WO2015107742A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2015107742A1
WO2015107742A1 PCT/JP2014/078711 JP2014078711W WO2015107742A1 WO 2015107742 A1 WO2015107742 A1 WO 2015107742A1 JP 2014078711 W JP2014078711 W JP 2014078711W WO 2015107742 A1 WO2015107742 A1 WO 2015107742A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
region
gate
electrode
disposed
Prior art date
Application number
PCT/JP2014/078711
Other languages
English (en)
French (fr)
Inventor
貴行 島藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201480038545.XA priority Critical patent/CN105378932B/zh
Priority to JP2015557710A priority patent/JP6146486B2/ja
Priority to EP14878460.6A priority patent/EP3007231B1/en
Publication of WO2015107742A1 publication Critical patent/WO2015107742A1/ja
Priority to US14/991,877 priority patent/US9620595B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Definitions

  • the present invention relates to a semiconductor device.
  • MOSFET insulated gate field effect transistor
  • MOS metal-oxide film-semiconductor
  • FIG. 7 is a plan view showing a configuration of a conventional planar gate type MOSFET 500.
  • FIG. 8 is a cross-sectional view showing a cross-sectional structure taken along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 7A shows a planar layout of the source electrode 61, the gate pad electrode 62 and the gate runner 62a arranged on the front surface of the n semiconductor substrate (semiconductor chip) 51, and FIG. The part enclosed by the rectangular frame B of 7 (a) is expanded and shown.
  • FIG. 7B the gate oxide film 55, the polysilicon gate electrode 56, and the interlayer insulating film 59 disposed on the front surface of the n semiconductor substrate 51 are not shown, and the contact hole 60, the source electrode 61, and the gate pad are omitted.
  • the electrode 62 is indicated by a broken line.
  • FIG. 8A shows a cross-sectional structure taken along the cutting line X1-X1 in FIG.
  • FIG. 8B shows a cross-sectional structure taken along the cutting line X2-X2 in FIG.
  • FIG. 8C shows a cross-sectional structure taken along the cutting line X3-X3 in FIG.
  • the planar gate MOSFET 500 includes a gate pad electrode 62 and a source electrode 61 on the front surface of the n semiconductor substrate 51.
  • the gate pad electrode 62 is disposed on the outer peripheral side of the chip in the active region.
  • the source electrode 61 is disposed on almost the entire surface of the active region except the portion where the gate pad electrode 62 is disposed, and surrounds, for example, three sides of the substantially rectangular gate pad electrode 62.
  • a gate runner 62 a arranged so as to surround the source electrode 61 is connected to the gate pad electrode 62.
  • a withstand voltage termination structure is disposed on the outermost periphery (chip outermost periphery) of the planar MOSFET 500 so as to surround the periphery of the active region.
  • the active region is a region through which current flows in the on state.
  • the breakdown voltage termination structure portion is a region that holds the breakdown voltage by relaxing the electric field on the substrate front surface side of the n drift region 51a.
  • FIG. 8A shows a cutting line X1-X1 for cutting the gate pad electrode 62 in a direction (lateral direction in the drawing) perpendicular to one side of the gate pad electrode 62 of FIG. 7B that does not face the source electrode 61.
  • the cross-section in FIG. As shown in FIG. 8A, immediately below the gate pad electrode 62 (on the n drift region 51a side), one p-well is formed on the surface layer of the front surface of the n semiconductor substrate 51 to be the n drift region 51a. Region 63 is formed. Inside the p well region 63, one p high concentration region 64 is formed in the surface layer on the front side of the substrate.
  • a polysilicon gate electrode 56 is disposed on the front surface of the n semiconductor substrate 51 with a gate oxide film 55 interposed therebetween.
  • An interlayer insulating film 59 is formed on the surface of the polysilicon gate electrode 56, and a gate pad electrode 62 is disposed on the surface of the interlayer insulating film 59.
  • the polysilicon gate electrode 56 is connected to the gate pad electrode 62 on the interlayer insulating film 59 by a wiring (not shown).
  • An n drain region 57 is arranged on the front surface layer of the n semiconductor substrate 51.
  • a drain electrode 58 connected to the n drain region 57 is disposed on the back surface of the n semiconductor substrate 51.
  • a portion sandwiched between the p well region 63 and the n drain region 57 is an n drift region 51a.
  • a pn junction 65a is formed at the interface between the p well region 63 and the n drift region 51a.
  • the body diode 65 which is a parasitic diode, includes a p high concentration region 64, a p well region 63, an n drift region 51a, and an n drain region 57.
  • FIG. 8B shows a cross-sectional structure taken along a cutting line X2-X2 that cuts a portion between the gate pad electrode 62 and the source electrode 61 in FIG. 7B parallel to the cutting line X1-X1.
  • a portion between the gate pad electrode 62 and the source electrode 61 in FIG. 7B is a portion sandwiched between a broken line indicating the outer periphery of the gate pad electrode 62 and a broken line indicating the outer periphery of the source electrode 61.
  • a plurality of spaced extension portions 52 a are arranged in the surface layer of the n semiconductor substrate 51 immediately below the portion between the gate pad electrode 62 and the source electrode 61.
  • the extended portion 54a is selectively disposed on the surface layer on the front side of the substrate.
  • the extending portion 52 a is a portion extending to the gate pad electrode 62 side of a p-channel region 52 described later disposed immediately below the source electrode 61.
  • the extended portion 54 a is a portion extending to the gate pad electrode 62 side of a p contact region 54 described later disposed immediately below the source electrode 61.
  • a polysilicon gate electrode 56 is arranged through a gate oxide film 55 so as to extend between adjacent extending portions 52a.
  • an interlayer insulating film 59 is disposed across the surfaces of the extended portion 52 a of the p channel region 52 and the extended portion 54 a of the p contact region 54 exposed between the polysilicon gate electrodes 56.
  • An n drain region 57 and a drain electrode 58 are disposed on the back surface side of the n semiconductor substrate 51 as in the case immediately below the gate pad electrode 62.
  • a pn junction 65a is formed at the interface between the extended portion 52a of the p channel region 52 and the n drift region 51a.
  • the body diode 65 which is a parasitic diode, includes an extended portion 54a of the p contact region 54, an extended portion 52a of the p channel region 52, an n drift region 51a, and an n drain region 57.
  • FIG. 8C shows a cross-sectional structure taken along a cutting line X3-X3 that cuts a portion of the source electrode 61 of FIG. 7B on the outer periphery side of the chip parallel to the cutting line X1-X1.
  • a plurality of spaced apart p channel regions 52 are arranged in the surface layer of the n semiconductor substrate 51 immediately below the source electrode 61.
  • an n source region 53 and a p contact region 54 are selectively formed in the surface layer on the front side of the substrate.
  • the p contact region 54 is disposed in contact with the n source region 53 and closer to the center of the p channel region 52 than the n source region 53.
  • a polysilicon gate electrode 56 is disposed through the.
  • An interlayer insulating film 59 is disposed on the surface of the polysilicon gate electrode 56.
  • a source electrode 61 is disposed on the surface of the interlayer insulating film 59.
  • Contact hole 60 is formed in interlayer insulating film 59, and p contact region 54 and n source region 53 are electrically connected to source electrode 61 through contact hole 60.
  • An n drain region 57 and a drain electrode 58 are disposed on the back surface side of the n semiconductor substrate 51 as in the case immediately below the gate pad electrode 62.
  • a pn junction 65a is formed at the interface between the p channel region 52 and the n drift region 51a.
  • the body diode 65 that is a parasitic diode includes a p contact region 54, a p channel region 52, an n drift region 51 a, and an n drain region 57.
  • the plurality of p-channel regions 52 immediately below the source electrode 61 are arranged in a striped planar layout.
  • two linear n-source regions 53 are arranged apart from each other in parallel with the direction in which the p-channel region 52 extends in a stripe shape.
  • a p contact region 54 is disposed between the n source regions 53 that are spaced apart from each other so as to be in contact with the n source regions 53.
  • the p channel region 52 and the p contact region 54 are connected to the p well region 63 and the p high concentration region 64 immediately below the gate pad electrode 62 through extending portions 52a and 54a, respectively.
  • the p channel region 52, the extended portion 52a of the p channel region 52, and the p well region 63 are formed by ion implantation using the same mask with the same impurity concentration and the same diffusion depth.
  • the p contact region 54, the extended portion 54a of the p contact region 54, and the p high concentration region 64 are formed by ion implantation using the same mask with the same impurity concentration and the same diffusion depth.
  • one p-well region 63 formed immediately below the gate pad electrode 62 is connected to a plurality of p-channel regions 52 on the lower surface of the source electrode 61.
  • the depletion layer extending from the pn junction 65a between the p channel region 52 and the p well region 63 and the n drift region 51a becomes the gate pad electrode.
  • Spread evenly under 62 Thereby, the electric field concentration directly under the gate pad electrode 62 is suppressed, and a high breakdown voltage can be secured.
  • FIG. 9 is an explanatory diagram showing the reverse recovery operation of the body diode 65 of the planar gate type MOSFET 500 of FIG. 9 (a-1) and 9 (a-2) show the case where the forward current If flows through the body diode 65.
  • FIGS. 9 (b-1) and 9 (b-2) show the case where the body diode 65 The case where the reverse current Ir flows is shown.
  • 9 (a-1) and 9 (b-1) show the movement of the carriers immediately below the gate pad electrode 62
  • 9 (a-2) and 9 (b-2) show the movement of the carriers directly below the source electrode 61. Shows the movement of the career.
  • the p high concentration region 64, the p well region 63, the n drift region 51a, and the n drain region 57 are formed as described above.
  • a body diode 65 that is a parasitic diode is formed.
  • the parasitic diodes are formed in the p contact region 54, the p channel region 52, the n drift region 51a, and the n drain region 57 as described above.
  • a body diode 65 is formed.
  • FIGS. 9 (a-1) and 9 (a-2) when a negative voltage is applied between the drain and source of the planar gate type MOSFET 500, the forward current If flows through the body diode 65. . Due to the forward current If, excess holes 67 and excess electrons 68 are accumulated in the n drift region 51a.
  • FIGS. 9 (b-1) and 9 (b-2) when the body diode 65 shifts to the reverse recovery process, excessive holes 67 are generated as the reverse current Ir in the p-channel region 52 and the p-well. The excess electrons 68 flow into the region 63 and flow into the n drain region 57. As a result, the excessive accumulation state of carriers is eliminated, and the breakdown voltage of the planar gate type MOSFET 500 is maintained.
  • the reverse current Ir when the reverse current Ir flows through the body diode 65, the reverse current Ir also flows into the p well region 63 and the p high concentration region 64 immediately below the gate pad electrode 62.
  • the reverse current Ir flowing into the p well region 63 and the p high concentration region 64 flows into the p channel region 52 and the p contact region 54 from the p well region 63 and the p high concentration region 64, and further via the contact hole 60.
  • the source electrode 61 Due to the resistance Rp (see FIG. 7B) in the current path of the reverse current Ir, the potential of the portion of the p well region 63 immediately below the center of the gate pad electrode 62 rises.
  • the reverse current Ir flowing in the body diode 65 raises the potential of the portion of the p well region 63 immediately below the center of the gate pad electrode 62.
  • the p well region 63 has one region extending directly under the gate pad electrode 62. It is formed as a region. Therefore, the surface area of the pn junction 65a of the body diode 65 formed immediately below the gate pad electrode 62 is large, and the resistance Rp of the current path through which excess holes 67 flow from the p contact region 54 to the source electrode 61 is small. Therefore, the potential increase in the portion of the p well region 63 immediately below the center of the gate pad electrode 62 is small.
  • the impurity concentrations of the p well region 63 and the p high concentration region 64 vary within the respective planes. If there is, a part having a low resistance is partially generated. A current (hole 67) flows into the low resistance portion from the surroundings, and flows into the p-channel region 52 connected to the low resistance portion. Therefore, the potentials of p well region 63 and p high concentration region 64 rise, and a large voltage is applied to gate oxide film 55 sandwiched between p well region 63 and polysilicon gate electrode 56, and gate oxide film 55 is There is a risk of insulation breakdown.
  • FIG. 10 is an explanatory diagram showing the operation of the inverter circuit to which the inductive load M is connected.
  • FIG. 10 shows the return current Io flowing through the inverter circuit in the operation of the inverter circuit.
  • a three-phase output inverter circuit in which a half bridge circuit in which switches M1 and M2 are connected in series is connected in parallel between terminals P and N will be described as an example.
  • the switches M1 and M2 for example, the above-described planar gate type MOSFET 500 is used.
  • An inductive load M is connected between the switches M1 and M2 of each half bridge circuit.
  • a freewheeling diode FWD is connected in parallel to each of the switches M1 and M2.
  • the switch M1 when the switch M1 is turned on while the return current Io flows through the inductive load M and the return diode FWD, the switch M1 is turned on and the current IM1 flows from the switch M1 toward the switch M2.
  • This current IM1 flows so as to cancel the freewheeling current Io already flowing through the freewheeling diode FWD and the body diode 65, thereby turning off the freewheeling diode FWD and the body diode 65.
  • the switch M1 is the upper arm MOSFET
  • the switch M2 is the lower arm MOSFET
  • the current IM1 is the current of the switch M1
  • the terminal P is the positive terminal of the inverter circuit
  • the terminal N is the negative terminal of the inverter circuit.
  • the forward current If shown in FIG. 9A is the forward current If flowing in the body diode 65 as a part of the return current Io flowing in the inductive load M and the return diode FWD in the operation of the inverter circuit connected to the inductive load M in FIG. It is.
  • FIG. 11 is a plan view showing a configuration of a conventional superjunction MOSFET 600.
  • 12 is a cross-sectional view showing a cross-sectional structure taken along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 11 is a plan view showing a configuration of a conventional superjunction MOSFET 600.
  • 12 is a cross-sectional view showing a cross-sectional structure taken along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 11A shows a planar layout of a source electrode 84, a gate pad electrode 85, and a gate runner 85a arranged on the front surface of a semiconductor substrate 71 (hereinafter referred to as a superjunction semiconductor substrate (semiconductor chip)).
  • a parallel pn layer (pn parallel column) 74 in which n-type regions (n columns) and p-type regions (p columns) are alternately and repeatedly arranged is indicated by a broken line.
  • FIG. 11B shows an enlarged view of a portion surrounded by the rectangular frame B in FIG. In FIG.
  • the gate oxide film 77, the polysilicon gate electrode 78, and the interlayer insulating film 82 disposed on the front surface of the superjunction semiconductor substrate 71 are omitted, and the contact hole 83, the source electrode 84, and the gate are omitted.
  • the pad electrode 85 is indicated by a broken line.
  • FIG. 12 (a) shows a cross-sectional structure taken along the cutting line X1-X1 in FIG. 11 (b).
  • FIG. 12B shows a cross-sectional structure taken along the cutting line X2-X2 in FIG.
  • FIG. 12C shows a cross-sectional structure taken along the section line X3-X3 in FIG.
  • the super junction MOSFET 600 includes a gate pad electrode 85 and a source electrode 84 on the front surface of the super junction semiconductor substrate 71.
  • a gate runner 85 a disposed so as to surround the source electrode 84 is connected to the gate pad electrode 85.
  • the planar layout of the gate pad electrode 85, the source electrode 84, the gate runner 85a, and the breakdown voltage termination structure portion is as follows: the gate pad electrode 62, the source electrode 61, the gate runner 62a, and the breakdown voltage termination structure of the planar gate type MOSFET 500 shown in FIG. It is the same as the part.
  • FIG. 12A shows a cutting line X1-X1 for cutting the gate pad electrode 85 in a direction (lateral direction in the drawing) orthogonal to one side of the gate pad electrode 85 of FIG.
  • the cross-section in FIG. As shown in FIG. 12A, immediately below the gate pad electrode 85 (on the pn parallel column 74 side), on the first n layer 71a (on the surface opposite to the n drain region 80 side described later), A pn parallel column 74 in which the p column 72 and the n column 73 are alternately and repeatedly arranged is arranged. A second n layer 71 b is disposed on the pn parallel column 74.
  • a p well region that penetrates the second n layer 71b and reaches the p column 72 of the pn parallel column 74 at a position facing each p column 72 of the pn parallel column 74 in the depth direction.
  • 86 is arranged inside the second n layer 71b.
  • the p-well region 86 has a function of maintaining a breakdown voltage immediately below the gate pad electrode 85.
  • a p high concentration region 87 is selectively disposed on the surface layer on the front side of the substrate.
  • Polysilicon gate electrode 78 is arranged via gate oxide film 77 so as to extend between adjacent p well regions 86.
  • an interlayer insulating film 82 is disposed across the surfaces of the p well region 86 and the p high concentration region 87 exposed between the polysilicon gate electrodes 78.
  • a gate pad electrode 85 is disposed on the surface of the interlayer insulating film 82.
  • Polysilicon gate electrode 78 is electrically connected to gate pad electrode 85 by a wiring (not shown).
  • An n drain region 80 is disposed on the surface of the first n layer 71a opposite to the pn parallel column 74 side.
  • the superjunction semiconductor substrate 71 is formed by sequentially stacking an n drain region 80, a first n layer 71a, a pn parallel column 74, and a second n layer 71b from the drain side.
  • a drain electrode 81 connected to the n drain region 80 is disposed.
  • a pn junction 93 is formed at an interface (a portion indicated by a thick line) between the p region of the p well region 86 and the p column 72 and the n region of the second n layer 71b, the n column 73 and the first n layer 71a.
  • the body diode 91 includes a p high concentration region 87, a p well region 86, a p column 72, a first n layer 71a, and an n drain region 80.
  • FIG. 12B shows a cross-sectional structure taken along a cutting line X2-X2 that cuts the portion between the gate pad electrode 85 and the source electrode 84 in FIG. 11B parallel to the cutting line X1-X1.
  • the portion between the gate pad electrode 85 and the source electrode 84 in FIG. 11B is a portion sandwiched between a broken line indicating the outer periphery of the gate pad electrode 85 and a broken line indicating the outer periphery of the source electrode 84.
  • the pn parallel column 74 and the first n layer 71 a are formed on the first n layer 71 a, just like the gate pad electrode 85.
  • the second n layer 71b is disposed in order.
  • an extending portion 75a that penetrates the second n-layer 71b and reaches the p-column 72 of the pn parallel column 74 at a position facing each p-column 72 of the pn parallel column 74 in the depth direction. Is placed.
  • a stretched portion 79a is selectively disposed on the surface layer on the front side of the substrate.
  • the extended portion 75 a is a portion extending to the gate pad electrode 85 side of a p-channel region 75 described later disposed immediately below the source electrode 84.
  • the extending portion 79 a is a portion extending to the gate pad electrode 85 side of a p contact region 79 described later disposed immediately below the source electrode 84.
  • Polysilicon gate electrode 78 is arranged via gate oxide film 77 so as to extend between adjacent extending portions 75a.
  • an interlayer insulating film 82 is disposed across the surface of the extended portion 75 a of the p channel region 75 and the extended portion 79 a of the p contact region 79 exposed between the polysilicon gate electrodes 78. .
  • An n drain region 80 and a drain electrode 81 are arranged on the opposite side of the first n layer 71a with respect to the pn parallel column 74 side, just like the gate pad electrode 85.
  • a pn junction 93 is formed at an interface (a portion indicated by a thick line) between the extension portion 75a of the p channel region 75 and the p region of the p column 72 and the n region of the second n layer 71b, the n column 73, and the first n layer 71a.
  • the body diode 91 includes an extended portion 79 a of the p contact region 79, an extended portion 75 a of the p channel region 75, a p column 72, a first n layer 71 a, and an n drain region 80.
  • FIG. 12C shows a cross-sectional structure taken along a cutting line X3-X3 for cutting a portion of the source electrode 84 of FIG. 11B on the outer periphery side of the chip in parallel to the cutting line X1-X1.
  • the pn parallel column 74 and the second n layer 71b are arranged in this order on the first n layer 71a just below the source electrode 84, just like the gate pad electrode 85.
  • Inside the second n layer 71b is a p channel region that reaches the p column 72 of the pn parallel column 74 through the second n layer 71b at a position facing each p column 72 of the pn parallel column 74 in the depth direction. 75 is arranged.
  • n source region 76 and a p contact region 79 are selectively formed in the surface layer on the front side of the substrate.
  • P contact region 79 is arranged in contact with n source region 76 and closer to the center side of p channel region 75 than n source region 76.
  • a gate oxide film 77 is formed on the surface of the portion of the p channel region 75 sandwiched between the n source region 76 and the second n layer 71b between the n source regions 76 disposed in the adjacent p channel regions 75.
  • a polysilicon gate electrode 78 is disposed therethrough.
  • An interlayer insulating film 82 is disposed on the surface of the polysilicon gate electrode 78.
  • a source electrode 84 is arranged on the surface of the interlayer insulating film 82.
  • Contact hole 83 is formed in interlayer insulating film 82, and p contact region 79 and n source region 76 are electrically connected to source electrode 84 through contact hole 83.
  • An n drain region 80 and a drain electrode 81 are arranged on the opposite side of the first n layer 71a with respect to the pn parallel column 74 side, just like the gate pad electrode 85.
  • a pn junction 92 is formed at the interface between the p region of the p channel region 75 and the p column 72 and the n region of the second n layer 71b, the n column 73 and the first n layer 71a.
  • the body diode 91 includes a p contact region 79, a p channel region 75, a p column 72, a first n layer 71a, and an n drain region 80.
  • the column 74 is integrally formed.
  • the planar shape of the pn parallel column 74 is a stripe shape, and the impurity concentration, shape, and dimensions are the same and are formed simultaneously. That is, as shown in FIG. 11A, the pn parallel columns 74 are arranged in a striped planar layout in which p columns 72 and n columns 73 are alternately arranged.
  • the planar layout of the p channel region 75, the n source region 76, and the p contact region 79 is such that the p channel region 52, the n source of the planar gate type MOSFET 500 shown in FIG. Similar to region 53 and p contact region 54.
  • the p well region 86 immediately below the gate pad electrode 85 and the p channel region 75 immediately below the source electrode 84 are connected to each other via an extending portion 75 a of the p channel region 75.
  • the p-well region 86 is arranged in a striped planar layout parallel to the p-channel region 75, and its impurity concentration, shape, and dimensions are the same as those of the p-channel region 75 and are formed simultaneously with the p-channel region 75.
  • the p high concentration region 87 immediately below the gate pad electrode 85 and the p contact region 79 immediately below the source electrode 84 are connected to each other via an extending portion 79 a of the p contact region 79.
  • the p high-concentration region 87 is arranged in a striped planar layout parallel to the p-contact region 79, and the impurity concentration, shape, and dimensions thereof are the same as those of the p-contact region 79 and are formed simultaneously with the p-contact region 79.
  • the pn parallel column 74 is formed just below the gate pad electrode 85 and just below the source electrode 84 in order to make the breakdown voltage uniform in the chip surface. Even if the p-well region 86 directly below the gate pad electrode 85 connected to the p-channel region 75 directly below the source electrode 84 has a shape different from that of the p-channel region 75, the breakdown voltage in the chip plane is hardly affected.
  • the super junction type MOSFET 600 stripes the p well region 86 and the p high concentration region 87 without arranging one p region directly under the gate pad electrode 85. Arranged in a planar layout. For this reason, the surface areas of the linear p-well regions 86 and the p-high concentration regions 87 constituting the stripe are respectively the p-well region 63 and the p-high concentration just below the gate pad electrode 62 of the planar gate type MOSFET 500 of FIG. Less than the surface area of region 64. Therefore, the impurity concentration of the p-well region 86 and the p-high concentration region 87 varies, and a portion having a low resistance is generated partially.
  • the area of the pn junction 92 (body diode 91) immediately below the gate pad electrode 85 is larger than the area of the pn junction 65a (body diode 65) directly below the gate pad electrode 62 of the planar gate type MOSFET 500. growing. Therefore, in the reverse recovery process of the body diode 91, the amount of holes 67 flowing into the p channel region 75 and the p contact region 79 via the p well region 86 and the p high concentration region 87 immediately below the gate pad electrode 85 is The size is larger than that of the planar gate type MOSFET 500. However, the holes 67 flow relatively uniformly in each p-well region 86 and each p high-concentration region 87 and concentrate and flow in specific p-well regions 86 and p high-concentration regions 87 having low resistance. There is no.
  • the p-well region 86 and the high-concentration region 87 of the superjunction MOSFET 600 are arranged in a stripe shape, the resistance R of the current path of the current (hole 67) increases (see FIG. 11B). For this reason, the potential increase in the portion of the p-well region 86 of the super-junction MOSFET 600 immediately below the center of the gate pad electrode 85 becomes large, and the gate oxide film 77 may cause a dielectric breakdown.
  • FIG. 13 is an explanatory diagram showing the reverse recovery operation of the body diode 91 of the superjunction MOSFET 600 of FIG.
  • FIGS. 13 (a-1) and 13 (a-2) show the case where the forward current If flows through the body diode 91
  • FIGS. 13 (b-1) and 13 (b-2) show the body diode 91.
  • the case where the reverse current Ir flows is shown.
  • 13 (a-1) and 13 (b-1) show the movement of carriers immediately below the gate pad electrode 85.
  • FIGS. 13 (a-2) and 13 (b-2) show the movement of the carriers immediately below the source electrode 84. Indicates career movement.
  • FIGS. 13 (a-1) and 13 (a-2) when the body diode 91 of the superjunction MOSFET 600 is forward biased and the forward current If flows, the p column 72 and the n column 73 are excessive. Holes 67 and electrons 68 are accumulated.
  • FIGS. 13 (b-1) and 13 (b-2) when the body diode 91 shifts to the reverse recovery process, excessive holes 67 are generated in the p-well region 86 and the p-channel as the reverse current Ir. The excess electrons 68 flow into the region 75 and flow into the n drain region 80.
  • the holes 67 flowing in the p well region 86 and the p high concentration region 87 flow into the source electrode 84 via the p channel region 75 and the p contact region 79, and the holes 67 flowing into the p channel region 75 are in contact holes 83.
  • Patent Document 1 listed below has an element region in which a MOSFET having a trench structure is formed, a conductive region, and an outer peripheral region, and the outer peripheral end of the element region has an outward convex corner near the conductive region, thereby reducing the element withstand voltage.
  • An apparatus has been disclosed that has improved breakdown resistance during reverse recovery while ensuring.
  • Patent Document 2 proposes an apparatus that prevents a dielectric breakdown of a gate insulating film by providing a p-contact region in which a p-type impurity is added at a high concentration on the surface of a p-well region immediately below a gate pad electrode. .
  • Patent Document 3 proposes a device that prevents the breakdown of the gate insulating film by increasing the p-type impurity concentration in the surface layer portion by additional ion implantation and increasing the conductivity of the p-well region below the gate pad electrode. Has been.
  • Patent Document 4 a trench is formed in a portion of a p-well region provided immediately below a gate pad electrode and immediately below a source electrode, and the tungsten layer is filled with the trench.
  • An apparatus has been proposed in which a dielectric breakdown of a gate insulating film is prevented by connecting a source electrode to a source electrode.
  • JP 2012-164879 A Japanese Patent No. 4962655 Japanese Patent No. 4962644 JP-A-5-343692
  • a voltage of a calculated magnitude is generated.
  • the voltage generated in the reverse recovery process of the body diode 91 is highest in the portion of the p well region 86 immediately below the center of the gate pad electrode 85 when the potential of the source electrode 84 is used as a reference.
  • the voltage generated in the reverse recovery process of the body diode 91 is caused by the gate oxide film 77 on the surface of the portion sandwiched between the adjacent p well regions 86 arranged immediately below the gate pad electrode 85, and the gate oxidation.
  • a polysilicon gate electrode 78 disposed on the film 77 Applied to a polysilicon gate electrode 78 disposed on the film 77. Further, since a negative gate voltage (for example, about ⁇ 10 V) applied to the polysilicon gate electrode 78 is applied to the gate oxide film 77 in addition to a voltage generated in the reverse recovery process of the body diode 91, a high voltage is applied. Is applied.
  • a negative gate voltage for example, about ⁇ 10 V
  • FIG. 14 is an explanatory diagram showing the location of dielectric breakdown of the gate oxide film 77 during reverse recovery of the body diode 91 of the conventional superjunction MOSFET 600 of FIG.
  • the voltage generated in the reverse recovery process of the body diode 91 is highest in the portion of the p-well region 86 immediately below the center of the gate pad electrode 85. Therefore, as shown in FIG. The location is a portion immediately below the center of the gate pad electrode 85.
  • An object of the present invention is to provide a semiconductor device capable of preventing a dielectric breakdown of a gate insulating film that occurs in a reverse recovery process of a body diode in order to solve the above-described problems caused by the prior art.
  • a semiconductor device has the following characteristics.
  • a first conductivity type column is formed on the first main surface of the first first conductivity type semiconductor layer in a striped planar shape extending in a direction horizontal to the first main surface of the first first conductivity type semiconductor layer.
  • a pn parallel column in which the second conductivity type column is alternately and repeatedly arranged.
  • a second first conductivity type semiconductor layer is disposed on the surface of the pn parallel column opposite to the first first conductivity type semiconductor layer side.
  • a second conductivity type channel region is disposed in the second first conductivity type semiconductor layer in a striped planar shape extending in a horizontal direction to the first main surface of the first conductivity type semiconductor layer.
  • the second conductivity type channel region penetrates through the second first conductivity type semiconductor layer in the depth direction and contacts the second conductivity type column.
  • a second conductivity type well region is disposed in the second first conductivity type semiconductor layer in a planar shape of a stripe shape parallel to the first direction in which the second conductivity type channel region extends in a stripe shape.
  • the second conductivity type well region penetrates through the second first conductivity type semiconductor layer in the depth direction and contacts the second conductivity type column.
  • One end of the second conductivity type well region in the first direction is connected to one end of the second conductivity type channel region in the first direction.
  • a first conductivity type source region is disposed inside the second conductivity type channel region.
  • a second conductivity type contact region having a linear planar shape extending in the first direction is disposed inside the second conductivity type channel region and inside the first conductivity type source region.
  • the second conductivity type contact region is in contact with the first conductivity type source region.
  • a second conductivity type high concentration region is disposed in the second conductivity type well region in a linear planar shape extending in the first direction.
  • One end of the second conductivity type high concentration region in the first direction is connected to one end of the second conductivity type contact region in the first direction.
  • a first gate electrode is disposed over the gate insulating film.
  • An interlayer insulating film is disposed on the surface of the first gate electrode.
  • a source electrode is disposed on the interlayer insulating film. The source electrode is connected to the second conductivity type channel region and the first conductivity type source region through a contact hole of the interlayer insulating film.
  • a gate pad electrode is disposed on the interlayer insulating film at a position facing the second conductive type well region and the second conductive type high concentration region with the interlayer insulating film interposed therebetween, and is spaced apart from the source electrode. .
  • the gate pad electrode is electrically connected to the first gate electrode.
  • a first conductivity type drain region is disposed on the second main surface of the first first conductivity type semiconductor layer. The drain electrode is connected to the first conductivity type drain region.
  • a width of the second conductivity type well region in a second direction orthogonal to the first direction is wider than a width of the second conductivity type channel region in the second direction.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • the second conductive type well region and the second first conductive type semiconductor layer are formed on the surface of the portion sandwiched between the adjacent second conductive type high concentration regions via the gate insulating film.
  • Two gate electrodes are arranged.
  • the interlayer insulating film is disposed on the surface of the second gate electrode.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • a first second conductivity type extension region and a second second conductivity type extension region are disposed between the source electrode and the gate pad electrode.
  • the first second-conductivity-type extension region includes a portion in which the second-conductivity-type channel region extends in the first direction, and penetrates the second first-conductivity-type semiconductor layer in the depth direction.
  • the first second conductivity type extension region is in contact with one end of the second conductivity type well region in the first direction, and connects the second conductivity type channel region and the second conductivity type well region. To do.
  • the second second conductivity type extension region is formed by disposing a portion in which the second conductivity type contact region extends in the first direction inside the first second conductivity type extension region.
  • the second second conductivity type extension region is in contact with one end portion of the second conductivity type high concentration region in the first direction, and the second conductivity type contact region, the second conductivity type high concentration region, Are connected.
  • the gate insulation is provided on a surface of a portion sandwiched between the adjacent second second conductivity type extension regions of the first second conductivity type extension region and the second first conductivity type semiconductor layer.
  • a third gate electrode is disposed through the film.
  • the interlayer insulating film is disposed on the surface of the third gate electrode. The third gate electrode connects the first gate electrode and the second gate electrode.
  • a semiconductor device has the following characteristics.
  • the second conductivity type channel region is disposed on the surface layer of the first main surface of the first conductivity type drift layer in a striped planar shape extending in a horizontal direction to the first main surface of the first conductivity type drift layer.
  • a second conductivity type well region is disposed on the surface layer of the first main surface of the first conductivity type drift layer in a striped planar shape parallel to the first direction in which the second conductivity type channel region extends in a stripe shape.
  • the One end of the second conductivity type well region in the first direction is connected to one end of the second conductivity type channel region in the first direction.
  • a first conductivity type source region is disposed inside the second conductivity type channel region.
  • a second conductivity type contact region having a linear planar shape extending in the first direction is disposed inside the second conductivity type channel region and inside the first conductivity type source region. The second conductivity type contact region is in contact with the first conductivity type source region.
  • a second conductivity type high concentration region is arranged in a linear planar shape extending in the first direction inside the second conductivity type well region. One end of the second conductivity type high concentration region in the first direction is connected to one end of the second conductivity type contact region in the first direction.
  • a first gate electrode is disposed on a surface of a portion of the second conductivity type channel region sandwiched between the first conductivity type source region and the first conductivity type drift layer via a gate insulating film. .
  • An interlayer insulating film is disposed on the surface of the first gate electrode.
  • a source electrode is disposed on the interlayer insulating film. The source electrode is connected to the second conductivity type channel region and the first conductivity type source region through a contact hole of the interlayer insulating film.
  • a gate pad electrode is disposed on the interlayer insulating film at a position facing the second conductivity type well region and the second conductivity type high concentration region with the interlayer insulating film interposed therebetween, and is separated from the source electrode.
  • the gate pad electrode is electrically connected to the first gate electrode.
  • a first conductivity type drain region is disposed on the second main surface of the first conductivity type drift layer.
  • the drain electrode is connected to the first conductivity type drain region.
  • a width of the second conductivity type well region in a second direction orthogonal to the first direction is wider than a width of the second conductivity type channel region in the second direction.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • a second gate is formed on the surface of a portion of the second conductivity type well region and the first conductivity type drift layer sandwiched between the adjacent second conductivity type high concentration regions via the gate insulating film.
  • An electrode is placed.
  • the interlayer insulating film is disposed on the surface of the second gate electrode.
  • the semiconductor device further has the following characteristics in the above-described invention.
  • a first second conductivity type extension region and a second second conductivity type extension region are disposed between the source electrode and the gate pad electrode.
  • the first second conductivity type extension region includes a portion in which the second conductivity type channel region extends in the first direction.
  • the first second conductivity type extension region is in contact with one end of the second conductivity type well region in the first direction and connects the second conductivity type channel region and the second conductivity type well region.
  • the second second conductivity type extension region is formed by disposing a portion in which the second conductivity type contact region extends in the first direction inside the first second conductivity type extension region.
  • the second second conductivity type extension region is in contact with one end of the second conductivity type high concentration region in the first direction, and connects the second conductivity type contact region and the second conductivity type high concentration region.
  • Link On the surface of the portion sandwiched between the adjacent second second conductivity type extension regions of the first second conductivity type extension region and the first conductivity type drift layer via the gate insulating film.
  • the third gate electrode is disposed.
  • the interlayer insulating film is disposed on the surface of the third gate electrode.
  • the third gate electrode connects the first gate electrode and the second gate electrode.
  • the width of the second conductivity type high concentration region in the second direction is wider than the width of the second conductivity type contact region in the second direction.
  • the width of the second gate electrode in the second direction is narrower than the width of the first gate electrode in the second direction.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the second gate electrode is disposed over the entire portion facing the gate pad electrode with the interlayer insulating film interposed therebetween.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the second gate electrode is electrically insulated from the first gate electrode.
  • the pn parallel column has a striped planar shape parallel to the first direction, and the first conductivity type column and the second conductivity type column are It is characterized by being alternately arranged repeatedly.
  • the voltage applied to the portion immediately below the center of the gate pad electrode where the voltage is the highest in the second conductivity type well region can be reduced.
  • the voltage applied to the gate insulating film directly under the gate pad electrode can be reduced.
  • the gate insulating film can be prevented from being broken during the reverse recovery process of the body diode.
  • FIG. 1 is a plan view showing the configuration of the semiconductor device 100 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 3 is a characteristic diagram showing the results of simulating the waveforms of the voltage Vo just below the center of the gate pad electrode 15 and the current I just below the gate pad electrode 15 over time during the reverse recovery process of the body diode 21.
  • FIG. 4 is a cross-sectional view showing the configuration of the semiconductor device 200 according to the second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the configuration of the semiconductor device 200 according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of the semiconductor device 300 according to the third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the configuration of the semiconductor device 400 according to the fourth embodiment of the present invention.
  • FIG. 7 is a plan view showing a configuration of a conventional planar gate type MOSFET 500.
  • FIG. 8 is a cross-sectional view showing a cross-sectional structure taken along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 9 is an explanatory diagram showing the reverse recovery operation of the body diode 65 of the planar gate type MOSFET 500 of FIG.
  • FIG. 9 is an explanatory diagram showing the reverse recovery operation of the body diode 65 of the planar gate type MOSFET 500 of FIG.
  • FIG. 9 is an explanatory diagram showing the reverse recovery operation of the body diode 65 of the planar gate type MOSFET 500 of FIG.
  • FIG. 10 is an explanatory diagram showing the operation of the inverter circuit to which the inductive load M is connected.
  • FIG. 11 is a plan view showing a configuration of a conventional superjunction MOSFET 600.
  • 12 is a cross-sectional view showing a cross-sectional structure taken along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 13 is an explanatory diagram showing the reverse recovery operation of the body diode 91 of the superjunction MOSFET 600 of FIG.
  • FIG. 14 is an explanatory diagram showing the location of dielectric breakdown of the gate oxide film 77 during reverse recovery of the body diode 91 of the conventional superjunction MOSFET 600 of FIG.
  • FIG. 1 is a plan view showing the configuration of the semiconductor device 100 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure along the cutting line X1-X1, the cutting line X2-X2, and the cutting line X3-X3 of FIG.
  • FIG. 1A shows a planar layout of a source electrode 14, a gate pad electrode 15 and a gate runner 15a arranged on the front surface of a superjunction semiconductor substrate (semiconductor chip) 1, and an n-type region (n column).
  • a parallel pn layer (pn parallel column) 4 in which p-type regions and p-type regions (p column) are alternately arranged is indicated by a broken line.
  • FIG. 1 (b) shows an enlarged view of a portion surrounded by the rectangular frame A in FIG. 1 (a).
  • the gate oxide film (gate insulating film) 7 the polysilicon gate electrode 8 and the interlayer insulating film 12 disposed on the front surface of the superjunction semiconductor substrate 1 are not shown, and the contact hole 13, The source electrode 14 and the gate pad electrode 15 are indicated by broken lines.
  • FIG. 2A shows a cross-sectional structure taken along the cutting line X1-X1 in FIG.
  • FIG. 2B shows a cross-sectional structure taken along the cutting line X2-X2 in FIG.
  • FIG. 2C shows a cross-sectional structure taken along the cutting line X3-X3 in FIG.
  • the super junction MOSFET 101 is taken as an example.
  • the superjunction MOSFET 101 includes a gate pad electrode 15 formed of a metal (for example, Al (aluminum) -Si (silicon)) on the front surface of the superjunction semiconductor substrate 1. And a source electrode 14 formed of a metal (eg, Al—Si).
  • the gate pad electrode 15 is disposed, for example, on the outer periphery side of the chip in the active region.
  • the source electrode 14 is disposed on almost the entire surface of the active region except the portion where the gate pad electrode 15 is disposed, and surrounds, for example, three sides of the substantially rectangular gate pad electrode 15.
  • a gate runner 15 a disposed so as to surround the source electrode 14 is connected to the gate pad electrode 15.
  • a breakdown voltage termination structure is disposed on the outermost periphery (chip outermost periphery) of the superjunction MOSFET 101.
  • the superjunction semiconductor substrate 1 has a pn parallel structure in which the p column 2 and the n column 3 are alternately arranged from directly under the source electrode 14 to directly under the gate pad electrode 15.
  • Column 4 is arranged.
  • the p column 2 and the n column 3 are arranged in a striped planar layout.
  • a p channel region (second conductivity type channel region) 5 is disposed on the pn parallel column 4 immediately below the source electrode 14.
  • the plurality of p-channel regions 5 are arranged in a striped planar layout parallel to the direction in which, for example, the pn parallel columns 4 extend in a stripe shape.
  • the n-source region 6 and the p-contact region 9 are arranged in a linear planar layout parallel to the direction in which the p-channel region 5 extends in a stripe shape (hereinafter referred to as the first direction (longitudinal direction)). Is placed.
  • a p-well region (second conductivity type well region) 16 is disposed on the pn parallel column 4 immediately below the gate pad electrode 15 in a striped plane layout parallel to the first direction.
  • a p high concentration region (second conductivity type high concentration region) 17 is disposed in the p well region 16 in a linear planar layout parallel to the first direction.
  • the p well region 16 and the p high concentration region 17 immediately below the gate pad electrode 15 are respectively connected to the p channel region immediately below the source electrode 14 via extending portions (first and second second conductivity type extending regions) 5a and 9a. 5 and p contact region 9 are coupled (electrically connected). That is, the p well region 16 and the p high concentration region 17 are arranged in a striped planar layout continuous to the p channel region 5 and the p contact region 9, respectively.
  • the stretched portion 5a is a portion of the p-channel region 5 that extends toward the gate pad electrode 15 and in parallel with the first direction.
  • the extending portion 9a is a portion of the p-contact region 9 that extends toward the gate pad electrode 15 and in parallel with the first direction.
  • the extending portions 5a and 9a of the p-channel region 5 and the p-contact region 9 are arranged in a striped planar layout parallel to the first direction immediately below the portion between the gate pad electrode 15 and the source electrode 14. .
  • a portion between the gate pad electrode 15 and the source electrode 14 is a portion sandwiched between a broken line indicating the outer periphery of the gate pad electrode 15 and a broken line indicating the outer periphery of the source electrode 14.
  • FIG. 2A shows a cutting line X1-X1 for cutting the gate pad electrode 15 in a direction (lateral direction in the drawing) orthogonal to one side of the gate pad electrode 15 shown in FIG.
  • the cross-section in FIG. As shown in FIG. 2A, immediately below the gate pad electrode 15 (on the side of the pn parallel column 4), on the first n layer (first first conductivity type semiconductor layer) 1a (the n drain region (first described later) On the surface opposite to the conductivity type drain region (10 side), p columns (second conductivity type columns) 2 and n columns (first conductivity type columns) 3 are alternately and repeatedly arranged as drift layers.
  • a pn parallel column 4 is arranged.
  • a second n layer (second first conductivity type semiconductor layer) 1b is disposed on the pn parallel column 4. Inside the second n layer 1b is a p-well region that penetrates the second n layer 1b and reaches the p column 2 of the pn parallel column 4 at a position facing each p column 2 of the pn parallel column 4 in the depth direction. 16 is arranged. Adjacent p-well regions 16 are spaced apart so as not to contact each other.
  • a p high concentration region 17 having an impurity concentration higher than that of the p well region 16 is selectively disposed on the surface layer on the front side of the substrate.
  • the p well region 16 has a function of maintaining a breakdown voltage immediately below the gate pad electrode 15.
  • Polysilicon gate electrode (second gate electrode) 8 a is arranged through gate oxide film 7 so as to extend between p high concentration regions 17 arranged in adjacent p well regions 16.
  • interlayer insulating film 12 is arranged over the surface of p well region 16 and p high concentration region 17 exposed between polysilicon gate electrodes 8a.
  • a gate pad electrode 15 is disposed on the surface of the interlayer insulating film 12.
  • the polysilicon gate electrode 8a is electrically connected to the gate pad electrode 15 by a wiring (not shown).
  • An n drain region 10 is disposed on the surface layer of the first n layer 1a opposite to the pn parallel column 4 side.
  • the superjunction semiconductor substrate 1 is formed by sequentially stacking an n drain region 10, a first n layer 1a, a pn parallel column 4, and a second n layer 1b from the drain side.
  • a drain electrode 11 connected to the n drain region 10 is disposed.
  • a pn junction 23 is formed at an interface (a portion indicated by a thick line) between the p region of the p well region 16 and the p column 2 and the n region of the second n layer 1b, the n column 3 and the first n layer 1a.
  • the body diode 21 includes a p high concentration region 17, a p well region 16, a p column 2, a first n layer 1 a, and an n drain region 10.
  • FIG. 2B shows a cross-sectional structure taken along a cutting line X2-X2 that cuts a portion between the gate pad electrode 15 and the source electrode 14 shown in FIG. 1B parallel to the cutting line X1-X1.
  • the pn parallel column 4 and the first n layer 1 a are formed on the first n layer 1 a, just like the gate pad electrode 15.
  • the second n layer 1b is arranged in order. Inside the second n layer 1b, an extending portion 5a that penetrates through the second n layer 1b and reaches the p column 2 is disposed at a position facing the p column 2 of the pn parallel column 4 in the depth direction.
  • the stretched portion 9a is selectively disposed on the surface layer on the front side of the substrate.
  • the polysilicon gate electrode (third gate electrode) 8b is disposed via the gate oxide film 7 so as to extend between the extending portions 9a disposed in the adjacent extending portions 5a.
  • an interlayer insulating film 12 is disposed over the surface of the extended portion 5a of the p channel region 5 and the extended portion 9a of the p contact region 9 exposed between the polysilicon gate electrodes 8b.
  • the n drain region 10 and the drain electrode 11 are arranged in the same manner as directly below the gate pad electrode 15.
  • the interlayer insulating film 12 is exposed between the gate pad electrode 15 and the source electrode 14. That is, the gate pad electrode 15 and the source electrode 14 are not formed on the portion of the interlayer insulating film 12 that covers the polysilicon gate electrode 8b.
  • a pn junction 22 is formed at a boundary (a portion indicated by a thick line) between the extension portion 5a of the p channel region 5 and the p region of the p column 2 and the n region of the second n layer 1b, the n column 3 and the first n layer 1a. It is formed.
  • the body diode 21 includes an extended portion 9 a of the p contact region 9, an extended portion 5 a of the p channel region 5, the p column 2, the first n layer 1 a, and the n drain region 10.
  • FIG. 2C shows a cross-sectional structure taken along a cutting line X3-X3 for cutting a portion of the source electrode 14 shown in FIG. 1B on the outer periphery side of the chip in parallel with the cutting line X1-X1.
  • the pn parallel column 4 and the second n layer 1 b are sequentially arranged on the first n layer 1 a immediately below the source electrode 14 in the same manner as immediately below the gate pad electrode 15.
  • a p-channel region 5 that penetrates through the second n layer 1b and reaches the p column 2 is disposed at a position facing the p column 2 of the pn parallel column 4 in the depth direction.
  • an n source region (first conductivity type source region) 6 and a p contact region (second conductivity type contact region) 9 are selectively formed on the surface layer on the front side of the substrate. It is formed.
  • the p contact region 9 is arranged inside the p channel region 5 and in contact with the n source region 6 relative to the n source region 6.
  • the impurity concentration of the p contact region 9 is higher than the impurity concentration of the p channel region 5.
  • a gate oxide film 7 is formed on the surface of the portion of the p channel region 5 sandwiched between the n source region 6 and the second n layer 1b between the n source regions 6 arranged in the adjacent p channel regions 5.
  • a polysilicon gate electrode (first gate electrode) 8c is arranged through the gate.
  • An interlayer insulating film 12 is disposed on the surface of the polysilicon gate electrode 8c.
  • a source electrode 14 is disposed on the surface of the interlayer insulating film 12.
  • a contact hole 13 is formed in the interlayer insulating film 12, and the p contact region 9 and the n source region 6 are electrically connected to the source electrode 14 through the contact hole 13.
  • the n drain region 10 and the drain electrode 11 are disposed on the opposite side of the first n layer 1a with respect to the pn parallel column 4 side, just like the gate pad electrode 15.
  • a pn junction 22 is formed at an interface (a portion indicated by a thick line) between the p region of the p channel region 5 and the p column 2 and the n region of the second n layer 1b, the n column 3 and the first n layer 1a.
  • the body diode 21 includes a p contact region 9, a p channel region 5, a p column 2, a first n layer 1 a, and an n drain region 10.
  • a pn parallel column 4 disposed immediately below the gate pad electrode 15, a pn parallel column 4 disposed immediately below a portion between the gate pad electrode 15 and the source electrode 14, and a pn parallel column disposed directly below the source electrode 14 4 is integrally formed.
  • the planar shape of the pn parallel column 4 is a stripe shape.
  • the p channel region 5, the extended portion 5 a of the p channel region 5, and the bottom surface (drain side surface) of the p well region 16 are in contact with the p column 2 of the pn parallel column 4.
  • the p channel region 5, the extended portion 5 a of the p channel region 5, and the p well region 16 are sequentially connected in the direction in which the p column 2 extends in a stripe shape. Arranged in a state.
  • the pn parallel column 4 is formed, for example, by repeating a combination of epitaxial growth and selective ion implantation a plurality of times.
  • the p-channel region 5 immediately below the source electrode 14 is connected to the p-well region 16 immediately below the gate pad electrode 15 by the extending portion 5 a of the p-channel region 5.
  • the p contact region 9 immediately below the source electrode 14 is connected to the p high concentration region 17 immediately below the gate pad electrode 15 by an extension portion 9 a of the p contact region 9.
  • the polysilicon gate electrode 8a immediately below the gate pad electrode 15 and the polysilicon gate electrode 8c immediately below the source electrode 14 are electrically connected by the polysilicon gate electrode 8b.
  • the above-described p-channel region 5, the extended portion 5a of the p-channel region 5, and the p-well region 16 are formed, for example, by ion implantation simultaneously using the same mask.
  • ion implantation for example, boron (B) is used as a dopant, the boron dose is set to 4 ⁇ 10 13 / cm 2 or more and 7 ⁇ 10 13 / cm 2 or less, and the diffusion depth of these p-type regions is set to about 3 ⁇ m. It is good.
  • the p contact region 9, the extended portion 9 a of the p contact region 9, and the p high concentration region 17 are simultaneously formed by ion implantation using the same mask.
  • boron may be used as a dopant
  • the boron dose may be about 3 ⁇ 10 15 / cm 2
  • the diffusion depth of these p-type regions may be about 1 ⁇ m.
  • FIG. 2 the n source region 6, the p contact region 9 and the p high concentration region 17 are schematically illustrated, and the diffusion depths of the n source region 6, the p contact region 9 and the p high concentration region 17 are as follows. It is shown deeply for convenience.
  • the n source region 6 is formed only directly below the source electrode 14. The reason is as follows. When n source region 6 extends from directly under source electrode 14 to directly under gate pad electrode 15, interlayer insulating film 12 is exposed between source electrode 14 and gate pad electrode 15, and charge has entered from the outside. Is accumulated in the exposed portion of the interlayer insulating film 12, and the threshold value (Vth) of the gate voltage is locally lowered. This is because when the threshold voltage (Vth) of the gate voltage is lowered, current flows easily, so that the semiconductor device generates heat and the semiconductor device may be destroyed.
  • the width of the p-well region 16 immediately below the gate pad electrode 15 (the width in the second direction (short direction) perpendicular to the first direction) W1 and the width W2 of the p high-concentration region 17 are
  • the width W3 of the p-channel region 5 immediately below the electrode 14 and the width W4 of the p-contact region 9 are made wider (W1> W3, W2> W4).
  • the total resistance R of the p well region 16 and the p high concentration region 17 is one digit or more smaller than the resistance of the p column 2. As a result, it is possible to prevent dielectric breakdown in the portion immediately below the gate pad electrode 15 of the gate oxide film 7 that occurs in the reverse recovery process of the body diode 21.
  • the resistance (hereinafter referred to as the resistance of the current path) Ro from the portion immediately below the center of the gate pad electrode 15 to the end of the contact hole 13 on the gate pad electrode 15 side is the p well region 16 and
  • the resistor R combined with the p high concentration region 17 is mainly used.
  • the reason is that the lengths (the width in the first direction) of the extending portions 5a and 9a of the p-channel region 5 and the p-contact region 9 immediately below the portion between the source electrode 14 and the gate pad electrode 15 are short. This is because the resistance value at is very small and can be ignored.
  • the resistance R of the p well region 16 and the p high concentration region 17 is reduced substantially in inverse proportion to the width W1 of the p well region 16 and the width W2 of the p high concentration region 17.
  • the current I flowing into the source electrode 14 via the p well region 16 and the p high concentration region 17 (hereinafter referred to as the current immediately below the gate pad electrode 15) I is fixed, the voltage is the product of the current I and the resistance R V also decreases substantially in inverse proportion to the width W1 of the p well region 16 and the width W2 of the p high concentration region 17.
  • the width W1 of the p well region 16 is about 12 ⁇ m
  • the width W3 of the p channel region 5 is about 8 ⁇ m
  • the width W2 of the p high concentration region 17 is about 6 ⁇ m
  • the width of the p contact region 9 When W4 is about 4 ⁇ m, the resistance (resistance of the current path) Ro from the portion immediately below the center of the gate pad electrode 15 to the end of the contact hole 13 on the gate pad electrode 15 side is the conventional structure (the width of the p well region 86).
  • the width W1 ′ of the p well region 86 immediately below the gate pad electrode 85 and the width W2 ′ of the p high concentration region 87 are the width W3 ′ of the p channel region 75 immediately below the source electrode 84 and the p contact region 79, respectively.
  • the voltage Vo generated in the portion of the p-well region 16 immediately below the center of the gate pad electrode 15 (hereinafter referred to as the voltage immediately below the center of the gate pad electrode 15) Vo by the reverse recovery current of the body diode 21 is reduced by about 30%. Therefore, dielectric breakdown of the portion of the gate oxide film 7 immediately below the gate pad electrode 15 can be prevented. As a result, a short circuit between the gate and the source of the super junction MOSFET 101 can be prevented.
  • the voltage Vo just below the center of the gate pad electrode 15 is a voltage based on the potential at the end of the contact hole 13.
  • the width W5 of the polysilicon gate electrode 8a immediately below the gate pad electrode 15 depends on the source electrode. 14 is made narrower than the width W6 of the polysilicon gate electrode 8c immediately below 14 (W5 ⁇ W6).
  • the width W1 of the p well region 16 immediately below the gate pad electrode 15 and the width W2 of the p high concentration region 17 are made larger than the width W3 of the p channel region 5 immediately below the source electrode 14 and the width W4 of the p contact region 9, respectively.
  • FIG. 3 is a characteristic diagram showing the results of simulating the waveforms of the voltage Vo (potential of the p-well region) immediately below the center of the gate pad electrode 15 and the current I immediately below the gate pad electrode 15 over time during the reverse recovery process of the body diode 21.
  • FIG. This simulation is carried out from the unit cell (p well region 16, extension portion 5 a of p channel region 5, p channel region 5 and p high concentration region 17, extension portion 9 a of p contact region 9, p contact region 9 and pn parallel column 4. To the place).
  • the length (width in the first direction) of the p-well region 16 immediately below the gate pad electrode 15 is about 1 mm, and the length from the center to the end of the p-well region 16 is about 500 ⁇ m.
  • 3 represents a conventional superjunction MOSFET 600, and the solid line represents the superjunction MOSFET 101 according to the first embodiment of the present invention.
  • the voltage Vo just below the center of the gate pad electrode 15 of the structure of the present invention is about 30% lower than that of the conventional structure (dashed line), and the dielectric breakdown of the gate oxide film 7 is reduced. It was confirmed that it can be prevented.
  • the resistance R of the current path can be lowered by arranging the p well regions 16 apart from each other and making the width W1 of the p well region 16 wider than the width W3 of the p channel region 5. For this reason, even when the impurity concentration varies among the p-well regions 16, it is possible to prevent the gate oxide film 7 from causing dielectric breakdown at a portion immediately below the center of the gate pad electrode 15.
  • the reverse recovery process of the body diode is performed.
  • the voltage applied to the portion of the p-well region immediately below the center of the gate pad electrode where the voltage becomes highest can be reduced.
  • the voltage applied to the gate insulating film immediately below the gate pad electrode can be reduced, so that the gate oxide film 7 can be prevented from being broken down.
  • FIG. 4 is a cross-sectional view showing the configuration of the semiconductor device 200 according to the second embodiment of the present invention.
  • the planar layout of the semiconductor device 200 according to the second embodiment is the same as that of the semiconductor device according to the first embodiment (FIG. 1).
  • FIG. 4 shows a cross-sectional structure taken along the cutting line X1-X1 in FIG.
  • FIG. 4 shows a modification of the cross-sectional structure shown in FIG.
  • the semiconductor device according to the second embodiment is different from the semiconductor device according to the first embodiment in that the polysilicon gate electrode 8a directly below the gate pad electrode 15 is not provided.
  • p well region 16 cannot be formed using polysilicon gate electrode 8a as a mask.
  • the voltage of p well region 16 increases. Even so, the gate oxide film 7 does not cause dielectric breakdown.
  • unevenness due to the polysilicon gate electrode 8a does not occur immediately below the gate pad electrode 15, and the surface of the gate pad electrode 15 is flattened. Thereby, ultrasonic bonding of the wire connected to the gate pad electrode 15 can be performed satisfactorily.
  • a new photoresist mask may be used to form the p-well region 16.
  • the polysilicon gate electrode 8b immediately below the portion between the gate pad electrode 15 and the source electrode 14 may not be provided.
  • the gate oxide film 7 directly below the gate pad electrode 15 may not be provided.
  • the gate oxide film 7 immediately below the portion between the gate pad electrode 15 and the source electrode 14 is also provided. There may be no configuration.
  • FIG. 5 is a cross-sectional view showing a configuration of the semiconductor device 300 according to the third embodiment of the present invention.
  • the planar layout of the semiconductor device 300 according to the third embodiment is the same as that of the semiconductor device according to the first embodiment (FIG. 1).
  • FIG. 5 shows a cross-sectional structure taken along the cutting line X1-X1 in FIG.
  • FIG. 5 shows a modification of the cross-sectional structure shown in FIG.
  • the semiconductor device according to the third embodiment is different from the semiconductor device according to the first embodiment in that the size (surface area) of the polysilicon gate electrode 8a immediately below the gate pad electrode 15 is the same as that of the gate pad electrode 15. Is a point.
  • one polysilicon gate electrode 8a is arranged across a plurality of unit cells in the entire region directly under the gate pad electrode 15.
  • the p-well region 16 cannot be formed using the polysilicon gate electrode 8a as a mask, but the surface of the gate pad electrode 15 is flattened because the polysilicon gate electrode 8a is not unevenly formed immediately below the gate pad electrode 15. Is done. Thereby, ultrasonic bonding of the wire connected to the gate pad electrode 15 can be performed satisfactorily.
  • a new photoresist mask or the like may be used to form the p-well region 16.
  • FIG. 6 is a cross-sectional view showing the configuration of the semiconductor device 400 according to the fourth embodiment of the present invention.
  • the planar layout of the semiconductor device 400 according to the fourth embodiment is the same as that of the semiconductor device according to the first embodiment (FIG. 1).
  • FIG. 6 shows a cross-sectional structure along the cutting line X4-X4 and the cutting line YY in FIG.
  • FIG. 6A shows a cross-sectional structure taken along the cutting line YY in FIG.
  • FIG. 6B shows a cross-sectional structure taken along the cutting line X1-X1 in FIG.
  • FIG. 6C shows a cross-sectional structure taken along the cutting line X4-X4 in FIG.
  • the semiconductor device according to the fourth embodiment is different from the semiconductor device according to the first embodiment in that the polysilicon gate electrode 8 c disposed immediately below the source electrode 14 and the polysilicon gate electrode disposed directly below the gate pad electrode 15. 8a is electrically separated from 8a.
  • the polysilicon gate electrode 8a disposed immediately below the source electrode 14 is electrically disconnected.
  • the notch 30 is a portion having a length of, for example, about several ⁇ m and no polysilicon gate electrode 8a. The length of the notch 30 can be variously changed.
  • the polysilicon gate electrode 8a immediately below the gate pad electrode 15 is at a floating potential. As a result, even if the voltage of the p-well region 16 arranged immediately below the gate pad electrode 15 rises, no voltage is applied to the gate oxide film 7, so that the gate oxide film 7 does not break down.
  • a polysilicon gate electrode 8a is arranged immediately below the gate pad electrode 15 in the same manner as in the first embodiment (FIG. 2A), as shown in FIG. 6B.
  • the interlayer insulating film 12 is planarized because the polysilicon gate electrode 8a is not disposed at the location where the notch 30 is formed.
  • FIG. 6 illustrates an example in which the notch 30 is formed in the polysilicon gate electrode 8a on the p-well region 16, the polysilicon gate electrode 8c and the polysilicon gate electrode 8a are electrically connected to each other.
  • the polysilicon gate electrode 8c just below the portion between the gate pad electrode 15 and the source electrode 14 may be cut off.
  • the third embodiment may be applied, and one polysilicon gate electrode 8a having the same size as the gate pad electrode 15 may be disposed over the entire region immediately below the gate pad electrode 15.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the superjunction MOSFET is described as an example.
  • the present invention is also applicable to a planar gate MOSFET, a superjunction IGBT, and a planar gate IGBT as shown in FIGS. Can do.
  • the longitudinal direction of the pn parallel column (direction in which the pn parallel column extends in a stripe shape)
  • the longitudinal direction of the p channel region are parallel.
  • the longitudinal direction of the pn parallel column and the longitudinal direction of the second conductivity type channel region may be orthogonal to each other.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor device according to the present invention is useful for a MOS semiconductor device such as a super junction MOS transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 超接合半導体基板(1)のおもて面に、互いに離してゲートパッド電極(15)およびソース電極(14)が配置される。ソース電極(14)の直下には、nソース領域(6)、pチャネル領域(5)、pコンタクト領域(9)、ゲート酸化膜およびポリシリコンゲート電極からなるMOSゲート構造が形成される。ゲートパッド電極(15)直下にはpウェル領域(16)が形成される。pチャネル領域(5)は、延伸箇所(5a)を介してpウェル領域(16)に連結される。pウェル領域(16)の幅をpチャネル領域(5)の幅より広くすることで、ボディダイオード(21)の逆回復過程で発生する逆回復電流によって生じる電圧降下を低減させることができる。これにより、ゲート絶縁膜の、ゲートパッド電極(15)中央直下の部分の破壊を防止し、半導体装置の破壊を防止することができる。

Description

半導体装置
 この発明は、半導体装置に関する。
 従来、MOS(金属-酸化膜-半導体)型半導体装置として、絶縁ゲート型電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)が公知である。従来のMOS型半導体装置について、半導体基板上に平板状にMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)を設けたプレーナゲート型MOSFETを例に説明する。図7は、従来のプレーナゲート型MOSFET500の構成を示す平面図である。図8は、図7(b)の切断線X1-X1、切断線X2-X2および切断線X3-X3における断面構造を示す断面図である。
 図7(a)にはn半導体基板(半導体チップ)51のおもて面に配置されたソース電極61、ゲートパッド電極62およびゲートランナー62aの平面レイアウトを示し、図7(b)には図7(a)の矩形枠Bで囲む部分を拡大して示す。図7(b)では、n半導体基板51のおもて面に配置されたゲート酸化膜55、ポリシリコンゲート電極56および層間絶縁膜59を図示省略し、コンタクトホール60、ソース電極61およびゲートパッド電極62を破線で示す。図8(a)には、図7(b)の切断線X1-X1における断面構造を示す。図8(b)には図7(b)の切断線X2-X2における断面構造を示す。図8(c)には、図7(b)の切断線X3-X3における断面構造を示す。
 図7(a)に示すように、プレーナゲート型MOSFET500は、n半導体基板51のおもて面にゲートパッド電極62およびソース電極61を備える。ゲートパッド電極62は、活性領域の、チップ外周側に配置される。ソース電極61は、活性領域の、ゲートパッド電極62が配置された部分を除くほぼ全面に配置され、例えば略矩形状のゲートパッド電極62の3辺を囲む。ゲートパッド電極62には、ソース電極61の周囲を取り囲むように配置されたゲートランナー62aが接続される。プレーナ型MOSFET500の最外周(チップ最外周)には、活性領域の周囲を囲むように耐圧終端構造部が配置される。活性領域は、オン状態のときに電流が流れる領域である。耐圧終端構造部は、nドリフト領域51aの基板おもて面側の電界を緩和し耐圧を保持する領域である。
 図8(a)には、図7(b)のゲートパッド電極62の、ソース電極61に対向しない1辺と直交する方向(図面横方向)にゲートパッド電極62を切断する切断線X1-X1における断面構造を示す。図8(a)に示すように、ゲートパッド電極62の直下(nドリフト領域51a側)において、nドリフト領域51aとなるn半導体基板51のおもて面の表面層には、1つのpウェル領域63が形成される。pウェル領域63の内部には、基板おもて面側の表面層に、1つのp高濃度領域64が形成される。n半導体基板51のおもて面上には、ゲート酸化膜55を介してポリシリコンゲート電極56が配置される。ポリシリコンゲート電極56の表面上には層間絶縁膜59が形成され、さらに層間絶縁膜59の表面上にはゲートパッド電極62が配置される。
 ポリシリコンゲート電極56は、図示省略する配線によって層間絶縁膜59上のゲートパッド電極62に接続される。n半導体基板51の裏面の表面層にはnドレイン領域57が配置される。また、n半導体基板51の裏面には、nドレイン領域57に接続するドレイン電極58が配置される。n半導体基板51のうち、pウェル領域63とnドレイン領域57とに挟まれた部分がnドリフト領域51aである。pウェル領域63とnドリフト領域51aとの界面には、pn接合65aが形成される。寄生ダイオードであるボディダイオード65は、p高濃度領域64、pウェル領域63、nドリフト領域51a、およびnドレイン領域57で構成される。
 図8(b)には、図7(b)のゲートパッド電極62とソース電極61との間の部分を切断線X1-X1に平行に切断する切断線X2-X2における断面構造を示す。図7(b)のゲートパッド電極62とソース電極61との間の部分とは、ゲートパッド電極62の外周を示す破線と、ソース電極61の外周を示す破線とに挟まれた部分である。図8(b)に示すように、ゲートパッド電極62とソース電極61との間の部分の直下において、n半導体基板51の表面層には、離間した複数の延伸箇所52aが配置される。延伸箇所52aの内部には、基板おもて面側の表面層に、延伸箇所54aが選択的に配置される。延伸箇所52aとは、ソース電極61の直下に配置された後述するpチャネル領域52の、ゲートパッド電極62側に延在する部分である。延伸箇所54aとは、ソース電極61の直下に配置された後述するpコンタクト領域54の、ゲートパッド電極62側に延在する部分である。
 隣り合う延伸箇所52aの間に亘るようにゲート酸化膜55を介してポリシリコンゲート電極56が配置される。ポリシリコンゲート電極56の表面には、ポリシリコンゲート電極56間に露出するpチャネル領域52の延伸箇所52aおよびpコンタクト領域54の延伸箇所54aの表面に亘って、層間絶縁膜59が配置される。n半導体基板51の裏面側には、ゲートパッド電極62の直下と同様に、nドレイン領域57およびドレイン電極58が配置される。pチャネル領域52の延伸箇所52aとnドリフト領域51aとの界面には、pn接合65aが形成される。寄生ダイオードであるボディダイオード65は、pコンタクト領域54の延伸箇所54a、pチャネル領域52の延伸箇所52a、nドリフト領域51a、およびnドレイン領域57で構成される。
 図8(c)には、図7(b)のソース電極61の、チップ外周側の部分を切断線X1-X1に平行に切断する切断線X3-X3における断面構造を示す。図8(c)に示すように、ソース電極61の直下において、n半導体基板51の表面層には、離間した複数のpチャネル領域52が配置される。pチャネル領域52の内部には、基板おもて面側の表面層に、nソース領域53およびpコンタクト領域54がそれぞれ選択的に形成される。pコンタクト領域54は、nソース領域53に接するように、且つnソース領域53よりもpチャネル領域52の中央側に配置される。隣り合うpチャネル領域52に配置されたnソース領域53間に亘って、pチャネル領域52の、nソース領域53とn半導体基板51とに挟まれた部分の表面上には、ゲート酸化膜55を介してポリシリコンゲート電極56が配置される。
 ポリシリコンゲート電極56の表面には、層間絶縁膜59が配置される。層間絶縁膜59の表面には、ソース電極61が配置される。層間絶縁膜59にはコンタクトホール60が形成されており、コンタクトホール60を介してpコンタクト領域54およびnソース領域53がソース電極61に電気的に接続される。n半導体基板51の裏面側には、ゲートパッド電極62の直下と同様に、nドレイン領域57およびドレイン電極58が配置される。pチャネル領域52とnドリフト領域51aとの界面には、pn接合65aが形成される。寄生ダイオードであるボディダイオード65は、pコンタクト領域54、pチャネル領域52、nドリフト領域51a、およびnドレイン領域57で構成される。
 図7(b)に示すように、ソース電極61の直下の複数のpチャネル領域52は、ストライプ状の平面レイアウトで配置される。pチャネル領域52の内部には、pチャネル領域52がストライプ状に延びる方向に平行に例えば直線状の2つのnソース領域53が離間して配置される。離間して配置されたnソース領域53の間には、各nソース領域53に接するようにpコンタクト領域54が配置される。pチャネル領域52およびpコンタクト領域54は、それぞれ延伸箇所52a,54aを介してゲートパッド電極62直下のpウェル領域63およびp高濃度領域64に連結される。
 pチャネル領域52、pチャネル領域52の延伸箇所52aおよびpウェル領域63は、同一の不純物濃度および同一の拡散深さで、同一のマスクを用いてイオン注入により形成される。また、pコンタクト領域54、pコンタクト領域54の延伸箇所54aおよびp高濃度領域64は、同一の不純物濃度および同一の拡散深さで、同一のマスクを用いてイオン注入により形成される。
 このように、ゲートパッド電極62直下に形成された一つのpウェル領域63がソース電極61下面の複数のpチャネル領域52に連結される。これによって、プレーナゲート型MOSFET500のドレイン・ソース間に正電圧が印加したときに、pチャネル領域52およびpウェル領域63とnドリフト領域51aとの間のpn接合65aから広がる空乏層はゲートパッド電極62直下で均一に広がる。これにより、ゲートパッド電極62直下での電界集中が抑制されて、高い耐圧を確保することができる。
 プレーナゲート型MOSFET500のボディダイオード65の逆回復動作(逆回復過程における過剰な正孔67および電子68の動き)について説明する。図9は、図8のプレーナゲート型MOSFET500のボディダイオード65の逆回復動作を示す説明図である。図9(a-1),9(a-2)にはボディダイオード65に順電流Ifが流れた場合を示し、図9(b-1),9(b-2)にはボディダイオード65に逆電流Irが流れた場合を示す。また、9(a-1),9(b-1)にはゲートパッド電極62の直下のキャリアの動きを示し、9(a-2),9(b-2)にはソース電極61の直下のキャリアの動きを示す。
 図9(a-1),9(b-1)に示すゲートパッド電極62の直下では、上述したようにp高濃度領域64、pウェル領域63、nドリフト領域51a、およびnドレイン領域57で寄生ダイオードであるボディダイオード65が構成される。図9(a-2),9(b-2)に示すソース電極61の直下では、上述したようにpコンタクト領域54、pチャネル領域52、nドリフト領域51a、およびnドレイン領域57で寄生ダイオードであるボディダイオード65が構成される。
 図9(a-1),9(a-2)に示すように、プレーナゲート型MOSFET500のドレインとソースとの間に負電圧が印加された場合には、ボディダイオード65に順電流Ifが流れる。この順電流Ifにより、nドリフト領域51aには過剰の正孔67および過剰の電子68が蓄積される。一方、図9(b-1),9(b-2)に示すように、ボディダイオード65が逆回復過程に移行すると、逆電流Irとして、過剰な正孔67はpチャネル領域52およびpウェル領域63へ流れ込み、過剰な電子68はnドレイン領域57へ流れ込む。その結果、キャリアの過剰な蓄積状態は解消されて、プレーナゲート型MOSFET500の耐圧が維持される。
 このようにボディダイオード65に逆電流Irが流れると、この逆電流Irは、ゲートパッド電極62直下のpウェル領域63およびp高濃度領域64にも流れ込む。また、pウェル領域63およびp高濃度領域64に流れ込んだ逆電流Irは、pウェル領域63およびp高濃度領域64からpチャネル領域52およびpコンタクト領域54に流れ込み、さらにコンタクトホール60を経由してソース電極61に流れ込む。この逆電流Irの電流経路での抵抗Rp(図7(b)参照)によって、pウェル領域63の、ゲートパッド電極62中央直下の部分の電位が上昇する。
 このようにボディダイオード65に流れる逆電流Irによってpウェル領域63の、ゲートパッド電極62中央直下の部分の電位が上昇するが、pウェル領域63は、ゲートパッド電極62直下全域に亘って一つの領域として形成される。そのため、ゲートパッド電極62の直下に形成されるボディダイオード65のpn接合65aの表面積は広く、過剰な正孔67がpコンタクト領域54からソース電極61へ流れ込む電流経路の抵抗Rpは小さい。従って、pウェル領域63の、ゲートパッド電極62中央直下の部分の電位上昇は小さい。
 しかしながら、pウェル領域63およびp高濃度領域64はゲートパッド電極62直下全域に一つの領域として配置されるので、pウェル領域63およびp高濃度領域64の不純物濃度がそれぞれの面内でばらついている場合、部分的に抵抗の低い箇所が生じる。この抵抗の低い箇所に周囲から電流(正孔67)が流れ込み、当該抵抗の低い箇所に連結するpチャネル領域52に流れ込む。そのため、pウェル領域63およびp高濃度領域64の電位が上昇して、pウェル領域63とポリシリコンゲート電極56とに挟まれたゲート酸化膜55に大きな電圧が印加され、ゲート酸化膜55が絶縁破壊を起こす虞がある。
 プレーナゲート型MOSFET500をスイッチとして用いる場合、ボディダイオード65は還流ダイオード(FWD:Free Wheeling Diode)として機能する。図10は、誘導負荷Mを接続したインバータ回路の動作を示す説明図である。図10には、インバータ回路の動作にインバータ回路に流れる還流電流Ioを示す。スイッチM1,M2を直列接続したハーフブリッジ回路を端子P,N間に並列に接続した三相出力のインバータ回路を例に説明する。スイッチM1,M2として、例えば上述したプレーナゲート型MOSFET500が用いられる。各ハーフブリッジ回路のスイッチM1,M2間には、誘導負荷Mが接続される。各スイッチM1,M2にはそれぞれ還流ダイオードFWDが並列に接続される。
 図10に示すように、誘導負荷Mおよび還流ダイオードFWDに還流電流Ioが流れている状態でスイッチM1をオンすると、スイッチM1がオンしてスイッチM1からスイッチM2へ向って電流IM1が流れる。この電流IM1は、還流ダイオードFWDおよびボディダイオード65にすでに流れている還流電流Ioを打ち消すように流れて還流ダイオードFWDおよびボディダイオード65をオフ状態にする。図10において、スイッチM1は上アームのMOSFET、スイッチM2は下アームのMOSFET、電流IM1はスイッチM1の電流、端子Pはインバータ回路の正極端子、端子Nはインバータ回路の負極端子である。図9(a)に示す順電流Ifは、図10の誘導負荷Mが接続したインバータ回路の動作において誘導負荷Mおよび還流ダイオードFWDに流れる還流電流Ioの一部でボディダイオード65に流れる順電流Ifである。
 次に、従来のMOS型半導体装置の別の一例として、ドリフト層を、不純物濃度を高めたn型領域とp型領域とを交互に繰り返し配置した並列pn層とした超接合(SJ:Super Junction)構造のMOSFET(以下、超接合型MOSFETとする)について説明する。図11は、従来の超接合型MOSFET600の構成を示す平面図である。図12は、図11(b)の切断線X1-X1、切断線X2-X2および切断線X3-X3における断面構造を示す断面図である。図11(a)には半導体基板(以下、超接合半導体基板(半導体チップ)とする)71のおもて面に配置されたソース電極84、ゲートパッド電極85およびゲートランナー85aの平面レイアウトを示し、n型領域(nカラム)とp型領域(pカラム)とを交互に繰り返し配置した並列pn層(pn並列カラム)74を破線で示す。図11(b)には、図11(a)の矩形枠Bで囲む部分を拡大して示す。図11(b)では、超接合半導体基板71のおもて面に配置されたゲート酸化膜77、ポリシリコンゲート電極78および層間絶縁膜82を図示省略し、コンタクトホール83、ソース電極84およびゲートパッド電極85を破線で示す。
 図12(a)には、図11(b)の切断線X1-X1における断面構造を示す。図12(b)には、図11(b)の切断線X2-X2における断面構造を示す。図12(c)には図11(b)の切断線X3-X3における断面構造を示す。図11(a)に示すように、超接合型MOSFET600は、超接合半導体基板71のおもて面にゲートパッド電極85およびソース電極84を備える。ゲートパッド電極85には、ソース電極84の周囲を取り囲むように配置されたゲートランナー85aが接続される。ゲートパッド電極85、ソース電極84、ゲートランナー85aおよび耐圧終端構造部の平面レイアウトは、図7(a)に示すプレーナゲート型MOSFET500のゲートパッド電極62、ソース電極61、ゲートランナー62aおよび耐圧終端構造部と同様である。
 図12(a)には、図11(b)のゲートパッド電極85の、ソース電極84に対向しない1辺と直交する方向(図面横方向)にゲートパッド電極85を切断する切断線X1-X1における断面構造を示す。図12(a)に示すように、ゲートパッド電極85の直下(pn並列カラム74側)において、第1n層71a上(後述するnドレイン領域80側に対して反対側の表面上)には、pカラム72とnカラム73とを交互に繰り返し配置したpn並列カラム74が配置される。pn並列カラム74上には、第2n層71bが配置される。第2n層71bの内部には、深さ方向にpn並列カラム74の各pカラム72それぞれに対向する位置に、第2n層71bを貫通してpn並列カラム74のpカラム72に達するpウェル領域86が配置される。pウェル領域86は、ゲートパッド電極85直下における耐圧を維持する機能を有する。
 pウェル領域86の内部には、基板おもて面側の表面層に、p高濃度領域87が選択的に配置される。ポリシリコンゲート電極78は、隣り合うpウェル領域86の間に亘るようにゲート酸化膜77を介して配置される。ポリシリコンゲート電極78の表面上には、ポリシリコンゲート電極78間に露出するpウェル領域86およびp高濃度領域87の表面に亘って、層間絶縁膜82が配置される。層間絶縁膜82の表面上には、ゲートパッド電極85が配置される。ポリシリコンゲート電極78は、図示省略する配線によってゲートパッド電極85と電気的に接続される。第1n層71aの、pn並列カラム74側に対して反対側の表面に、nドレイン領域80が配置される。超接合半導体基板71は、ドレイン側からnドレイン領域80、第1n層71a、pn並列カラム74および第2n層71bを順に積層してなる。nドレイン領域80に接続するドレイン電極81が配置される。
 pウェル領域86およびpカラム72のp領域と、第2n層71b、nカラム73および第1n層71aのn領域との界面(太線で示した箇所)にpn接合93が形成される。ボディダイオード91は、p高濃度領域87、pウェル領域86、pカラム72、第1n層71a、およびnドレイン領域80で構成される。
 図12(b)は、図11(b)のゲートパッド電極85とソース電極84との間の部分を切断線X1-X1に平行に切断する切断線X2-X2における断面構造を示す。図11(b)のゲートパッド電極85とソース電極84との間の部分とは、ゲートパッド電極85の外周を示す破線と、ソース電極84の外周を示す破線とに挟まれた部分である。図12(b)に示すように、ゲートパッド電極85とソース電極84との間の部分の直下において、第1n層71a上には、ゲートパッド電極85の直下と同様に、pn並列カラム74および第2n層71bが順に配置される。第2n層71bの内部には、深さ方向にpn並列カラム74の各pカラム72それぞれに対向する位置に、第2n層71bを貫通してpn並列カラム74のpカラム72に達する延伸箇所75aが配置される。
 延伸箇所75aの内部には、基板おもて面側の表面層に、延伸箇所79aが選択的に配置される。延伸箇所75aとは、ソース電極84の直下に配置された後述するpチャネル領域75の、ゲートパッド電極85側に延在する部分である。延伸箇所79aとは、ソース電極84の直下に配置された後述するpコンタクト領域79の、ゲートパッド電極85側に延在する部分である。ポリシリコンゲート電極78は、隣り合う延伸箇所75aの間に亘るようにゲート酸化膜77を介して配置される。ポリシリコンゲート電極78の表面には、ポリシリコンゲート電極78間に露出するpチャネル領域75の延伸箇所75aおよびpコンタクト領域79の延伸箇所79aの表面に亘って、層間絶縁膜82が配置される。第1n層71aの、pn並列カラム74側に対して反対側には、ゲートパッド電極85の直下と同様に、nドレイン領域80およびドレイン電極81が配置される。
 pチャネル領域75の延伸箇所75aおよびpカラム72のp領域と、第2n層71b、nカラム73および第1n層71aのn領域との界面(太線で示した箇所)にpn接合93が形成される。ボディダイオード91は、pコンタクト領域79の延伸箇所79a、pチャネル領域75の延伸箇所75a、pカラム72、第1n層71a、およびnドレイン領域80で構成される。
 図12(c)には、図11(b)のソース電極84の、チップ外周側の部分を切断線X1-X1に平行に切断する切断線X3-X3における断面構造を示す。図12(c)に示すように、ソース電極84の直下において、第1n層71a上には、ゲートパッド電極85の直下と同様に、pn並列カラム74および第2n層71bが順に配置される。第2n層71bの内部には、深さ方向にpn並列カラム74の各pカラム72それぞれに対向する位置に、第2n層71bを貫通してpn並列カラム74のpカラム72に達するpチャネル領域75が配置される。pチャネル領域75の内部には、基板おもて面側の表面層に、nソース領域76およびpコンタクト領域79がそれぞれ選択的に形成される。pコンタクト領域79は、nソース領域76に接するように、且つnソース領域76よりもpチャネル領域75の中央側に配置される。
 隣り合うpチャネル領域75に配置されたnソース領域76間に亘って、pチャネル領域75の、nソース領域76と第2n層71bとに挟まれた部分の表面上に、ゲート酸化膜77を介してポリシリコンゲート電極78が配置される。ポリシリコンゲート電極78の表面上には、層間絶縁膜82が配置される。層間絶縁膜82の表面上には、ソース電極84が配置される。層間絶縁膜82にはコンタクトホール83が形成されており、コンタクトホール83を介してpコンタクト領域79およびnソース領域76がソース電極84に電気的に接続される。第1n層71aの、pn並列カラム74側に対して反対側には、ゲートパッド電極85の直下と同様に、nドレイン領域80およびドレイン電極81が配置される。
 pチャネル領域75およびpカラム72のp領域と、第2n層71b、nカラム73および第1n層71aのn領域との界面(太線で示した箇所)にpn接合92が形成される。ボディダイオード91は、pコンタクト領域79、pチャネル領域75、pカラム72、第1n層71a、およびnドレイン領域80で構成される。
 ゲートパッド電極85の直下に配置されるpn並列カラム74、ゲートパッド電極85とソース電極84との間の部分の直下に配置されるpn並列カラム74、およびソース電極84直下に配置されるpn並列カラム74は一体的に形成される。pn並列カラム74の平面形状はストライプ状であり、不純物濃度、形状、および寸法も同一で、同時に形成される。すなわち、図11(a)に示すように、pカラム72とnカラム73とを交互に繰り返し配置したストライプ状の平面レイアウトでpn並列カラム74が配置される。
 また、図11(b)に示すように、pチャネル領域75、nソース領域76およびpコンタクト領域79の平面レイアウトは、図7(b)に示すプレーナゲート型MOSFET500のpチャネル領域52、nソース領域53およびpコンタクト領域54と同様である。ゲートパッド電極85直下のpウェル領域86とソース電極84直下のpチャネル領域75とは、互いにpチャネル領域75の延伸箇所75aを介して連結される。pウェル領域86は、pチャネル領域75に平行なストライプ状の平面レイアウトで配置され、その不純物濃度、形状および寸法はpチャネル領域75と同一であり、pチャネル領域75と同時に形成される。また、ゲートパッド電極85直下のp高濃度領域87とソース電極84直下のpコンタクト領域79とは、互いにpコンタクト領域79の延伸箇所79aを介して連結される。p高濃度領域87は、pコンタクト領域79に平行なストライプ状の平面レイアウトで配置され、その不純物濃度、形状および寸法はpコンタクト領域79と同一であり、pコンタクト領域79と同時に形成される。
 このように超接合型MOSFET600では、チップ面内の耐圧均一化を図るために、ゲートパッド電極85直下にも、ソース電極84直下と同様に、pn並列カラム74が形成される。ソース電極84直下のpチャネル領域75に連結されるゲートパッド電極85直下のpウェル領域86は、pチャネル領域75と異なる形状であっても、チップ面内の耐圧にはほとんど影響がない。
 また、超接合型MOSFET600は、図7に示したプレーナゲート型MOSFET500と異なり、ゲートパッド電極85直下全域に一つのp領域を配置せずに、pウェル領域86およびp高濃度領域87をそれぞれストライプ状の平面レイアウトで配置している。このため、ストライプを構成する直線状の各pウェル領域86および各p高濃度領域87の表面積は、それぞれ、図7のプレーナゲート型MOSFET500のゲートパッド電極62直下のpウェル領域63およびp高濃度領域64の表面積より小さい。したがって、pウェル領域86およびp高濃度領域87の不純物濃度がばらついて部分的に抵抗の低い箇所が生じ、この抵抗の低い箇所に周囲から電流(後述する逆電流Irとしての正孔67)が流れ込んだとしても、pウェル領域86およびp高濃度領域87の電位の上昇が抑えられる。このため、pウェル領域86とポリシリコンゲート電極78とに挟まれたゲート酸化膜77に印加される電圧が小さく、不純物濃度のばらつきによるゲート酸化膜77の絶縁破壊が抑制される。
 また、この超接合型MOSFET600では、ゲートパッド電極85直下のpn接合92(ボディダイオード91)の面積はプレーナゲート型MOSFET500のゲートパッド電極62直下のpn接合65a(ボディダイオード65)の面積に比べると大きくなる。そのために、ボディダイオード91の逆回復過程において、ゲートパッド電極85直下のpウェル領域86およびp高濃度領域87を経由してpチャネル領域75およびpコンタクト領域79に流れ込む正孔67の量は、プレーナゲート型MOSFET500に比べて大きくなる。しかし、この正孔67は各pウェル領域86および各p高濃度領域87に比較的均等に分散して流れ、抵抗の低い特定のpウェル領域86およびp高濃度領域87に集中して流れることはない。
 しかしながら、超接合型MOSFET600のpウェル領域86およびp高濃度領域87はストライプ状に配置されるため、電流(正孔67)の電流経路の抵抗Rは大きくなる(図11(b)参照)。そのため、超接合型MOSFET600のpウェル領域86の、ゲートパッド電極85の中央直下の部分の電位上昇が大きくなり、ゲート酸化膜77が絶縁破壊を起こす虞がある。
 超接合型MOSFET600のボディダイオード91の逆回復過程における正孔67の動きについて説明する。図13は、図12の超接合型MOSFET600のボディダイオード91の逆回復動作を示す説明図である。図13(a-1),13(a-2)にはボディダイオード91に順電流Ifが流れた場合を示し、図13(b-1),13(b-2)にはボディダイオード91に逆電流Irが流れた場合を示す。また、図13(a-1),13(b-1)にはゲートパッド電極85直下のキャリアの動きを示し、13(a-2),13(b-2)にはソース電極84直下のキャリアの動きを示す。
 図13(a-1),13(a-2)に示すように、超接合型MOSFET600のボディダイオード91が順バイアスされて順電流Ifが流れると、pカラム72およびnカラム73には過剰な正孔67および電子68が蓄積される。一方、図13(b-1),13(b-2)に示すように、ボディダイオード91が逆回復過程に移行すると、逆電流Irとして、過剰な正孔67はpウェル領域86およびpチャネル領域75へ流れ込み、過剰な電子68はnドレイン領域80に流れ込む。pウェル領域86およびp高濃度領域87に流れる正孔67は、pチャネル領域75およびpコンタクト領域79を経由してソース電極84に流れ込み、pチャネル領域75に流れ込んだ正孔67はコンタクトホール83を経由してソース電極84に流れ込む。
 下記特許文献1には、トレンチ構造のMOSFETが形成された素子領域、導電領域および外周領域を有し、素子領域外周端が導電領域近傍に外向きの凸の角部を有することで素子耐圧を確保しつつ逆回復時の破壊耐量を向上させた装置が開示されている。
 下記特許文献2には、ゲートパッド電極直下のpウェル領域の表面にp型の不純物を高濃度に添加したpコンタクト領域を設けることでゲート絶縁膜の絶縁破壊を防止した装置が提案されている。
 下記特許文献3には、追加のイオン注入により表層部のp型不純物濃度を高めて、ゲートパッド電極下部のpウェル領域の導電性を高めることでゲート絶縁膜の絶縁破壊を防止した装置が提案されている。
 下記特許文献4には、ゲートパッド電極直下からソース電極直下に亘って設けられたpウェル領域の、ソース電極直下の部分にトレンチを形成し、このトレンチにタングステン層を充填して、このタングステン層とソース電極とを接続することでゲート絶縁膜の絶縁破壊を防止した装置が提案されている。
 すなわち、下記特許文献2~4では、ゲートパッド電極の周囲に配置されるソース電極の端部にゲートパッド電極直下に配置されるpウェル領域を電気的に接続させ、ボディダイオードが逆回復するときにpウェル領域に流れ込んだ過剰の正孔を引き抜くことで、ゲートパッド電極直下のゲート絶縁膜の絶縁破壊を防止している。
特開2012-164879号公報 特許第4962665号公報 特許第4962664号公報 特開平5-343692号公報
 図13に示す超接合型MOSFET600のボディダイオード91の逆回復過程では、ゲートパッド電極85直下のpウェル領域86を流れる電流(正孔67)と、この電流が流れる電流経路の抵抗との積で算出される大きさの電圧が発生する。このボディダイオード91の逆回復過程で発生する電圧は、ソース電極84の電位を基準にした場合、pウェル領域86の、ゲートパッド電極85中央直下の部分でもっとも高くなる。また、ボディダイオード91の逆回復過程で発生する電圧は、ゲートパッド電極85直下に配置された隣り合うpウェル領域86の間に挟まれた部分の表面上のゲート酸化膜77と、このゲート酸化膜77上に配置されたポリシリコンゲート電極78とに印加される。さらに、ゲート酸化膜77には、ボディダイオード91の逆回復過程で発生する電圧に加えて、ポリシリコンゲート電極78に印加される負のゲート電圧(例えば、-10V程度)が加わるため、高い電圧が印加される。
 このようにゲート酸化膜77に高い電圧が印加されることによってゲート酸化膜77内部での電界がゲート酸化膜77の絶縁破壊強度を超えた場合、ゲート酸化膜77は絶縁破壊を起こす。図14は、図13の従来の超接合型MOSFET600のボディダイオード91の逆回復時におけるゲート酸化膜77の絶縁破壊箇所を示す説明図である。上述したようにボディダイオード91の逆回復過程で発生する電圧はpウェル領域86の、ゲートパッド電極85中央直下の部分でもっとも高くなるため、図14に示すように、ゲート酸化膜77の絶縁破壊箇所はゲートパッド電極85の中央直下の部分となる。ゲート酸化膜77が絶縁破壊を起こすと、ポリシリコンゲート電極78とpウェル領域86とが短絡し、超接合型MOSFET600のゲートとソースとが短絡状態になるため、超接合型MOSFET600は動作不全に陥る。
 この発明は、上述した従来技術による問題点を解消するため、ボディダイオードの逆回復過程で発生するゲート絶縁膜の絶縁破壊を防止することができる半導体装置を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1の第1導電型半導体層の第1主面上に、前記第1の第1導電型半導体層の第1主面に水平な方向に延びるストライプ状の平面形状に、第1導電型カラムと第2導電型カラムとを交互に繰り返し配置してなるpn並列カラムが配置される。前記pn並列カラムの、前記第1の第1導電型半導体層側に対して反対側の表面に、第2の第1導電型半導体層が配置される。前記第2の第1導電型半導体層の内部に、前記第1の第1導電型半導体層の第1主面に水平な方向に延びるストライプ状の平面形状で第2導電型チャネル領域が配置される。前記第2導電型チャネル領域は、前記第2の第1導電型半導体層を深さ方向に貫通して前記第2導電型カラムに接する。前記第2の第1導電型半導体層の内部に、前記第2導電型チャネル領域がストライプ状に延びる第1方向に平行なストライプ状の平面形状で、第2導電型ウェル領域が配置される。前記第2導電型ウェル領域は、前記第2の第1導電型半導体層を深さ方向に貫通して前記第2導電型カラムに接する。前記第2導電型ウェル領域の前記第1方向の一方の端部は、前記第2導電型チャネル領域の前記第1方向の一方の端部に連結される。前記第2導電型チャネル領域の内部に、第1導電型ソース領域が配置される。前記第2導電型チャネル領域の内部の、前記第1導電型ソース領域よりも内側に、前記第1方向に延びる直線状の平面形状で第2導電型コンタクト領域が配置される。前記第2導電型コンタクト領域は、前記第1導電型ソース領域に接する。前記第2導電型ウェル領域の内部に、前記第1方向に延びる直線状の平面形状で、第2導電型高濃度領域が配置される。前記第2導電型高濃度領域の前記第1方向の一方の端部は、前記第2導電型コンタクト領域の前記第1方向の一方の端部に連結される。前記第2導電型チャネル領域の、前記第1導電型ソース領域と前記第2の第1導電型半導体層とに挟まれた部分の表面上に、前記第2の第1導電型半導体層上に亘って、ゲート絶縁膜を介して第1のゲート電極が配置される。前記第1のゲート電極の表面に、層間絶縁膜が配置される。前記層間絶縁膜上に、ソース電極が配置される。前記ソース電極は、前記層間絶縁膜のコンタクトホールを介して前記第2導電型チャネル領域および前記第1導電型ソース領域に接続される。前記層間絶縁膜上の、前記層間絶縁膜を挟んで前記第2導電型ウェル領域および前記第2導電型高濃度領域に対向する位置に、前記ソース電極と離間してゲートパッド電極が配置される。前記ゲートパッド電極は、前記第1のゲート電極に電気的に接続される。前記第1の第1導電型半導体層の第2主面上に、第1導電型ドレイン領域が配置される。ドレイン電極は、前記第1導電型ドレイン領域に接続される。前記第2導電型ウェル領域の、前記第1方向と直交する第2方向の幅は、前記第2導電型チャネル領域の前記第2方向の幅より広い。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記第2導電型ウェル領域および前記第2の第1導電型半導体層の、隣り合う前記第2導電型高濃度領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して第2のゲート電極が配置される。前記第2のゲート電極の表面に、前記層間絶縁膜が配置される。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記ソース電極と前記ゲートパッド電極との間に、第1の第2導電型延伸領域および第2の第2導電型延伸領域が配置される。前記第1の第2導電型延伸領域は、前記第2導電型チャネル領域を前記第1方向に延在させた部分からなり、前記第2の第1導電型半導体層を深さ方向に貫通して前記第2導電型カラムに接する。前記第1の第2導電型延伸領域は、前記第2導電型ウェル領域の前記第1方向の一方の端部に接して前記第2導電型チャネル領域と前記第2導電型ウェル領域とを連結する。前記第2の第2導電型延伸領域は、前記第1の第2導電型延伸領域の内部に、前記第2導電型コンタクト領域を前記第1方向に延在させた部分を配置させてなる。前記第2の第2導電型延伸領域は、前記第2導電型高濃度領域の前記第1方向の一方の端部に接して前記第2導電型コンタクト領域と前記第2導電型高濃度領域とを連結する。前記第1の第2導電型延伸領域および前記第2の第1導電型半導体層の、隣り合う前記第2の第2導電型延伸領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して第3のゲート電極が配置される。前記第3のゲート電極の表面に、前記層間絶縁膜が配置される。前記第3のゲート電極は、前記第1のゲート電極と前記第2のゲート電極とを連結する。
 また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1導電型ドリフト層の第1主面の表面層に、前記第1導電型ドリフト層の第1主面に水平な方向に延びるストライプ状の平面形状で第2導電型チャネル領域が配置される。前記第1導電型ドリフト層の第1主面の表面層に、前記第2導電型チャネル領域がストライプ状に延びる第1方向に平行なストライプ状の平面形状で第2導電型ウェル領域が配置される。前記第2導電型ウェル領域の前記第1方向の一方の端部は、前記第2導電型チャネル領域の前記第1方向の一方の端部に連結される。前記第2導電型チャネル領域の内部に、第1導電型ソース領域が配置される。前記第2導電型チャネル領域の内部の、前記第1導電型ソース領域よりも内側に、前記第1方向に延びる直線状の平面形状で第2導電型コンタクト領域が配置される。前記第2導電型コンタクト領域は、前記第1導電型ソース領域に接する。前記第2導電型ウェル領域の内部に、前記第1方向に延びる直線状の平面形状で第2導電型高濃度領域が配置される。前記第2導電型高濃度領域の前記第1方向の一方の端部は、前記第2導電型コンタクト領域の前記第1方向の一方の端部に連結される。前記第2導電型チャネル領域の、前記第1導電型ソース領域と前記第1導電型ドリフト層とに挟まれた部分の表面上に、ゲート絶縁膜を介して第1のゲート電極が配置される。前記第1のゲート電極の表面に、層間絶縁膜が配置される。前記層間絶縁膜上に、ソース電極が配置される。前記ソース電極は、前記層間絶縁膜のコンタクトホールを介して前記第2導電型チャネル領域および前記第1導電型ソース領域に接続される。前記層間絶縁膜上の、前記層間絶縁膜を挟んで前記第2導電型ウェル領域および前記第2導電型高濃度領域に対向する位置に前記ソース電極と離間してゲートパッド電極が配置される。前記ゲートパッド電極は、前記第1のゲート電極に電気的に接続される。前記第1導電型ドリフト層の第2主面上に、第1導電型ドレイン領域が配置される。ドレイン電極は、前記第1導電型ドレイン領域に接続される。前記第2導電型ウェル領域の、前記第1方向と直交する第2方向の幅は、前記第2導電型チャネル領域の前記第2方向の幅より広い。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記第2導電型ウェル領域および前記第1導電型ドリフト層の、隣り合う前記第2導電型高濃度領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して第2のゲート電極が配置される。前記第2のゲート電極の表面に前記層間絶縁膜が配置される。
 また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記ソース電極と前記ゲートパッド電極との間に、第1の第2導電型延伸領域および第2の第2導電型延伸領域が配置される。前記第1の第2導電型延伸領域は、前記第2導電型チャネル領域を前記第1方向に延在させた部分からなる。前記第1の第2導電型延伸領域は、前記第2導電型ウェル領域の前記第1方向の一方の端部に接して前記第2導電型チャネル領域と前記第2導電型ウェル領域を連結する。前記第2の第2導電型延伸領域は、前記第1の第2導電型延伸領域の内部に、前記第2導電型コンタクト領域を前記第1方向に延在させた部分を配置させてなる。前記第2の第2導電型延伸領域は、前記第2導電型高濃度領域の前記第1方向の一方の端部に接して前記第2導電型コンタクト領域と第2導電型高濃度領域とを連結する。前記第1の第2導電型延伸領域および前記第1導電型ドリフト層の、隣り合う前記第2の第2導電型延伸領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して第3のゲート電極が配置される。前記第3のゲート電極の表面に、前記層間絶縁膜が配置される。前記第3のゲート電極は、前記第1のゲート電極と前記第2のゲート電極とを連結する。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電型高濃度領域の前記第2方向の幅は、前記第2導電型コンタクト領域の前記第2方向の幅より広いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2のゲート電極の前記第2方向の幅は、前記第1のゲート電極の前記第2方向の幅より狭いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記層間絶縁膜を挟んで前記ゲートパッド電極と対向する部分全体に前記第2のゲート電極が配置されていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2のゲート電極は、前記第1のゲート電極と電気的に絶縁されていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記pn並列カラムは、前記第1方向に平行なストライプ状の平面形状で、前記第1導電型カラムと前記第2導電型カラムとが繰り返し交互に配置されてなることを特徴とする。
 上述した発明によれば、ボディダイオードの逆回復過程に、第2導電型ウェル領域の、もっとも電圧が高くなるゲートパッド電極中央直下の部分に印加される電圧を小さくすることができる。これにより、ゲートパッド電極直下のゲート絶縁膜に印加される電圧を小さくすることができる。
 この発明にかかる半導体装置によれば、ボディダイオードの逆回復過程で発生するゲート絶縁膜の破壊を防止することができるという効果を奏する。
図1は、本発明の実施の形態1にかかる半導体装置100の構成を示す平面図である。 図2は、図1(b)の切断線X1-X1、切断線X2-X2および切断線X3-X3における断面構造を示す断面図である。 図3は、ボディダイオード21の逆回復過程でのゲートパッド電極15中央直下の電圧Voおよびゲートパッド電極15直下の電流Iの時間経過に対する波形をシミュレーションした結果を示す特性図である。 図4は、本発明の実施の形態2にかかる半導体装置200の構成を示す断面図である。 図5は、本発明の実施の形態3にかかる半導体装置300の構成を示す断面図である。 図6は、本発明の実施の形態4にかかる半導体装置400の構成を示す断面図である。 図7は、従来のプレーナゲート型MOSFET500の構成を示す平面図である。 図8は、図7(b)の切断線X1-X1、切断線X2-X2および切断線X3-X3における断面構造を示す断面図である。 図9は、図8のプレーナゲート型MOSFET500のボディダイオード65の逆回復動作を示す説明図である。 図10は、誘導負荷Mを接続したインバータ回路の動作を示す説明図である。 図11は、従来の超接合型MOSFET600の構成を示す平面図である。 図12は、図11(b)の切断線X1-X1、切断線X2-X2および切断線X3-X3における断面構造を示す断面図である。 図13は、図12の超接合型MOSFET600のボディダイオード91の逆回復動作を示す説明図である。 図14は、図13の従来の超接合型MOSFET600のボディダイオード91の逆回復時におけるゲート酸化膜77の絶縁破壊箇所を示す説明図である。
 以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。以下の各実施の形態では、超接合型MOSFETを例に説明するが、MOSFETに限定されるものではなく、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)などにも適用することができる。
実施の形態1.
 実施の形態1にかかる半導体装置について説明する。図1は、本発明の実施の形態1にかかる半導体装置100の構成を示す平面図である。図2は、図1(b)の切断線X1-X1、切断線X2-X2および切断線X3-X3における断面構造を示す断面図である。図1(a)には超接合半導体基板(半導体チップ)1のおもて面に配置されたソース電極14、ゲートパッド電極15およびゲートランナー15aの平面レイアウトを示し、n型領域(nカラム)とp型領域(pカラム)とを交互に繰り返し配置した並列pn層(pn並列カラム)4を破線で示す。
 図1(b)には、図1(a)の矩形枠Aで囲む部分を拡大して示す。図1(b)では、超接合半導体基板1のおもて面に配置されたゲート酸化膜(ゲート絶縁膜)7、ポリシリコンゲート電極8および層間絶縁膜12を図示省略し、コンタクトホール13、ソース電極14およびゲートパッド電極15を破線で示す。図2(a)には、図1(b)の切断線X1-X1における断面構造を示す。図2(b)には、図1(b)の切断線X2-X2における断面構造を示す。図2(c)には、図1(b)の切断線X3-X3における断面構造を示す。ここでは、実施の形態1にかかる半導体装置100として、超接合型MOSFET101を例に挙げた。
 図1(a)に示すように、超接合型MOSFET101は、超接合半導体基板1のおもて面に、金属(例えばAl(アルミニウム)-Si(シリコン)など)で形成されたゲートパッド電極15と、金属(例えばAl-Siなど)で形成されたソース電極14と、を備える。ゲートパッド電極15は、例えば、活性領域の、チップ外周側に配置される。ソース電極14は、活性領域の、ゲートパッド電極15が配置された部分を除くほぼ全面に配置され、例えば略矩形状のゲートパッド電極15の3辺を囲む。ゲートパッド電極15には、ソース電極14の周囲を取り囲むように配置されたゲートランナー15aが接続される。超接合型MOSFET101の最外周(チップ最外周)には、耐圧終端構造部が配置される。
 図1(b)に示すように、超接合半導体基板1には、ソース電極14の直下からゲートパッド電極15の直下に亘って、pカラム2とnカラム3とを交互に繰り返し配置したpn並列カラム4が配置される。pカラム2とnカラム3とは、ストライプ状の平面レイアウトで配置される。ソース電極14の直下において、pn並列カラム4上には、pチャネル領域(第2導電型チャネル領域)5が配置される。複数のpチャネル領域5は、例えばpn並列カラム4がストライプ状に延びる方向に平行なストライプ状の平面レイアウトで配置される。pチャネル領域5の内部には、pチャネル領域5がストライプ状に延びる方向(以下、第1方向(長手方向)とする)に平行な直線状の平面レイアウトでnソース領域6およびpコンタクト領域9が配置される。
 ゲートパッド電極15の直下において、pn並列カラム4上には、第1方向に平行なストライプ状の平面レイアウトでpウェル領域(第2導電型ウェル領域)16が配置される。pウェル領域16の内部には、第1方向に平行な直線状の平面レイアウトでp高濃度領域(第2導電型高濃度領域)17が配置される。ゲートパッド電極15の直下のpウェル領域16およびp高濃度領域17は、それぞれ延伸箇所(第1,2の第2導電型延伸領域)5a,9aを介してソース電極14の直下のpチャネル領域5およびpコンタクト領域9に連結(電気的に接続)される。すなわち、pウェル領域16およびp高濃度領域17は、それぞれpチャネル領域5およびpコンタクト領域9に連続するストライプ状の平面レイアウトで配置される。
 延伸箇所5aとは、pチャネル領域5の、ゲートパッド電極15側にかつ第1方向に平行に延在する部分である。延伸箇所9aとは、pコンタクト領域9の、ゲートパッド電極15側にかつ第1方向に平行に延在する部分である。pチャネル領域5およびpコンタクト領域9の各延伸箇所5a,9aは、ゲートパッド電極15とソース電極14との間の部分の直下に、第1方向に平行なストライプ状の平面レイアウトで配置される。図1(b)においてゲートパッド電極15とソース電極14との間の部分とは、ゲートパッド電極15の外周を示す破線と、ソース電極14の外周を示す破線とに挟まれた部分である。
 図2(a)には、図1(b)のゲートパッド電極15の、ソース電極14に対向しない1辺と直交する方向(図面横方向)にゲートパッド電極15を切断する切断線X1-X1における断面構造を示す。図2(a)に示すように、ゲートパッド電極15の直下(pn並列カラム4側)において、第1n層(第1の第1導電型半導体層)1a上(後述するnドレイン領域(第1導電型ドレイン領域)10側に対して反対側の表面上)には、ドリフト層としてpカラム(第2導電型カラム)2とnカラム(第1導電型カラム)3とを交互に繰り返し配置したpn並列カラム4が配置される。pn並列カラム4上には、第2n層(第2の第1導電型半導体層)1bが配置される。第2n層1bの内部には、深さ方向にpn並列カラム4の各pカラム2それぞれに対向する位置に、第2n層1bを貫通してpn並列カラム4のpカラム2に達するpウェル領域16が配置される。隣り合うpウェル領域16同士は、互いに接しないように離間して配置される。
 pウェル領域16の内部には、基板おもて面側の表面層に、pウェル領域16よりも不純物濃度の高いp高濃度領域17が選択的に配置される。pウェル領域16は、ゲートパッド電極15の直下における耐圧を維持する機能を有する。ポリシリコンゲート電極(第2のゲート電極)8aは、隣り合うpウェル領域16内に配置されたp高濃度領域17の間に亘るようにゲート酸化膜7を介して配置される。ポリシリコンゲート電極8aの表面上には、ポリシリコンゲート電極8a間に露出するpウェル領域16およびp高濃度領域17の表面に亘って、層間絶縁膜12が配置される。層間絶縁膜12の表面上には、ゲートパッド電極15が配置される。
 ポリシリコンゲート電極8aは、図示省略する配線によってゲートパッド電極15と電気的に接続される。第1n層1aの、pn並列カラム4側に対して反対側の表面層には、nドレイン領域10が配置される。超接合半導体基板1は、ドレイン側からnドレイン領域10、第1n層1a、pn並列カラム4および第2n層1bを順に積層してなる。nドレイン領域10に接続するドレイン電極11が配置される。pウェル領域16およびpカラム2のp領域と、第2n層1b、nカラム3および第1n層1aのn領域との界面(太線で示した箇所)にpn接合23が形成される。ボディダイオード21は、p高濃度領域17、pウェル領域16、pカラム2、第1n層1a、およびnドレイン領域10で構成される。
 図2(b)は、図1(b)のゲートパッド電極15とソース電極14との間の部分を切断線X1-X1に平行に切断する切断線X2-X2における断面構造を示す。図2(b)に示すように、ゲートパッド電極15とソース電極14との間の部分の直下において、第1n層1a上には、ゲートパッド電極15の直下と同様に、pn並列カラム4および第2n層1bが順に配置される。第2n層1bの内部には、深さ方向にpn並列カラム4のpカラム2に対向する位置に、第2n層1bを貫通してpカラム2に達する延伸箇所5aが配置される。延伸箇所5aの内部には、基板おもて面側の表面層に、延伸箇所9aが選択的に配置される。
 ポリシリコンゲート電極(第3のゲート電極)8bは、隣り合う延伸箇所5a内に配置された延伸箇所9aの間に亘るようにゲート酸化膜7を介して配置される。ポリシリコンゲート電極8bの表面上には、ポリシリコンゲート電極8b間に露出するpチャネル領域5の延伸箇所5aおよびpコンタクト領域9の延伸箇所9aの表面に亘って、層間絶縁膜12が配置される。第1n層1aの、pn並列カラム4側に対して反対側には、ゲートパッド電極15の直下と同様に、nドレイン領域10およびドレイン電極11が配置される。
 ゲートパッド電極15とソース電極14との間には、層間絶縁膜12が露出される。すなわち、層間絶縁膜12の、ポリシリコンゲート電極8bを覆う部分上には、ゲートパッド電極15およびソース電極14は形成されていない。pチャネル領域5の延伸箇所5aおよびpカラム2のp領域と、第2n層1b、nカラム3および第1n層1aのn領域との境界(太線で示した箇所)には、pn接合22が形成される。ボディダイオード21は、pコンタクト領域9の延伸箇所9a、pチャネル領域5の延伸箇所5a、pカラム2、第1n層1a、およびnドレイン領域10で構成される。
 図2(c)には、図1(b)のソース電極14の、チップ外周側の部分を切断線X1-X1に平行に切断する切断線X3-X3における断面構造を示す。図2(c)に示すように、ソース電極14の直下において、第1n層1a上には、ゲートパッド電極15の直下と同様に、pn並列カラム4および第2n層1bが順に配置される。第2n層1bの内部には、深さ方向にpn並列カラム4のpカラム2に対向する位置に、第2n層1bを貫通してpカラム2に達するpチャネル領域5が配置される。pチャネル領域5の内部には、基板おもて面側の表面層に、nソース領域(第1導電型ソース領域)6およびpコンタクト領域(第2導電型コンタクト領域)9がそれぞれ選択的に形成される。
 pコンタクト領域9は、nソース領域6よりもpチャネル領域5の内側に、nソース領域6に接するように配置される。pコンタクト領域9の不純物濃度は、pチャネル領域5の不純物濃度よりも高い。隣り合うpチャネル領域5に配置されたnソース領域6の間に亘って、pチャネル領域5の、nソース領域6と第2n層1bとに挟まれた部分の表面上に、ゲート酸化膜7を介してポリシリコンゲート電極(第1のゲート電極)8cが配置される。ポリシリコンゲート電極8cの表面上には、層間絶縁膜12が配置される。層間絶縁膜12の表面上には、ソース電極14が配置される。層間絶縁膜12にはコンタクトホール13が形成されており、コンタクトホール13を介してpコンタクト領域9およびnソース領域6がソース電極14に電気的に接続される。
 第1n層1aの、pn並列カラム4側に対して反対側には、ゲートパッド電極15の直下と同様に、nドレイン領域10およびドレイン電極11が配置される。pチャネル領域5およびpカラム2のp領域と、第2n層1b、nカラム3および第1n層1aのn領域との界面(太線で示した箇所)にpn接合22が形成される。ボディダイオード21は、pコンタクト領域9、pチャネル領域5、pカラム2、第1n層1a、およびnドレイン領域10で構成される。
 ゲートパッド電極15直下に配置されるpn並列カラム4、ゲートパッド電極15とソース電極14との間の部分の直下に配置されるpn並列カラム4、およびソース電極14直下に配置されるpn並列カラム4は一体的に形成される。pn並列カラム4の平面形状はストライプ状である。pチャネル領域5、pチャネル領域5の延伸箇所5a、pウェル領域16の底面(ドレイン側の面)は、pn並列カラム4のpカラム2に接している。すなわち、pカラム2上(ソース側の表面上)には、pカラム2がストライプ状に延びる方向に、pチャネル領域5、pチャネル領域5の延伸箇所5aおよびpウェル領域16が順に連結された状態で配置される。pn並列カラム4は、例えば、エピタキシャル成長と選択的なイオン注入との組み合わせを複数回繰り返すことで形成される。
 また、図1(b)に示すように、ソース電極14の直下のpチャネル領域5は、pチャネル領域5の延伸箇所5aによってゲートパッド電極15の直下のpウェル領域16に連結される。また、ソース電極14の直下のpコンタクト領域9は、pコンタクト領域9の延伸箇所9aによってゲートパッド電極15の直下のp高濃度領域17に接続される。ゲートパッド電極15の直下のポリシリコンゲート電極8aとソース電極14の直下のポリシリコンゲート電極8cとは、ポリシリコンゲート電極8bによって電気的に接続される。
 上述したpチャネル領域5、pチャネル領域5の延伸箇所5a、およびpウェル領域16は、例えば、同一マスクで同時にイオン注入により形成される。このイオン注入は、例えば、ドーパントとしてボロン(B)を用い、ボロンドーズ量を4×1013/cm2以上7×1013/cm2以下程度とし、これらのp型領域の拡散深さを3μm程度としてもよい。また、pコンタクト領域9、pコンタクト領域9の延伸箇所9a、およびp高濃度領域17は、同一マスクで同時にイオン注入により形成される。このイオン注入は、例えば、ドーパントとしてボロンを用い、ボロンドーズ量を3×1015/cm2程度とし、これらのp型領域の拡散深さを1μm程度としてもよい。図2においては、nソース領域6、pコンタクト領域9およびp高濃度領域17を模式的に図示しており、nソース領域6、pコンタクト領域9およびp高濃度領域17それぞれの拡散深さは便宜的に深く図示されている。
 nソース領域6は、ソース電極14の直下のみに形成される。その理由は、次の通りである。nソース領域6をソース電極14の直下からゲートパッド電極15の直下にまで延在させた場合、ソース電極14とゲートパッド電極15との間に層間絶縁膜12が露出し、外部から侵入した電荷がこの層間絶縁膜12の露出部に蓄積されてゲート電圧のしきい値(Vth)が局所的に低下する。ゲート電圧のしきい値(Vth)が低下することにより、電流が流れやすくなるため半導体装置が発熱し、半導体装置が破壊する虞があるからである。
 図1および図2において、ゲートパッド電極15直下のpウェル領域16の幅(第1方向と直交する第2方向(短手方向)の幅)W1およびp高濃度領域17の幅W2を、ソース電極14直下のpチャネル領域5の幅W3およびpコンタクト領域9の幅W4よりそれぞれ広くする(W1>W3、W2>W4)。これにより、pウェル領域16およびp高濃度領域17を経由してソース電極14に流れ込む電流(正孔流)Iの電流経路の抵抗Rを低減させることができ、抵抗Rで発生する電圧Vを低減させることができる。pウェル領域16およびp高濃度領域17を合わせた抵抗Rは、pカラム2の抵抗に比べて一桁以上小さい。これにより、ボディダイオード21の逆回復過程で発生する、ゲート酸化膜7の、ゲートパッド電極15直下の部分での絶縁破壊を防止することができる。
 上記電流Iの電流経路において、ゲートパッド電極15の中央直下からコンタクトホール13のゲートパッド電極15側端部までの部分の抵抗(以下、電流経路の抵抗とする)Roは、pウェル領域16およびp高濃度領域17を合わせた抵抗Rが主体になる。その理由は、ソース電極14とゲートパッド電極15との間の部分の直下におけるpチャネル領域5およびpコンタクト領域9の延伸箇所5a,9aの長さ(第1方向の幅)が短く、この部分での抵抗値が非常に小さいため、無視することができるからである。また、pウェル領域16およびp高濃度領域17を合わせた抵抗Rは、pウェル領域16の幅W1およびp高濃度領域17の幅W2の広さにほぼ反比例して小さくなる。pウェル領域16およびp高濃度領域17を経由してソース電極14に流れ込む電流(以下、ゲートパッド電極15直下の電流とする)Iを固定した場合、電流Iと抵抗Rとの積である電圧Vもpウェル領域16の幅W1およびp高濃度領域17の幅W2の広さにほぼ反比例して小さくなる。
 具体的には、例えば、pウェル領域16の幅W1を12μm程度とし、pチャネル領域5の幅W3を8μm程度とし、p高濃度領域17の幅W2を6μm程度とし、pコンタクト領域9の幅W4を4μm程度とした場合、ゲートパッド電極15の中央直下からコンタクトホール13のゲートパッド電極15側端部までの部分の抵抗(電流経路の抵抗)Roは、従来構造(pウェル領域86の幅W1’=8μm、p高濃度領域87の幅W2’=4μm)の同部分に比べて30%程度低減させることができる。従来構造とは、ゲートパッド電極85直下のpウェル領域86の幅W1’およびp高濃度領域87の幅W2’がそれぞれソース電極84直下のpチャネル領域75の幅W3’およびpコンタクト領域79の幅W4’と等しい超接合型MOSFET600である(W1’=W3’、W2’=W4’:図11,12参照)。
 従って、ボディダイオード21の逆回復電流によってpウェル領域16の、ゲートパッド電極15の中央直下の部分で発生する電圧(以下、ゲートパッド電極15の中央直下の電圧とする)Voを30%程度低減させることができ、ゲート酸化膜7の、ゲートパッド電極15直下の部分の絶縁破壊を防止することができる。その結果、超接合型MOSFET101のゲートとソースとの短絡を防止することができる。尚、このゲートパッド電極15の中央直下の電圧Voは、コンタクトホール13の端部における電位を基準とした電圧である。
 pウェル領域16およびpチャネル領域5を形成する際にポリシリコンゲート電極8aおよびポリシリコンゲート電極8cをマスクに使用する場合、ゲートパッド電極15直下のポリシリコンゲート電極8aの幅W5は、ソース電極14の直下のポリシリコンゲート電極8cの幅W6より狭くする(W5<W6)。これにより、ゲートパッド電極15直下のpウェル領域16の幅W1およびp高濃度領域17の幅W2を、それぞれ、ソース電極14直下のpチャネル領域5の幅W3およびpコンタクト領域9の幅W4より広くすることができる。また、ゲートパッド電極15の中央直下の電圧Voの低減幅は小さくなるが、p高濃度領域17の幅W2とpコンタクト領域9の幅W4とをほぼ同じ幅としてもよい(W2=W4)。
 次に、上述した実施の形態1にかかる超接合型MOSFET101のゲートパッド電極15の中央直下の電圧Voについて検証した。図3は、ボディダイオード21の逆回復過程でのゲートパッド電極15中央直下の電圧Vo(pウェル領域の電位)およびゲートパッド電極15直下の電流Iの時間経過に対する波形をシミュレーションした結果を示す特性図である。このシミュレーションは単位セル(pウェル領域16、pチャネル領域5の延伸箇所5a、pチャネル領域5とp高濃度領域17、pコンタクト領域9の延伸箇所9a、pコンタクト領域9およびpn並列カラム4からなる箇所)に対して行った。ゲートパッド電極15直下のpウェル領域16の長さ(第1方向の幅)は1mm程度であり、pウェル領域16の中央から端部までの長さは500μm程度とした。図3中の一点鎖線は従来の超接合型MOSFET600を示し、実線は本発明の実施の形態1にかかる超接合型MOSFET101を示す。
 図3に示すように、従来構造(一点鎖線)に比べて、本発明の構造(実線)のゲートパッド電極15の中央直下の電圧Voは30%程度小さくなり、ゲート酸化膜7の絶縁破壊を防止することができることが確認された。本発明においては、pウェル領域16を互いに離して配置し、且つ、pウェル領域16の幅W1をpチャネル領域5の幅W3より広くすることで電流経路の抵抗Roを低くすることができる。このため、各pウェル領域16間で不純物濃度にばらつきがある場合であっても、ゲートパッド電極15中央直下の部分でゲート酸化膜7が絶縁破壊に至ることを防止することができる。
 以上、説明したように、実施の形態1によれば、ゲートパッド電極直下のpウェル領域の幅を、ソース電極直下のpチャネル領域の幅より広くすることで、ボディダイオードの逆回復過程に、pウェル領域の、もっとも電圧が高くなるゲートパッド電極中央直下の部分に印加される電圧を小さくすることができる。これにより、ゲートパッド電極直下のゲート絶縁膜に印加される電圧を小さくすることができるため、ゲート酸化膜7が絶縁破壊に至ることを防止することができる。
実施の形態2.
 次に、実施の形態2にかかる半導体装置の構成について説明する。図4は、本発明の実施の形態2にかかる半導体装置200の構成を示す断面図である。実施の形態2にかかる半導体装置200の平面レイアウトは実施の形態1にかかる半導体装置(図1)と同様である。図4には、図1(b)の切断線X1-X1における断面構造を示す。この図4は図2(a)に示す断面構造の変形例である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、ゲートパッド電極15直下のポリシリコンゲート電極8aを備えていない点である。
 実施の形態2においては、ポリシリコンゲート電極8aをマスクとしてpウェル領域16を形成することができないが、ゲートパッド電極15直下にポリシリコンゲート電極8aがないため、pウェル領域16の電圧が上昇しても、ゲート酸化膜7が絶縁破壊を起こすことはない。また、ゲートパッド電極15直下にポリシリコンゲート電極8aがないため、ゲートパッド電極15直下にポリシリコンゲート電極8aによる凹凸が生じず、ゲートパッド電極15の表面が平坦化される。これにより、ゲートパッド電極15に接続するワイヤの超音波ボンディングを良好に行うことができる。pウェル領域16の形成には、例えば新たなフォトレジストマスクなどを用いればよい。
 また、ゲートパッド電極15とソース電極14との間の部分の直下のポリシリコンゲート電極8bを設けない構成としてもよい。尚、ゲートパッド電極15直下のゲート酸化膜7を備えない構成としてもよい。また、ゲートパッド電極15とソース電極14との間の部分の直下のポリシリコンゲート電極8bを設けない場合、ゲートパッド電極15とソース電極14との間の部分の直下のゲート酸化膜7も備えない構成としてもよい。
 以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 次に、実施の形態3にかかる半導体装置の構成について説明する。図5は、本発明の実施の形態3にかかる半導体装置300の構成を示す断面図である。実施の形態3にかかる半導体装置300の平面レイアウトは実施の形態1にかかる半導体装置(図1)と同様である。図5には、図1(b)の切断線X1-X1における断面構造を示す。この図5は図2(a)に示す断面構造の変形例である。実施の形態3にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、ゲートパッド電極15直下のポリシリコンゲート電極8aの大きさ(表面積)をゲートパッド電極15と同じ大きさにした点である。
 実施の形態3においては、ゲートパッド電極15直下全域に複数の単位セルに亘って1つのポリシリコンゲート電極8aが配置される。この場合、ポリシリコンゲート電極8aをマスクとしてpウェル領域16を形成することができないが、ゲートパッド電極15直下にポリシリコンゲート電極8aによる凹凸が生じないため、ゲートパッド電極15の表面が平坦化される。これにより、ゲートパッド電極15に接続するワイヤの超音波ボンディングを良好に行うことができる。pウェル領域16の形成には、実施の形態2と同様に、新たなフォトレジストマスクなどを用いればよい。
 以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。
実施の形態4.
 次に、実施の形態4にかかる半導体装置の構成について説明する。図6は、本発明の実施の形態4にかかる半導体装置400の構成を示す断面図である。実施の形態4にかかる半導体装置400の平面レイアウトは実施の形態1にかかる半導体装置(図1)と同様である。図6には、図1(b)の切断線X4-X4および切断線Y-Yにおける断面構造を示す。図6(a)には、図1(b)の切断線Y-Yにおける断面構造を示す。図6(b)には、図1(b)の切断線X1-X1における断面構造を示す。図6(c)には、図1(b)の切断線X4-X4における断面構造を示す。実施の形態4にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、ソース電極14直下に配置されるポリシリコンゲート電極8cと、ゲートパッド電極15直下に配置されるポリシリコンゲート電極8aとを電気的に切り離した点である。
 例えば、図6(a)に示すように、ゲートパッド電極15の外周部直下のポリシリコンゲート電極8aに切り欠き30を形成することで、ソース電極14直下に配置されるポリシリコンゲート電極8cと、ゲートパッド電極15直下に配置されるポリシリコンゲート電極8aとが電気的に切り離される。切り欠き30とは、例えば数μm程度の長さでポリシリコンゲート電極8aがない箇所である。切り欠き30の長さは、種々変更可能である。切り欠き30を入れることで、ゲートパッド電極15直下のポリシリコンゲート電極8aはフローティング電位になっている。これにより、ゲートパッド電極15直下に配置されるpウェル領域16の電圧が上昇しても、ゲート酸化膜7に電圧が印加されないため、ゲート酸化膜7は絶縁破壊しない。
 ゲートパッド電極15の直下において、切り欠き30を入れない箇所には、図6(b)に示すように、実施の形態1(図2(a))と同様にポリシリコンゲート電極8aが配置される。一方、図6(c)に示すように、切り欠き30を入れた箇所においては、ポリシリコンゲート電極8aが配置されないことで、層間絶縁膜12が平坦化される。尚、図6では、pウェル領域16上のポリシリコンゲート電極8aに切り欠き30を入れた場合を例に説明しているが、ポリシリコンゲート電極8cとポリシリコンゲート電極8aとが電気的に切り離されていればよく、ゲートパッド電極15とソース電極14との間の部分の直下のポリシリコンゲート電極8cに切り欠きを入れても構わない。
 また、実施の形態3を適用し、ゲートパッド電極15直下全域に亘って、ゲートパッド電極15と同じ大きさの1つのポリシリコンゲート電極8aを配置してもよい。
 以上、説明したように、実施の形態4によれば、実施の形態1と同様の効果を得ることができる。
 以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態では、超接合型MOSFETを例に説明しているが、図7,8に示すようなプレーナゲート型MOSFETや超接合型IGBT、プレーナゲート型IGBTにも適用することができる。また、上述した各実施の形態では、pn並列カラムの長手方向(pn並列カラムがストライプ状に延びる方向)とpチャネル領域の長手方向(pチャネル領域がストライプ状に延びる方向)とが平行である場合を例に説明しているが、pn並列カラムの長手方向と第2導電型チャネル領域の長手方向とを直交させてもよい。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置は、超接合型MOSトランジスタなどMOS型半導体装置に有用である。
 1 超接合半導体基板
 1a 第1n層
 1b 第2n層
 2 pカラム
 3 nカラム
 4 pn並列カラム
 5 pチャネル領域
 5a,9a 延伸箇所
 6 nソース領域
 7 ゲート酸化膜
 8,8a,8b,8c ポリシリコンゲート電極
 9 pコンタクト領域
 10 nドレイン領域
 11 ドレイン電極
 12 層間絶縁膜
 13 コンタクトホール
 14 ソース電極
 15 ゲートパッド電極
 16 pウェル領域
 17 p高濃度領域
 21 ボディダイオード
 22,23 pn接合
 30 切り欠き
 100,200,300,400 半導体装置
 101 超接合型MOSFET
 W1 pウェル領域の幅
 W2 p高濃度領域の幅
 W3 pチャネル領域の幅
 W4 pコンタクト領域の幅
 W5 ゲートパッド電極の直下のポリシリコンゲート電極の幅
 W6 ソース電極の直下のポリシリコンゲート電極の幅

Claims (11)

  1.  第1の第1導電型半導体層と、
     前記第1の第1導電型半導体層の第1主面上に、前記第1の第1導電型半導体層の第1主面に水平な方向に延びるストライプ状の平面形状に、第1導電型カラムと第2導電型カラムとを交互に繰り返し配置してなるpn並列カラムと、
     前記pn並列カラムの、前記第1の第1導電型半導体層側に対して反対側の表面に配置される第2の第1導電型半導体層と、
     前記第2の第1導電型半導体層の内部に、前記第1の第1導電型半導体層の第1主面に水平な方向に延びるストライプ状の平面形状で配置され、かつ前記第2の第1導電型半導体層を深さ方向に貫通して前記第2導電型カラムに接する第2導電型チャネル領域と、
     前記第2の第1導電型半導体層の内部に、前記第2導電型チャネル領域がストライプ状に延びる第1方向に平行なストライプ状の平面形状で配置され、前記第2の第1導電型半導体層を深さ方向に貫通して前記第2導電型カラムに接し、かつ前記第1方向の一方の端部が前記第2導電型チャネル領域の前記第1方向の一方の端部に連結された第2導電型ウェル領域と、
     前記第2導電型チャネル領域の内部に配置された第1導電型ソース領域と、
     前記第2導電型チャネル領域の内部の、前記第1導電型ソース領域よりも内側に、前記第1方向に延びる直線状の平面形状で配置され、前記第1導電型ソース領域に接する第2導電型コンタクト領域と、
     前記第2導電型ウェル領域の内部に、前記第1方向に延びる直線状の平面形状で配置され、かつ前記第1方向の一方の端部が前記第2導電型コンタクト領域の前記第1方向の一方の端部に連結された第2導電型高濃度領域と、
     前記第2導電型チャネル領域の、前記第1導電型ソース領域と前記第2の第1導電型半導体層とに挟まれた部分の表面上に、前記第2の第1導電型半導体層上に亘って、ゲート絶縁膜を介して配置される第1のゲート電極と、
     前記第1のゲート電極の表面に配置される層間絶縁膜と、
     前記層間絶縁膜上に配置され、前記層間絶縁膜のコンタクトホールを介して前記第2導電型チャネル領域および前記第1導電型ソース領域に接続されたソース電極と、
     前記層間絶縁膜上の、前記層間絶縁膜を挟んで前記第2導電型ウェル領域および前記第2導電型高濃度領域に対向する位置に前記ソース電極と離間して配置され、前記第1のゲート電極に電気的に接続されたゲートパッド電極と、
     前記第1の第1導電型半導体層の第2主面上に配置された第1導電型ドレイン領域と、
     前記第1導電型ドレイン領域に接続されたドレイン電極と、
     を備え、
     前記第2導電型ウェル領域の、前記第1方向と直交する第2方向の幅は、前記第2導電型チャネル領域の前記第2方向の幅より広いことを特徴とする半導体装置。
  2.  前記第2導電型ウェル領域および前記第2の第1導電型半導体層の、隣り合う前記第2導電型高濃度領域の間に挟まれた部分の表面上に前記ゲート絶縁膜を介して配置される第2のゲート電極と、
     前記第2のゲート電極の表面に配置された前記層間絶縁膜と、
     をさらに備えることを特徴とする請求項1に記載の半導体装置。
  3.  前記ソース電極と前記ゲートパッド電極との間に、
     前記第2導電型チャネル領域を前記第1方向に延在させた部分からなり、前記第2の第1導電型半導体層を深さ方向に貫通して前記第2導電型カラムに接し、かつ前記第2導電型ウェル領域の前記第1方向の一方の端部に接して前記第2導電型チャネル領域と前記第2導電型ウェル領域とを連結する第1の第2導電型延伸領域と、
     前記第1の第2導電型延伸領域の内部に、前記第2導電型コンタクト領域を前記第1方向に延在させた部分を配置させてなり、前記第2導電型高濃度領域の前記第1方向の一方の端部に接して前記第2導電型コンタクト領域と前記第2導電型高濃度領域とを連結する第2の第2導電型延伸領域と、
     前記第1の第2導電型延伸領域および前記第2の第1導電型半導体層の、隣り合う前記第2の第2導電型延伸領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して配置された第3のゲート電極と、
     前記第3のゲート電極の表面に配置された前記層間絶縁膜と、をさらに備え、
     前記第3のゲート電極は、前記第1のゲート電極と前記第2のゲート電極とを連結することを特徴とする請求項2に記載の半導体装置。
  4.  第1導電型ドリフト層の第1主面の表面層に、前記第1導電型ドリフト層の第1主面に水平な方向に延びるストライプ状の平面形状で配置された第2導電型チャネル領域と、
     前記第1導電型ドリフト層の第1主面の表面層に、前記第2導電型チャネル領域がストライプ状に延びる第1方向に平行なストライプ状の平面形状で配置され、かつ前記第1方向の一方の端部が前記第2導電型チャネル領域の前記第1方向の一方の端部に連結された第2導電型ウェル領域と、
     前記第2導電型チャネル領域の内部に配置された第1導電型ソース領域と、
     前記第2導電型チャネル領域の内部の、前記第1導電型ソース領域よりも内側に、前記第1方向に延びる直線状の平面形状で配置され、前記第1導電型ソース領域に接する第2導電型コンタクト領域と、
     前記第2導電型ウェル領域の内部に、前記第1方向に延びる直線状の平面形状で配置され、かつ前記第1方向の一方の端部が前記第2導電型コンタクト領域の前記第1方向の一方の端部に連結された第2導電型高濃度領域と、
     前記第2導電型チャネル領域の、前記第1導電型ソース領域と前記第1導電型ドリフト層とに挟まれた部分の表面上に、ゲート絶縁膜を介して配置された第1のゲート電極と、
     前記第1のゲート電極の表面に配置される層間絶縁膜と、
     前記層間絶縁膜上に配置され、前記層間絶縁膜のコンタクトホールを介して前記第2導電型チャネル領域および前記第1導電型ソース領域に接続されたソース電極と、
     前記層間絶縁膜上の、前記層間絶縁膜を挟んで前記第2導電型ウェル領域および前記第2導電型高濃度領域に対向する位置に前記ソース電極と離間して配置され、前記第1のゲート電極に電気的に接続されたゲートパッド電極と、
     前記第1導電型ドリフト層の第2主面上に配置された第1導電型ドレイン領域と、
     前記第1導電型ドレイン領域に接続されたドレイン電極と、
     を備え、
     前記第2導電型ウェル領域の、前記第1方向と直交する第2方向の幅は、前記第2導電型チャネル領域の前記第2方向の幅より広いことを特徴とする半導体装置。
  5.  前記第2導電型ウェル領域および前記第1導電型ドリフト層の、隣り合う前記第2導電型高濃度領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して配置される第2のゲート電極と、
     前記第2のゲート電極の表面に配置された前記層間絶縁膜と、
     をさらに備えることを特徴とする請求項4に記載の半導体装置。
  6.  前記ソース電極と前記ゲートパッド電極との間に、
     前記第2導電型チャネル領域を前記第1方向に延在させた部分からなり、前記第2導電型ウェル領域の前記第1方向の一方の端部に接して前記第2導電型チャネル領域と前記第2導電型ウェル領域とを連結する第1の第2導電型延伸領域と、
     前記第1の第2導電型延伸領域の内部に、前記第2導電型コンタクト領域を前記第1方向に延在させた部分を配置させてなり、前記第2導電型高濃度領域の前記第1方向の一方の端部に接して前記第2導電型コンタクト領域と前記第2導電型高濃度領域とを連結する第2の第2導電型延伸領域と、
     前記第1の第2導電型延伸領域および前記第1導電型ドリフト層の、隣り合う前記第2の第2導電型延伸領域の間に挟まれた部分の表面上に、前記ゲート絶縁膜を介して配置される第3のゲート電極と、
     前記第3のゲート電極の表面に配置される前記層間絶縁膜と、をさらに備え、
     前記第3のゲート電極は、前記第1のゲート電極と前記第2のゲート電極とを連結することを特徴とする請求項5に記載の半導体装置。
  7.  前記第2導電型高濃度領域の前記第2方向の幅は、前記第2導電型コンタクト領域の前記第2方向の幅より広いことを特徴とする請求項1~6いずれか一つに記載の半導体装置。
  8.  前記第2のゲート電極の前記第2方向の幅は、前記第1のゲート電極の前記第2方向の幅より狭いことを特徴とする請求項2、3、5、6のいずれか一つに記載の半導体装置。
  9.  前記層間絶縁膜を挟んで前記ゲートパッド電極と対向する部分全体に前記第2のゲート電極が配置されていることを特徴とする請求項2、3、5、6のいずれか一つに記載の半導体装置。
  10.  前記第2のゲート電極は、前記第1のゲート電極と電気的に絶縁されていることを特徴とする請求項2または5に記載の半導体装置。
  11.  前記pn並列カラムは、前記第1方向に平行なストライプ状の平面形状で、前記第1導電型カラムと前記第2導電型カラムとが繰り返し交互に配置されてなることを特徴とする請求項1~3のいずれか一つに記載の半導体装置。
PCT/JP2014/078711 2014-01-16 2014-10-29 半導体装置 WO2015107742A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480038545.XA CN105378932B (zh) 2014-01-16 2014-10-29 半导体装置
JP2015557710A JP6146486B2 (ja) 2014-01-16 2014-10-29 半導体装置
EP14878460.6A EP3007231B1 (en) 2014-01-16 2014-10-29 Semiconductor device
US14/991,877 US9620595B2 (en) 2014-01-16 2016-01-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005880 2014-01-16
JP2014005880 2014-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/991,877 Continuation US9620595B2 (en) 2014-01-16 2016-01-08 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2015107742A1 true WO2015107742A1 (ja) 2015-07-23

Family

ID=53542652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078711 WO2015107742A1 (ja) 2014-01-16 2014-10-29 半導体装置

Country Status (6)

Country Link
US (1) US9620595B2 (ja)
EP (1) EP3007231B1 (ja)
JP (1) JP6146486B2 (ja)
CN (1) CN105378932B (ja)
TW (1) TWI626729B (ja)
WO (1) WO2015107742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163112A (ja) * 2016-03-11 2017-09-14 株式会社東芝 半導体装置
JP7424782B2 (ja) 2019-09-27 2024-01-30 ローム株式会社 半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014116625B4 (de) * 2014-11-13 2020-06-18 Infineon Technologies Austria Ag Vertikale Halbleitervorrichtung und Verfahren für deren Herstellung
JP6844228B2 (ja) * 2016-12-02 2021-03-17 富士電機株式会社 半導体装置および半導体装置の製造方法
CN109755289B (zh) * 2017-11-01 2020-11-24 苏州东微半导体有限公司 一种沟槽型超结功率器件
JP7319496B2 (ja) * 2020-03-17 2023-08-02 株式会社東芝 半導体装置
CN113327982B (zh) * 2021-05-20 2022-04-15 深圳市威兆半导体有限公司 超结mosfet器件及芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343692A (ja) 1992-06-09 1993-12-24 Nec Corp 縦型電界効果トランジスタ
JP2005251905A (ja) * 2004-03-03 2005-09-15 Toshiba Corp 半導体装置
JP2007305751A (ja) * 2006-05-10 2007-11-22 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置
JP2008085188A (ja) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置
JP4962665B2 (ja) 2010-04-06 2012-06-27 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびにパワーモジュール
JP4962664B2 (ja) 2009-10-14 2012-06-27 三菱電機株式会社 電力用半導体装置とその製造方法、ならびにパワーモジュール
JP2012164879A (ja) 2011-02-08 2012-08-30 Denso Corp 半導体装置
JP2013251513A (ja) * 2012-06-04 2013-12-12 Toshiba Corp 半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435069A (ja) * 1990-05-31 1992-02-05 Matsushita Electric Works Ltd 電界効果半導体装置
FR2768858B1 (fr) * 1997-09-22 2001-10-12 Sgs Thomson Microelectronics Structure de plot de grille d'un transistor vertical de type mos ou igbt
JP4967236B2 (ja) * 2004-08-04 2012-07-04 富士電機株式会社 半導体素子
KR100687108B1 (ko) * 2005-05-31 2007-02-27 라이톤 세미컨덕터 코퍼레이션 기생 바이폴라 트랜지스터의 턴온을 억제할 수 있는 고전력반도체 소자
JP5201307B2 (ja) * 2005-12-22 2013-06-05 富士電機株式会社 半導体装置
JP5511124B2 (ja) * 2006-09-28 2014-06-04 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 絶縁ゲート型半導体装置
JP5561922B2 (ja) * 2008-05-20 2014-07-30 三菱電機株式会社 パワー半導体装置
WO2011013379A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Semiconductor apparatus
JP5664142B2 (ja) * 2010-11-09 2015-02-04 富士電機株式会社 半導体装置
JP5999748B2 (ja) * 2011-08-12 2016-09-28 ルネサスエレクトロニクス株式会社 パワーmosfet、igbtおよびパワーダイオード

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343692A (ja) 1992-06-09 1993-12-24 Nec Corp 縦型電界効果トランジスタ
JP2005251905A (ja) * 2004-03-03 2005-09-15 Toshiba Corp 半導体装置
JP2007305751A (ja) * 2006-05-10 2007-11-22 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置
JP2008085188A (ja) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置
JP4962664B2 (ja) 2009-10-14 2012-06-27 三菱電機株式会社 電力用半導体装置とその製造方法、ならびにパワーモジュール
JP4962665B2 (ja) 2010-04-06 2012-06-27 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびにパワーモジュール
JP2012164879A (ja) 2011-02-08 2012-08-30 Denso Corp 半導体装置
JP2013251513A (ja) * 2012-06-04 2013-12-12 Toshiba Corp 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007231A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163112A (ja) * 2016-03-11 2017-09-14 株式会社東芝 半導体装置
JP7424782B2 (ja) 2019-09-27 2024-01-30 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
EP3007231A1 (en) 2016-04-13
CN105378932A (zh) 2016-03-02
JPWO2015107742A1 (ja) 2017-03-23
EP3007231A4 (en) 2017-02-15
TWI626729B (zh) 2018-06-11
EP3007231B1 (en) 2020-12-09
CN105378932B (zh) 2017-10-31
JP6146486B2 (ja) 2017-06-14
TW201539710A (zh) 2015-10-16
US20160126314A1 (en) 2016-05-05
US9620595B2 (en) 2017-04-11

Similar Documents

Publication Publication Date Title
JP6146486B2 (ja) 半導体装置
JP4967236B2 (ja) 半導体素子
JP6021032B2 (ja) 半導体素子およびその製造方法
US9450091B2 (en) Semiconductor device with enhanced mobility and method
JP6415749B2 (ja) 炭化珪素半導体装置
US10490655B2 (en) Insulated gate bipolar transistor (IGBT) with high avalanche withstand
JP5687582B2 (ja) 半導体素子およびその製造方法
JP7369601B2 (ja) 半導体装置およびその製造方法
JP5652409B2 (ja) 半導体素子
JP5011634B2 (ja) 半導体装置およびその半導体装置を用いた双方向スイッチ素子
JP2020191441A (ja) 超接合半導体装置および超接合半導体装置の製造方法
JP6011136B2 (ja) 半導体装置
JP7172216B2 (ja) 半導体装置および半導体回路装置
US11621320B2 (en) Semiconductor device
US11569351B2 (en) Semiconductor device
CN104600067A (zh) 集成电路和制造集成电路的方法
JP2005150348A (ja) 半導体装置
US10644145B2 (en) Semiconductor device and method of manufacturing semiconductor device
WO2024034277A1 (ja) 炭化珪素半導体装置
JP7451981B2 (ja) 半導体装置
JP7306060B2 (ja) 半導体装置
JP7318226B2 (ja) 半導体装置および半導体装置の製造方法
JP2016201563A (ja) 狭アクティブセルie型トレンチゲートigbt
JP2022191131A (ja) 半導体装置
JP2024007911A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014878460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015557710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE