絶縁材1質量部に変更し、熱硬化性樹脂組成物の代わりに熱硬化型フェノール樹脂に変更した以外は、例1と同様にして例9の磁性体を得た(絶縁層の厚みは約30nmである)。
(例10)
 例9において、軟磁性粉を、Siを6.5質量%、Crを3~8質量%含み、平均粒径が10μmの軟磁性粉に変更した以外は、例9と同様にして、例10の磁性体を得た。
(例11)
 例9において、軟磁性粉を、Siを0.5質量%、Crを1質量%含み、平均粒径が10μmの軟磁性粉に変更した以外は、例9と同様にして、例11の磁性体を得た。
<磁性体の評価>
 各例の磁性体を以下の方法により評価した。
 磁性体の体積抵抗率は、Keysight社抵抗計(B2985A)を用い、外径13mm、内径8mm、高さが5.0mmから6.0mmのリング状の成形体の上面と底面に直径1mmの電極を当て100Vの電圧をかけて絶縁抵抗を測定し算出した。
 磁性体の圧環強度は、JIS Z2507の圧環強さの試験方法に従って、圧縮試験を行い、式(5)より算出して評価した。
 式(5): K=[F×(D-e)]/(L×e
 K:圧環強度(MPa)
 F:破壊したときの最大荷重(N)
 L:中空円筒の長さ(mm)
 D:中空円筒の外径(mm)
 e:中空円筒の壁厚(mm)
(耐熱性評価)
 耐熱性は各磁性体を各々大気中180℃環境下で保管して、1000時間後に、上記と同様に体積抵抗率、環強度、及び重量測定を行って評価した。結果を表1に示す。なお重量変化率の値が-(マイナス)の場合、重量が減少したことを示す。
 また、180℃で1000時間保管後の磁性体の断面をSEMにより観察した。例5~例8の磁性体の断面SEM像を図4~図7に示す。
Figure JPOXMLDOC01-appb-T000001
 図5は例6の断面SEM像である。無機絶縁層を有しない軟磁性粉と、熱硬化型フェノール樹脂を組み合わせた例6の磁性体は、180℃で1000時間保管すると、軟磁性粉の周囲の樹脂が分解され、軟磁性粉と樹脂硬化物との間に空隙が生じていることが明らかとなった。そのため、特に強度維持率が低い結果となった。
 図6及び図7は、例7及び例8の断面SEM像である。エポキシ樹脂を用いた例7及び例8の磁性体は、180℃で1000時間保管すると、樹脂硬化物内部に空孔が生じることが示された。その結果、強度維持率がやや低下している。
 図4は例5の断面SEM像である。例5の磁性体は、180℃で1000時間保管すると、樹脂硬化物内部に空孔が生じているものの広がらず、ポリエステルイミドの網目構造が維持されていることが示された。当該例5の磁性体は180℃1000時間保管後の強度維持率が高く、また絶縁性も維持されている。例1~3も同様の結果が得られた。さらに、無機絶縁層を有した例1~例3は、無機絶縁層を有しない例5に比べて、180℃で1000時間保管後の体積抵抗率と圧環強度が高い結果が得られた。
 また、軟磁性粉中のSiの割合が4~10質量%の範囲内である例9及び例10の磁性体は、範囲外である例11と比較して、耐熱性に優れ、180℃で1000時間保管時における体積抵抗率の低下が抑制される結果が得られた。なお、例9及び例10の180℃で1000時間保管後の圧環強度は30MPa以上である。
 この出願は、2022年3月24日に出願された日本出願特願2022-48117を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1  軟磁性粉
2  樹脂硬化物
10 磁性体
11 コイル
12 端子部
13 接着部材

Claims (24)

  1.  軟磁性粉と、樹脂硬化物と、を含み、
     180℃の環境下で1000時間保持後の圧環強度が30MPa以上である、磁性体。
  2.  180℃の環境下で1000時間保持後の強度維持率が50%以上である、請求項1に記載の磁性体。
  3.  180℃の環境下で1000時間保持後の体積抵抗率が10Ωcm以上である、請求項1又は2に記載の磁性体。
  4.  180℃の環境下で1000時間保持後の圧環強度が50MPa以上である、請求項1~3のいずれか一項に記載の磁性体。
  5.  180℃の環境下で1000時間保持後の重量変化率が1%以下である、請求項1~4のいずれか一項に記載の磁性体。
  6.  180℃の環境下で1000時間保持後の前記樹脂硬化物の空孔の平均長径が2μm以下である、請求項1~5のいずれか一項に記載の磁性体。
  7.  180℃の環境下で1000時間保持後において、前記軟磁性粉と、前記樹脂硬化物との平均距離が1μm以下である、請求項1~6のいずれか一項に記載の磁性体。
  8.  前記樹脂硬化物がイミド結合を有する、請求項1~7のいずれか一項に記載の磁性体。
  9.  前記樹脂硬化物が、ポリエステルイミドを有する、請求項1~8のいずれか一項に記載の磁性体。
  10.  前記樹脂硬化物の割合が、前記軟磁性粉100質量部に対して2~6質量部である、請求項1~9のいずれか一項に記載の磁性体。
  11.  前記樹脂硬化物が、ポリエステル系樹脂、エポキシ系樹脂、及びポリイミド系樹脂を含む熱硬化性樹脂組成物の硬化物を含む、請求項1~10のいずれか一項に記載の磁性体。
  12.  前記ポリエステル系樹脂が、カルボキシ基を有する、請求項11に記載の磁性体。
  13.  前記ポリイミド系樹脂が、エチレン性二重結合を有する、請求項11又は12に記載の磁性体。
  14.  前記熱硬化性樹脂組成物が、更に過酸化物を含む、請求項11~13のいずれか一項に記載の磁性体。
  15.  前記軟磁性粉が、鉄合金粉を含む、請求項1~14のいずれか一項に記載の磁性体。
  16.  前記鉄合金粉がFe-Si合金を含む、請求項15に記載の磁性体。
  17.  前記Fe-Si合金がSiを4~10質量%含む、請求項16に記載の磁性体。
  18.  前記鉄合金粉が、更にCr及びAlより選択される1種以上を含む、請求項15~17のいずれか一項に記載の磁性体。
  19.  前記軟磁性粉が、表面に無機絶縁層を有する、請求項1~18のいずれか一項に記載の磁性体。
  20.  前記無機絶縁層が、リン酸塩及びケイ酸塩より選択される1種以上を含む、請求項19に記載の磁性体。
  21.  前記無機絶縁層の割合が、前軟磁性粉100質量部に対して0.1~3質量部である、請求項19又は20に記載の磁性体。
  22.  前記無機絶縁層の平均厚みが、10~100nmである、請求項19~21のいずれか一項に記載の磁性体。
  23.  前記軟磁性粉の平均粒径が、5~30μmである、請求項1~22のいずれか一項に記載の磁性体。
  24.  請求項1~23のいずれか一項に記載の磁性体と、
     前記磁性体に埋設されたコイルと、を備える、磁性素子。
PCT/JP2023/008472 2022-03-24 2023-03-07 磁性体及び磁性素子 WO2023181902A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048117 2022-03-24
JP2022048117A JP7133114B1 (ja) 2022-03-24 2022-03-24 磁性体及び磁性素子

Publications (1)

Publication Number Publication Date
WO2023181902A1 true WO2023181902A1 (ja) 2023-09-28

Family

ID=83191725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008472 WO2023181902A1 (ja) 2022-03-24 2023-03-07 磁性体及び磁性素子

Country Status (2)

Country Link
JP (1) JP7133114B1 (ja)
WO (1) WO2023181902A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133319A1 (ja) * 2007-04-20 2008-11-06 Toyota Jidosha Kabushiki Kaisha 圧粉磁心とその製造方法、電動機およびリアクトル
JP2009266973A (ja) * 2008-04-23 2009-11-12 Toda Kogyo Corp 軟磁性粒子粉末及びその製造法、該軟磁性粒子粉末を含む圧粉磁心
JP2015012273A (ja) * 2013-07-02 2015-01-19 Tdk株式会社 圧粉磁心および電子部品
WO2015137452A1 (ja) * 2014-03-13 2015-09-17 日立金属株式会社 圧粉磁心の製造方法および圧粉磁心
JP2017135342A (ja) * 2016-01-29 2017-08-03 Ntn株式会社 アモルファス磁性コアおよび磁性素子、ならびに磁性コアの製造方法
JP2017171947A (ja) * 2016-03-18 2017-09-28 Ntn株式会社 圧粉磁心用混合粉末及びその製造方法
JP2019033268A (ja) * 2018-09-25 2019-02-28 Ntn株式会社 磁性コアおよびその製造方法
JP2019192883A (ja) * 2018-04-27 2019-10-31 株式会社タムラ製作所 圧粉磁心の製造方法
JP2021040083A (ja) * 2019-09-05 2021-03-11 トヨタ自動車株式会社 樹脂磁性コア

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133319A1 (ja) * 2007-04-20 2008-11-06 Toyota Jidosha Kabushiki Kaisha 圧粉磁心とその製造方法、電動機およびリアクトル
JP2009266973A (ja) * 2008-04-23 2009-11-12 Toda Kogyo Corp 軟磁性粒子粉末及びその製造法、該軟磁性粒子粉末を含む圧粉磁心
JP2015012273A (ja) * 2013-07-02 2015-01-19 Tdk株式会社 圧粉磁心および電子部品
WO2015137452A1 (ja) * 2014-03-13 2015-09-17 日立金属株式会社 圧粉磁心の製造方法および圧粉磁心
JP2017135342A (ja) * 2016-01-29 2017-08-03 Ntn株式会社 アモルファス磁性コアおよび磁性素子、ならびに磁性コアの製造方法
JP2017171947A (ja) * 2016-03-18 2017-09-28 Ntn株式会社 圧粉磁心用混合粉末及びその製造方法
JP2019192883A (ja) * 2018-04-27 2019-10-31 株式会社タムラ製作所 圧粉磁心の製造方法
JP2019033268A (ja) * 2018-09-25 2019-02-28 Ntn株式会社 磁性コアおよびその製造方法
JP2021040083A (ja) * 2019-09-05 2021-03-11 トヨタ自動車株式会社 樹脂磁性コア

Also Published As

Publication number Publication date
JP7133114B1 (ja) 2022-09-07
JP2023141675A (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
KR101932422B1 (ko) 연자성 분말, 압분자심, 자성부품 및 압분자심의 제조방법
WO2009139368A1 (ja) 圧粉磁心及びチョーク
JP4308864B2 (ja) 軟磁性合金粉末、圧粉体及びインダクタンス素子
JP6427862B2 (ja) 圧粉磁心、その製造方法、該圧粉磁心を用いたインダクタンス素子および回転電機
JP7388502B2 (ja) 金属元素含有粉及び成形体
JP5966236B2 (ja) 圧粉磁心及びその製造方法
JP3986043B2 (ja) 圧粉磁心及びその製造方法
JP6090164B2 (ja) リアクトル及びこれに用いるコンパウンド
US9245676B2 (en) Soft magnetic alloy powder, compact, powder magnetic core, and magnetic element
US8277679B2 (en) Composite magnetic material and magnetic element
JP2008063651A (ja) 圧粉磁心用鉄基軟磁性粉末およびその製造方法ならびに圧粉磁心
JP6042792B2 (ja) 軟磁性粉末、コア、低騒音リアクトル、およびコアの製造方法
JPH09102409A (ja) 圧粉磁心用樹脂組成物、圧粉磁心、リアクトル及びそれを用いた電気機器
JP4803353B2 (ja) 軟磁性材料及びその製造法、該軟磁性材料を含む圧粉磁心
WO2023181902A1 (ja) 磁性体及び磁性素子
JP6662065B2 (ja) 絶縁処理された軟磁性材料、軟磁性材料を含む圧粉磁心
JP2019106431A (ja) 金属元素含有粉、成形体、及び金属元素含有粉の製造方法
JP2015230930A (ja) 軟磁性粉末、コア、リアクトル、およびその製造方法
WO2022113419A1 (ja) 磁性体及び磁性素子
JP2021025083A (ja) 軟磁性粉末、この軟磁性粉末によって構成された圧粉磁心、軟磁性粉末の製造方法及び圧粉磁心の製造方法。
JP2015012273A (ja) 圧粉磁心および電子部品
JP7348847B2 (ja) 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP2021182591A (ja) 圧粉磁心およびその製造方法
JP2017152654A (ja) コア及びリアクトル
JP7387528B2 (ja) 圧粉磁心及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774501

Country of ref document: EP

Kind code of ref document: A1