WO2015098776A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2015098776A1
WO2015098776A1 PCT/JP2014/083788 JP2014083788W WO2015098776A1 WO 2015098776 A1 WO2015098776 A1 WO 2015098776A1 JP 2014083788 W JP2014083788 W JP 2014083788W WO 2015098776 A1 WO2015098776 A1 WO 2015098776A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fluororesin
resin composition
melt
ester bond
Prior art date
Application number
PCT/JP2014/083788
Other languages
English (en)
French (fr)
Inventor
智亮 中西
敏亮 澤田
省吾 小寺
真治 和田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015554850A priority Critical patent/JP6477497B2/ja
Priority to KR1020167015101A priority patent/KR102264949B1/ko
Priority to CN201480071048.XA priority patent/CN105849181B/zh
Priority to DE112014005993.5T priority patent/DE112014005993T5/de
Publication of WO2015098776A1 publication Critical patent/WO2015098776A1/ja
Priority to US15/168,868 priority patent/US10633529B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0442Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a resin composition containing a fluororesin, a melt-kneaded product thereof, a molded product thereof, a film or sheet, a laminate, a back sheet for a solar cell, and a method for producing the molded product.
  • Fluororesin is excellent in solvent resistance, low dielectric properties, low surface energy, non-adhesiveness, weather resistance, etc., and is used in various applications that cannot be used with general-purpose plastics.
  • ethylene / tetrafluoroethylene copolymer (hereinafter also referred to as “ETFE”) is a fluororesin excellent in heat resistance, flame retardancy, chemical resistance, weather resistance, low friction, low dielectric properties, etc. Therefore, it is used in a wide range of fields such as coating materials for heat-resistant electric wires, corrosion-resistant piping materials for chemical plants, vinylhouse materials for agriculture, and mold release films. Recently, application to solar cell backsheets has attracted attention.
  • Solar cell backsheets are generally required to have heat resistance, weather resistance, chemical resistance to withstand long-term use, and low dielectric properties to improve the performance of the entire solar cell system. Therefore, it can be said that it can be used for utilizing the characteristics of fluororesins including ETFE.
  • Patent Documents 1 to 3 In order to further improve the properties of fluororesins used for various applications including backsheets for solar cells, for example, techniques for blending fluororesins with other resins have been proposed (for example, Patent Documents 1 to 3). ).
  • Fluorine resin is generally incompatible with other resins. Therefore, in the above technique, when another resin is simply blended with a fluororesin, there is a problem that the incompatible disperse phase becomes coarse and the mechanical strength and elongation decrease.
  • an ester bond-containing resin such as a polycarbonate resin is a resin having excellent mechanical properties.
  • the mechanical properties of the fluororesin can be improved. Due to the problem of the dispersed phase, the properties tended to deteriorate.
  • An object of the present invention is to provide a molding resin material comprising a resin composition or a melt-kneaded product thereof for producing a molded article having excellent mechanical strength and elongation. Furthermore, the present invention also provides a molded body, a film or sheet, a laminate, a solar cell backsheet obtained from the molding resin material, and a method for producing a molded body using the molding resin material.
  • the present invention has the following configurations [1] to [15].
  • [1] A resin composition comprising a fluororesin having at least one of a hydroxy group and a carbonyl group, an ester bond-containing resin having no fluorine atom, and a transesterification catalyst.
  • [2] The resin composition according to [1], wherein the ester bond-containing resin is a polyester resin or a polycarbonate resin.
  • [3] The resin composition according to [1] or [2], wherein a volume ratio of the fluororesin and the ester bond-containing resin is 40/60 to 99.9 / 0.1.
  • the content of the transesterification catalyst is 0.001 to 20 parts by mass with respect to 100 parts by mass in total of the fluororesin, the ester bond-containing resin, and the transesterification catalyst.
  • the resin composition in any one of. [5] The resin composition according to any one of [1] to [4], wherein the fluororesin is an ethylene / tetrafluoroethylene copolymer or a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • transesterification catalyst is at least one selected from the group consisting of a metal salt of an organic acid, a metal salt of carbonic acid, a metal oxide, and a metal hydroxide.
  • a resin composition is at least one selected from the group consisting of zinc salt of carboxylic acid, magnesium salt of carboxylic acid, zinc carbonate, magnesium carbonate, zinc oxide, magnesium oxide, zinc hydroxide and magnesium hydroxide.
  • a molding resin material comprising a melt-kneaded product of the resin composition of any one of [1] to [7].
  • a method for producing a molding resin material comprising melt-kneading the resin composition of any one of [1] to [7].
  • a molded article obtained by melt-molding the resin composition of any one of [1] to [7] or the molding resin material of [8].
  • the molded body according to [10] wherein the molded body has a microphase separation structure having a continuous phase and a dispersed phase, the continuous phase is the fluororesin, and the dispersed phase is the ester bond-containing resin. .
  • a solar cell backsheet comprising the film or sheet of [12] having a thickness of 10 to 100 ⁇ m.
  • the molded body obtained from the resin composition of the present invention is excellent in mechanical strength and elongation.
  • the solar cell backsheet of the present invention has a film having excellent mechanical strength and elongation.
  • the resin composition of the present invention includes a fluororesin having at least one of a hydroxy group and a carbonyl group (hereinafter also referred to as “functional group (I)”), an ester bond-containing resin having no fluorine atom, and a transesterification catalyst. And including.
  • the functional group (I) may be in the side chain or at the end. From the viewpoint of excellent reactivity with an ester bond-containing resin having no fluorine atom, it is preferably at the end, and from the viewpoint of increasing the number of functional groups in the fluororesin, it is preferably in the side chain.
  • the content is preferably 1 to 50,000 terminal functional groups (I) per 10 6 carbon atoms, preferably 10 to 5,000. Is more preferable, and 100 to 1,000 is particularly preferable.
  • the number of terminal functional groups (I) is in the above range, the reactivity of the fluororesin, the moldability of the fluororesin, and the mechanical strength are excellent.
  • the number of terminal functional groups (I) can be calculated from the infrared absorption spectrum (IR) by the method described in JP-A-60-240713.
  • the content of the unit having the functional group (I) is preferably 0.01 to 80 mol%, preferably 0.01 to 60 mol% in all the structural units of the fluororesin. % Is more preferable, and 0.01 to 30 mol% is particularly preferable.
  • the content of the unit having the functional group (I) can be calculated from 1 H-NMR and 19 F-NMR.
  • the fluororesin in the present invention has a unit having a fluorine atom (hereinafter also referred to as “fluorinated unit”).
  • the fluorine-containing unit is a unit based on a monomer having a fluorine atom (hereinafter also referred to as “fluorinated monomer”).
  • Perfluoroolefins having 3 to 5 carbon atoms such as octafluorobutene-1; X 1 (CF 2 ) n CY 1 ⁇ CH 2 (where X 1 and Y 1 are a hydrogen atom or fluorine, respectively) And n represents an integer of 2 to 8); R f OCFX 2 (CF 2 ) m OCF ⁇ CF 2 (where R f is the number of carbon atoms) a 1-6 perfluoroalkyl group, X 2 is a fluorine atom or a trifluoromethyl group, m, perfluorovinyl ethers) of such an integer of 0 ⁇ 5;.
  • perfluoro alkenyl vinyl ether
  • 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole perfluoro (2-methylene-4-methyl-1,3-dioxolane), etc.
  • Examples include a polymer.
  • n is preferably 2 to 6, particularly preferably 2 to 4.
  • perfluorovinyl ethers perfluoroalkyl vinyl ethers are preferable.
  • fluorine-containing monomer fluoroethylenes, perfluoroolefins, polyfluoroalkylethylenes and perfluorovinyl ethers are preferable, and TFE, HFP, PFEE, CF 3 (CF 2 ) 3 CH ⁇ CH 2 and PPVE are particularly preferable.
  • the fluorine-containing unit may be one type or two or more types.
  • the fluororesin in the present invention may contain a unit having no fluorine atom (hereinafter also referred to as “non-fluorine unit”).
  • the non-fluorine unit is a unit based on a monomer having no fluorine atom (hereinafter also referred to as “non-fluorine monomer”).
  • the non-fluorine monomer include olefins having 2 to 5 carbon atoms such as ethylene, propylene, butylene, and isobutylene, vinyl esters, vinyl alcohol, and the like.
  • the non-fluorine unit may be one type or two or more types.
  • the fluorine-containing unit in 100 mol% of all structural units is preferably 20 mol% or more, more preferably 30 mol% or more, and particularly preferably 45 mol% or more. If it is above the above lower limit value, it is excellent in solvent resistance, low dielectric properties, low surface energy properties, non-adhesiveness, and weather resistance.
  • fluororesin in the present invention examples include ethylene / tetrafluoroethylene copolymer (ETFE), polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer.
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • ETFE is particularly preferable from the viewpoint of excellent heat resistance and melt moldability.
  • ETFE in the present invention is a copolymer having units based on TFE and units based on ethylene (hereinafter also referred to as “units based on E”).
  • the molar ratio of units based on TFE / units based on E in ETFE is preferably 20/80 to 80/20, more preferably 30/70 to 70/30, and particularly preferably 40/60 to 60/40.
  • ETFE may contain units based on other monomers in addition to units based on TFE and E. Examples of other monomers include those described above.
  • the volume flow rate (hereinafter, also referred to as "Q value”.) Is preferably 0.01 ⁇ 1,000mm 3 / sec, more preferably 0.1 ⁇ 500 mm 3 / sec 1 to 200 mm 3 / sec is particularly preferable.
  • the Q value is an index representing the melt fluidity of the fluororesin and is a measure of the molecular weight. A large Q value indicates a low molecular weight, and a small Q value indicates a large molecular weight.
  • the Q value is the extrusion speed of the fluororesin when extruded into an orifice of 2.1 mm in diameter and 8 mm in length under a load of 7 kg at a temperature higher by 50 ° C.
  • the melting point of the fluororesin is a value obtained from an endothermic peak when the resin is heated to 300 ° C. at 10 ° C./min in an air atmosphere by scanning differential calorimetry (DSC method).
  • DSC method scanning differential calorimetry
  • a known method can be used, a method of copolymerizing a monomer having a hydroxy group, a monomer having an ester bond or an ether bond, Furthermore, the method of making it react with an ester bond and an ether bond and converting into a hydroxyl group is mentioned.
  • a method of introducing a hydroxy group into the terminal of the fluororesin a known method can be used, and a method of using a hydroxy group-containing compound as an initiator or a chain transfer agent when polymerizing a monomer constituting the fluororesin can be mentioned. It is done.
  • a method of using a hydroxy group-containing compound as the chain transfer agent is preferable because the amount of the hydroxy group introduced can be easily adjusted.
  • the chain transfer agent include alcohols such as methanol, ethanol, n-propanol, isopropanol, and 2-butanol. Methanol having a small molecular weight and excellent thermal stability is preferable.
  • the amount of alcohol used is, for example, 0.01 to 50 with respect to the total (100% by mass) of the polymerization medium and the alcohol when the monomers constituting the fluororesin are polymerized in the polymerization medium. % By mass is preferable, 0.02 to 40% by mass is more preferable, and 0.05 to 20% by mass is particularly preferable.
  • the method for producing ETFE for example, the method described in JP-A-6-298809 can be referred to.
  • the fluororesin having a carbonyl group may be a fluororesin having a group containing a carbonyl group (—C ( ⁇ O) —) in the structure.
  • the group containing a carbonyl group in the structure include a group containing a carbonyl group between carbon-carbon atoms of a hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue and the like.
  • the hydrocarbon group include an alkylene group having 2 to 8 carbon atoms.
  • carbon number of an alkylene group is carbon number in the state which does not contain a carbonyl group.
  • the alkylene group may be linear or branched.
  • the haloformyl group is represented by —C ( ⁇ O) —X 2 (where X 2 is a halogen atom).
  • X 2 is preferably a fluorine atom or a chlorine atom, particularly preferably a fluorine atom.
  • the alkoxy group in the alkoxycarbonyl group may be linear or branched and is preferably an alkoxy group having 1 to 8 carbon atoms, particularly preferably a methoxy group or an ethoxy group.
  • a known method can be used, a method of copolymerizing a fluorine-containing monomer and a monomer having a carbonyl group, a fluorine-containing monomer, a non-fluorine
  • examples thereof include a method of copolymerizing a monomer and a monomer having a carbonyl group.
  • the monomer having a carbonyl group include a cyclic hydrocarbon monomer having a carbonyl group and a polymerizable unsaturated group in the ring, and a cyclic group composed of one or more 5-membered or 6-membered rings.
  • a polymerizable compound which is a hydrocarbon and has a dicarboxylic anhydride group and an in-ring polymerizable unsaturated group is preferred from the viewpoint of excellent polymerizability.
  • the cyclic hydrocarbon is preferably a cyclic hydrocarbon having one or more bridged polycyclic structures. That is, a cyclic hydrocarbon composed of a non-condensed bridged polycyclic structure, a cyclic hydrocarbon in which two or more of the bridged polycyclic structures are condensed, or a cyclic hydrocarbon in which a bridged polycyclic structure and another cyclic structure are condensed A hydrocarbon is preferred.
  • the cyclic hydrocarbon monomer has one or more endocyclic polymerizable unsaturated groups, that is, polymerizable unsaturated groups existing between carbon atoms constituting the hydrocarbon ring.
  • the cyclic hydrocarbon monomer further has a dicarboxylic anhydride group (—CO—O—CO—).
  • the dicarboxylic anhydride group may be bonded to two carbon atoms constituting the hydrocarbon ring, or may be bonded to two carbon atoms outside the ring.
  • the dicarboxylic anhydride group is a carbon atom constituting the ring of the cyclic hydrocarbon and bonded to two adjacent carbon atoms.
  • a halogen atom, an alkyl group, a halogenated alkyl group, or other substituents may be bonded to the carbon atom constituting the ring of the cyclic hydrocarbon instead of the hydrogen atom.
  • the cyclic hydrocarbon monomer include compounds represented by the following formulas (1) to (8), maleic anhydride and the like.
  • R in the formulas (2) and (5) to (8) is a lower alkyl group having 1 to 6 carbon atoms, a halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, or the lower A halogenated alkyl group in which a hydrogen atom in an alkyl group is substituted with a halogen atom.
  • Examples of the cyclic hydrocarbon monomer include itaconic anhydride (hereinafter also referred to as “IAH”), citraconic anhydride (hereinafter also referred to as “CAH”), and 5-norbornene-2,3-dicarboxylic acid.
  • IAH itaconic anhydride
  • CAH citraconic anhydride
  • NAH 5-norbornene-2,3-dicarboxylic acid.
  • anhydrides hereinafter also referred to as “NAH”
  • the acid can be used without using a special polymerization method required when maleic anhydride is used (see JP-A-11-19312).
  • the fluororesin in the present invention containing an anhydride residue can be easily produced.
  • Fluorocopolymer (A1) a unit based on TFE and / or CTFE, a unit based on the cyclic hydrocarbon monomer, and a unit based on a fluorinated monomer (excluding TFE and CTFE)
  • fluorine-containing copolymer (A1) examples include TFE / PPVE / NAH copolymer, TFE / PPVE / IAH copolymer, TFE / PPVE / CAH copolymer, TFE / HFP / NAH copolymer. , TFE / HFP / IAH copolymer, TFE / HFP / CAH copolymer, TFE / VdF / IAH copolymer, TFE / VdF / CAH copolymer, TFE / PPVE / HFP / NAH copolymer, etc. It is done.
  • fluorine-containing copolymer (A2) include TFE / CH 2 ⁇ CH (CF 2 ) 4 F / NAH / E copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 4 F / IAH / E copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 4 F / CAH / E copolymer, TFE / CH 2 ⁇ CH (CF 2 ) 2 F / NAH / E copolymer, TFE / PFEE / IAH / E copolymer, TFE / PFFE / CAH / E copolymer, CTFE / CH 2 ⁇ CH (CF 2 ) 4 F / NAH / E copolymer, CTFE / CH 2 ⁇ CH (CF 2 ) 4 F / IAH / E copolymer, CTFE / CH 2 ⁇ CH (CF 2 ) 4 F / CAH / E copolymer, CTFE / CH 2
  • ester bond-containing resin From the principle of transesterification, the present invention is considered to be applicable to ester bond-containing resins.
  • the ester bond-containing resin is not limited as long as it has a resin having an ester bond site, and specifically includes a polyester resin, a polycarbonate resin, and a polyarylate resin. From the viewpoint of excellent heat resistance, moldability, and mechanical strength, Polyester resins and polycarbonate resins are preferable, and polycarbonate resins are particularly preferable.
  • the ester bond-containing resin in the present invention may be used alone or in combination of two or more.
  • polyester resin The polyester resin can be obtained, for example, by a dehydration condensation reaction between a dicarboxylic acid and a diol or a dehydration condensation reaction of a hydroxycarboxylic acid.
  • the polyester resin include polylactic acid, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polycyclohexanedimethylene terephthalate (PCT) resin, polybutylene naphthalate (PBN) resin, polyethylene naphthalate (PEN).
  • PET, PBT, PCT, PBN and PEN are preferred, and PET, PBT and PCT are particularly preferred from the viewpoint of excellent heat resistance and moldability.
  • the melting point of the polyester resin is from 180 to 280 ° C., preferably from 200 to 270 ° C., particularly preferably from 220 to 260 ° C., from the viewpoint of excellent moldability and heat resistance.
  • the polyester resin may be used alone or in combination of two or more.
  • the polycarbonate resin can be obtained, for example, by an interfacial polycondensation method between a dihydric phenol and a carbonylating agent, a melt transesterification method, or the like.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis [(4-hydroxy-3,5-dimethyl) phenyl] methane, 1,1-bis.
  • Examples of the carbonylating agent include carbonyl halides such as phosgene, carbonate esters such as diphenyl carbonate, and haloformates such as dihaloformates of dihydric phenols.
  • a method for producing a polycarbonate resin in addition to the interfacial polycondensation method and the melt transesterification method, there are a solid phase transesterification method of a carbonate as a prepolymer and a ring-opening polymerization method of a cyclic carbonate.
  • the mass average molecular weight of the polycarbonate resin is preferably 10,000 to 300,000, more preferably 30,000 to 200,000, and particularly preferably 30,000 to 100,000, from the viewpoint of excellent mechanical properties and moldability.
  • the mass average molecular weight is a value measured by gel permeation chromatography (GPC).
  • a commercially available product may be used as the polycarbonate resin.
  • Lexan manufactured by SABIC Innovative Plastics
  • Makrolon manufactured by Bayer
  • Hiloy manufactured by Comalloy
  • Calibre manufactured by Sumika Styron
  • Lupilonx manufactured by Mitsubishi Engineering Plastics
  • Naxell MRC
  • Polymer Edgetek (Polyone), Trilex (Sanyo Kasei), Panlite (Teijin) and the like.
  • the polycarbonate resin may be used alone or in combination of two or more.
  • transesterification catalyst examples include metals, metal organic acid salts, metal inorganic acid salts, metal oxides, metal hydroxides, metal halides, sulfur-containing oxoacids, and nitrogen-containing basic compounds. Can be mentioned.
  • metal examples include zinc, iron, calcium, magnesium, sodium, tin, manganese, aluminum, cerium, barium, cobalt, potassium, cesium, lead, strontium, and antimony.
  • metal in the metal organic acid salt, metal inorganic acid salt, metal oxide, metal hydroxide, and metal halide include the above metals.
  • organic acid salts include carboxylates
  • examples of inorganic acid salts include carbonates, nitrates, phosphates, borates, and the like.
  • examples of the halide include fluoride, chloride, bromide and the like.
  • Examples of the sulfur-containing oxo acid include sulfuric acid, sulfonic acid, sulfinic acid, sulfenic acid and the like.
  • Examples of the nitrogen-containing basic compound include quaternary ammonium salts, tertiary amines, secondary amines, primary amines, pyridines, imidazoles, and ammonia.
  • the transesterification catalyst in the present invention it is excellent in dispersibility in the resin and heat stability, and is difficult to bleed out when the resin composition is melt-kneaded, so that the metal salt of organic acid, the metal salt of carbonic acid, the metal oxidation And metal hydroxides are preferred.
  • Zinc carboxylate, magnesium carboxylate, zinc carbonate, magnesium carbonate, zinc oxide, magnesium oxide, zinc hydroxide, magnesium hydroxide are more preferred, and magnesium hydroxide, magnesium oxide, zinc oxide are particularly preferred. .
  • the shape of the transesterification catalyst in the present invention is not particularly limited.
  • particles for example, a spherical shape, a lump shape, a needle shape or the like can be used.
  • the particle size and axial length are desired to be not more than a certain size from the viewpoint of ensuring excellent moldability of the resin composition or melt-kneaded product and easily avoiding the occurrence of stress defects after film formation.
  • the average particle size is preferably 0.01 to 10 ⁇ m, particularly preferably 0.01 to 3 ⁇ m.
  • the average axial length is preferably from 0.01 to 10 ⁇ m, particularly preferably from 0.1 to 5 ⁇ m.
  • the average particle diameter and the average axial length are values measured by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the resin composition of the present invention is a pigment, an ultraviolet absorber, a light stabilizer, a surface conditioner, a pigment dispersant, a flame retardant, a plasticizer, a filler, a thickener, and an adhesion improvement as long as the effects of the present invention are not impaired.
  • Optional components such as agents and matting agents may be included.
  • the mass ratio of the fluororesin to the ester bond-containing resin is preferably 50/50 to 99.9 / 0.1, 45-99.9 / 0.1 is more preferable, and 65 / 35-99.9 / 0.1 is particularly preferable.
  • a micro phase separation structure is formed in which the fluororesin is a continuous phase (so-called “sea”) and the ester bond-containing resin is a dispersed phase (so-called “island”). It's easy to do.
  • the volume ratio of the fluororesin to the ester bond-containing resin is preferably 40/60 to 99.9 / 0.1, 50 to 99.9 / 0.1 is more preferable, and 60/40 to 99.9 / 0.1 is particularly preferable. If it is the said range, in a molded object, it will be easy to form a micro phase-separation structure in which a fluororesin is a continuous phase and an ester bond containing resin is a dispersed phase.
  • the content of the transesterification catalyst in the resin composition of the present invention is preferably 0.001 to 20 parts by mass with respect to 100 parts by mass in total of the fluororesin, the ester bond-containing resin, and the transesterification catalyst. 005 to 15 parts by mass is more preferable, and 0.01 to 10 parts by mass is particularly preferable.
  • the content of the transesterification catalyst is not less than the lower limit of the above range, the transesterification sufficiently proceeds when the fluororesin, the ester bond-containing resin, and the transesterification catalyst are melt-kneaded.
  • the ester bond-containing resin is difficult to decompose.
  • the resin composition of the present invention can be used for melt molding as it is as a molding resin material (hereinafter also referred to as “molding resin composition”). Further, the resin composition of the present invention can be melt-kneaded and cooled to obtain a molding resin material, which can be used for melt molding.
  • the molding resin material produced by melt-kneading and cooling the resin composition of the present invention is hereinafter also referred to as a melt-kneaded product.
  • the molding resin composition may be a powdered composition in which the components of the resin composition are mixed, or may be particles or the like obtained by granulating the resin composition.
  • the melt-kneaded product may be a powder obtained by melting and kneading the resin composition into a shape such as a pellet or a lump or a melt-kneaded and cooled product.
  • the micro-layer separation structure in the molded body is generated by melt molding of the molding resin material and subsequent cooling.
  • the micro-layer separation structure may not be present at the stage of the molding resin material, and may be present at the stage of the molding resin material. Even if the molding resin composition is manufactured through a melting process, it is considered that there is almost no micro-layer separation structure without a kneading process.
  • the melt-kneaded product is considered to have a micro layer separation structure of a certain level or more.
  • a molding resin composition considered to have almost no micro-layer separation structure can be molded by a melt molding method through a melt-kneading process to produce a molded body made of a resin having a micro-layer separation structure.
  • the melt molding method through the melt-kneading process include extrusion molding and injection molding.
  • the melt-kneaded material considered to have a micro-layer separation structure is not limited to a melt-forming method that undergoes a melt-kneading process.
  • a molded body made of a resin having a structure can be produced.
  • melt molding method having no kneading process or insufficient kneading examples include a melt compression molding method, a melt casting method, a transfer molding method, and the like.
  • the molding resin material in the present invention is preferably a melt-kneaded product having a micro-layer separation structure obtained by melt-kneading the resin composition of the present invention. If it is a melt-kneaded material having a micro-layer separation structure, it is not limited to extrusion molding or injection molding, and should be a resin material for molding used in a melt molding method that does not have a kneading process or is not sufficiently kneaded. Can do.
  • melt-kneaded product obtained by melt-kneading and cooling the resin composition of the present invention as a molding material.
  • the resin composition of the present invention can be melt-kneaded, extruded into a linear shape, cut, cooled, and formed into a pellet-shaped molding material.
  • the hydroxy group or carbonyl group in a part of the fluororesin and the ester in the ester bond-containing resin are partly melt-kneaded in the presence of a transesterification catalyst with the fluororesin and the ester bond-containing resin. It is considered that the bond undergoes transesterification to form a reactant. And it is thought that this reaction product functions as a compatibilizing agent between the fluororesin and the ester bond-containing resin. As a result, in the molded product obtained using the melt-kneaded product, it is easier to form a microphase separation structure in which the continuous phase is a fluororesin and the dispersed phase is an ester bond-containing resin.
  • the melt kneading temperature of the fluororesin, the ester bond-containing resin and the transesterification catalyst is preferably 260 to 300 ° C, particularly preferably 270 to 280 ° C. If it is more than the lower limit of the said range, a resin composition will be easy to melt-knead, and if it is below an upper limit, resin will be hard to decompose
  • the melt kneading time is preferably 5 to 60 minutes, particularly preferably 5 to 30 minutes. If it is below the upper limit of the above range, the resin is hardly decomposed by heat.
  • the melt-kneaded product of the present invention may be produced by a method in which a melt-kneaded product is used as a master batch, and a fluororesin and an ester bond-containing resin are mixed into the master batch and melt-molded.
  • the master batch has a high concentration of the transesterification catalyst, the transesterification reaction proceeds sufficiently and the reaction product can be obtained efficiently. Therefore, the compatibility of the resin in the obtained molded body can be improved.
  • the concentration of the transesterification catalyst in the master batch is preferably 0.1 to 30% by mass, preferably 0.5 to 30% by mass with respect to 100% by mass in total of the fluororesin and the ester bond-containing resin in the master batch. Is more preferable, and 1 to 25% by mass is particularly preferable. If it is said range, transesterification will fully advance.
  • the mass ratio between the fluororesin and the ester bond-containing resin in the masterbatch and the mass ratio between the fluororesin and the ester bond-containing resin to be added later may be the same or different, but are uniform. From the viewpoint of obtaining a stable composition, the same is preferable.
  • the mass ratio of the fluororesin to the ester bond-containing resin in the master batch (the mass of the fluororesin / the mass of the ester bond-containing resin) is preferably 50/50 to 99.9 / 0.1, and 55/45 to 99.99. 9 / 0.1 is more preferable, and 65/35 to 99.9 / 0.1 is particularly preferable.
  • the mass ratio of the amount of the master batch and the total amount of the fluororesin and the ester bond-containing resin added later is preferably 0.1 / 99.9 to 50/50, particularly preferably 1/99 to 20/80. . If it is the said range, the compatibility of resin in the molded object obtained can be improved.
  • the melt-kneading temperature in producing the master batch is preferably 260 to 300 ° C, particularly preferably 270 to 280 ° C. If it is at least the lower limit of the above range, it is easy to melt and knead, and if it is not more than the upper limit, the resin is hardly decomposed by heat.
  • the melt kneading time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and particularly preferably 1 to 10 minutes. If it is below the upper limit of the above range, the resin is hardly decomposed by heat.
  • the temperature at the time of blending the remainder of the fluororesin and the ester bond-containing resin into the master batch and further melt-kneading is preferably 260 to 300 ° C, particularly preferably 260 to 280 ° C.
  • the time is preferably 5 to 60 minutes, more preferably 5 to 30 minutes, and particularly preferably 10 to 30 minutes.
  • the sea-island structure in the molded body of the present invention was preheated for 10 minutes at the same temperature as the kneading temperature using a capillograph, and at a rate of 10 mm / min, L / D (L is the hole length, D is the hole diameter
  • L is the hole length
  • D is the hole diameter
  • the cut surface in the diameter direction of the strand can be observed with an electron microscope.
  • a sea-island structure having an island of 0.1 to 1 piece / ⁇ m 2 is preferable.
  • the number of islands having a sea-island structure is particularly preferably 0.2 to 1 piece / ⁇ m 2 from the viewpoint that a molded article having excellent mechanical strength and elongation can be provided.
  • the molded body of the present invention can be produced by melt molding using a resin composition or a melt-kneaded product as a molding resin material.
  • seat are preferable.
  • a film or the like refers to a molded body having a substantially constant thickness.
  • a film refers to a film having a thickness of 0.2 mm or less
  • a sheet refers to a film having a thickness exceeding 0.2 mm.
  • a film or the like under a commonly used name such as a back sheet for a solar cell is not necessarily limited to the above thickness.
  • the thickness of the film of the present invention is preferably 1 to 800 ⁇ m, particularly preferably 5 to 500 ⁇ m.
  • a film etc. are suitable for uses, such as an agricultural film and a solar cell backsheet which require weather resistance. When using for a solar cell backsheet, it is preferable to use the film of this invention as an outermost layer.
  • the thickness of the film of the present invention is preferably 10 to 100 ⁇ m. Within this range, the cost is low, and the mechanical strength, weather resistance, light shielding properties (ease of blending light shielding pigments) and the like required for solar cell backsheets are excellent.
  • the molding method is not particularly limited, and includes extrusion molding, inflation molding, and injection molding.
  • the molding temperature is preferably 260 to 280 ° C, particularly preferably 270 to 280 ° C.
  • the molding time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and particularly preferably 5 to 30 minutes from the viewpoint that the resin is difficult to decompose.
  • the molded product of the present invention is also referred to as a fluororesin film or sheet (hereinafter also referred to as “fluororesin film”) and an ester bond-containing resin film or sheet (hereinafter referred to as ester bond-containing resin film).
  • fluororesin film an ester bond-containing resin film or sheet
  • ester bond-containing resin film an ester bond-containing resin film or sheet
  • Adhesiveness can be improved.
  • the thickness of the fluororesin film or the like is preferably 1 to 800 ⁇ m, particularly preferably 5 to 500 ⁇ m.
  • the thickness of the ester bond-containing resin film or the like is preferably 100 ⁇ m to 100,000 ⁇ m, particularly preferably 300 to 20,000 ⁇ m.
  • a polycarbonate resin is preferable.
  • Another film or the like may be further laminated on the side not bonded to the molded product of the present invention, such as a fluororesin film and an ester bond-containing resin film.
  • the adhesiveness between the fluororesin film and the like and the ester bond-containing resin film is such that the resin phase that is microphase-separated in the molded body of the present invention disposed between them is compatible with each other. It is thought that it is expressed by touching.
  • the degree of phase separation in the molded body can be controlled by adjusting the volume ratio of each resin component, the layer thickness, the melt fluidity of each resin component, the molding temperature, the molding time, and the like. Generally, when the volume of each resin component in the resin blend is approximately the same, phase separation is more likely to occur.
  • the molded body in the laminate of the present invention preferably has a volume ratio (volume of fluororesin / volume of ester bond-containing resin) of 45/55 to 55/45 from the viewpoint of improving adhesiveness, and 50/50 Is particularly preferred.
  • the thickness of the layer is preferably 10 to 1,000 ⁇ m, more preferably 25 to 500 ⁇ m, and particularly preferably 25 to 200 ⁇ m from the viewpoint of excellent adhesion and cost.
  • a fluororesin film or the like, a molded product and an ester bond-containing resin film or the like are stacked so that the molded product is sandwiched between the fluororesin film or the like and the ester bond-containing resin film or the like, and heated to 260 to 300 ° C. It can be obtained by setting in a press machine, performing compression molding at a surface pressure of 0.01 to 10 MPa, cooling under a pressure of 0.01 to 10 MPa, and then removing from the press machine. If necessary, arrange any film or sheet on the side of the fluororesin film and / or on the side of the ester bond-containing resin film, etc., and heat and press as described above to form the laminate having the three-layer structure.
  • a laminate having a structure of four or more layers having a layer of resin or the like on one side or both sides can be manufactured. Furthermore, the molding resin material of the present invention, the fluororesin and the ester bond-containing resin can be coextruded to produce a laminate having the above three-layer structure, and any melt moldable resin can be produced. Further, it is possible to produce a laminate having a structure of four or more layers as described above.
  • the laminate of the present invention can control antifouling properties, chemical resistance, and weather resistance, and can be suitably used for interior materials such as kitchens, exterior decoration materials such as baskets, and exterior building materials.
  • Examples 2, 4, 8 to 19, 21, 24, 25, 27 to 30 are examples, and examples 1, 3, 5 to 7, 20, 22, 23, and 26 are comparative examples.
  • ETFE-2 ETFE having no hydroxy group, produced by referring to Comparative Example 1 of WO2008 / 069278.
  • Unit based on TFE / E / (perfluorobutyl) ethylene 54.4 / 44.2 / 1.4 (molar ratio), Q value: 40 mm 3 / sec, terminal OH content (terminal per 10 6 carbon atoms OH group number): 0, melting point: 257 ° C.
  • ETFE-4 ETFE having a carbonyl group obtained in Production Example 1 described later.
  • ETFE-5 ETFE obtained in Production Example 2 described later.
  • Unit based on TFE / E / PFEE 53.7 / 45.6 / 0.7 (molar ratio), Q value: 38.1 mm 3 / sec, amount of terminal OH (number of terminal OH groups per 10 6 carbon atoms ): Below detection limit, melting point: 255 ° C.
  • ETFE-6 A mixture of ETFE-4 and ETFE-5 obtained in Production Example 3 described later.
  • Q value 21.3 mm 3 / sec
  • terminal OH amount (number of terminal OH groups per 10 6 carbon atoms): below detection limit
  • melting point 235 ° C.
  • the Q value is the value of fluororesin when extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50 ° C. higher than the melting point of each resin using a flow tester manufactured by Shimadzu Corporation. Extrusion speed.
  • fusing point is the value calculated
  • the composition ratio is a value obtained from the results of melt NMR analysis and infrared absorption spectrum analysis.
  • PC-1 Caliber 301-10 manufactured by Sumika Styron Mass average molecular weight 55,000 (polystyrene conversion value measured by GPC). Melt volume rate 10 cm 3/10 min (measurement condition 300 °C / 1.2kg).
  • PC-2 Caliber 200-3 manufactured by Sumika Stylon Mass average molecular weight 77,000 (polystyrene conversion value measured by GPC). Melt volume rate 3 cm 3/10 min (measurement condition 300 °C / 1.2kg).
  • Transesterification catalyst-C-1 Magnesium hydroxide: MGZ-1 manufactured by Sakai Chemical Co., Ltd.
  • C-2 Magnesium hydroxide: MGZ-3 manufactured by Sakai Chemical Industry Co., Ltd. Average particle size 0.1 ⁇ m
  • C-3 Magnesium hydroxide: Mag Seeds S-6 manufactured by Kamijima Chemical Co., Ltd. Average particle size 1.0 ⁇ m
  • C-4 Magnesium oxide: SMO-2 manufactured by Sakai Chemical Co., Ltd. Average particle size: 2 ⁇ m
  • C-5 Zinc oxide: NZ-LARGE manufactured by Sakai Chemical Industry Co., Ltd.
  • Average axis length 1.0 ⁇ m
  • C-6 Zinc oxide: Finex 30 manufactured by Sakai Chemical Co., Ltd. Average particle size: 35 nm
  • the specific gravity of each component is as follows. ETFE: 1.75g / cm 3, a polycarbonate resin: 1.2g / cm 3, magnesium hydroxide: 2.36g / cm 3, magnesium oxide: 3.65g / cm 3, zinc oxide: 5.61g / cm 3.
  • a polymerization initiator 19 g of tert-butyl peroxypivalate was charged to initiate polymerization.
  • a monomer mixed gas having a molar ratio of TFE / E 60/40 was continuously charged so that the pressure was constant during the polymerization.
  • PFEE in an amount corresponding to 3 mol% and itaconic anhydride (IAH) in an amount corresponding to 0.3 mol% with respect to the total number of moles of TFE and E charged during the polymerization were continuously charged. 5.6 hours after the start of polymerization, when 11.5 kg of the monomer mixed gas was charged, the polymerization tank internal temperature was cooled to room temperature, and the polymerization tank internal pressure was purged to normal pressure.
  • the obtained slurry was put into a 300 L granulation tank charged with 100 kg of water, heated to 105 ° C. with stirring, and the solvent was distilled off and granulated.
  • the obtained granulated product was dried at 135 ° C. for 3 hours to obtain 12.2 kg of ETFE-4 granulated product.
  • PFEE was continuously charged in an amount corresponding to 0.7 mol% with respect to the total number of moles of TFE and E charged during the polymerization. 5.7 hours after the start of the polymerization, when 11.5 kg of the monomer mixed gas was charged, the polymerization tank internal temperature was cooled to room temperature, and the polymerization tank internal pressure was purged to normal pressure. Granulation was carried out in the same manner as in Production Example 1 except that the obtained slurry was used to obtain 12.5 kg of a granulated product of ETFE-5.
  • Examples 1 to 30 (Production of melt-kneaded product)
  • 10 to 11, 15, 22 to 25, and 28 to 30 molding resin materials made of melt-kneaded materials were produced as follows. The ingredients shown in Tables 1 to 3 were introduced into a lab plast mill mixer manufactured by Toyo Seiki Seisakusho set at 270 to 280 ° C, premixed at 20 revolutions per minute for 1 minute, and then 50 revolutions per minute. Then, melt kneading was carried out at kneading temperatures and kneading times shown in Tables 1 to 3 to obtain melt kneaded products.
  • melt-kneaded materials were prepared as follows. ETFE, polycarbonate resin, and transesterification catalyst were added to a lab plast mill mixer manufactured by Toyo Seiki Seisakusho Co., Ltd. set at 270 to 280 ° C. so that the catalyst concentrations in the master batches shown in Tables 1 to 3 were obtained. Thereafter, melt kneading was carried out at 50 revolutions per minute at the master batch kneading temperature and master batch kneading time shown in Tables 1 to 3 to obtain a master batch.
  • the mass ratio of ETFE and polycarbonate resin in the masterbatch is the same as the mass ratio of the remaining ETFE and polycarbonate resin.
  • concentration of the catalyst in a masterbatch is the quantity (mass%) of the transesterification catalyst used for the masterbatch with respect to 100 mass% in total of ETFE in a masterbatch, a polycarbonate resin, and a transesterification catalyst.
  • a fluororesin sheet having a thickness of 300 ⁇ m was obtained in accordance with the method described in the above (Manufacturing of molded product) except that a mold having a thickness of 300 ⁇ m was used.
  • the fluororesin used is ETFE-2 or ETFE-3.
  • a polycarbonate resin sheet having a thickness of 600 ⁇ m was obtained in accordance with the method described in the above (Manufacturing of molded article) except that a mold having a thickness of 600 ⁇ m was used.
  • the polycarbonate resin used is PC-2.
  • the center of a polyimide (trade name: Kapton) sheet having a thickness of 125 ⁇ m and a width of 15 cm square was cut out to a 7 cm square.
  • a molded body to be an adhesive layer was obtained according to the method described in the above (Manufacturing of molded body) except that the cut-out portion was filled with the melt-kneaded material of the example shown in Table 4.
  • a press machine (Mini Test Press manufactured by Toyo Seiki Seisakusho Co., Ltd.), which was set at 280 ° C. in this order by stacking a fluororesin sheet shown in Table 4 and a molded article serving as an adhesive layer and a polycarbonate resin sheet on a mold having a thickness of 1,100 ⁇ m. MP-WCL), and a 150 mm ⁇ 150 mm mirror plate was used as a lid. After preheating for 5 minutes, compression molding was performed at a surface pressure of 8.7 MPa for 5 minutes, and cooling was performed at a surface pressure of 8.7 MPa for 5 minutes to obtain a laminate formed into a mold size.
  • PCT test The obtained laminate was held in a PCT apparatus (EHS-411MD manufactured by ESPEC) for 24 hours under conditions of 120 ° C. and humidity supersaturation, and then the laminate was subjected to a peel test in the same manner as described above.
  • the peel force at N number (number of samples) 2 to 3 was measured.
  • the adhesion was compared by defining the adhesive strength as follows.
  • Examples 2, 4, 8 to 19, 21, 24, 25, and 27 to 30 all showed excellent mechanical strength (maximum point stress) and elongation.
  • Example 1 (Comparative Example) and Example 2 (Example) Example 3 (Comparative Example) and Example 4 (Example)
  • Example 22 (Comparative Example) and Example From comparison with 24, 25 and 27 (all Examples) it can be confirmed that when ETFE having a hydroxy group is used, mechanical strength and elongation are improved by addition of a transesterification catalyst.
  • Example 5 Comparative Example
  • Example 6 Comparative Example
  • Example 23 Comparative Example
  • Example 26 Comparative Example
  • ETFE ETFE having no hydroxy group
  • a transesterification catalyst was blended. Is not effective, and it can be confirmed that the elongation decreases.
  • Example 15 Example 15
  • Example 16 Example 16 using the masterbatch method can obtain better mechanical strength and elongation.
  • Example 13 Example 13
  • Example 15 Example 15
  • it can be confirmed that by using the master batch method improvement in mechanical strength and elongation can be expected even with a small amount of transesterification catalyst.
  • Example 27 Example 27 (Example) and Example 28 (Example)
  • the masterbatch method using ETFE having a carbonyl group was used rather than Example 27 using ETFE having a hydroxy group and using the masterbatch method. It can be confirmed that the superior mechanical strength and elongation are obtained in the case of Example 28 which is not. This is presumably because the carbonyl group could be introduced into ETFE without reducing the molecular weight, and the reaction between ETFE and PC could be performed efficiently during melt kneading. From the comparison between Example 17 (Example) and Example 19 (Example), it can be confirmed that a large improvement in mechanical strength and elongation can be expected by using zinc oxide having a small average particle diameter.
  • Example 7 Comparative Example
  • Example 8 Comparative Example
  • Example 14 Comparative Example
  • excellent mechanical strength and elongation after the PCT test are maintained.
  • the islands of the sea-island structure are finely and uniformly dispersed when the strands are formed. It can be confirmed that it has a good morphology.
  • Example 19 the torque value once decreases and then increases with time. Such a phenomenon is not observed in Example 20 (Comparative Example) using ETFE having no hydroxy group and Example 7 (Comparative Example) using no ester catalyst. Since ETFE and the polycarbonate resin have undergone a transesterification reaction to form a reaction product, it is understood that the viscosity has increased and that the torque value has been observed to increase. From the comparison between Example 19 (Example) and Example 27 (Example), the resin composition of the present invention has a volume ratio of ETFE and polycarbonate resin of around 50/50 from the viewpoint of expressing the adhesiveness of the molded article. It turns out that it is preferable.
  • the molded product according to the present invention contains a transesterification catalyst, and thus has high adhesion even after a 24-hour PCT test. It can be seen that the sex can be maintained. Furthermore, as shown in Example 23 (Comparative Example) and Example 26 (Comparative Example), when ETFE having no hydroxy group is used, the adhesiveness after the 24-hour PCT test is obtained even if a transesterification catalyst is blended. It turns out that there is no effect on improvement. From these results, in the resin composition of the present invention, by controlling the composition ratio of the fluororesin and the ester bond-containing resin, when the molded body is used as an adhesive layer of a laminate, it can exhibit moisture and heat resistance. Recognize.
  • a resin composition capable of producing a molded article having excellent mechanical strength and elongation, and its melt-kneaded product, as well as its molded article, film or sheet, laminate, and solar cell backsheet are provided.
  • the molded article of the present invention can be used for resin building materials such as gutters, molded articles for signs, automobile exterior parts, and the like. Further, by forming into a film or sheet, it can be used not only for a solar battery backsheet but also for a release film, a high weather resistance sheet, and the like.
  • the molded object of this invention can also be used for the contact bonding layer of a laminated body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 優れた機械的強度および伸度を有する樹脂組成物、その溶融混練物およびそれらの成形体の提供。 ヒドロキシ基またはカルボニル基を有するフッ素樹脂と、フッ素原子を有しないエステル結合含有樹脂と、エステル交換触媒と、を含む樹脂組成物、該樹脂組成物を溶融混練してなる溶融混練物、該樹脂組成物や溶融混練物から得られる、成形体、フィルムまたはシート、積層体、太陽電池用バックシート、および該樹脂組成物や溶融混練物を用いた成形体の製造方法である。

Description

樹脂組成物
 本発明は、フッ素樹脂を含む樹脂組成物、その溶融混練物、それらの成形体、フィルムまたはシート、積層体、太陽電池用バックシートおよび成形体の製造方法に関する。
 フッ素樹脂は、耐溶剤性、低誘電特性、低表面エネルギー性、非粘着性、耐候性等に優れていることから、汎用のプラスチックスでは使用できない種々の用途に用いられている。中でもエチレン/テトラフルオロエチレン共重合体(以下、「ETFE」ともいう。)は、耐熱性、難燃性、耐薬品性、耐候性、低摩擦性、低誘電特性等に優れるフッ素樹脂であることから、耐熱電線用被覆材料、ケミカルプラント用耐食配管材料、農業用ビニルハウス用材料、金型用離型フィルム等の幅広い分野に用いられている。最近では、太陽電池用バックシートへの応用が注目されている。太陽電池用バックシートには、長年の使用に耐えるための耐熱性、耐候性、耐薬品性や、太陽電池システム全体の性能を向上させるための低誘電性等が一般に要求される。よって、ETFEをはじめとするフッ素樹脂の特性を活かすことができる用途といえる。
 太陽電池用バックシートを含め、種々の用途に用いられるフッ素樹脂の特性をさらに改善するため、例えば、フッ素樹脂と他の樹脂とをブレンドする技術が提案されている(例えば、特許文献1~3)。
特開昭57-121045号公報 特開昭60-72951号公報 特表2002-544359号公報
 フッ素樹脂は、一般に他の樹脂と非相溶である。そのため、上記の技術において、他の樹脂を、フッ素樹脂に単にブレンドした場合、非相溶の分散相が粗大化し、機械的強度、伸度が低下する等の問題点があった。例えば、ポリカーボネート樹脂のようなエステル結合含有樹脂は、機械的特性に優れた樹脂であるが、フッ素樹脂に単にブレンドすることにより、フッ素樹脂の機械的特性の向上を図ろうとしても、非相溶の分散相の問題により、特性が低下する傾向があった。
 本発明の目的は、優れた機械的強度および伸度を有する成形体を製造するための、樹脂組成物またはその溶融混練物からなる成形用樹脂材料を提供するものである。さらに、また該成形用樹脂材料から得られる、成形体、フィルムまたはシート、積層体、太陽電池用バックシート、および前記成形用樹脂材料を使用した成形体の製造方法を提供するものである。
 本発明は、以下[1]~[15]の構成を有する。
[1]ヒドロキシ基およびカルボニル基の少なくとも一方を有するフッ素樹脂と、フッ素原子を有しないエステル結合含有樹脂と、エステル交換触媒と、を含むことを特徴とする、樹脂組成物。
[2]前記エステル結合含有樹脂が、ポリエステル樹脂またはポリカーボネート樹脂である、[1]の樹脂組成物。
[3]前記フッ素樹脂と前記エステル結合含有樹脂との体積比が、40/60~99.9/0.1である、[1]または[2]の樹脂組成物。
[4]前記エステル交換触媒の含有量が、前記フッ素樹脂と前記エステル結合含有樹脂とエステル交換触媒との合計100質量部に対し、0.001~20質量部である、[1]~[3]のいずれかの樹脂組成物。
[5]前記フッ素樹脂が、エチレン/テトラフルオロエチレン共重合体またはテトラフルオロエチレン/ペルフルオロアルキルビニルエーテル共重合体である、[1]~[4]のいずれかの樹脂組成物。
[6]前記エステル交換触媒が、有機酸の金属塩、炭酸の金属塩、金属酸化物および金属水酸化物からなる群より選択される少なくとも1種である、[1]~[5]のいずれかの樹脂組成物。
[7]前記エステル交換触媒が、カルボン酸の亜鉛塩、カルボン酸のマグネシウム塩、炭酸亜鉛、炭酸マグネシウム、酸化亜鉛、酸化マグネシウム、水酸化亜鉛および水酸化マグネシウムからなる群より選択される少なくとも1種である、[6]の樹脂組成物。
[8]前記[1]~[7]のいずれかの樹脂組成物の溶融混練物からなる成形用樹脂材料。
[9]前記[1]~[7]のいずれかの樹脂組成物を溶融混練することを特徴とする成形用樹脂材料の製造方法。
[10]前記[1]~[7]のいずれかの樹脂組成物または[8]の成形用樹脂材料を溶融成形してなる成形体。
[11]成形体が連続相と分散相とを有するミクロ相分離構造を有し、前記連続相が前記フッ素樹脂であり、前記分散相が前記エステル結合含有樹脂である、[10]の成形体。
[12]成形体がフィルムまたはシートである、[10]または[11]の成形体。
[13]前記[10]~[12]のいずれかの成形体の層とフッ素樹脂の層とエステル結合含有樹脂の層とを有する3層以上の層構造を有する積層体であって、前記成形体の層が前記フッ素樹脂の層と前記エステル結合含有樹脂の層との間に配置されている積層体。
[14]厚さ10~100μmの[12]のフィルムまたはシートを含む、太陽電池用バックシート。
[15]前記[8]の成形用樹脂材料を溶融成形することを特徴とする成形体の製造方法。
 本発明の樹脂組成物から得られる成形体は、機械的強度および伸度に優れる。
 本発明の太陽電池用バックシートは、機械的強度および伸度に優れるフィルムを有する。
例7および14の溶融混練物を用いて作製したストランドの切断面の反射電子像である。 例7、19および20の樹脂組成物を溶融混練した際のトルク値の変化を示す図である。
[樹脂組成物]
 本発明の樹脂組成物は、ヒドロキシ基およびカルボニル基の少なくとも一方(以下、「官能基(I)」ともいう。)を有するフッ素樹脂と、フッ素原子を有しないエステル結合含有樹脂と、エステル交換触媒と、を含む。
 官能基(I)は側鎖にあっても末端にあってもよい。フッ素原子を有しないエステル結合含有樹脂との反応性に優れる点からは、末端にあることが好ましく、フッ素樹脂中の官能基数を多くできる点からは、側鎖にあることが好ましい。
 官能基(I)が末端にある場合、その含有量は、10個の炭素原子あたりの末端官能基(I)数が1~50,000個であることが好ましく、10~5,000個がより好ましく、100~1,000個が特に好ましい。末端官能基(I)数が前記範囲であれば、フッ素樹脂の反応性、フッ素樹脂の成形性、機械的強度に優れる。なお、末端官能基(I)数は、特開昭60-240713号公報に記載の方法より、赤外線吸収スペクトル(IR)から算出できる。
 官能基(I)が側鎖にある場合、官能基(I)を有する単位の含有量が、フッ素樹脂の全構成単位中0.01~80モル%あることが好ましく、0.01~60モル%がより好ましく、0.01~30モル%が特に好ましい。なお、官能基(I)を有する単位の含有量は、H-NMRと19F-NMRより算出できる。
(フッ素樹脂)
 本発明におけるフッ素樹脂は、フッ素原子を有する単位(以下、「含フッ素単位」ともいう。)を有する。含フッ素単位は、フッ素原子を有する単量体(以下、「含フッ素単量体」ともいう。)に基づく単位である。含フッ素単量体としては、CF=CF(以下、「TFE」ともいう。)、CF=CFCl、CF=CH等のフルオロエチレン類;ヘキサフルオロプロピレン(以下、「HFP」ともいう。)、オクタフルオロブテン-1等の炭素原子数3~5のペルフルオロオレフィン類;X(CFCY=CH(ここで、X、Yは、それぞれ水素原子またはフッ素原子であり、nは、2~8の整数を示す。)で表されるポリフルオロアルキルエチレン類;ROCFX(CFOCF=CF(ここで、Rは、炭素原子数1~6のペルフルオロアルキル基であり、Xは、フッ素原子またはトリフルオロメチル基であり、mは、0~5の整数を示す。)等のペルフルオロビニルエーテル類;CHOC(=O)CFCFCFOCF=CF、FSOCFCFOCF(CF)CFOCF=CF等の容易にカルボン酸基またはスルホン酸基に変換可能な基を有するペルフルオロビニルエーテル類;CF=CFOCFCF=CF、CF=CFO(CFCF=CF等のペルフルオロ(アルケニルビニルエーテル)類;ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素単量体等が挙げられる。
 上記X(CFCY=CHで表されるポリフルオロアルキルエチレン類において、nは、2~6が好ましく、2~4が特に好ましい。具体例としては、CFCFCH=CH(以下、「PFEE」ともいう。)、CF(CFCH=CH、CF(CFCH=CH、CFCFCFCF=CH、CFHCFCFCF=CH等が挙げられる。
 上記ペルフルオロビニルエーテル類の具体例としては、ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(エチルビニルエーテル)、ペルフルオロ(プロピルビニルエーテル)(以下、「PPVE」ともいう。)、CF=CFOCFCF(CF)O(CFCF、CF=CFO(CFO(CFCF、CF=CFO(CFCF(CF)O)(CFCF、CF=CFOCFCFOCFCF、CF=CFO(CFCFO)CFCF等が挙げられる。
 ペルフルオロビニルエーテル類としては、ペルフルオロアルキルビニルエーテルが好ましい。
 含フッ素単量体としては、フルオロエチレン類、ペルフルオロオレフィン類、ポリフルオロアルキルエチレン類、ペルフルオロビニルエーテル類が好ましく、TFE、HFP、PFEE、CF(CFCH=CH2、PPVEが特に好ましい。
 含フッ素単位は、1種であっても、2種以上であってもよい。
 本発明におけるフッ素樹脂は、フッ素原子を有しない単位(以下、「非フッ素単位」ともいう。)を含んでいてもよい。非フッ素単位は、フッ素原子を有しない単量体(以下、「非フッ素単量体」ともいう。)に基づく単位である。非フッ素単量体としては、エチレン、プロピレン、ブチレン、イソブチレン等の炭素原子数2~5のオレフィン類、ビニルエステル類、ビニルアルコール等が挙げられる。
 非フッ素単位は、1種であっても、2種以上であってもよい。
 本発明におけるフッ素樹脂は、全構成単位100モル%中の含フッ素単位が20モル%以上であることが好ましく、30モル%以上がより好ましく、45モル%以上が特に好ましい。上記の下限値以上であれば、耐溶剤性、低誘電特性、低表面エネルギー性、非粘着性、耐候性に優れる。
 本発明におけるフッ素樹脂としては、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ペルフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)等が挙げられる。耐熱性および溶融成形性に優れる点から、ETFEが特に好ましい。
 本発明におけるETFEは、TFEに基づく単位とエチレンに基づく単位(以下、「Eに基づく単位」ともいう。)を有する共重合体である。ETFE中のTFEに基づく単位/Eに基づく単位のモル比は20/80~80/20が好ましく、30/70~70/30がより好ましく、40/60~60/40が特に好ましい。ETFEは、TFEとEに基づく単位の他に他の単量体に基づく単位を含んでいてもよい。他の単量体としては上述のものが挙げられる。
 本発明のフッ素樹脂は、その容量流速(以下、「Q値」ともいう。)は、0.01~1,000mm/秒であることが好ましく、0.1~500mm/秒がより好ましく、1~200mm/秒が特に好ましい。Q値は、フッ素樹脂の溶融流動性を表す指標であり、分子量の目安となる。Q値が大きいと分子量が低く、小さいと分子量が大きいことを示す。Q値は、島津製作所製フローテスターを用いて、樹脂の融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出す際のフッ素樹脂の押出し速度である。フッ素樹脂の融点は、走査型示差熱量分析法(DSC法)により、樹脂を空気雰囲気下に300℃まで10℃/分で加熱した際の吸熱ピークから求めた値である。フッ素樹脂のQ値が上記範囲であると、フッ素樹脂は押出し成形性、機械的強度に優れる。
 本発明におけるフッ素樹脂は、1種でも、2種以上を使用してもよい。
<ヒドロキシ基の導入>
 フッ素樹脂の側鎖にヒドロキシ基を導入する方法としては、公知の方法が使用でき、ヒドロキシ基を有する単量体を共重合させる方法、エステル結合やエーテル結合を有する単量体を共重合させ、さらにエステル結合やエーテル結合を反応させてヒドロキシ基に転換する方法が挙げられる。
 フッ素樹脂の末端にヒドロキシ基を導入する方法としては、公知の方法が使用でき、フッ素樹脂を構成する単量体の重合に際して、開始剤または連鎖移動剤にヒドロキシ基含有化合物を使用する方法が挙げられる。ヒドロキシ基の導入量の調整がしやすい点から、連鎖移動剤にヒドロキシ基含有化合物を使用する方法が好ましい。連鎖移動剤としては、たとえばメタノール、エタノール、n-プロパノール、イソプロパノール、2-ブタノール等のアルコール類が挙げられ、分子量が小さく、熱安定性に優れるメタノールが好ましい。アルコール類の使用量は、例えば、重合媒体中で、フッ素樹脂を構成する単量体の重合をさせる場合、重合媒体とアルコール類との合計(100質量%)に対して、0.01~50質量%が好ましく、0.02~40質量%がより好ましく、0.05~20質量%が特に好ましい。ETFEの製造方法については、例えば、特開平6-298809号公報記載の方法を参照することができる。
<カルボニル基の導入>
 フッ素樹脂がカルボニル基を有するとは、構造中にカルボニル基(-C(=O)-)を含む基を有するフッ素樹脂であればよい。構造中にカルボニル基を含む基としては、炭化水素基の炭素-炭素原子間にカルボニル基を含む基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基等が挙げられる。
 炭化水素基としては、炭素数2~8のアルキレン基等が挙げられる。なお、アルキレン基の炭素数は、カルボニル基を含まない状態での炭素数である。アルキレン基は直鎖状であっても分岐状であってもよい。
 ハロホルミル基は、-C(=O)-X(ただしXはハロゲン原子である。)で表される。Xは、フッ素原子、塩素原子が好ましく、フッ素原子が特に好ましい。
 アルコキシカルボニル基におけるアルコキシ基は、直鎖状であっても分岐状であってもよく、炭素数1~8のアルコキシ基が好ましく、メトキシ基またはエトキシ基が特に好ましい。
 フッ素樹脂の側鎖にカルボニル基を導入する方法としては、公知の方法が使用でき、含フッ素単量体およびカルボニル基を有する単量体とを共重合する方法、含フッ素単量体、非フッ素単量体およびカルボニル基を有する単量体とを共重合する方法等が挙げられる。
 カルボニル基を有する単量体としては、カルボニル基を有しかつ環内に重合性不飽和基を有する環状炭化水素単量体が挙げられ、1つ以上の5員環または6員環からなる環状炭化水素であって、しかもジカルボン酸無水物基と環内重合性不飽和基を有する重合性化合物が重合性に優れる点から好ましい。
 環状炭化水素としては1つ以上の有橋多環構造を有する環状炭化水素が好ましい。すなわち、非縮合の有橋多環構造体からなる環状炭化水素、有橋多環構造体の2以上が縮合した環状炭化水素、または有橋多環構造体と他の環状構造体が縮合した環状炭化水素であることが好ましい。
 環状炭化水素単量体は環内重合性不飽和基、すなわち炭化水素環を構成する炭素原子間に存在する重合性不飽和基、を1つ以上有する。
 環状炭化水素単量体はさらにジカルボン酸無水物基(-CO-O-CO-)を有する。ジカルボン酸無水物基は、炭化水素環を構成する2つの炭素原子に結合していてもよく、環外の2つの炭素原子に結合していてもよい。好ましくは、ジカルボン酸無水物基は上記環状炭化水素の環を構成する炭素原子であってかつ隣接する2つの炭素原子に結合する。さらに、環状炭化水素の環を構成する炭素原子には、水素原子の代わりに、ハロゲン原子、アルキル基、ハロゲン化アルキル基、その他の置換基が結合していてもよい。
 環状炭化水素単量体の具体例としては、下式(1)~(8)で表される化合物、無水マレイン酸等が挙げられる。ここで、式(2)、(5)~(8)におけるRは、炭素数1~6の低級アルキル基、フッ素原子、塩素原子、臭素原子およびヨウ素原子から選択されるハロゲン原子、または前記低級アルキル基中の水素原子がハロゲン原子で置換されたハロゲン化アルキル基を示す。
Figure JPOXMLDOC01-appb-C000001
 環状炭化水素単量体としては、なかでも、無水イタコン酸(以下、「IAH」ともいう。)、無水シトラコン酸(以下、「CAH」ともいう。)および5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」ともいう。)からなる群から選ばれる1種以上が好ましい。IAH、CAHおよびNAHからなる群から選ばれる1種以上を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11-193312号公報参照。)を用いることなく、酸無水物残基を含有する本発明におけるフッ素樹脂を容易に製造できる。
 本発明におけるカルボニル基を有するフッ素樹脂としては、下記の含フッ素共重合体(A1)または含フッ素共重合体(A2)が好ましい。
 含フッ素共重合体(A1):TFEおよび/またはCTFEに基づく単位と、前記環状炭化水素単量体に基づく単位と、含フッ素単量体(ただし、TFEおよびCTFEを除く。)に基づく単位とを含有する共重合体。
 含フッ素共重合体(A2):TFEおよび/またはCTFEに基づく単位と、前記環状炭化水素単量体に基づく単位と、非含フッ素単量体(ただし、前記環状炭化水素単量体を除く。)に基づく単位とを含有する共重合体。
 含フッ素共重合体(A1)の好ましい具体例としては、TFE/PPVE/NAH共重合体、TFE/PPVE/IAH共重合体、TFE/PPVE/CAH共重合体、TFE/HFP/NAH共重合体、TFE/HFP/IAH共重合体、TFE/HFP/CAH共重合体、TFE/VdF/IAH共重合体、TFE/VdF/CAH共重合体、TFE/PPVE/HFP/NAH共重合体等が挙げられる。
 含フッ素共重合体(A2)の好ましい具体例としては、TFE/CH=CH(CFF/NAH/E共重合体、TFE/CH=CH(CFF/IAH/E共重合体、TFE/CH=CH(CFF/CAH/E共重合体、TFE/CH=CH(CFF/NAH/E共重合体、TFE/PFEE/IAH/E共重合体、TFE/PFEE/CAH/E共重合体、CTFE/CH=CH(CFF/NAH/E共重合体、CTFE/CH=CH(CFF/IAH/E共重合体、CTFE/CH=CH(CFF/CAH/E共重合体、CTFE/PFEE/NAH/E共重合体、CTFE/PFEE/IAH/E共重合体、CTFE/PFEE/CAH/E共重合体等が挙げられる。
(エステル結合含有樹脂)
 本発明はエステル交換の原理から、エステル結合含有樹脂において適用可能であると考えられる。エステル結合含有樹脂は、エステル結合部位を有する樹脂であれば限定されず、具体的にはポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂が挙げられ、耐熱性、成形性および機械的強度に優れる点から、ポリエステル樹脂、ポリカーボネート樹脂が好ましく、ポリカーボネート樹脂が特に好ましい。本発明におけるエステル結合含有樹脂は、1種でも、2種以上を使用してもよい。
(ポリエステル樹脂)
 ポリエステル樹脂は、例えば、ジカルボン酸とジオールとの脱水縮合反応やヒドロキシカルボン酸の脱水縮合反応によって得ることができる。
 ポリエステル樹脂としては、例えば、ポリ乳酸、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリシクロヘキサンジメチレンテレフタレート(PCT)樹脂、ポリブチレンナフタレート(PBN)樹脂、ポリエチレンナフタラレート(PEN)等が挙げられ、耐熱性、成形性に優れる点から、PET、PBT、PCT、PBNおよびPENが好ましく、PET、PBT、PCTが特に好ましい。 ポリエステル樹脂の融点としては、成形性、耐熱性に優れる点から、180~280℃が挙げられ、200~270℃が好ましく、220~260℃が特に好ましい。
 ポリエステル樹脂は、1種でも、2種以上を使用してもよい。
(ポリカーボネート樹脂)
 ポリカーボネート樹脂は、例えば、二価フェノールとカルボニル化剤との界面重縮合法、溶融エステル交換法等によって得ることができる。
 二価フェノールとしては、例えばハイドロキノン、レゾルシノール、4,4'-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、ビス[(4-ヒドロキシ-3,5-ジメチル)フェニル]メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス[(4-ヒドロキシ-3-メチル)フェニル]プロパン、2,2-ビス[(4-ヒドロキシ-3,5-ジメチル)フェニル]プロパン、2,2-ビス[(4-ヒドロキシ-3,5-ジブロモ)フェニル]プロパン、2,2-ビス[(3-イソプロピル-4-ヒドロキシ)フェニル]プロパン、2,2-ビス[(4-ヒドロキシ-3-フェニル)フェニル]プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス[(4-ヒドロキシ-3-メチル)フェニル]フルオレン、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルケトン、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシジフェニルエステル等が挙げられる。
 入手容易な点から、ビスフェノールAが好ましい。
 カルボニル化剤としては、例えばホスゲン等のカルボニルハライド、ジフェニルカーボネート等のカーボネートエステル、二価フェノールのジハロホルメート等のハロホルメートが挙げられる。
 ポリカーボネート樹脂の製造方法としては、界面重縮合法や溶融エステル交換法以外に、プレポリマーであるカーボネートの固相エステル交換法、環状カーボネートの開環重合法が挙げられる。
 ポリカーボネート樹脂の質量平均分子量は、機械的物性および成形性に優れる点から、10,000~300,000が好ましく、30,000~200,000がより好ましく、30,000~100,000が特に好ましい。ここで、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定された値である。
 ポリカーボネート樹脂は、市販品を用いてもよい。例えば、Lexan(SABICイノベーティブプラスチックス社製)、Makrolon、Apec(バイエル社製)、Hiloy(コムアロイ社製)、Calibre(住化スタイロン社製)、Lupilonx(三菱エンジニアリングプラスチックス社製)、Naxell(MRCポリマー社製)、Edgetek(ポリワン社製)、Trirex(三養化成社製)、Panlite(帝人社製)等が挙げられる。
 ポリカーボネート樹脂は、1種でも、2種以上を使用してもよい。
(エステル交換触媒)
 本発明におけるエステル交換触媒としては、金属、金属の有機酸塩、金属の無機酸塩、金属の酸化物、金属の水酸化物、金属のハロゲン化物、含硫黄オキソ酸、含窒素塩基性化合物が挙げられる。
 金属としては、例えば亜鉛、鉄、カルシウム、マグネシウム、ナトリウム、スズ、マンガン、アルミニウム、セリウム、バリウム、コバルト、カリウム、セシウム、鉛、ストロンチウム、アンチモン等が挙げられる。
 金属の有機酸塩、金属の無機酸塩、金属の酸化物、金属の水酸化物、金属のハロゲン化物における金属としては、上記金属が挙げられる。
 有機酸塩としては、カルボン酸塩が挙げられ、無機酸塩としては、炭酸塩、硝酸塩、リン酸塩、ホウ酸塩等が挙げられる。
 ハロゲン化物としては、フッ化物、塩化物、臭化物等が挙げられる。
 含硫黄オキソ酸としては、硫酸、スルホン酸、スルフィン酸、スルフェン酸等が挙げられる。
 含窒素塩基性化合物としては、第4級アンモニウム塩、第3級アミン、第2級アミン、第1級アミン、ピリジン類、イミダゾール類、アンモニア類が挙げられる。
 本発明におけるエステル交換触媒としては、樹脂への分散性、熱安定性に優れ、樹脂組成物を溶融混練する際にブリードアウトしにくい点から、有機酸の金属塩、炭酸の金属塩、金属酸化物、金属水酸化物が好ましい。吸湿性、潮解性が低く、水分の混入による成形体の発泡の問題を回避できる点から、マグネシウム、亜鉛、カルシウムの有機酸塩(例えば、カルボン酸塩)、炭酸塩、酸化物、水酸化物が好ましく、亜鉛のカルボン酸塩、マグネシウムのカルボン酸塩、炭酸亜鉛、炭酸マグネシウム、酸化亜鉛、酸化マグネシウム、水酸化亜鉛、水酸化マグネシウムがより好ましく、水酸化マグネシウム、酸化マグネシウム、酸化亜鉛が特に好ましい。
 本発明におけるエステル交換触媒の形状は、特に制限されない。粒子の場合、例えば、球状、塊状、針状等のものを使用できる。粒径や軸長は、樹脂組成物や溶融混練物の優れた成形性を確保し、フィルム成形後の応力欠陥の発生を回避しやすい点から、一定サイズ以下のものが望まれる。球状や塊状の場合、平均粒子径は0.01~10μmが好ましく、0.01~3μmが特に好ましい。針状の場合、平均軸長は0.01~10μmが好ましく、0.1~5μmが特に好ましい。ここで、平均粒子径および平均軸長は走査型電子顕微鏡(SEM)によって測定した値である。
 本発明におけるエステル交換触媒は、1種でも、2種以上を使用してもよい。
(任意成分)
 本発明の樹脂組成物は、本発明の効果を損なわない範囲で、顔料、紫外線吸収剤、光安定剤、表面調整剤、顔料分散剤、難燃剤、可塑剤、フィラー、増粘剤、密着改良剤、つや消し剤等の任意成分を含んでいてもよい。
(配合量)
 本発明の樹脂組成物において、フッ素樹脂とエステル結合含有樹脂との質量比(フッ素樹脂の質量/エステル結合含有樹脂の質量)は、50/50~99.9/0.1が好ましく、55/45~99.9/0.1がより好ましく、65/35~99.9/0.1が特に好ましい。上記範囲であれば、成形体において、フッ素樹脂が連続相(いわゆる「海」)であり、エステル結合含有樹脂が分散相(いわゆる「島」)である、ミクロ相分離構造(海島構造)を形成しやすい。
 本発明の樹脂組成物において、フッ素樹脂とエステル結合含有樹脂との体積比(フッ素樹脂の体積/エステル結合含有樹脂の体積)は、40/60~99.9/0.1が好ましく、50/50~99.9/0.1がより好ましく、60/40~99.9/0.1が特に好ましい。上記範囲であれば、成形体において、フッ素樹脂が連続相であり、エステル結合含有樹脂が分散相である、ミクロ相分離構造を形成しやすい。
 本発明の樹脂組成物におけるエステル交換触媒の含有量は、フッ素樹脂とエステル結合含有樹脂とエステル交換触媒との合計100質量部に対し、0.001~20質量部であることが好ましく、0.005~15質量部がより好ましく、0.01~10質量部が特に好ましい。エステル交換触媒の含有量が上記範囲の下限値以上であると、フッ素樹脂とエステル結合含有樹脂とエステル交換触媒とを溶融混練した際にエステル交換が充分に進行し、上限値以下であると、エステル結合含有樹脂が分解しにくい。
[成形用樹脂材料]
 本発明の樹脂組成物は、そのまま成形用樹脂材料(以下、「成形用樹脂組成物」ともいう。)として溶融成形に使用できる。また、本発明の樹脂組成物を溶融混練し冷却して成形用樹脂材料とし、それを溶融成形に使用することもできる。本発明の樹脂組成物を溶融混練し冷却して製造された成形用樹脂材料を、以下、溶融混練物ともいう。
 成形用樹脂組成物は、前記樹脂組成物の各成分を混合した粉末状の組成物であってもよく、前記樹脂組成物を造粒した粒子等であってもよい。溶融混練物は、前記樹脂組成物を溶融混練してペレット状、塊状等の形状に成形したものや溶融混練し冷却したものを粉末化した粉体等であってもよい。
 成形体におけるミクロ層分離構造は、成形用樹脂材料の溶融成形とその後の冷却によって生じる。ミクロ層分離構造は、成形用樹脂材料の段階で存在していなくてもよく、成形用樹脂材料の段階で存在していてもよい。上記成形用樹脂組成物はたとえ溶融過程を経て製造されたものであっても、混練の過程がないとミクロ層分離構造はほとんど存在していないと考えられる。一方、溶融混練物はある程度以上のミクロ層分離構造を有していると考えられる。
 ミクロ層分離構造はほとんど存在していないと考えられる成形用樹脂組成物は、溶融混練過程を経る溶融成形法で成形することにより、ミクロ層分離構造を有する樹脂からなる成形体を製造できる。溶融混練過程を経る溶融成形法としては、たとえば、押出成形や射出成形などが挙げられる。
 ミクロ層分離構造を有していると考えられる溶融混練物は、溶融混練過程を経る溶融成形法は勿論、混練過程を有しないまたは混練が充分ではない溶融成形法であっても、ミクロ層分離構造を有する樹脂からなる成形体を製造できる。混練過程を有しないまたは混練が充分ではない溶融成形法としては、たとえば、溶融圧縮成形法、溶融注型成形、トランスファ成形法などが挙げられる。
 本発明における成形用樹脂材料としては、本発明の樹脂組成物を溶融混練して得られる、ミクロ層分離構造を有している溶融混練物が好ましい。ミクロ層分離構造を有している溶融混練物であれば、押出成形や射出成形に限られず、混練過程を有しないまたは混練が充分ではない溶融成形法に使用される成形用樹脂材料とすることができる。
(溶融混練物)
 ミクロ層分離構造を有する樹脂からなる成形物を製造するためには、本発明の樹脂組成物を溶融混練し、冷却して得られる溶融混練物を成形材料として使用することが好ましい。たとえば、本発明の樹脂組成物を溶融混練して線状に押出し、切断し、冷却して、ペレット状の成形材料とすることができる。
 溶融混練物においては、フッ素樹脂とエステル結合含有樹脂とをエステル交換触媒存在下で溶融混練することにより、一部のフッ素樹脂中のヒドロキシ基またはカルボニル基と一部のエステル結合含有樹脂中のエステル結合とがエステル交換反応し、反応物を形成すると考えられる。そして、この反応物がフッ素樹脂とエステル結合含有樹脂との間で、相溶化剤として機能すると考えられる。その結果、溶融混練物を用いて得られた成形体において、連続相がフッ素樹脂であり、分散相がエステル結合含有樹脂である、ミクロ相分離構造を一層形成しやく、また、海島構造の島が細かく、かつ均一に分散されたモルフォロジーを形成しやすくなっていると考えられる。そのため、樹脂同士の相溶性の一層の向上が見込まれ、ひいては機械的強度と伸びに優れる成形体を与えることができると考えられる。
<溶融混練温度および時間>
 フッ素樹脂とエステル結合含有樹脂とエステル交換触媒との溶融混練温度は、260~300℃が好ましく、270~280℃が特に好ましい。上記範囲の下限値以上であれば、樹脂組成物が溶融混練しやすく、上限値以下であれば、熱により樹脂が分解しにくい。溶融混練時間は、5~60分が好ましく、5~30分が特に好ましい。上記範囲の上限値以下であれば、熱により樹脂が分解しにくい。
<マスターバッチ法>
 本発明の溶融混練物は、溶融混練物をマスターバッチとし、このマスターバッチにフッ素樹脂とエステル結合含有樹脂を配合して溶融成形を行う方法で成形体を製造してもよい。
 マスターバッチはエステル交換触媒の濃度が高いため、エステル交換反応が充分に進行し効率良く反応物を得ることができる。従って、得られる成形体における樹脂の相溶性が向上できる。
 マスターバッチ中のエステル交換触媒の濃度としては、マスターバッチ中のフッ素樹脂とエステル結合含有樹脂との合計100質量%に対して、0.1~30質量%が好ましく、0.5~30質量%がより好ましく、1~25質量%が特に好ましい。上記の範囲であれば、エステル交換反応が充分に進行する。
 マスターバッチ中のフッ素樹脂とエステル結合含有樹脂との質量比と、後で添加するヒフッ素樹脂とエステル結合含有樹脂との質量比とは、同じであっても、異なっていてもよいが、均一な組成を得る点からは、同じであることが好ましい。マスターバッチ中のフッ素樹脂とエステル結合含有樹脂の質量比(フッ素樹脂の質量/エステル結合含有樹脂の質量)としては、50/50~99.9/0.1が好ましく、55/45~99.9/0.1がより好ましく、65/35~99.9/0.1が特に好ましい。
 マスターバッチの量と、後で添加するフッ素樹脂とエステル結合含有樹脂との合計量の質量比は、0.1/99.9~50/50が好ましく、1/99~20/80が特に好ましい。上記範囲であれば、得られる成形体における樹脂の相溶性が向上できる。
 マスターバッチを製造する際の溶融混練温度としては、260~300℃が好ましく、270~280℃が特に好ましい。上記範囲の下限値以上であれば、溶融混練しやすく、上限値以下であれば、熱により樹脂が分解しにくい。溶融混練時間は、1~60分が好ましく、1~30分がより好ましく、1~10分が特に好ましい。上記範囲の上限値以下であれば、熱により樹脂が分解しにくい。
 マスターバッチに、フッ素樹脂とエステル結合含有樹脂の残部を配合し、さらに溶融混練する際の温度としては、260~300℃が好ましく、260~280℃が特に好ましい。時間は、5~60分が好ましく、5~30分がより好ましく、10~30分が特に好ましい。
(モルフォロジー)
 本発明の成形体中の海島構造は、キャピログラフを用いて、混練温度と同じ温度で10分間予熱し、10mm/分の速度で、L/D(Lは孔長さであり、Dは孔直径である)が10、直径1mmのダイ穴から押出したストランドについて、ストランドの直径方向の切断面を電子顕微鏡で観察できる。本発明の成形体において、0.1~1個/μmの島を有する海島構造が好ましい。機械的強度および伸びに優れる成形体を与えることができる点から、海島構造の島は、0.2~1個/μmが特に好ましい。
[成形体]
 本発明の成形体は、樹脂組成物や溶融混練物を成形用樹脂材料として使用し、溶融成形して製造できる。
 成形体の形状は特に限定されないが、フィルムやシート(以下、「フィルム等」ともいう。)が好ましい。本発明においてフィルム等はほぼ一定の厚さの成形体をいう。フィルムは厚さ0.2mm以下のものをいい、シートは厚さ0.2mmを超えるものをいう。ただし、太陽電池用バックシート等、慣用されている名称におけるフィルム等は必ずしも上記厚さに限定されるものではない。
 本発明のフィルム等の厚さは1~800μmが好ましく、5~500μmが特に好ましい。
 フィルム等は、耐候性の必要な農業用フィルムや太陽電池バックシート等の用途に適する。太陽電池バックシートに使用する場合、本発明のフィルムを最外層として使用することが好ましい。本発明のフィルムの厚さは10~100μmであるのが好適である。この範囲にあると低コストで、太陽電池バックシート等に求められる力学的強度、耐候性、光線遮蔽性(光線遮蔽顔料の配合容易性)等に優れる。
(成形条件)
 成形方法は、特に制限されず、押出成形、インフレーション成形、射出成形が挙げられる。成形温度は、260~280℃が好ましく、270~280℃が特に好ましい。成形時間は、樹脂が分解しにくい点から、1~60分が好ましく、1~30分がより好ましく、5~30分が特に好ましい。
(積層体)
 本発明の成形体は、フッ素樹脂フィルムまたはシート(以下、「フッ素樹脂フィルム等」ともいう。)と、エステル結合含有樹脂フィルムまたはシート(以下、エステル結合含有樹脂フィルム等)ともいう。)との間に配置されて、積層体を形成しうる。従来接着性が不充分なフッ素樹脂フィルム等とエステル結合含有樹脂フィルム等との間に本発明の成形体を用いることで、成形体が接着層となり、フッ素樹脂フィルム等とエステル結合含有樹脂フィルム等との接着性を向上することができる。
 フッ素樹脂フィルム等としては、成形性の点からエチレン/テトラフルオロエチレン共重合体が好ましい。フッ素樹脂フィルム等の厚さは1~800μmが好ましく、5~500μmが特に好ましい。
 エステル結合含有樹脂フィルム等の厚さは100μm~100,000μmが好ましく、300~20,000μmが特に好ましい。エステル結合含有樹脂フィルム等としては、ポリカーボネート樹脂が好ましい。
 フッ素樹脂フィルム等とエステル結合含有樹脂フィルム等の本発明の成形体と接着していない側には、他のフィルム等がさらに積層されていてもよい。
 本発明の積層体における、フッ素樹脂フィルム等とエステル結合含有樹脂フィルム等との接着性は、これらの間に配置される本発明の成形体においてミクロ相分離した樹脂相がそれぞれと相性の良い方へ接触することで発現されると考えられる。成形体における相分離の程度は、各樹脂成分の体積比、層の厚さ、各樹脂成分の溶融流動性、成形温度、成形時間等を調整することにより制御することができる。一般的に、樹脂ブレンド中の各樹脂成分の体積が同程度の場合、相分離がより起こりやすい。本発明の積層体における成形体は、接着性の改善の点から、体積比(フッ素樹脂の体積/エステル結合含有樹脂の体積)が45/55~55/45であることが好ましく、50/50が特に好ましい。
 本発明の積層体における成形体は、接着性とコストに優れる点から、層の厚さが、10~1,000μmが好ましく、25~500μmがより好ましく、25~200μmが特に好ましい。
 本発明における積層体は、フッ素樹脂フィルム等、成形体およびエステル結合含有樹脂フィルム等を、フッ素樹脂フィルム等とエステル結合含有樹脂フィルム等で成形体を挟むようにして重ねて、260~300℃に加熱したプレス機にセットし、0.01~10MPaの面圧で圧縮成形を行った後、0.01~10MPaの圧力下で冷却し、その後、プレス機から取り出すことにより得ることができる。必要により、任意のフィルムやシートを上記フッ素樹脂フィルム等の側および/またはエステル結合含有樹脂フィルム等の側に配置して重ね、上記のように加熱加圧して、上記3層構造の積層体の片面または両面にさらに樹脂等の層を有する4層以上の構造の積層体を製造することができる。
 さらに、本発明の成形用樹脂材料、フッ素樹脂およびエステル結合含有樹脂を共押出し成形して上記のような3層構造の積層体を製造することができ、また、任意の溶融成形可能な樹脂をさらに用いて上記のような4層以上の構造の積層体を製造することもできる。
 本発明の積層体は、防汚性、耐薬品性、耐候性を制御することができ、キッチン回り等の内装材、庇等の外装装飾材、外装用建材に好適に使用できる。
 以下、実施例により本発明をさらに詳しく説明する。ただし本発明は、以下の実施例に限定されるものではない。例2、4、8~19、21、24、25、27~30が実施例であり、例1、3、5~7、20、22、23、26が比較例である。
 表1~4中の各成分は、以下のとおりである。
エチレン/テトラフルオロエチレン共重合体(ETFE)
・ETFE-1:国際公開第2008/069278号の実施例1(ただし、メタノールの仕込み量を7.70kgとした)を参照して製造した、ヒドロキシ基を有するETFE。
 TFE/E/(ペルフルオロブチル)エチレンに基づく単位=54.2/44.1/1.7(モル比)。Q値:211mm/秒、末端OH量(10個の炭素原子あたりの末端OH基数):740個、融点:245℃。
・ETFE-2:国際公開第2008/069278号の比較例1を参照して製造した、ヒドロキシ基を有しないETFE。
 TFE/E/(ペルフルオロブチル)エチレンに基づく単位=54.4/44.2/1.4(モル比)、Q値:40mm/秒、末端OH量(10個の炭素原子あたりの末端OH基数):0個、融点:257℃。
・ETFE-3:国際公開第2008/069278号の実施例1を参照して製造した、ヒドロキシ基を有するETFE。
 TFE/E/(ペルフルオロブチル)エチレンに基づく単位=54.2/44.1/1.7(モル比)、Q値:44mm/秒、末端OH量(10個の炭素原子あたりの末端OH基数):460個、融点:255℃。
・ETFE-4:後述する製造例1で得た、カルボニル基を有するETFE。
 TFE/E/PFEE(CFCFCH=CH)/IAHに基づく単位=58.2/38.4/3.1/0.3(モル比)、Q値:25.6mm/秒、末端OH量(10個の炭素原子あたりの末端OH基数):検出限界以下、融点:221℃。
・ETFE-5:後述する製造例2で得た、ETFE。
 TFE/E/PFEEに基づく単位=53.7/45.6/0.7(モル比)、Q値:38.1mm/秒、末端OH量(10個の炭素原子あたりの末端OH基数):検出限界以下、融点:255℃。
・ETFE-6:後述する製造例3で得た、ETFE-4とETFE-5との混合物。
 Q値:21.3mm/秒、末端OH量(10個の炭素原子あたりの末端OH基数):検出限界以下、融点:235℃。
 上記において、Q値は、島津製作所製フローテスターを用いて、各樹脂の融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出す際のフッ素樹脂の押出し速度である。また、融点は、走査型示差熱量分析法(DSC法)により、樹脂を空気雰囲気下に300℃まで10℃/分で加熱した際の吸熱ピークから求めた値である。
 また、組成比は、溶融NMR分析および赤外吸収スペクトル分析の結果から求めた値である。
ポリカーボネート樹脂(PC)
・PC-1:住化スタイロン社製Calibre 301-10
 質量平均分子量55,000(GPCにより測定されたポリスチレン換算値)。メルトボリュームレート10cm/10分(測定条件300℃/1.2kg)。
・PC-2:住化スタイロン社製Calibre 200-3
 質量平均分子量77,000(GPCにより測定されたポリスチレン換算値)。メルトボリュームレート3cm/10分(測定条件300℃/1.2kg)。
エステル交換触媒
・C-1:水酸化マグネシウム:堺化学社製MGZ-1 平均粒子径0.8μm
・C-2:水酸化マグネシウム:堺化学社製MGZ-3 平均粒子径0.1μm
・C-3:水酸化マグネシウム:神島化学社製マグシーズS-6 平均粒径1.0μm
・C-4:酸化マグネシウム:堺化学社製SMO-2 平均粒子径:2μm
・C-5:酸化亜鉛:堺化学社製NZ-LARGE 平均軸長:1.0μm
・C-6:酸化亜鉛:堺化学社製Finex30 平均粒子径:35nm
 なお、各成分の比重は以下の通りである。
ETFE:1.75g/cm、ポリカーボネート樹脂:1.2g/cm、水酸化マグネシウム:2.36g/cm、酸化マグネシウム:3.65g/cm、酸化亜鉛:5.61g/cm
[製造例1:ETFE-4の製造]
 内容積94Lの撹拌機付きステンレス鋼製重合槽を脱気し、(ペルフルオロペンチル)ジフルオロメタンの69.7kg、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(AK225cb、旭硝子社製)(以下、「AK225cb」ともいう。)の22.3kg、PFEEの528g、TFEの13.3kg、およびEの456gを圧入し、重合槽内を66℃ に昇温した。このとき圧力は1.49MPa/Gであった。重合開始剤としてtert-ブチルペルオキシピバレートの19gを仕込み、重合を開始させた。重合中圧力が一定になるようにTFE/E=60/40のモル比の単量体混合ガスを連続的に仕込んだ。また、重合中に仕込むTFEとEの合計モル数に対して3モル%に相当する量のPFEEと0.3モル%に相当する量の無水イタコン酸(IAH)を連続的に仕込んだ。重合開始の5.6時間後、単量体混合ガスが11.5kg仕込まれた時点で、重合槽内温を室温まで冷却するとともに重合槽内の圧力を常圧までパージした。
 得られたスラリを、水の100kgを仕込んだ300Lの造粒槽に投入し、撹拌しながら105℃まで昇温し溶媒を留出除去して造粒した。得られた造粒物を135℃で3時間乾燥することにより、ETFE-4の造粒物の12.2kgが得られた。
[製造例2:ETFE-5の製造]
 内容積94Lの撹拌機付きステンレス鋼製重合槽を脱気し、(ペルフルオロペンチル)ジフルオロメタンの71.0kg、AK225cbの27.3kg、PFEEの150g、TFEの12.6kg、およびEの752gを圧入し、重合槽内を66℃ に昇温した。このとき圧力は1.53MPa/Gであった。重合開始剤としてtert-ブチルペルオキシピバレートの9gを仕込み、重合を開始させた。重合中圧力が一定になるようにTFE/E=51/46のモル比の単量体混合ガスを連続的に仕込んだ。また、重合中に仕込むTFEとEの合計モル数に対して0.7モル%に相当する量のPFEEを連続的に仕込んだ。重合開始の5.7時間後、単量体混合ガスが11.5kg仕込まれた時点で、重合槽内温を室温まで冷却するとともに重合槽内の圧力を常圧までパージした。
 得られたスラリを用いる以外は製造例1と同様に造粒して、ETFE-5の造粒物の12.5kgを得た。
[製造例3:ETFE-6の製造]
 製造例1で得たETFE-4の20質量部と製造例2で得たETFE-5の80質量部とをドライブレンド(dryblend)した後、2軸押出機を用いて温度260℃、滞留時間2分で溶融混練し、ETFE-6を得た。
[例1~30]
(溶融混練物の製造)
 例1~8、10~11、15、22~25および28~30については、以下のようにして、溶融混練物からなる成形用樹脂材料を製造した。270~280℃に設定した東洋精機製作所社製ラボプラストミル・ミキサーに、表1~3に示す組成で各成分を投入し、毎分20回転で1分間の予備混練の後、毎分50回転で、表1~3に示す混練温度および混練時間で溶融混練を行い、溶融混練物を得た。
 例9、12~14、16~21、26~27については、以下のようにして、溶融混練物を調製した。270~280℃に設定した東洋精機製作所社製ラボプラストミル・ミキサーに、表1~3に示すマスターバッチ中の触媒の濃度になるように、ETFE、ポリカーボネート樹脂およびエステル交換触媒を投入した。その後、毎分50回転で、表1~3に示すマスターバッチ混練温度およびマスターバッチ混練時間で溶融混練を行い、マスターバッチを得た。次いで、ETFEおよびポリカーボネート樹脂の残部を投入し、毎分50回転で、表1~3に示す混練温度および混練時間で溶融混練を行い、溶融混練物を得た。なお、マスターバッチ中のETFEとポリカーボネート樹脂の質量比と、残部のETFEとポリカーボネート樹脂の質量比は同じである。また、マスターバッチ中の触媒の濃度は、マスターバッチ中のETFEとポリカーボネート樹脂とエステル交換触媒との合計100質量%に対する、マスターバッチに使用したエステル交換触媒の量(質量%)である。
(成形体の製造)
 厚さ100μm、100mm角のSUS316製金型に得られた溶融混練物を充填し、270~280℃に設定したプレス機(東洋精機製作所社製ミニテストプレス MP-WCL)にセットし、150mm×150mmのSUS316製鏡面板を蓋として用いた。5分間の予熱の後、面圧8.7MPaで5分間圧縮成形を行い、面圧8.7MPaで5分間冷却し、金型のサイズで成形された厚さ100μmのフィルムを得た。
(引張試験)
 ASTM D1822-Lに従い、スーパーダンベルカッター(ダンベル社製SDMK-100L)を用い、得られたフィルムからダンベルを打抜き、試験片とした。テンシロン万能試験機(エー・アンド・デイ社製)にて、10mm/分の速度で引張試験を行い、N数(試料数)=5~8での最大点応力(MPa)と伸び(%)を求めた。結果を表1~3に示す。
(PCT試験)
 例7、8、14および28~30については、得られたフィルムをPCT装置(ESPEC社製EHS-411MD)中で120℃、湿度過飽和状態の条件のもと168時間保持し、その後のフィルムを上記と同様の方法で引張試験を行い、N数(試料数)=5~8での最大点応力(MPa)と伸び(%)を求めた。なお、「伸びの維持率(%)」とはPCT試験後の伸び/PCT試験前の伸び×100であり、「最大点応力の維持率(%)」とはPCT試験後の最大点応力/PCT試験前の最大点応力×100である。
 結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(電子顕微鏡観察)
 例7および14で得た溶融混練物をキャピログラフ(東洋精機製作所社製CAPIROGRAPH 1C)で10分間予熱し、10mm/分の速度で、L/D10、直径1mmのダイ穴から押し出して、ストランドを作製した。得られたストランドを液体窒素で冷却し、剃刀により割断してサンプルを作成し、カーボンコートして加速電圧5kVにて断面の走査型電子顕微鏡(日立製作所社製S4300)の反射電子像を撮影した(倍率1,000倍)。図1に結果を示す。(A)および(B)は、それぞれ例7および14に対応する。明部がETFEの連続相であり、暗部がポリカーボネート樹脂の分散相である。
(トルク評価)
 例7、19および20について、東洋精機製作所社製ラボプラストミル・ミキサーで溶融混練を行った際の回転軸にかかるトルク値の変化を測定した。トルク値の変化は、溶融混練物の粘度の変化として見積もられ、トルク値の上昇は粘度が上昇することに対応する。
(積層体の製造)
 厚さ300μmの金型を用いたこと以外は、上記の(成形体の製造)に記載される方法に従って、厚さ300μmのフッ素樹脂シートを得た。用いたフッ素樹脂は、ETFE-2またはETFE-3である。
 厚さ600μmの金型を用いたこと以外は、上記の(成形体の製造)に記載される方法に従って、厚さ600μmのポリカーボネート樹脂シートを得た。用いたポリカーボネート樹脂はPC-2である。
 厚さ125μm、幅15cm角のポリイミド(商品名:カプトン)のシートの中心を7cm角となるように切り抜いた。切り抜き部分に、表4に示す例の溶融混練物を充填したものを使用したことを以外は、上記の(成形体の製造)に記載される方法に従って、接着層となる成形体を得た。
 厚さ1,100μmの金型に、表4に示すフッ素樹脂シート、接着層となる成形体およびポリカーボネート樹脂シートをこの順で重ねて280℃に設定したプレス機(東洋精機製作所社製ミニテストプレス MP-WCL)にセットし、150mm×150mmの鏡面板を蓋として用いた。5分間の予熱の後、面圧8.7MPaで5分間圧縮成形を行い、面圧8.7MPaで5分間冷却し、金型のサイズに成形された積層体を得た。
(剥離試験)
 得られた積層体を幅1cm、長さ10cmに切断し、剥離試験片とした。テンシロン万能試験機(エー・アンド・デイ社製)にて、試験片の短辺のエッジのポリカーボネート樹脂シート部分とフッ素樹脂シート部分を掴んで、20mm/分の速度で引張試験を行い、N数(試料数)=3~8での剥離力を求めた。引っ張り距離30mmから100mmに働く力の平均値をそのサンプルの初期剥離力と定義した。結果を表4に示す。
(PCT試験)
 得られた積層体をPCT装置(ESPEC社製EHS-411MD)中で120℃、湿度過飽和状態の条件のもと24時間保持し、その後の積層体を上記と同様の方法で剥離試験を行い、N数(試料数)=2~3での剥離力を測定した。接着力を以下のように定義して接着性の比較を行った。
◎(優良):24時間のPCT試験の前後でともに接着大
○(良好):初期は接着大であるが、24時間のPCT試験の後に接着小
△(可):24時間のPCT試験の前後でともに接着小
×(不可):初期に接着無し
ここで、
接着大:30から100mmに働く力の平均値が10N/cm以上の剥離力
接着小:30から100mmに働く力の平均値が1N/cm以上10N/cm未満の剥離力
接着無し:30から100mmに働く力の平均値が1N/cm未満の剥離力
である。
 表4に結果を示す。
Figure JPOXMLDOC01-appb-T000005
 例2、4、8~19、21、24、25および27~30(いずれも実施例)は、いずれも優れた機械的強度(最大点応力)および伸びを示した。
 例1(比較例)と例2(実施例)、例3(比較例)と例4(実施例)、例7(比較例)と例8(実施例)、例22(比較例)と例24、25および27(いずれも実施例)との対比から、ヒドロキシ基を有するETFEを使用した場合に、エステル交換触媒の添加により、機械的強度および伸びが改善されることが確認できる。一方、ヒドロキシ基を有しないETFEを使用した例5(比較例)と例6(比較例)、例23(比較例)と例26(比較例)との対比から、エステル交換触媒を配合しても効果がなく、かえって伸びが低下することが確認できる。
 例15(実施例)と例16(実施例)との対比から、マスターバッチ法を使用した例16の方が、一層優れた機械的強度および伸びが得られることが確認できる。さらに、例13(実施例)と例15(実施例)との対比から、マスターバッチ法を使用することにより、少ないエステル交換触媒でも、機械的強度および伸びの改善が見込めることが確認できる。
 例27(実施例)と例28(実施例)との対比から、ヒドロキシ基を有するETFEを使用しマスターバッチ法を使用した例27よりも、カルボニル基を有するETFEを使用しマスターバッチ法を使用していない例28の方が、一層優れた機械的強度および伸びが得られることが確認できる。これは、分子量を低下させずにETFEにカルボニル基を導入するできたことと、溶融混練の際にETFEとPCとの反応を効率的に行えたためと考えられる。
 例17(実施例)と例19(実施例)との対比から、平均粒子径が小さい酸化亜鉛を使用することにより、機械的強度および伸びについて、大きな改善幅が見込めることが確認できる。
 さらに、例7(比較例)と例8(実施例)との対比から、本発明はPCT試験後でも優れた機械的強度および伸びが維持されることが確認できる。また、例14(実施例)においても、PCT試験後の優れた機械的強度および伸びが維持されることが確認できる。
 図1に示す例7(比較例)および例14(実施例)のストランドの反射電子像より、例14(実施例)では、ストランドとしたとき、海島構造の島が細かく、かつ均一に分散されたモルフォロジーを有することが確認できる。
 さらに、図2に示すように、例19(実施例)では、トルク値がいったん低下した後、時間の経過とともに上昇している。このような現象は、ヒドロキシ基を有しないETFEを使用した例20(比較例)、エステル触媒を使用していない例7(比較例)では観察されない。ETFEとポリカーボネート樹脂がエステル交換反応して、反応物を形成しているため、粘度が上昇し、トルク値の上昇として観測されたものと解される。
 例19(実施例)と例27(実施例)との対比から、本発明の樹脂組成物はETFEとポリカーボネート樹脂の体積比を50/50付近にすることが成形体の接着性発現の点から好ましいことがわかる。また、例22(比較例)と例24、25および27(いずれも実施例)との対比から、本発明による成形物はエステル交換触媒を含有することによって、24時間のPCT試験後にも高い接着性を維持できることがわかる。さらに、例23(比較例)と例26(比較例)に示されるように、ヒドロキシ基を有しないETFEを使用すると、エステル交換触媒を配合しても、24時間のPCT試験後の接着性の改善に効果がないことがわかる。これらの結果から、本発明の樹脂組成物において、フッ素樹脂とエステル結合含有樹脂の組成比を制御することで、その成形体を積層体の接着層としたときに、耐湿熱性を発揮することがわかる。
 本発明によれば、優れた機械的強度および伸度を有する成形体を製造できる樹脂組成物およびその溶融混練物、さらには、その成形体、フィルムまたはシート、積層体および太陽電池用バックシートを提供することができる。
 本発明の成形体は、具体的には、雨どい等の樹脂建材や標識類成形品、自動車外装品等に用いることができる。また、フィルム状やシート状に成形することにより、太陽電池用バックシート用に使用されるのみならず、離型フィルムや高耐候性シート等にも適用可能である。また、本発明の成形体を積層体の接着層に用いることもできる。
 なお、2013年12月27日に出願された日本特許出願2013-271747号および2014年7月28日に出願された日本特許出願2014-153221号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  ヒドロキシ基およびカルボニル基の少なくとも一方を有するフッ素樹脂と、フッ素原子を有しないエステル結合含有樹脂と、エステル交換触媒と、を含むことを特徴とする、樹脂組成物。
  2.  前記エステル結合含有樹脂が、ポリエステル樹脂またはポリカーボネート樹脂である、請求項1に記載の樹脂組成物。
  3.  前記フッ素樹脂と前記エステル結合含有樹脂との体積比が、40/60~99.9/0.1である、請求項1または2に記載の樹脂組成物。
  4.  前記エステル交換触媒の含有量が、前記フッ素樹脂と前記エステル結合含有樹脂とエステル交換触媒との合計100質量部に対し、0.001~20質量部である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記フッ素樹脂が、エチレン/テトラフルオロエチレン共重合体またはテトラフルオロエチレン/ペルフルオロアルキルビニルエーテル共重合体である、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記エステル交換触媒が、有機酸の金属塩、炭酸の金属塩、金属酸化物および金属水酸化物からなる群より選択される少なくとも1種である、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記エステル交換触媒が、カルボン酸の亜鉛塩、カルボン酸のマグネシウム塩、炭酸亜鉛、炭酸マグネシウム、酸化亜鉛、酸化マグネシウム、水酸化亜鉛および水酸化マグネシウムからなる群より選択される少なくとも1種である、請求項6に記載の樹脂組成物。
  8.  請求項1~7のいずれか一項に記載の樹脂組成物の溶融混練物からなる成形用樹脂材料。
  9.  請求項1~7のいずれか一項に記載の樹脂組成物を溶融混練することを特徴とする成形用樹脂材料の製造方法。
  10.  請求項1~7のいずれか一項に記載の樹脂組成物または請求項8に記載の成形用樹脂材料を溶融成形してなる成形体。
  11.  成形体が連続相と分散相とを有するミクロ相分離構造を有し、前記連続相が前記フッ素樹脂であり、前記分散相が前記エステル結合含有樹脂である、請求項10に記載の成形体。
  12.  成形体がフィルムまたはシートである、請求項10または11に記載の成形体。
  13.  請求項10~12のいずれか一項に記載の成形体の層とフッ素樹脂の層とエステル結合含有樹脂の層とを有する3層以上の層構造を有する積層体であって、前記成形体の層が前記フッ素樹脂の層と前記エステル結合含有樹脂の層との間に配置されている積層体。
  14.  厚さ10~100μmの請求項12に記載のフィルムまたはシートを含む、太陽電池用バックシート。
  15.  請求項8に記載の成形用樹脂材料を溶融成形することを特徴とする成形体の製造方法。
PCT/JP2014/083788 2013-12-27 2014-12-19 樹脂組成物 WO2015098776A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015554850A JP6477497B2 (ja) 2013-12-27 2014-12-19 樹脂組成物
KR1020167015101A KR102264949B1 (ko) 2013-12-27 2014-12-19 수지 조성물
CN201480071048.XA CN105849181B (zh) 2013-12-27 2014-12-19 树脂组合物
DE112014005993.5T DE112014005993T5 (de) 2013-12-27 2014-12-19 Harzzusammensetzung
US15/168,868 US10633529B2 (en) 2013-12-27 2016-05-31 Resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-271747 2013-12-27
JP2013271747 2013-12-27
JP2014153221 2014-07-28
JP2014-153221 2014-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/168,868 Continuation US10633529B2 (en) 2013-12-27 2016-05-31 Resin composition

Publications (1)

Publication Number Publication Date
WO2015098776A1 true WO2015098776A1 (ja) 2015-07-02

Family

ID=53478633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083788 WO2015098776A1 (ja) 2013-12-27 2014-12-19 樹脂組成物

Country Status (6)

Country Link
US (1) US10633529B2 (ja)
JP (1) JP6477497B2 (ja)
KR (1) KR102264949B1 (ja)
CN (1) CN105849181B (ja)
DE (1) DE112014005993T5 (ja)
WO (1) WO2015098776A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154926A1 (ja) * 2016-03-08 2017-09-14 旭硝子株式会社 積層体の製造方法およびプリント基板の製造方法
CN107245237A (zh) * 2017-06-29 2017-10-13 上海锦湖日丽塑料有限公司 一种耐化学腐蚀的pc组合物及其制备方法
WO2018079516A1 (ja) * 2016-10-31 2018-05-03 株式会社日立製作所 樹脂組成物
JP2018177931A (ja) * 2017-04-11 2018-11-15 Agc株式会社 樹脂組成物および成形品
WO2019004145A1 (ja) * 2017-06-28 2019-01-03 ダイキン工業株式会社 樹脂組成物及び成形品
JPWO2019163913A1 (ja) * 2018-02-23 2021-03-04 Agc株式会社 積層体及びその製造方法、ならびに成形体及びその製造方法
WO2022045237A1 (ja) * 2020-08-31 2022-03-03 Agc株式会社 液状組成物及び凸部付き基材
CN115996990B (zh) * 2020-08-31 2024-06-11 Agc株式会社 液状组合物及带凸部基材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015776A (ja) * 2017-07-04 2019-01-31 株式会社リコー 電子写真感光体、画像形成装置およびプロセスカートリッジ
ES2930765T3 (es) * 2018-03-29 2022-12-21 Dow Global Technologies Llc Resina para su uso como una capa de unión en una estructura multicapa que tiene tereftalato de polietileno

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033782A1 (fr) * 1994-06-09 1995-12-14 Daikin Industries, Ltd. Fluoroolefines, fluoropolymere, et composition de resine thermoplastique contenant ce polymere
JP2003246905A (ja) * 1992-12-10 2003-09-05 Daikin Ind Ltd 熱可塑性樹脂組成物の相溶性改質剤
JP2010180365A (ja) * 2009-02-06 2010-08-19 Daikin Ind Ltd 熱可塑性樹脂組成物及び成形品
JP2013019578A (ja) * 2011-07-08 2013-01-31 Panasonic Corp フィンチューブ熱交換器
WO2013146516A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 ポリマーシート、太陽電池用裏面保護シートおよび太陽電池モジュール
JP2014129465A (ja) * 2012-12-28 2014-07-10 Daikin Ind Ltd 組成物、成形体及び繊維
WO2014189017A1 (ja) * 2013-05-23 2014-11-27 旭硝子株式会社 耐熱電線用被覆材料、その製造方法および電線

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556123A (en) * 1978-10-20 1980-04-24 Teijin Ltd Preparation of polyester
DE3045844C2 (de) 1980-12-05 1986-01-02 Hoechst Ag, 6230 Frankfurt Dauerwärmebeständiger, Fluorkohlenwasserstoffpolymere enthaltender Formkörper
JPS6072951A (ja) 1983-09-30 1985-04-25 Unitika Ltd 含弗素重合体組成物
JPH0448820A (ja) 1990-06-15 1992-02-18 Mitsubishi Electric Corp 半導体集積回路
EP0626424B1 (en) 1992-12-10 1999-06-09 Daikin Industries, Limited Thermoplastic resin composition
US6139946A (en) 1997-05-30 2000-10-31 Imation Corp. Magnetic recording media incorporating a quaternary ammonium functional binder and magnetic pigment surface treated with compound having acidic and electron withdrawing functionalities
EP0992518B1 (en) * 1997-06-23 2004-09-01 Daikin Industries, Limited Tetrafluoroethylene copolymer and use thereof
JP3531499B2 (ja) * 1998-06-25 2004-05-31 富士ゼロックス株式会社 高分子量ポリカーボネートを用いた電子写真感光体および電子写真装置
JP2002544359A (ja) 1999-05-13 2002-12-24 ダイネオン エルエルシー 溶融加工可能な熱可塑性ポリマー組成物
AT502218B1 (de) * 2005-07-25 2010-09-15 Bdi Biodiesel Internat Ag Verfahren zur herstellung von carbonsäurealkylestern
CN101547945B (zh) 2006-12-08 2011-07-06 旭硝子株式会社 乙烯/四氟乙烯类共聚物及其制造方法
EP2284213A4 (en) * 2008-05-22 2013-06-26 Daikin Ind Ltd POLYCHLORTRIFLUORETHYLENE FILM FOR BACK-UP PROTECTIVE FOIL OF A SOLAR CELL
CN102246317B (zh) * 2008-12-08 2016-03-16 旭硝子株式会社 氟树脂薄膜及其使用
JP5734779B2 (ja) * 2010-12-24 2015-06-17 富士フイルム株式会社 ポリエステル重合体、樹脂組成物、成形体、及びフィルム
JP6032981B2 (ja) * 2011-07-14 2016-11-30 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246905A (ja) * 1992-12-10 2003-09-05 Daikin Ind Ltd 熱可塑性樹脂組成物の相溶性改質剤
WO1995033782A1 (fr) * 1994-06-09 1995-12-14 Daikin Industries, Ltd. Fluoroolefines, fluoropolymere, et composition de resine thermoplastique contenant ce polymere
JP2010180365A (ja) * 2009-02-06 2010-08-19 Daikin Ind Ltd 熱可塑性樹脂組成物及び成形品
JP2013019578A (ja) * 2011-07-08 2013-01-31 Panasonic Corp フィンチューブ熱交換器
WO2013146516A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 ポリマーシート、太陽電池用裏面保護シートおよび太陽電池モジュール
JP2014129465A (ja) * 2012-12-28 2014-07-10 Daikin Ind Ltd 組成物、成形体及び繊維
WO2014189017A1 (ja) * 2013-05-23 2014-11-27 旭硝子株式会社 耐熱電線用被覆材料、その製造方法および電線

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017154926A1 (ja) * 2016-03-08 2019-01-24 Agc株式会社 積層体の製造方法およびプリント基板の製造方法
US10729018B2 (en) 2016-03-08 2020-07-28 AGC Inc. Process for producing laminate and process for producing printed board
WO2017154926A1 (ja) * 2016-03-08 2017-09-14 旭硝子株式会社 積層体の製造方法およびプリント基板の製造方法
WO2018079516A1 (ja) * 2016-10-31 2018-05-03 株式会社日立製作所 樹脂組成物
JP2018177931A (ja) * 2017-04-11 2018-11-15 Agc株式会社 樹脂組成物および成形品
JP7003434B2 (ja) 2017-04-11 2022-01-20 Agc株式会社 樹脂組成物および成形品
WO2019004145A1 (ja) * 2017-06-28 2019-01-03 ダイキン工業株式会社 樹脂組成物及び成形品
CN107245237A (zh) * 2017-06-29 2017-10-13 上海锦湖日丽塑料有限公司 一种耐化学腐蚀的pc组合物及其制备方法
JPWO2019163913A1 (ja) * 2018-02-23 2021-03-04 Agc株式会社 積層体及びその製造方法、ならびに成形体及びその製造方法
JP7259834B2 (ja) 2018-02-23 2023-04-18 Agc株式会社 積層体及びその製造方法、ならびに成形体及びその製造方法
WO2022045237A1 (ja) * 2020-08-31 2022-03-03 Agc株式会社 液状組成物及び凸部付き基材
CN115996990A (zh) * 2020-08-31 2023-04-21 Agc株式会社 液状组合物及带凸部基材
CN115996990B (zh) * 2020-08-31 2024-06-11 Agc株式会社 液状组合物及带凸部基材

Also Published As

Publication number Publication date
KR20160105780A (ko) 2016-09-07
CN105849181B (zh) 2017-11-28
CN105849181A (zh) 2016-08-10
JP6477497B2 (ja) 2019-03-06
US10633529B2 (en) 2020-04-28
JPWO2015098776A1 (ja) 2017-03-23
KR102264949B1 (ko) 2021-06-14
DE112014005993T5 (de) 2016-09-08
US20160272805A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
WO2015098776A1 (ja) 樹脂組成物
JP5641081B2 (ja) ポリクロロトリフルオロエチレンフィルム及び太陽電池用裏面保護シート
JP2006328195A (ja) 樹脂組成物およびそれからなる燃料容器
US20130037103A1 (en) Back sheet for solar cell module and solar cell module
JPWO2009004745A1 (ja) ポリエチレンテレフタレート系グラフト共重合樹脂およびその成形体の製造方法
CN105705580B (zh) (甲基)丙烯酸类共聚物、树脂组合物及其成型体
US20150337129A1 (en) Resin composition and molded article of thereof
JP2011116004A (ja) フッ素ポリマー積層体の製造方法、それにより得られるフッ素ポリマー積層体、及び、非フッ素ゴム組成物
JP2015168771A (ja) エチレン/テトラフルオロエチレン共重合体組成物
JP6184093B2 (ja) 樹脂組成物およびその成形品
US10730219B2 (en) Method for producing fluororesin film
JP5979996B2 (ja) 多層延伸フィルムの製造方法
JP2017119741A (ja) 樹脂およびフィルム
WO2014104222A1 (ja) エチレン/テトラフルオロエチレン共重合体を含むブレンドポリマー、該ブレンドポリマーの成形体、太陽電池用バックシートおよび該成形体の製造方法
JP2765792B2 (ja) フッ化ビニリデン樹脂組成物
JP2012136609A (ja) 樹脂組成物並びに積層体及びその製造方法
JP2020200364A (ja) 液状マスターバッチ組成物、熱可塑性樹脂組成物、及び成形体
US20150240066A1 (en) Polymer composition, molded product thereof, and backsheet for solar cell
JP6773178B1 (ja) 液状マスターバッチ組成物、熱可塑性樹脂組成物、及び成形体
JP2013231147A (ja) 離型フィルム
JP2019059840A (ja) ポリエステル樹脂組成物
JPS58147450A (ja) ポリカ−ボネ−ト樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554850

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167015101

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005993

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874242

Country of ref document: EP

Kind code of ref document: A1