WO2015115699A1 - 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2015115699A1
WO2015115699A1 PCT/KR2014/002355 KR2014002355W WO2015115699A1 WO 2015115699 A1 WO2015115699 A1 WO 2015115699A1 KR 2014002355 W KR2014002355 W KR 2014002355W WO 2015115699 A1 WO2015115699 A1 WO 2015115699A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
lithium secondary
electrode active
secondary battery
Prior art date
Application number
PCT/KR2014/002355
Other languages
English (en)
French (fr)
Inventor
최수안
이승원
전상훈
최창민
권수연
구정아
정봉준
Original Assignee
주식회사 엘앤에프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤에프신소재 filed Critical 주식회사 엘앤에프신소재
Publication of WO2015115699A1 publication Critical patent/WO2015115699A1/ko
Priority to US15/221,249 priority Critical patent/US10903486B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a cathode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • a battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode.
  • Representative examples of such batteries include electrical energy due to a change in the chemical potential (intercalat ion) —deintercal at ion at the positive and negative electrodes.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation-deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
  • Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials when overheating, and have low environmental pollution and are attractive. Although it is a substance, it has a disadvantage of low capacity.
  • LiCo0 2 has good electrical conductivity and high battery voltage of about 3 / 7V, and has excellent cycle life characteristics, stability, and discharge capacity, and thus is a representative cathode active material commercialized and commercially available.
  • LiCo0 2 is expensive Since accounting for more than 30% of the battery price, there is a problem that the price competitiveness falls.
  • LiCo0 2 shows the battery characteristics of the highest discharge capacity of the above-mentioned positive electrode active material, but has a disadvantage that is difficult to synthesize.
  • the high oxidation state of nickel causes a decrease in battery and electrode life, and there is a problem of severe self discharge and inferior reversibility.
  • it is difficult to commercialize the stability is not perfect.
  • One embodiment of the present invention is to provide a positive electrode active material for a lithium secondary battery having excellent life characteristics at high silver, high voltage, a manufacturing method thereof, and a lithium secondary electron including the same.
  • One embodiment of the present invention includes a compound capable of reversible intercalation and deintercalation of lithium, the compound consists of a core portion and a coating layer, the core portion is doped with M, the coating layer is A1 And it provides, a positive electrode active material for a lithium secondary battery comprising a.
  • M is Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn, or a combination thereof.
  • M may be Zr ⁇ Ti or a combination thereof.
  • the molar doping ratio of M may be 0.001 to 0.01.
  • LiaAi-bXbDs (0.90 ⁇ a ⁇ 1.8,0 ⁇ b ⁇ 0.5)
  • Li a A 1 - b X b 0 2 -cT c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05)
  • LiEi- b X b 0 2 - c D c (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05
  • LiE 2 -b Xb04-cTc (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05 )
  • Li a N — b - c Co b X c 0 2 — a T a (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05
  • Li a Nii-b- c Mn b X c D Q (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ Q 2), Li a Nii- b _ c Mn b X c 0 2 - Q T a (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ a ⁇ 2), Li a N — b — c Mn b X c 0 2 — a T 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ a ⁇ 2), Li a Ni b E c 0 2 — e T e (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.9 , 0 ⁇ c ⁇ 0.5, 0.001 ⁇ d ⁇ 0.1, 0 ⁇ e ⁇ 0.05), Li
  • Mn or a combination thereof wherein X is A1 ⁇ Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth element or a combination thereof, and D is 0, F, SP or a combination thereof , E is Co, Mn or a combination thereof, T is F, S, P or a combination thereof, G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or a combination thereof Combination, said J V, Cr, Mn, the combination of Co, Ni, Cu, or both.)
  • the weight ratio of the coating layer to the total weight may be 0.05 to 0.5.
  • the coating layer may be in the form of an island (Is land) partially located on the surface of the compound.
  • the surface polarity of the coating layer may be 5 to 30 mN / m.
  • Another embodiment of the present invention comprises the steps of dry mixing the lithium feed material, transition metal precursor, M feed material, and then calcining the crab mixture to form a lithium composite compound; Mixing the lithium composite compound with the A1 feed material and the B feed material to attach a second mixture to the surface of the lithium composite compound; Heat-treating the compound to which the second mixture is attached; And a core comprising a compound doped with M; And it is located on the surface of the core, comprising a coating layer comprising A1 and B, comprising the step of obtaining a positive electrode active material for a lithium secondary battery, provides a method for producing a positive electrode active material for a lithium secondary battery.
  • M is Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn, or a combination thereof.
  • the firing temperature may be 700 to 1,050 ° C.
  • the heat treatment can be from 300 to 500 ° C.
  • Another embodiment of the present invention is a positive electrode including the above-described positive electrode active material for a lithium secondary battery, a negative electrode comprising a negative electrode active material; And it provides a lithium secondary battery, comprising an electrolyte.
  • FIG. 1 is a schematic view of a lithium secondary battery.
  • Example 3 is an EPM Electrone Probe X-ray Mi croanalyzer) Map of the cathode active material prepared in Example 1.
  • Example 4 is an XPS (X-ray Photoelectron Spectroscopy) results of the positive electrode active material prepared in Example 1.
  • Example 5 is an X-ray photoel spectron spectroscopy (XPS) depth profile of the cathode active material prepared in Example 1;
  • XPS X-ray photoel spectron spectroscopy
  • the compound comprises a compound capable of reversible intercalation and deintercalation of lithium, the compound consists of a core portion and a coating layer, the core portion is doped with M, Coating layer includes A1 and B It provides, the positive electrode active material for lithium secondary batteries.
  • the cathode active material may improve battery characteristics of a lithium secondary battery. More specifically, according to one embodiment of the present invention, the positive electrode active material including the composite coating layer may provide a positive electrode active material having improved lifespan characteristics at high temperature and high voltage than the positive electrode active material not including the composite coating layer.
  • a compound capable of reversible intercalation and deintercalation of lithium is doped with M, wherein M is Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn or their Metal in combination.
  • M may be Zr, Ti, or a combination thereof, but is not limited thereto.
  • the molar doping ratio of M may be 0.001 to 0.01.
  • the molar doping ratio when the molar doping ratio is less than 0.001, the effect of doping may not appear.
  • the molar doping ratio is greater than 0.01, an excessive decrease in initial capacity and a decrease in efficiency characteristics may appear.
  • the doping raw material is fired together with the precursor, a portion of the precursor may be doped with M.
  • the silver for effective firing may be 700 to 1,050 ° C.
  • the firing temperature when the firing temperature is less than 700 ° C. may be a sharp drop in battery characteristics at room temperature and high temperature.
  • the firing temperature when the firing temperature is more than 1,05 C, a sharp decrease in capacity and capacity retention may occur.
  • the compound capable of reversible intercalation and deintercalation of lithium capable of reversible intercalation and deintercalation of lithium
  • A is Ni, Co, Mn or a combination thereof
  • X is A1, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or a combination thereof
  • D is 0 , F, S, P or a combination thereof
  • E is Co, Mn or a combination thereof
  • T is F, S, P or a combination thereof
  • G is Al, Cr, Mn, Fe, Mg , La, Ce, Sr, V, or a combination thereof
  • J may be V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • the coating layer of the compound capable of reversible intercalation and deintercalation of lithium comprises A1 and B feed materials.
  • the weight of the coating layer may be 0.05 to 0.5wt% based on the total weight of the positive electrode active material.
  • the coating layer may be in the form of islands that are partially located on the surface of the compound differently from the conventional coating layer in the form of a uniform layer.
  • a single polarity including A1 or B as a component of surface free energy is included in the positive electrode active material including the coating layer including the A1 and B supply materials. It has a low value of 5 to 30mN / m compared to the positive electrode active material including a coating layer.
  • a method for producing a cathode active material for lithium secondary batteries comprising: obtaining a cathode active material for a lithium secondary battery, the method comprising: obtaining a cathode active material for a lithium secondary battery, the coating layer including A1 and B on a surface of the core.
  • M may be a metal which is Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn or a combination thereof.
  • the effective firing degree for firing the first complex to form a lithium composite compound may be 700 to 1,050 t.
  • the firing temperature when the firing temperature is less than 700 ° C. may be a sharp drop in battery characteristics at room temperature and high silver.
  • the firing temperature when the firing temperature is more than 1,050 ° C., a sudden decrease in capacity and capacity retention may occur.
  • the effective firing degree for heat treatment of the compound attached to the second complex may be 300 to 500 ° C.
  • the firing temperature is less than 300 ° C. reactivity between the coating material and the positive electrode active material is poor, it is difficult to expect the effect of the coating, such as glass of the coating material.
  • the firing temperature is greater than 50 CTC, the A1 and B feed materials are excessively attached to the compound, thereby reducing the initial capacity of the battery and deteriorating life characteristics at room temperature, high temperature, and low temperature.
  • a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer described above It provides a lithium secondary battery containing a positive electrode active material.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cell rose, hydroxypropyl cell rose, and diacetyl cell rose.
  • Polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene Styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • natural alum, artificial alum, carbon black, acetylene black, ketjen Carbon-based materials such as black and carbon fibers;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used as the carbon material, and representative examples thereof may include crystalline carbon, amorphous carbon, or a combination thereof.
  • the crystalline carbons include amorphous, tubular, flake, spherical or fibrous natural graphites or lumps such as artificial alums.
  • the amorphous carbons include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • Examples of materials capable of doping and undoping lithium include Si, Si0x (0 ⁇ x ⁇ 2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, and a rare earth). Element selected from the group consisting of elements and combinations thereof, not Si), Sn, Sn02, Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth element) And an element selected from the group consisting of combinations thereof, not Sn), and at least one of them and Si02 may be used in combination.
  • transition metal oxides examples include vanadium oxide and lithium vanadium oxide.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres well to the negative electrode active material particles, and also adheres the negative electrode active material to the current collector.
  • examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carbon.
  • Compounded polyvinyl chloride, polyvinyl fluoride Polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. May be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • Carbon-based materials such as blows and carbon fibers;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • A1 may be used as the current collector, but is not limited thereto.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent mixture to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • N-methylpyridone may be used as the solvent, but is not limited thereto.
  • the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like
  • the ester solvent is methyl Acetate, ethyl acetate, ⁇ -propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, butyrolactone, decanol ide, valerolactone, mevalonol actone, capro Lactone (caprol actone) and the like can be used.
  • ether solvent dibutyl ether, tetraglyme, diglyme, dimetheusethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • ketone solvent cyclonuxanon may be used.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent
  • the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Amides such as nitriles, dimethylformamide, and dioxolanes such as 1,3-dioxolane, and sulfols such as 1,3-dioxolane, and the like. .
  • the non-aqueous organic solvent may be used alone or in combination of one or more.
  • the mixing ratio in the case of using one or more in combination may be appropriately adjusted according to the desired battery performance, which is widely used by those skilled in the art. Can be understood.
  • the carbonate-based solvent it is preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of the following [Formula 1] may be used as the aromatic hydrocarbon organic solvent.
  • Ri to R 6 are each hydrogen, halogen, C1 to C10 alkyl group haloalkyl group or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3 one trifluorobenzene , 1,2,4—trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4 chlorochlorobenzene, 1,2,3-trichlorobenzene, 1,2, 4—trichlorobenzene, iodobenzene, 1,2-diodobenzene, 1,3—diaiobenzene, 1,4-diaiobenzene, 1,2,3—triiodobenzene, 1,2, 4 ⁇ triiodobenzene, toluene, fluoroluene, 1,2-difluoroluene, 1, 3-difluoroluene, 1, 4-difluorolu
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by the following Chemical Formula 2 to improve battery life.
  • R 7 and R 8 are each hydrogen, halogen group, cyano group (CN) A nitro group (N0 2 ) or a C1 to C5 fluoroalkyl group, at least one of R 7 and 1 is a halogen group, a cyano group (CN), a nitro group (N0 2 ) or a C1 to C5 fluoroalkyl group.
  • ethylene carbonate compounds include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, and fluoroethylene carbonate. Can be. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
  • the lithium salt is a substance that dissolves in an organic solvent, acts as a source of lithium ions in the battery, thereby enabling the operation of a basic lithium secondary battery, and promoting the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , L1C4F9SO3, LiC10 4 , LiA10 2 , LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2 ) (where X and y are natural numbers, and one or more selected from the group consisting of LiCl, Li I and LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (LiBOB) (supporting) It is recommended to use the concentration of lithium salt within the range of 0.1 to 2.0 M. When the concentration of the lithium salt is included in the above range, the electrolyte has
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
  • Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used. It can be classified into cylindrical, square, coin type, pouch type, etc., and can be divided into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, detailed descriptions thereof will be omitted.
  • the lithium secondary battery 1 schematically shows a typical structure of a lithium secondary battery of the present invention.
  • the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2.
  • a sealing member 6 for enclosing the battery container 5.
  • Li 2 C0 3 is 1.025 per mole of the composite transition metal hydroxide having the Zr0 2 powder and Ti0 2 powder uniformly attached to the surface.
  • the particle size of the prepared positive electrode active material was analyzed to be ⁇ ⁇ .
  • the particle diameter is related to the polarity constituting the surface free energy of the positive electrode active material. The larger the particle diameter, the smaller the polarity constituting the surface free energy of the positive electrode active material. do.
  • Example 3 Except for the particle size of the entire positive electrode active material in Example 1 was prepared in the same manner as the positive electrode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the total particle size of the positive electrode active material was mi.
  • a positive electrode active material was manufactured in the same manner as in Example 1 except that the total particle size of the positive electrode active material was 15 / m. Comparative Example 1
  • the dry mixed powder was heat-treated at 89 CTC for 8 hours to prepare a cathode active material. Comparative Example 2
  • the dry mixed powder was heat-treated at 890 for 8 hours to prepare a cathode active material.
  • the particle size of the prepared cathode active material was analyzed to be 10 / i. Comparative Example 3
  • the lithium composite compound and 3 ⁇ 40 3 powder which are the cathode active material prepared in Comparative Example 2, were dry-mixed at a weight ratio of 100: 0.2 so that the dispersed 3 ⁇ 40 3 powder was uniformly attached to the surface of the lithium composite compound. Then, the dry mixed powder was heat treated at 40 CTC for 6 hours to prepare a cathode active material.
  • Boron oxide-coated positive electrode active material powder is a core-shell type multilayer layer in which aluminum oxide is second-coated on the surface by using a 1% by weight solution of aluminum i sopropoxide A positive electrode active material powder was prepared. Production of coin cell
  • the positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40, and vacuum dried, followed by roll press to prepare a positive electrode.
  • A1 a thin film of aluminum
  • Li-metal was used as the negative electrode.
  • a coin cell type half cell was manufactured by using a cathode and a Li-metal prepared as described above, and using 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte.
  • Table 1 shows 45 ° C., 4.5V initial Formation LCyle, 20cycle, and 30cycle capacity and life characteristic data of the above Examples and Comparative Examples.
  • the core part is M (e.g. Ni-Co-Mn). Doped, and the coating layer includes A1 and B Example 1 exhibits excellent battery characteristics in life characteristics compared to Comparative Examples 1 to 5.
  • Example 1 consisting of a composite coating layer containing both A1 and B compared to Comparative Examples 3 and 4 consisting of a single coating layer containing A1 or B, excellent life characteristics at high temperature and high voltage are confirmed.
  • the surface free energy of the cathode active materials prepared in Examples 1 to 4 and Comparative Examples 3 to 5 was measured. The measurement was performed using a DSA100 or K100 device manufactured by KRUSS, using the Cont act Angle Method. Surface free energy measurement result
  • Table 2 and Figure 2 are the evaluation results measured in the experimental example.
  • [Table 2] shows the polarity constituting the surface free energy of the positive electrode active material according to Examples 1 to 4 and Comparative Examples 3 to 5. Compound containing both A1 and B It is confirmed that Examples 1 to 4 consisting of a coating layer have a relatively low polarity constituting surface free energy as compared to Comparative Examples 3 to 4 comprising a single coating layer comprising A1 or B.
  • the difference in polarity is also confirmed according to the particle size difference, and the range is confirmed to be 5 to 30 mN / m.
  • the low polarity reduces the surface energy to prevent excessive wetting of the electrolyte on the surface of the positive electrode active material, thereby suppressing side reactions caused by the electrolyte and suppressing an increase in resistance of the battery. This property is likely to be reflected in the battery characteristic results of Experimental Example 1.
  • Experimental Example 3 EPMA MAP Measurement
  • EPMA Electrode Probe X-ray Mi croanalyzer
  • the measurement was performed using a J0A-8500F instrument of JE0L, and was measured by Map Analyses. The measurement results are shown in FIG. 3. It can be seen from FIG. 3 that the A1 coating layer is coated in the form of an island (Is land) partially positioned on the surface of the compound in Example 1.
  • FIG. 5 shows the depth prof i le.
  • Surface from Fig. 5 A ⁇ and ⁇ are mainly present in the coating layer, and the concentration of A1 and ⁇ decreases in the bulk direction from the surface of the active material, and it can be seen that ⁇ has a concentration gradient larger than that of A1.
  • the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Abstract

리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지가 개시된다. 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하고, 상기 화합물은 코어부와 코팅층으로 이루어져 있으며, 상기 코어부는 M으로 도핑되어 있고, 상기 코팅층은 Al 및 B를 포함하는 것인, 리튬 이차 전지용 양극 활물질을 제공한다. (상기 M은 Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn 또는 이들의 조합이다.)

Description

【명세세
【발명의 명칭】
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
【기술분야】
본 발명의 일 구현예는 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
【배경기술】
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 ( intercalat i on)—디인터칼레이션 (deintercal at ion) 될 때의 화학전위 (chemi cal potent i al )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션- 디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.
리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02 , LiMn204 , LiNi02 , LiMn02 등의 복합금속 산화물들이 연구되고 있다. 상기 양극 활물질 중 LiMn204 , LiMn02 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과층전 시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다.
LiCo02는 양호한 전기 전도도와 약 3 /7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나, LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다.
또한, LiCo02는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한, 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다.
【발명의 내용】
【해결하려는 과제】
본 발명의 일 구현예는 고은, 고전압에서 수명 특성이 우수한 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전자를 제공하는 것이다.
【과제의 해결 수단】
본 발명의 일 구현예는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하고, 상기 화합물은 코어부와 코팅층으로 이루어져 있으며, 상기 코어부는 M으로 도핑되어 있고, 상기 코팅층은 A1 및 B를 포함하는 것인, 리륨 이차 전지용 양극 활물질을 제공한다. (상기 M은 Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn또는 이들의 조합이다.)
이 때, 상기 M은 Zrᅳ Ti 또는 이들의 조합일 수 있다.
또한, 상기 M의 몰 도핑비율은 0.001 내지 0.01 일 수 있다.
또한, 상기 화합물은, LiaAi-bXbDs (0.90<a<1.8,0<b<0.5), LiaA1-bXb02-cTc (0.90<a<1.8, 0<b<0.5, 0<c<0.05), LiEi-bXb02-cDc (0<b<0.5, 0<c<0.05), LiE2-bXb04-cTc (0<b<0.5, 0<c<0.05),
Figure imgf000004_0001
(0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a <2), LiaN — b-cCobXc02aTa (0.90<a<1.8, 0<b<0.5, 0<c<0.05
0<a<2), LiaNii-b-cCobXc02-a 2 (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2),
LiaNii-b-cMnbXcDQ (0.90≤a<1.8, 0<b<0.5, 0≤c<0.05, 0<Q 2), LiaNii-b_ cMnbXc02-QTa (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaN — bcMnbXc02aT2 (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaNibEc 02eTe (0.90<a<1.8, 0<b<0.9, 0<c<0.5, 0.001<d<0.1, 0<e<0.05), LiaNibCocMndGe02-fTf (0.90<a<1.8, 0<b 0.9, 0<c<0.5, 0<d<0.5, 0.001<e<0.1, 0<f <0.05), LiaNiGb02-cTc (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), LiaCoGb02-cTc (0.90<a< 1.8, 0.001<b<0.1, 0<c<0.05), L i aMnGb02-cTc (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), LiaMn2Gb02-cTc (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), LiaMnGbP04 (0.90<a<1.8, 0.001<b<0.1), LiNiV04, 및 Li(3-nJ2(P04)3 (0<f <2) 중 적어도 하나일 수 있다. (상기 A는 Ni, Co, Mn 또는 이들의 조합이고, 상기 X는 A1ᅳ Ni , Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고, 상기 D는 0, F, S P 또는 이들의 조합이고, 상기 E는 Co, Mn 또는 이들의 조합이고, 상기 T는 F, S, P 또는 이들의 조합이고, 상기 G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고, 상기 J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.)
또한, 총 중량에 대하여 상기 코팅층의 중량비가 0.05 내지 0.5 일 수 있다. 또한, 상기 코팅층은 상기 화합물의 표면에 부분적으로 위치되는 아일랜드 (Is land) 형태일 수 있다.
또한, 상기 코팅층의 표면 극성도 (polarity)는 5 내지 30 mN/m 일 수 있다. 본 발명의 다른 구현예는 리튬 공급 물질, 전이 금속 전구체, M 공급 물질을 건식 흔합한 후, 게 1흔합물을 소성하여 리튬 복합 화합물을 형성하는 단계; 상기 리튬 복합 화합물과, A1 공급 물질 및 B 공급 물질을 흔합하여, 상기 리튬 복합 화합물의 표면에 제 2흔합물을 부착하는 단계; 상기 제 2흔합물이 부착된 화합물을 열처리하는 단계; 및 M으로 도핑된 화합물을 포함하는 코어; 및 상기 코어의 표면에 위치하고, A1 및 B를 포함하는 코팅층을 포함하는, 리튬 이차 전지용 양극 활물질을 수득하는 단계를 포함하는, 리륨 이차 전지용 양극 활물질의 제조방법을 제공한다. (상기 M은 Zr, Ti, Mg, Ca, V, Zn, Mo, Ni, Co, Mn 또는 이들의 조합이다.)
이 때, 게 1흔합물을 소성하여 리튬 복합 화합물을 형성하는 단계에서, 소성 온도는 700 내지 1,050°C 일 수 있다.
또한, 상기 제 2흔합물이 부착된 화합물을 열처리하는 단계에서, 상기 열처리 온도는 300 내지 500°C 일 수 있다.
본 발명의 또 다른 구현예는 전술한 리튬 이차 전지용 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극; 및 전해질을 포함하는, 리튬 이차 전지를 제공한다.
【발명의 효과】
본 발명의 일 구현예에 따르면, 우수한 전지 특성을 갖는 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지를 제공할 수 있는 효과가 있다.
【도면의 간단한 설명】
도 1은 리튬 이차 전지의 개략도이다.
도 2는 실시예 및 비교예의 표면자유에너지 결과이다.
도 3는 실시예 1에서 제조 된 양극 활물질의 EPM Electrone Probe X-ray Mi croanalyzer ) Map 결과이다.
도 4는 실시예 1에서 제조 된 양극 활물질의 XPS(X-ray Photoelect ron Spectroscopy) 결과이다.
도 5는 실시예 1에서 제조 된 양극 활물질의 XPS(X-ray Photoel ectron Spectroscopy) depth prof i le 결과이다 .
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제 시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항 의 범주에 의해 정의될 뿐이다. 먼저, 본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인 터칼레이션이 가능한 화합물을 포함하고, 상기 화합물은 코어부와 코팅층으로 이루 어져 있으며 , 상기 코어부는 M으로 도핑되어 있고, 상기 코팅층은 A1 및 B를 포함 하는 것인, 리튬 이차 전지용 양극 활물질을 제공한다.
보다 상세하게, 상기 양극 활물질은 리튬 이차 전지의 전지적 특성을 향상시 킬 수 있다. 보다 구체적으로, 본 발명의 일 구현예에 따르면, 복합 코팅층을 포함 하는 양극 활물질은 복합 코팅층을 포함하지 않는 양극 활물질 보다 고온 고전압에 서 향상된 수명 특성을 가지는 양극 활물질을 제공할 수 있다.
먼저, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 M으로 도핑된 것이되, 상기 M은 Zr, Ti , Mg, Ca, V, Zn, Mo, Ni , Co, Mn 또는 이들의 조합인 금속일 수 있다.
일례로, 상기 M은 Zr, Ti 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 M의 몰 도핑비율는 0.001 내지 0.01 일 수 있다.
여기에서, 몰 도핑비율이 0.001 미만인 경우에는 도핑에 따른 효과가 나타나지 않을 수 있으며, 0.01 초과인 경우에는 초기 용량의 과도한 감소와 효율 특성의 감소가 나타날 수 있다.
상기 화합물에 M을 도핑하기 위해, 전구체와 함께 도핑 원료 물질을 함께 소성하는데, 전구체의 일부가 M으로 도핑될 수 있다. 이 때, 효과적인 소성을 위한 은도는 700 내지 1,050°C 일 수 있다.
여기에서, 소성 온도가 700°C 미만인 경우에는 상온 및 고온에서의 전지특성의 급격한 저하가 나타날 수 있다. 그리고, 소성 온도가 1,05( C 초과인 경우에는 용량 및 용량 유지율의 급격한 저하가 일어날 수 있다.
상기 도핑으로 인하여, 종래 표면 코팅 기술에서의 표면 개질 뿐만 아니라, 코어의 구조가 안정화됨으로써 45°C, 4.5V의 고온 및 고전압 하에서 전지의 수명 열화가 발생하는 것을 해결할 수 있다.
구체적인 예를 들어, 상기 리튬의 가역적인 인터칼레아션 및 디인터칼레이션이 가능한 화합물은,
Figure imgf000007_0001
bXb02-cTc (0.90<a<1.8, 0<b<0.5, 0<c<0.05), LiEi-bXb02-cDc (0<b≤0.5,
0<c<0.05), LiE2-bXb04-cTc (0<b<0.5, 0≤c<0.05), LiaNi — cCobXcDa
(0.90<a 1.8, 0<b<0.5, 0<c<0.05, 0< a <2), LiaN — b cCobXc02-aTa (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaNi^ cCobXc02-aT2 (0.90≤a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaNin3-cMnbXcDa (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a <2), LiaN — b cMnbXc02aTQ (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<Q<2), LiaNi1-b-cMnbXc02-aT2 (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaNibEcGd02-eTe (0.90<a<1.8, 0≤b<0.9, 0<c<0.5, 0.001<d<0.1, 0<e<0.05), LiaNibCocMndGe02-fTf (0.90<a<1.8, 0<b<0.9, 0<c<0.5, 0<d<0.5, 0.001<e<0.1, 0<e<0.05), LiaNiGb02CTC (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), LiaCoGb02-cTc (0.90<a< 1.8, 0.001<b<0.1, 0≤c<0.05), LiaMnGb02- CTC (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), LiaMn2Gb02-cTc (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), LiaMnGbP04 (0.90<a<1.8, 0.001<b<0.1) , LiNiV04) 및 Li(3-f)J2(P04)3 (0<f<2) 중 적어도 하나일 수 있다.
이 때, 상기 A는 Ni, Co, Mn 또는 이들의 조합이고, 상기 X는 A1, Ni , Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고, 상기 D는 0, F, S, P 또는 이들의 조합이고, 상기 E는 Co, Mn 또는 이들의 조합이고, 상기 T는 F, S, P 또는 이들의 조합이고, 상기 G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고, 상기 J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합일 수 있다.
한편, 전술된 바와 같이, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 코팅층은 A1 및 B 공급 물질을 포함한다.
이 때, 상기 코팅층의 중량은 상기 양극 활물질의 총 중량에 대하여, 0.05 내지 0.5wt% 일 수 있다.
여기에서, 상기 코팅층은 종래의 코팅층이 균일한 충 (layer) 형태인 것과 달리 불균일하게 화합물의 표면에 부분적으로 위치되는 아일랜드 (Island) 형태일 수 있다.
이러한 아일랜드 형태의 경우에는, 활물질 표면 상의 특정 활성점과 선택적으로 반응하여 부 반웅 제어의 효과가 크게 나타나면서 전지 특성의 향상과 함께 열적 안정성이 개선될 수 있다.
상기 A1 및 B 공급 물질을 포함하는 코팅층을 포함하는 양극 활물질에서는, 표면 자유에너지의 성분인 극성도 (polarity)가 A1 혹은 B을 포함하는 단일 코팅층을 포함하는 양극 활물질에 비해 낮은 5 내지 30mN/m 값을 갖는다. 이러한 결과는 하기 실험예 2에서 측정된 결과로서, 보다 자세한 설명은 후술하도록 한다. 상기 낮은 극성도로 인하여 표면에너지를 감소시켜 양극 활물질의 표면에 전해액의 과도한 젖음성 (wet t ing)을 방지하고 전해액에 의한 부 반웅과 전지의 저항 증가를 억제하여, 수명 특성이 우수한 양극 활물질을 제공한다.
한편, 본 발명의 다른 구현예에서는, 리튬 공급 물질, 전이 금속 전구체, M 공급 물질을 건식 혼합한 후, 제 1흔합물을 소성하여 리륨 복합 화합물을 형성하는 단계, 상기 리튬 복합 화합물과, A1 공급 물질 및 B 공급 물질을 건식 흔합하여, 상기 리튬 복합 화합물의 표면에 제 2흔합물을 부착하는 단계, 상기 게 2흔합물이 부착된 화합물을 열처리하는 단계 및 M으로 도핑된 화합물을 포함하는 코어; 및 상기 코어의 표면에 위치하고 A1 및 B를 포함하는 코팅층을 포함하는, 리튬 이차 전지용 양극 활물질을 수득하는 단계를 포함하는ᅳ 리튬 이차 전지용 양극 활물질의 제조방법를 포함하는, 리튬 이차 전지용 양극 활물질의 제조방법을 제공한다.
여기에서, 상기 M은 Zr , Ti , Mg , Ca , V , Zn , Mo , Ni , Co , Mn 또는 이들의 조합인 금속일 수 있다.
이 때, 상기 제 1흔합물을 소성하여 리튬 복합 화합물을 형성하기 위한 효과적인 소성 은도는 700 내지 1,050 t 일 수 있다.
여기에서, 소성 온도가 700 °C 미만인 경우에는 상온 및 고은에서의 전지특성의 급격한 저하가 나타날 수 있다. 그리고, 소성 온도가 1 , 050 °C 초과인 경우에는 용량 및 용량 유지율의 급격한 저하가 일어날 수 있다.
또한, 상기 제 2흔합물이 부착된 화합물을 열처리하기 위한 효과적인 소성 은도는 300 내지 500 °C 일 수 있다.
여기에서, 소성 온도가 300 °C 미만인 경우에는 코팅재와 양극 활물질 간의 반응성이 떨어져 코팅재의 유리 (遊離) 등 코팅의 효과를 기대하기 어렵다. 또한, 소성 온도가 50CTC 초과인 경우에는 A1 및 B 공급 물질이 상기 화합물에 과도하게 부착됨으로써 전지의 초기 용량의 감소와 함께 상온, 고온 및 저온에서의 수명 특성 저하가 일어날 수 있다.
제조된 양극 활물질에 대한 설명은 앞서 설명된 본 발명의 일 구현예와 동일하므로 구체적인 설명은 생략하도록 한다.
본 발명의 또 다른 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차 전지며, 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질 층을 포함하고, 상기 양극 활물질 층은 전술한 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다.
싱-기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하므로 생략하도록 한다.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀를로즈 , 디아세틸셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌 스티렌—부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션 할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션 할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 관상, 린편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 혹연과 같은 혹연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄소) 또는 하드 카본 (hard carbon) , 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, Si0x(0 < x < 2), Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, Sn02, Sn-Y (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 회토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 Si02를 흔합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf , Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al , Ga, Sn, In, Ti , Ge, P, As, Sb, Bi , S, Se, Te, Po, 및 아들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌 스티렌-부타디엔 러버, 아크릴레이티드 스티렌ᅳ부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블택, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 플리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 것은 아니다. 상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 증에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코을계, 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, Π-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 부티로락톤, 데카놀라이드 (decanol i de) , 발레로락톤, 메발로노락톤 (mevalonol actone), 카프로락톤 (caprol actone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메특시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란 (sul fo me)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며., 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형 (cycl i c) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1 : 1 내지 1 : 9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
본 발명의 일 구현예에 따른 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1 : 1 내지 30 : 1의 부피비로 흔합될 수 있다. 상기 방향족 탄화수소계 유기용매로는 하기 [화학식 1]의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 1] W
Figure imgf000014_0001
(상기 [화학식 1]에서, Ri 내지 R6는 각각 수소, 할로겐, C1 내지 C10 알킬기 할로알킬기 또는 이들의 조합이다.)
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2- 디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3一 트리플루오로벤젠, 1,2,4—트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3- 디클로로벤젠, 1,4ᅳ다클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4—트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3—디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3—트리아이오도벤젠, 1,2, 4ᅳ트리아이오도벤젠, 를루엔, 플루오로를루엔, 1,2- 디플루오로를루엔, 1, 3-디플루오로를루엔, 1, 4-디플루오로를루엔, 1,2,3- 트리플루오로를루엔, 1, 2, 4ᅳ트리플루오로틀루엔, 클로로를루엔, 1,2- 디클로로를루엔, 1,3-디클로로를루엔, 1,4-디클로로를루엔, 1,2,3- 트리클로로를루엔, 1,2,4—트리클로로를루엔, 아이오도를루엔, 1,2- 디아이오도를루엔, 1,3-디아이오도를루엔, 1,4-디아이오도를루엔, 1,2,3- 트리아이오도를루엔, 1,2,4-트리아이오도를루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
[화학식 2]
Figure imgf000014_0002
e
(상기 [화학식 2]에서, R7 및 R8는 각각 수소, 할로겐기, 시아노기 (CN) 니트로기 (N02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7과 1 중 적어도 하나는 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이다.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, L1C4F9SO3, LiC104, LiA102, LiAlCl4, LiN(CxF2x+1S02)(CyF2y+1S02) (여기서, x 및 y는 자연수임), LiCl, Li I 및 LiB(C204)2(리튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate; LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지 (supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 3층 세퍼레이터, 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 3층 세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물론이다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략하도록 한다.
도 1에 본 발명의 리튬 이차 전지의 대표적인 구조를 개략적으로 나타내었다. 도 1에 도시된 바와 같이, 상기 리튬 이차 전지 (1)는 양극 (3), 음극 (2) 및 상기 양극 (3)과 음극 (2) 사이에 존재하는 세퍼레이터 (4)에 함침된 전해액을 포함하는 전지 용기 (5)와, 상기 전지 용기 (5)를 봉입하는 봉입 부재 (6)를 포함한다. 이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기의 실시예는 본 발명의 일 실시예 일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예
실시예 1
믹서에 NCM 복합 전이 금속수산화물 (몰비는 Ni:Co:Mn = 60:20:20)과 분산된 Zr02 분말과 Ti02 분말을 각각 100:0.2:0.3의 증량비로 건식 흔합한 후 소성하여, 2r¾ 분말과 Ti02 분말이 복합 전이 금속 수산화물의 입자 표면에 균일하게 부착되도록 한 후, 상기 Zr02 분말과 Ti02 분말이 표면에 균일하게 부착된 복합 전이 금속 수산화물 1몰에 대하여 Li2C03이 1.025몰이 되는 비율 (Li/Metal=1.025)로 Li2C03을 넣고 건식 흔합하였다. 그리고, 건식 흔합된 분말을 890°C에서 8시간 동안 열처리하여 리튬 복합 화합물을 제조하였다.
또한, 제조된 리튬 복합 화합물을 상기 리튬 복합 화합물 : A1(0H)3 분말 : ¾03 분말 = 100 :0.4:0.2의 중량비율로 건식 흔합한 후 소성하여, 분산된 A1(0H)3 분말과 ¾03 분말이 상기 리튬 복합 화합물 표면에 균일하게 부착되도록 하였다. 그리고, 건식 흔합된 분말을 400 °C에서 6시간 동안 열처리하여 양극 활물질을 제조하였다.
이 때, 제조된 양극 활물질의 입경은 Ι ωη 인 것으로 분석되었다. 여기에서, 상기 입경은 양극 활물질의 표면 자유에너지를 구성하는 극성도와 관계가 있다. 상기 입경이 클수록 양극 활물질의 표면 자유에너지를 구성하는 극성도는 작아지게 된다. 실시예 2
상기 실시예 1에서 양극 활물질 전체의 입경이 4 인 것을 제외하고 동일하게 양극 활물질을 제조하였다. 실시예 3
상기 실시예 1에서 양극 활물질 전체의 입경이 mi 인 것을 제외하고 동일하게 양극 활물질을 제조하였다. 실시예 4
상기 실시예 1에서 양극 활물질 전체의 입경이 15/m 인 것을 제외하고 동일하게 양극 활물질을 제조하였다. 비교예 1
믹서에 NCM 복합 전이 금속수산화물 (몰비는 Ni:Co:Mn = 60: 20: 20) 1몰에 대해 Li2C03이 1.025몰이 되는 비율 (Li/Metal=1.025)로 Li2C03을 넣고 건식 흔합하였다. 그리고, 건식 흔합된 분말을 89CTC에서 8시간 동안 열처리하여 양극 활물질을 제조하였다. 비교예 2
믹서에 NCM 복합 전이 금속수산화물 (몰비는 Ni:Co:Mn = 60:20:20)과 Zr02 분말과 Ti02 분말을 각각 100 :0.2 :0.3의 증량비로 건식 흔합하여 Zr02 분말과 Ti02 분말이 복합 전이 금속 수산화물의 입자 표면에 균일하게 부착되도록 한 후, 상기 Zr02 분말과 Ti02 분말을 표면에 균일하게 부착된 복합 전이 금속 수산화물 1몰에 대해 Li2C03이 1.025몰이 되는 비율 (Li/Metal=1.025)로 Li2C03을 넣고 건식 흔합하였다. 그리고, 건식 흔합된 분말을 890에서 8시간 동안 열처리하여 양극 활물질을 제조하였다. 이 때, 제조된 양극 활물질의 입경은 10/ i 인 것으로 분석되었다. 비교예 3
상기 비교예 2에서 제조한 양극 활물질인 리튬 복합 화합물과 A1 (0H)3 분말을 100 : 0.4의 중량비율로 건식 흔합하여 분산된 A1 (0H)3 분말을 상기 리튬 복합 화합물의 표면에 균일하게 부착되도록 하였다. 그리고, 건식 흔합된 분말을 400°C에서 6시간 동안 열처리하여 양극 활물질을 제조하였다.
이 때, 제조된 양극 활물질의 입경은 10 인 것으로 분석되었다. 비교예 4
상기 비교예 2에서 제조한 양극 활물질인 리튬 복합 화합물과 ¾03 분말을 100 : 0.2의 중량비율로 건식 흔합하여 분산된 ¾03 분말을 상기 리튬 복합 화합물 표면에 균일하게 부착되도록 하였다. 그리고, 건식 흔합된 분말을 40CTC에서 6시간 동안 열처리하여 양극 활물질을 제조하였다.
이 때, 제조된 양극 활물질의 입경은 인 것으로 분석되었다. 비교예 5
10중량 %의 ¾03 분말을 90중량 %의 에탄을에 용해시켜, 보론 에특사이드 (boron ethoxi de) 용액을 제조하였다. 그리고, 입경이 10 인 상기 비교예 2에서 제조한 양극 활물질을 상기 보론 에특사이드 용액에 첨가하고 교반기로 교반하여, 양극 활물질 표면에 상기 보론 에톡사이드 용액을 골고루 코팅하여 슬러리를 쩨조하였다. 또한, 제조된 슬러리를 건조한 후, 300 °C에서 10시간 동안 열처리를 실시하여 보론 산화물이 코팅된 양극 활물질 분말을 제조하였다.
보론 산화물이 1차 코팅된 양극 활물질 분말을 1중량 %의 알루미늄 이소프로폭사이드 (aluminium i sopropoxide) 용액을 이용하여 상기와 동일한 방법으로 알루미늄 산화물이 표면에 2차 코팅된 코어-쉘 타입의 다중 층 양극 활물질 분말을 제조하였다. 코인셀의 제조
상기 실시예 및 비교예에서 제조된 양극 활물질 95중량 도전제로 카본 블랙 (carbon black) 2.5중량%, 및 결합제로 PVDF 2.5중량%를 용제 (솔벤트)인 N- 메틸— 2 피를리돈 (丽 P) 5.0중량 %에 첨가하여 양극 슬러리를 제조하였다.
상기 양극 슬러리를 두께 20 내지 40 의 양극 집전체인 알루미늄 (A1) 박막에 도포 및 진공 건조하고 를 프레스 (roll press)를 실시하여 양극을 제조하였다.
음극으로는 Li-금속을 이용하였다.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1.15M LiPF6EC:DMC(l:lvol%)을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다. 실험예
실험예 1: 전지 특성 평가
하기 [표 1]은 상기의 실시예 및 비교예의 45°C, 4.5V 초기 Formation lcyle, 20cycle, 30cycle 용량 및 수명특성 데이터이다.
[표 1]
Figure imgf000019_0001
1]에서 알 수 있듯이, 코어부는 M (예를 들어, Ni-Co-Mn)으로 도핑되어 있고, 코팅층은 A1 및 B를 포함하는 실시예 1은 비교예 1 내지 5에 비하여 수명특성에서 우수한 전지특성을 나타낸다.
보다 상세하게, A1 또는 B을 포함하는 단일 코팅층으로 이루어진 비교예 3 및 4에 비하여 A1 및 B을 모두 포함하는 복합 코팅층으로 이루어진 실시예 1에서 고온 및 고전압에서 우수한 수명 특성이 확인된다.
또한, 종래기술인 비교예 5와 비교할 때에도 고온 및 고전압에서 우수한 수명 특성이 확인된다. 실험예 2 : 표면 자유에너지 측정
상기 실시예 1 내지 4와, 비교예 3 내지 5에서 제조된 양극 활물질의 표면 자유에너지 측정을 실시하였다 측정은 KRUSS社의 DSA100 , K100 기기를 이용하고, Cont act Angl e Method로 측정하였다. 표면자유에너지 측정 결과
하기 표 2 및 도 2는 상기 실험예에서 측정한 평가 결과이다.
[표 2]
Figure imgf000020_0001
상기 [표 2]는 실시예 1 내지 4와, 비교예 3 내지 5에 따른 양극 활물질의 표면 자유에너지를 구성하는 극성도를 나타낸다. A1 및 B를 모두 포함하는 복합 코팅층으로 이루어지는 실시예 1 내지 4는 A1 또는 B을 포함하는 단일 코팅층을 포함하는 비교예 3 내지 4에 비하여 표면 자유에너지를 구성하는 극성도가 비교적 낮은 것이 확인된다.
또한, 실시예 1 내지 4에서도 입경 차이에 따라 극성도의 차이가 확인되며, 그 범위는 5 내지 30 mN/m 인 것이 확인된다.
한편, 종래의 기술인 비교예 5와 비교할 때에도 표면 자유에너지를 구성하는 극성도에서 차이가 확인된다.
전술된 바와 같이, 낮은 극성도는 표면에너지를 감소시켜 양극 활물질의 표면에 전해액의 과도한 젖음성 (wet t ing)을 방지함으로써 전해액에 의한 부 반웅을 억제, 전지의 저항 증가를 억제하는 특성이 있으며, 이러한 특성이 상기 실험예 1의 전지특성 결과에 반영될 것으로 보인다. 실험예 3 : EPMA MAP측정
상기 실시예 1에서 제조된 양극 활물질의 EPMA(Electrone Probe X-ray Mi croanalyzer ) Map 측정을 실시하였다.
측정은 JE0L社의 JXA-8500F 기기를 이용하고, Map Ana lys i s로 측정하였다. 측정 결과는 도 3에 나타내었다. 도 3으로부터 상기 실시예 1에서 A1 코팅층이 화합물의 표면에 부분적으로 위치되는 아일랜드 ( Is land) 형태로 코팅되는 것을 확인할 수 있다.
이러한 아일랜드 형태의 경우에는, 전술된 바와 같이, 활물질 표면 상의 특정 활성점과 선택적으로 반응하여 부 반ᅳ S1 제어의 효과가 크게 나타나면서, 전지 특성의 향상과 함께 열적 안정성이 개선될 수 있다. 실험예 4 : XPS측정
상기 실시예 1에서 제조한 양극 활물질에 대하여 XPS(X_ray Photoelectron
Spectroscopy) 분석하여 그 결과를 도 4에 나타내었다. 도 4로부터 코팅층은 B을 포함하는 것을 확인 할 수 있다.
또한 도 5에서 depth prof i le을 나타내었다. 도 5로부터 표면부인 코팅층에서 ΑΓ 과 Β이 주로 존재하며, A1 과 Β의 농도는 활물질 표면에서부터 벌크방향으로 감소하는 것을 알 수 있으며, Β이 A1 보다 더 큰 농도 구배를 가지는 것을 확인 할 수 있다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
【부호의 설명】
1 : 리튬 이차 전지 9 . 으그
3: 양극 4: 세퍼레이터
5: 전지 용기 6: 봉입 부재

Claims

【특허청구범위】
【청구항 1】
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하고,
상기 화합물은 코어부와 코팅층으로 이루어져 있으며,
상기 코어부는 M으로 도핑되어 있고,
상기 코팅충은 A1 및 B를 포함하는 것인, 리튬 이차 전지용 양극 활물질. (상기 M은 Zr, Ti, Mg, Ca, V, Zn, Mo, Ni , Co, Mn또는 이들의 조합이다. )
【청구항 2】
제 1 항에 있어서,
상기 M은 Zr, Ti 또는 이들의 조합인, 리튬 이차 전지용 양극 활물질.
【청구항 3】
제 1 항에 있어서,
상기 M의 몰 도핑비율은 0.001 내지 0.01 인, 리튬 이차 전지용 양극 활물질.
[청구항 4】
제 1 항에 있어서,
상기 화합물은,
Figure imgf000023_0001
(0.90<a<1.8,0<b<0.5), LiaAi-bXb02-cTc
(0.90<a<1.8, 0<b<0.5, 0<c<0.05), LiE XbC CDC (0<b<0.5, 0<c<0.05), LiE2-bXb04-cTc (0<b<0.5, 0<c<0.05), LiaNii-b-cCobXcDa (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a <2), LiaN — b cCobXc02QTQ (0.90<a<1.8, 0<b<0.5, 0<c<0.05 0<a<2), LiaNii-b-cCo.bXc02-QT2 (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaNi — cMnbXcDa (0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a <2), LiaNi!-b- cMnbXc02aTa (0.90<a<1.8( 0<b<0.5, 0<c<0.05, 0<a<2), LiaNii-b-cMnbXc02-aT2
(0.90<a<1.8, 0<b<0.5, 0<c<0.05, 0<a<2), LiaNibEcGd02-eTe (0.90<a<1.8,
0<b<0.9, 0<c<0.5, 0.001<d<0.1, 0<e<0.05), LiaNibCocMndGe02-fTf (0.90<a<1.8, 0<b<0.9, 0<c<0.5, 0<d<0.5, 0.001<e<0.1, 0<f <0.05), LiaNiGb02-cTc (0.90<a<1.8, 0.001<b<0.1, 0<c<0.05), L i aCoGb02-cTc (0.90<a< 1.8, 0.001<b 0.1, 0<c<0.05), LiaMnGb02-cTc (0.90<a<1.8, 0.001<b 0.1, 0<c<0.05), LiaMn2Gb02-cTc (0.90<a< 1.8, 0.001<b<0.1, 0<c<0.05), LiaMnGbP04 (0.90<a<1.8, 0.001<b<0.1), LiNiV04, 및 Li(3-f)J2(P04)3 (0<f <2) 중 적어도 하나인, 리튬 이차 전지용 양극 활물질.
(상기 A는 Ni, Co, Mn 또는 이들의 조합이고, 상기 X는 Al, Ni , Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고, 상기 D는 0, F, S, P 또는 이들의 조합이고, 상기 Έ는 Co, Mn 또는 이들의 조합이고, 상기 T는 F, S, P 또는 이들의 조합이고, 상기 G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고, 상기 J는 V, Cr, Mn, Co, Ni , Cu또는 이들의 조합이다.)
【청구항 5]
제 1 항에 있어서,
전체 양극 활물질의 총 중량에 대하여 상기 코팅층의 중량비가 0.05 내지
0.5 인, 리튬 이차 전지용 양극 활물질.
【청구항 6】
거 1 1 항에 있어서,
상기 코팅층은 상기 화합물의 표면에 부분적 로 위치되는 아일랜드 (Island) 형태인, 리튬 이차 전지용 양극 활물질.
【청구항 7】
제 1 항에 있어서,
상기 코팅층의 표면 극성도 (polarity)는 5 내지 30 mN/m 인, 리튬 이차 전지용 양극 활물질.
【청구항 8】 리튬 공급 물질, 전이 금속 전구체, 및 M 공급 물질을 건식 흔합한 후, 거 U흔합물을 소성하여 리튬 복합 화합물을 형성하는 단계 ;
상기 리튬 복합 화합물과, A1 공급 물질, 및 B 공급 물질을 흔합하여, 상기 리튬 복합 화합물의 표면에 제 2흔합물을 부착하는 단계;
상기 제 2혼합물이 부착된 화합물을 열처리하는 단계; 및
M으로 도핑된 화합물을 포함하는 코어; 및 상기 코어의 표면에 위치하고, A1 및 B를 포함하는 코팅층을 포함하는, 리튬 이차 전지용 양극 활물질을 수득하는 단계
를 포함하는, 리튬 이차 전지용 양극 활물질의 제조방법 .
(상기 M은 Zr , Ti , Mg , Ca , V, Zn , Mo , Ni , Co , Mn 또는 이들의 조합이다. )
【청구항 9】
제 8 항에 있어서,
상기 게 1흔합물을 소성하여 리륨 복합 화합물을 형성하는 단계에서, 소성 온도는 700 내지 1 , 0501: 인, 리튬 이차 전지용 양극 활물질의 제조방법.
【청구항 10】
제 8 항에 있어서,
상기 제 2흔합물이 부착된 화합물을 열처리하는 단계에서,
상기 열처리 온도는 300 내지 50CTC 인, 리튬 이차 전지용 양극 활물질의 제조방법.
【청구항 11】
제 1 항 내지 제 7 항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극;
음극 활물질을 포함하는 음극; 및
전해질 을 포함하는, 리튬 이차 전지
PCT/KR2014/002355 2014-01-29 2014-03-20 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 WO2015115699A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/221,249 US10903486B2 (en) 2014-01-29 2016-07-27 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0011607 2014-01-29
KR20140011607 2014-01-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/221,249 Continuation-In-Part US10903486B2 (en) 2014-01-29 2016-07-27 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US15/221,249 Continuation US10903486B2 (en) 2014-01-29 2016-07-27 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Publications (1)

Publication Number Publication Date
WO2015115699A1 true WO2015115699A1 (ko) 2015-08-06

Family

ID=53757257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002355 WO2015115699A1 (ko) 2014-01-29 2014-03-20 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Country Status (3)

Country Link
US (1) US10903486B2 (ko)
KR (2) KR20150090862A (ko)
WO (1) WO2015115699A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340348A4 (en) * 2016-06-28 2018-10-17 LG Chem, Ltd. Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
CN112074977A (zh) * 2018-09-05 2020-12-11 松下知识产权经营株式会社 正极活性物质和具备该正极活性物质的电池
CN112447952A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法、正极极片及锂离子二次电池
EP3951940A4 (en) * 2019-07-22 2022-06-15 Lg Chem, Ltd. METHOD FOR PREPARING CATHODE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY AND CATHODE ACTIVE MATERIAL PREPARED BY SAID PREPARATION METHOD

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927295B1 (ko) 2015-11-30 2018-12-10 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017095133A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102085247B1 (ko) * 2016-03-09 2020-03-04 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20230080489A (ko) * 2016-07-05 2023-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
KR20190065324A (ko) 2016-10-12 2019-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN108269998A (zh) * 2017-01-01 2018-07-10 北京当升材料科技股份有限公司 一种锂离子电池多元正极材料的制备方法
US10892488B2 (en) * 2017-01-17 2021-01-12 Samsung Electronics Co., Ltd. Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material
CN108336331B (zh) * 2017-01-17 2022-12-20 三星电子株式会社 电极活性材料、包含该电极活性材料的锂二次电池和制备该电极活性材料的方法
KR102518992B1 (ko) 2017-02-03 2023-04-07 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
KR102494059B1 (ko) * 2017-02-17 2023-02-01 에보니크 오퍼레이션즈 게엠베하 산화알루미늄 및 이산화티타늄에 캡슐화된 리튬-혼합 산화물 입자 및 그를 사용하는 방법
CN111682188A (zh) 2017-05-12 2020-09-18 株式会社半导体能源研究所 正极活性物质粒子
CN108878795B (zh) * 2017-05-15 2021-02-02 宁德时代新能源科技股份有限公司 改性正极活性材料及其制备方法及电化学储能装置
CN117038959A (zh) 2017-05-19 2023-11-10 株式会社半导体能源研究所 锂离子二次电池的制造方法
KR102223712B1 (ko) 2017-06-26 2021-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
KR102164006B1 (ko) * 2017-11-16 2020-10-12 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이를 포함하는 리튬 이차 전지 및 전지모듈
WO2019103463A1 (ko) * 2017-11-21 2019-05-31 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
US20230140577A1 (en) * 2017-12-26 2023-05-04 Posco Cathode active material for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2019132267A1 (ko) * 2017-12-29 2019-07-04 주식회사 포스코이에스엠 리튬 이차전지용 양극활물질 전구체, 이를 이용한 양극활물질 및 이를 포함하는 리튬 이차전지
CN112514117A (zh) * 2018-01-12 2021-03-16 汉阳大学校产学协力团 正极活性材料、其制备方法和包括其的锂二次电池
CN112292776A (zh) * 2018-06-22 2021-01-29 株式会社半导体能源研究所 正极活性物质、正极、二次电池以及正极的制造方法
KR102177041B1 (ko) * 2018-09-28 2020-11-10 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN109524659A (zh) * 2018-12-13 2019-03-26 北方奥钛纳米技术有限公司 高镍三元材料的制备方法、高镍三元材料及电池
CN111384377B (zh) * 2018-12-29 2021-09-17 宁德时代新能源科技股份有限公司 一种正极材料及其制备方法和用途
CN110380018B (zh) * 2019-06-14 2022-09-27 南京理工大学 一种具有泡沫状包覆层的复合电极材料的制备方法
CN112447967B (zh) * 2019-09-02 2022-03-08 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN111933930B (zh) * 2020-08-13 2022-03-04 松山湖材料实验室 一种正极活性材料及其制备方法、二次电池正极、锂电池
KR20230118183A (ko) 2020-12-15 2023-08-10 유미코아 재충전식 리튬 이온 배터리용 양극 활물질
JP2023553657A (ja) 2020-12-15 2023-12-25 ユミコア 充電式リチウムイオン電池用正極活物質

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024520A (ko) * 2000-09-25 2002-03-30 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조방법
KR20110019574A (ko) * 2009-08-20 2011-02-28 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
US20110076556A1 (en) * 2009-08-27 2011-03-31 Deepak Kumaar Kandasamy Karthikeyan Metal oxide coated positive electrode materials for lithium-based batteries
KR20110063335A (ko) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20130065694A (ko) * 2010-08-17 2013-06-19 유미코르 알루미나로 건식 코팅된 양극재 전구체

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280436B2 (ja) * 2000-09-25 2009-06-17 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
US8617745B2 (en) * 2004-02-06 2013-12-31 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
JP2008103204A (ja) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd 正極活物質及びそれを用いた二次電池
KR20110006335A (ko) 2009-07-14 2011-01-20 박승욱 보차도경계석과 도로측구 시공의 기초 프리캐스트콘크리트(precastconcrete) 장치 고안 및 그 사용방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024520A (ko) * 2000-09-25 2002-03-30 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조방법
KR20110019574A (ko) * 2009-08-20 2011-02-28 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
US20110076556A1 (en) * 2009-08-27 2011-03-31 Deepak Kumaar Kandasamy Karthikeyan Metal oxide coated positive electrode materials for lithium-based batteries
KR20110063335A (ko) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20130065694A (ko) * 2010-08-17 2013-06-19 유미코르 알루미나로 건식 코팅된 양극재 전구체

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340348A4 (en) * 2016-06-28 2018-10-17 LG Chem, Ltd. Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
US10930931B2 (en) 2016-06-28 2021-02-23 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery including high-voltage lithium cobalt oxide with doping element and method of preparing the same
CN112074977A (zh) * 2018-09-05 2020-12-11 松下知识产权经营株式会社 正极活性物质和具备该正极活性物质的电池
EP3951940A4 (en) * 2019-07-22 2022-06-15 Lg Chem, Ltd. METHOD FOR PREPARING CATHODE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY AND CATHODE ACTIVE MATERIAL PREPARED BY SAID PREPARATION METHOD
CN112447952A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法、正极极片及锂离子二次电池

Also Published As

Publication number Publication date
US20160336595A1 (en) 2016-11-17
KR20150090862A (ko) 2015-08-06
US10903486B2 (en) 2021-01-26
KR20160128978A (ko) 2016-11-08
KR101757628B1 (ko) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2015115699A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP6462250B2 (ja) リチウム二次電池用正極活物質、その製造方法、そしてこれを含むリチウム二次電池用正極およびリチウム二次電池
WO2015083901A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015053586A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015083900A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN103038928A (zh) 锂二次电池
KR20110136002A (ko) 리튬 이차 전지용 양극 활물질 전구체 및 이를 이용한 리튬 이차 전지용 양극 활물질 및 양극 활물질을 포함하는 리튬 이차 전지
WO2015084026A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US10826064B2 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
US10020502B2 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2016032290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20120117526A (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지
WO2017150915A1 (ko) 리듐 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014157743A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR102114229B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101512087B1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법 및 양극 활물질
WO2016186479A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20110136001A (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지
CN103178265A (zh) 正极活性物质、制备方法和可再充电锂电池
KR102085247B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101673178B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101646702B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN111668462A (zh) 用于可再充电锂电池的正极活性物质、制备其的方法和包括其的可再充电锂电池
KR20170106810A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015141949A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880773

Country of ref document: EP

Kind code of ref document: A1