WO2018079516A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2018079516A1
WO2018079516A1 PCT/JP2017/038266 JP2017038266W WO2018079516A1 WO 2018079516 A1 WO2018079516 A1 WO 2018079516A1 JP 2017038266 W JP2017038266 W JP 2017038266W WO 2018079516 A1 WO2018079516 A1 WO 2018079516A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
thermoplastic resin
composition according
ester
Prior art date
Application number
PCT/JP2017/038266
Other languages
English (en)
French (fr)
Inventor
ゆり 梶原
靖彦 多田
孝仁 村木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018079516A1 publication Critical patent/WO2018079516A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms

Definitions

  • the present invention relates to a resin composition and a product using a cured resin molded from the resin composition.
  • thermoplastic resin such as an ABS resin or a PLA resin is used as a resin for a hot melt molding apparatus.
  • the uses of these molded products are determined according to the properties (heat resistance and strength) of the thermoplastic resin.
  • improvement of resin for hot melt molding apparatus has been demanded.
  • ABS resin is severely deformed by heat, and when melted at a high temperature, the curing shrinkage after cooling is large. For this reason, a molded product having a large shape is likely to be distorted during its production and may be deformed.
  • PLA resin has low impact resistance and flexibility. Therefore, processing work such as polishing is very difficult like ABS resin, and the paint does not fit well.
  • the temperature at the time of modeling is low, the modeled object itself is vulnerable to heat, and there are restrictions on its usage and place of use.
  • thermoplastic resin having a hydroxyl group and a thermoplastic resin having an ester bond are used to introduce cross-linking by an ester exchange reaction, and the strength and heat resistance of the thermoplastic resin material for a hot melt molding apparatus are the problems. Resolve the shortage.
  • the resin molded product obtained by the hot melt molding apparatus using the resin composition of the present invention has improved heat resistance and strength.
  • Patent Document 1 is a patent relating to research on a polymer in which an alkoxyamine skeleton is introduced into a polymer chain as a polymer using such a dynamic covalent bond.
  • Patent Document 2 states that “the present invention relates to a thermosetting resin capable of thermal deformation and a thermosetting composite material containing the same, and this composition is an acid anhydride in the presence of at least one transesterification catalyst. It is obtained by contacting at least one curing agent selected from the above with at least one thermosetting resin precursor.
  • This publication uses an ester bond exchange reaction as a dynamic co-bond for the purpose of developing a thermosetting resin that can be thermally deformed after curing.
  • the resin composition of the present embodiment is developed for a hot-melt molding apparatus using the dynamic covalent bond by this transesterification reaction.
  • the resin composition of the present embodiment is characterized by being a thermoplastic resin composition containing a hydroxyl group, a thermoplastic resin composition containing an ester bond, and a resin composition containing a transesterification catalyst.
  • the hydroxyl group refers to an —OH group and is used to include a hydroxyl group.
  • thermoplastic resin composition containing a hydroxyl group examples include polyvinyl alcohol and an acrylic monomer polymer having a hydroxyl group.
  • acrylic monomer having a hydroxyl group examples include 2-hydroxy methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, hydroxypropyl acrylate, and ethyl 2- (hydroxymethyl) acrylate.
  • Copolymers with other vinyl monomers can also be used as long as they contain a monomer having a hydroxyl group.
  • thermoplastic resin composition containing an ester bond is a polyester resin.
  • specific examples include polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • a methacrylic resin can also be used, and examples thereof include a polymer of a vinyl methacrylate monomer and a copolymer with another vinyl monomer.
  • the ratio of the transesterification catalyst to the total ester bond contained in the thermoplastic resin composition is preferably 2.5 to 20 mol%, particularly preferably 5 to 10 mol%. By including the transesterification catalyst at this ratio, the condition for causing the transesterification reaction can be satisfied.
  • the ratio of the transesterification reaction catalyst shown in Table 1 described later is included in this range.
  • the resin composition of the present embodiment may be combined with an inorganic filler, and applicable inorganic fillers include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, aluminum nitride, Examples thereof include powders such as boron nitride, beryllia, zircon, fosterite, stearite, spirels, mullite, and titania, and beads and glass fibers obtained by spheroidizing these.
  • the shape of the inorganic filler is not limited, and any shape such as a spherical shape or a scale shape may be used.
  • the resin composition of the present embodiment is characterized by exhibiting fluidity by heat melting and becoming a thermosetting resin composition after cooling.
  • the resin composition of this embodiment includes a thermoplastic resin composition containing a hydroxyl group, a thermoplastic resin composition containing an ester bond, and a transesterification catalyst, and exhibits fluidity at the melting temperature of the thermoplastic resin.
  • the temperature range in which fluidity is exhibited is about 90 to 260 ° C., depending on the melting point of the thermoplastic resin used.
  • the hydroxyl group and the ester bond in the resin composition undergo an ester exchange reaction via the ester exchange reaction catalyst. Thereby, in some resin compositions, the bridge
  • a layered object is manufactured using a resin composition having a first thermoplastic resin containing a hydroxyl group, a second thermoplastic resin containing an ester bond, and a transesterification catalyst.
  • the resin composition of the present embodiment is characterized in that it can be used for a hot melt molding apparatus, and is characterized by being molded into a thermosetting resin molding.
  • the thermosetting resin composition of the present embodiment is characterized by exhibiting fluidity by an external stimulus. Due to the external stimulus, the transesterification catalyst, the ester group, and the hydroxyl group in the thermosetting resin molded product again undergo a transesterification reaction and develop fluidity. Due to this feature, the laminated surface can be corrected by heat or light in the resin molded product once cooled. Moreover, it becomes possible to bond / join the separately molded products by heat or light with a hot melt molding apparatus, and it is possible to bond / bond without requiring an adhesive.
  • the resin molded product of this embodiment has high strength because there is no adhesion / bonding interface due to different members. Furthermore, the transesterification catalyst, the ester group, and the hydroxyl group cause the transesterification reaction again, so that even if a part of the molded product is destroyed, it can be repaired by heat or light. Furthermore, the resin molding by the resin composition of this embodiment can be recycled.
  • the ratio of the transesterification reaction catalyst is increased as compared with the conventional resin composition. This is to provide a resin composition corresponding to the occurrence of at least two transesterification reactions in the course of heating, cooling, and external stimulation as described above. When there are few catalysts, it is assumed that there is not enough transesterification during external stimulation after cooling.
  • thermoplastic resin containing hydroxyl groups is prepared. 100 g (0.77 mol) of 2-hydroxymethacrylate (Tokyo Kasei) and 1.6 g of CT50 (Hitachi Kasei) were mixed at room temperature, and the liquid was poured into an aluminum cup. The aluminum cup was moved to a 120 degreeC thermostat, and it heated in air
  • a cured thermoplastic resin containing an ester bond is prepared.
  • thermoplastic resin containing a hydroxyl group and the cured thermoplastic resin containing an ester bond were synthesized and used, but a commercially available thermoplastic resin can also be used.
  • Table 1 shows the resin compositions studied in this example.
  • Resin compositions (B) to (D) were prepared with the component amounts shown in Table 1.
  • the transesterification catalyst is contained in an amount of 5 mol% of the ester bond in the thermoplastic resin containing the ester bond.
  • the transesterification reaction catalyst is contained in an amount of 4.5 mol% of the ester bond in the thermoplastic resin containing the ester bond.
  • the transesterification catalyst is contained in an amount of 5 mol% of the ester bonds in the entire resin.
  • a capillary rheometer 306 includes a load cell 301, a piston 302, a capillary 304, and a cylinder 305, and measures the melt viscosity of the molten resin 303.
  • the result in the resin composition (A) is shown in FIG.
  • the resin compositions (B) to (D) obtained almost the same results, and a shear rate of 100 to 1000 (/ sec), which is a standard in injection molding, was obtained. From this, it is thought that the resin composition of this embodiment is applicable also to a hot-melt type
  • molding apparatus is thought that the resin composition of this embodiment is applicable also to a hot-melt type
  • the glass transition temperature was measured by differential thermal scanning calorimetry (DSC) measurement. A measuring instrument manufactured by TA Instruments Inc. was used. As shown in Table 2, the resin composition (A) of the present invention has an improved glass transition temperature compared to the resin composition (E) which is an ABS resin which is a general-purpose resin for a hot melt molding apparatus, as shown in Table 2. It was confirmed that the heat resistance was increased. Similar results were obtained for the resin compositions (B) to (D).
  • the resin composition (A) was cut into a size of 5 ⁇ 20 ⁇ 0.5 tmm, and the linear expansion coefficient was determined using a thermomechanical analyzer (TMA).
  • TMA thermomechanical analyzer
  • a measuring instrument manufactured by TA Instruments Inc. was used.
  • the resin composition (A) of the present invention has a smaller linear expansion coefficient than the resin composition (E), which is an ABS resin, which is a general-purpose resin for a hot melt molding apparatus, as shown in Table 2. Further, it is possible to obtain a molded article having a small curing shrinkage after cooling and excellent dimensional stability. Similar results were obtained for the resin compositions (B) to (D).
  • the resin composition (A) was processed into a plate shape by press molding, a bending test piece was produced in accordance with JIS7171, and the bending characteristics were evaluated.
  • the measuring apparatus used was an autograph manufactured by Shimadzu Corporation.
  • the resin composition (A) of the present invention has higher bending strength and strength than the resin composition (E) which is an ABS resin which is a general-purpose resin for hot melt molding apparatuses. I showed it was expensive. Similar results were obtained for the resin compositions (B) to (D).
  • thermosetting resin A 5 ⁇ 5 ⁇ 5 mm resin piece was cut out from the flat molded product produced in Example 2, and the solubility in 10 ml of tetrahydrofuran was confirmed. It was confirmed that none of the resin compositions (A) to (D) was dissolved in tetrahydrofuran.
  • melt viscosity was measured in the same manner as in Example 2.
  • the examples and comparative examples show that the resin molded product of the present invention is superior in heat resistance, strength, and workability compared to conventional resins, although it is a hot-melt resin.
  • thermosetting resin of this embodiment 101: Schematic diagram of thermoplastic resin containing hydroxyl group 102: Schematic diagram of thermoplastic resin containing ester bond 103: Schematic diagram of thermosetting resin of this embodiment 201: Resin heating furnace 202: Nozzle 203: Molten book Resin composition 204 of embodiment: Thermosetting resin molding after cooling 205: Stand 301: Load cell 302: Piston 303: Resin in molten state 304: Capillary 305: Cylinder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

従来の熱溶融型造形装置用樹脂は、耐熱性や強度が低いため、その利用用途や使用場所に制限がある。本発明では、ヒドロキシルを有する熱可塑性樹脂とエステル結合を有する熱可塑性樹脂を用いて、エステル交換反応による架橋を導入し、熱溶融型造形装置用熱可塑性樹脂材料の課題である強度・耐熱性の不足を解決する。

Description

樹脂組成物
 本発明は、樹脂組成物、その樹脂組成物を用いて成形した樹脂硬化物を用いた製品に関する。
 熱溶融型造形装置向け樹脂として、ABS樹脂やPLA樹脂等の熱可塑性樹脂が使用されている。これらの成形品の用途は、熱可塑性樹脂の特性(耐熱性、強度)に対応し、決まっている。近年、工業向けプロトタイピングの試作に適した熱溶融型造形装置技術の適用範囲を広げるため、熱溶融型造形装置用樹脂の改善が求められている。
特許第5333975号公報 特許第5749354号公報
 従来の熱溶融型造形装置用樹脂の課題について記載する。ABS樹脂は、熱による変形が激しく、高温で溶融した場合、冷却後の硬化収縮が大きい。そのため、大きい形状の成形品は作成途中で歪みが生じやすく、変形する恐れがあった。また、ABS樹脂の強度は高くないため、強度が必要な成形物の加工には適さない。PLA樹脂は、耐衝撃性と柔軟性が低い。そのため、ABS樹脂のように研磨などの加工作業が非常に困難で、塗料もうまく馴染なまい。さらに、造形する際の温度が低いため、造形物自体が熱に弱く、その利用用途や使用場所に制限がある。
 本発明では、ヒドロキシルを有する熱可塑性樹脂とエステル結合を有する熱可塑性樹脂を用いて、エステル交換反応による架橋を導入し、熱溶融型造形装置用熱可塑性樹脂材料の課題である強度・耐熱性の不足を解決する。
 本発明の樹脂組成物を使用した熱溶融型造形装置による樹脂成形物は、耐熱、強度が向上する。
エステル交換反の模式図である。 熱溶融型造形装置の模式図である。 使用したキャピラリーレオメータの模式図である。 溶融粘度の測定例を示す。
 近年、共有結合でありながら可逆的な解離-結合が容易に実現できる共有結合の平衡反応へ関心が高まっており、これを活用する化学を動的共有結合化学という。動的共有結合化学に基づいて形成される構造体は、熱力学的に安定な構造をもつ一方で、温度、光、圧力、触媒や鋳型の有無等の特定の外部刺激によりその構造を変化させることができる。このような「動的」な共有結合を利用することで、これまで実現不可能だった超分子形成や高分子構築が可能になる。特に注目すべき点は、関与する結合が共有結合であるため、形成される結合が、従来の超分子やそのポリマーにみられる水素結合などの弱い結合に比べて格段に強く、この活用は、新規な構造体構築の重要な手段となりうることだ。特許文献1は、このような動的共有結合を利用した高分子として、高分子鎖中にアルコキシアミン骨格を導入した高分子の研究に関する特許である。
 特許文献2には、「本発明は熱変形が可能な熱硬化性樹脂とそれを含む熱硬化性複合材料に関するものであり、この組成物は少なくとも一つのエステル交換触媒の存在下で酸無水物から選択される少なくとも一つの硬化剤を少なくとも一つの熱硬化性樹脂前駆物質と接触させて得られる」と記載されている。この公報では、硬化後に熱変形可能な熱硬化性樹脂を開発することを目的とし、動的共結合としてエステル結合交換反応を利用している。
 本実施形態の樹脂組成物は、このエステル交換反応による動的共有結合を利用し、熱溶融型造形装置向けに開発されたものである。
 本実施形態の樹脂組成物は、ヒドロキシル基を含む熱可塑性樹脂組成物と、エステル結合を含む熱可塑性樹脂組成物と、エステル交換反応触媒を含む樹脂組成物であることを特徴とする。ここで、ヒドロキシル基は-OH基を指し、水酸基を含む意味で用いる。
 ヒドロキシル基を含む熱可塑性樹脂組成物としては、ポリビニルアルコールや水酸基を有するアクリルモノマー重合体が挙げられる。水酸基を有するアクリルモノマーとは、2-ヒドロキシメタクリレート、ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ヒドロキシプロピルアクリレート、エチル2-(ヒドロキシメチル)アクリレート等である。ヒドロキシル基を有するモノマーを含んでいれば、他のビニルモノマーとの共重合体も使用することができる。
 エステル結合を含む熱可塑性樹脂組成物としては、ポリエステル系樹脂が代表として挙げられる。具体的には、ポリエチレンテレフタラート、ポリトリメチレンテレフタラート、ポリブチレンテレフタラート等が挙げられる。また、メタクリル系樹脂も使用が可能であり、メタクリル酸ビニルモノマーの重合体や、他のビニルモノマーとの共重合体が挙げられる。
 熱可塑性樹脂組成物に含まれる全エステル結合に対し、エステル交換反応触媒の割合が2.5~20mol%であることが好ましく、特に5~10mol%が好ましい。この割合でエステル交換反応触媒を含むことで、エステル交換反応が生じる条件を満たすことができる。後に説明する表1のエステル交換反応触媒の割合は、この範囲に含まれる。
 エステル交換反応触媒の割合を5~10mol%に設定することで、成形後、熱硬化性樹脂となった後でも加熱により再溶融できる利点がある。
 エステル交換反応触媒としては、酢酸亜鉛(II)、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛(II)、アセチルアセトン鉄(III)、アセチルアセトンコバルト(II)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、メトキシド(トリフェニルホスフィン)銅(I)錯体、エトキシド(トリフェニルホスフィン)銅(I)錯体、プロポキシド(トリフェニルホスフィン)銅(I)錯体、イソプロポキシド(トリフェニルホスフィン)銅(I)錯体、メトキシドビス(トリフェニルホスフィン)銅(II)錯体、エトキシドビス(トリフェニルホスフィン)銅(II)錯体、プロポキシドビス(トリフェニルホスフィン)銅(II)錯体、イソプロポキシドビス(トリフェニルホスフィン)銅(II)錯体、トリス(2,4-ペンタンジオナト)コバルト(III)、二酢酸すず(II)、ジ(2-エチルヘキサン酸)すず(II)、N,N-ジメチル-4-アミノピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、トリアザビシクロデセン、トリフェニルホスフィンが挙げられる。本実施形態の樹脂組成物は、無機フィラーと組合せても良く、適用できる無機フィラーとしては、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコン、フォステライト、ステアライト、スピレル、ムライト、チタニア等の粉体、また、これらを球形化したビーズ、ガラス繊維等が挙げられる。また、無機フィラーの形状に限定はなく、球状、鱗片状などどれを用いてもよい。
 本実施形態の樹脂組成物は、熱溶融により流動性を発現し、冷却後、熱硬化性樹脂組成物となることを特徴とする。本実施形態の樹脂組成物は、ヒドロキシル基を含む熱可塑性樹脂組成物とエステル結合を含む熱可塑性樹脂組成物とエステル交換反応触媒を含み、熱可塑性樹脂の溶融温度において、流動性を発現する。流動性を発現する温度範囲は、使用する熱可塑性樹脂の融点に依存し、約90~260℃である。この流動性を発現している間、エステル交換反応触媒を介し、樹脂組成物中のヒドロキシル基とエステル結合は、エステル交換反応を生じる。これにより、樹脂組成物中の一部では、エステル結合による架橋が形成され、冷却時は、熱硬化性樹脂となる。この反応の模式図と、熱溶融型造形装置の模式図を図1、2に示す。
 図2の熱溶融型造形装置は、樹脂加熱炉201、ノズル202を有する。溶融した本実施形態の樹脂組成物203が台205の上に積層され、冷却後の熱硬化性樹脂成形物204が出来上がる。本実施形態では、ヒドロキシル基を含む第1の熱可塑性樹脂と、エステル結合を含む第2の熱可塑性樹脂と、エステル交換反応触媒を有する樹脂組成物を用いて、積層造形物を製造する。
 本実施形態の樹脂組成物は、熱溶融型造形装置向けに使用できることを特徴とし、成形され、熱硬化性樹脂成形物になることを特徴とする。本実施形態の熱硬化性樹脂組成物は、外部刺激により流動性を発現することを特徴とする。外部刺激により、熱硬化性樹脂成形物中のエステル交換反応触媒とエステル基とヒドロキシル基が、再びエステル交換反応を生じ、流動性を発現する。この特徴により、一度冷却した樹脂成形物において、熱や光による積層面の修正が可能となる。また、熱溶融型造形装置で、個別に成形した分品同士を、熱や光により、接着/接合することが可能になり、接着剤を必要としない、接着/接合が可能となる。本実施形態の樹脂成形物は、異部材による接着/接合界面が存在しないため、強度が高い。さらに、エステル交換反応触媒とエステル基とヒドロキシル基が、再びエステル交換反応を生じる特徴により、成形物の一部が破壊されても、熱や光による修復が可能である。さらに、本実施形態の樹脂組成物による樹脂成形物は、リサイクルが可能である。
 本実施形態では従来の樹脂組成物と比較して、エステル交換反応触媒の割合を多くしている。これは、上述したように加熱、冷却、外部刺激というながれで、少なくとも2回のエステル交換反応が生じることに対応した樹脂組成物を提供するためである。触媒が少ない場合には冷却後の外部刺激の際にエステル交換反応が十分にないことが想定される。
 以下、実施例及び比較例を用いて、本実施形態の効果を説明する。
 <樹脂組成物(A)の作製>
 ヒドロキシル基を含む熱可塑性樹脂硬化物を作製する。2-ヒドロキシメタクリレート(東京化成)100g(0.77mol)とCT50(日立化成)1.6gを室温で混合し、アルミカップに液体を流した。アルミカップを120℃の恒温槽に移し、2時間大気中で加熱し、ヒドロキシル基を含む熱可塑性樹脂硬化物を作製した。その後、硬化物をボールミルで粉砕し、100~600μmの樹脂粉末にした。
 エステル結合を含む熱可塑性樹脂硬化物を作製する。メタクリル酸メチル(東京化成)100g(0.1mol)CT50(日立化成)1.6gを室温で混合し、アルミカップに液体を流した。アルミカップを120℃の恒温槽に移し、2時間大気中で加熱し、ヒドロキシル基を含む熱可塑性樹脂硬化物を作製した。その後、硬化物をボールミルで粉砕し、100~600μmの樹脂粉末にした。
 上述のように作製したヒドロキシル基を含む熱可塑性樹脂硬化物である樹脂粉末80g、上述のように作製したエステル結合を含む熱可塑性樹脂硬化物である樹脂粉末62g及び亜鉛(II)アセチルアセトナート16.2g(0.06mol、全樹脂中のエステル結合の5mol%)を混合し、粉末状の樹脂組成物を作製した。
 本実施例では、ヒドロキシル基を含む熱可塑性樹脂硬化物とエステル結合を含む熱可塑性樹脂硬化物それぞれを合成して用いたが、市販されている熱可塑性樹脂をもちいることも可能である。本実施例で検討した樹脂組成を表1に示す。
 <樹脂組成物(B)~(D)の作製>
 表1に示す成分量にて、樹脂組成物(B)~(D)を作製した。樹脂組成物(B)ではエステル交換反応触媒を、エステル結合を含む熱可塑性樹脂中のエステル結合の5mol%含む。樹脂組成物(C)ではエステル交換反応触媒を、エステル結合を含む熱可塑性樹脂中のエステル結合の4.5mol%含む。樹脂組成物(D)ではエステル交換反応触媒を全樹脂中のエステル結合の5mol%含んでいる。
 <溶融粘度の確認>
 キャピラリーレオメータ(Dynisco社製)を使用して、溶融粘度を測定し熱溶融型造形装置に適用可能か確認を行った。キャピラリーレオメーの模式図を図3に示す。キャピラリーレオメータ306は、ロードセル301、ピストン302、キャピラリー304、シリンダー305を備え、溶融状態の樹脂303の溶融粘度を測定する。樹脂組成物(A)における結果を図4に示す。また、樹脂組成物(B)~(D)もほぼ同等の結果が得られ、射出成形において目安となる100~1000(/sec)のせん断速度を得た。これより、本実施形態の樹脂組成物は、熱溶融型造形装置にも適用できると考えられる。
 <成形物の作製>
 樹脂組成物(A)を使い、射出成形機を用いて、平板(10×100×100mm)を作製した。射出成形温度条件は、280℃とした。樹脂組成物(B)~(D)においても同様に平板を作製した。
 <耐熱評価>
 示差熱走査熱量(DSC)測定により、ガラス転移温度の測定を行った。測定装置は、ティー・エイ・インスツルメント社製を使用した。評価結果を表2に示す通り、汎用の熱溶融型造形装置用樹脂であるABS樹脂である樹脂組成物(E)に比べ、本発明の樹脂組成物(A)はガラス転移温度が向上し、高耐熱化していることが確認された。樹脂組成物(B)~(D)についても同様の結果が得られた。
 <線膨張係数の評価>
 樹脂組成物(A)を5×20×0.5tmmのサイズに切り出し、熱機械分析装置(TMA)を用いて、線膨張係数を求めた。測定装置は、ティー・エイ・インスツルメント社製を使用した。評価結果を表2に示した通り、汎用の熱溶融型造形装置用樹脂であるABS樹脂である樹脂組成物(E)に比べ、本発明の樹脂組成物(A)は、線膨張係数が小さく、冷却後の硬化収縮が小さく、寸法安定性に優れた成形物を得ることができる。樹脂組成物(B)~(D)についても同様の結果が得られた。
 <曲げ強度の評価>
 樹脂組成物(A)をプレス成型により板状に加工し、JIS7171に準拠して、曲げ試験片を作製し、曲げ特性を評価した。測定装置は島津製作所社製のオートグラフを使用した。評価結果を表2に示す通り、汎用の熱溶融型造形装置用樹脂であるABS樹脂である樹脂組成物(E)に比べ、本発明の樹脂組成物(A)は曲げ強度が高く、強度が高いことを示せた。樹脂組成物(B)~(D)についても同様の結果が得られた。
 <熱硬化性樹脂の確認>
 実施例2で作製した平板の成形物から5×5×5mmの樹脂片を切り出し、テトラヒドロフラン10mlへの溶解性を確認した。樹脂組成物(A)~(D)いずれも、テトラヒドロフランへ溶解しないことを確認した。
 <接着/接合の確認>
成形した平板を切断し、破断面を着き合わせ、ヒートガンを用いて界面付近を集中的に加熱すると、破断面は再び接着した。これより、本実施形態の樹脂組成物は、熱硬化性樹脂でありながら、熱により、接着/接合が可能であることを確認した。
 <比較例>
 比較例として、樹脂組成物(E)に汎用の熱溶融型造形装置用樹脂であるABS樹脂を用いた。また、樹脂組成物(F)~(H)は、表1に示す配合で調整し、樹脂を作製した。
 実施例2と同様の方法で、溶融粘度を測定した。ABS樹脂である樹脂組成物(E)及び(F)~(H)も、射出成形において目安となる100~1000(/sec)のせん断速度を得た。
 実施例3と同様の方法で、樹脂組成物(E)~(H)において、樹脂の平板を作製した。
 実施例4と同様の方法で、樹脂組成物(E)~(H)のガラス転移温度、線膨張係数及び曲げ強度を測定し、結果を表2に示す。
 実施例5と同様の方法で、樹脂組成物(E)~(H)のテトラヒドロフランへの溶解性を確認した。その結果、いずれの樹脂もテトラヒドロフランへ溶解性を示し、熱可塑性樹脂であることを確認した。
 実施例6と同様の方法で、接着/接合の確認を行った結果、熱により、接着/接合が可能である従来の熱可塑性樹脂の特性を確認した。
 以上、実施例及び比較例により、本発明の樹脂成形物は、熱溶融型樹脂でありながら、従来樹脂よりも耐熱、強度、加工性に優れることを示せた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
101:ヒドロキシル基を含む熱可塑性樹脂の模式図
102:エステル結合を含む熱可塑性樹脂の模式図
103:本実施形態の熱硬化性樹脂の模式図
201:樹脂加熱炉
202:ノズル
203:溶融した本実施形態の樹脂組成物
204:冷却後の熱硬化性樹脂成形物
205:台
301:ロードセル
302:ピストン
303:溶融状態の樹脂
304:キャピラリー
305:シリンダー

Claims (13)

  1.  ヒドロキシル基を含む第1の熱可塑性樹脂と、
     エステル結合を含む第2の熱可塑性樹脂と、
     エステル交換反応触媒を有することを特徴とする樹脂組成物。
  2.  請求項1に記載の樹脂組成物において、
     前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を2.5~20mol%含むことを特徴とする樹脂組成物。
  3.  請求項1に記載の樹脂組成物において、
     前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を5~10mol%含むことを特徴とする樹脂組成物。
  4.  請求項1に記載の樹脂組成物において、
     熱溶融により流動性を発現し、冷却すると熱硬化性樹脂成形物となることを特徴とする樹脂組成物。
  5.  請求項1に記載の樹脂組成物において、
     熱溶融により流動性を発現し、前記第1の熱可塑性樹脂に含まれるヒドロキシル基と、前記第2の熱可塑性樹脂に含まれるエステル結合によるエステル交換反応を生じることを特徴とする樹脂組成物。
  6.  請求項5に記載の樹脂組成物において、
     前記エステル交換反応が生じた後に冷却すると、熱硬化性樹脂成形物となることを特徴とする樹脂組成物。
  7.  請求項4に記載の樹脂組成物において、
     前記熱硬化性樹脂成形物は、外部刺激により流動性を発現することを特徴とする樹脂組成物。
  8.  請求項6に記載の樹脂組成物において、
     前記熱硬化性樹脂成形物は、外部刺激により流動性を発現することを特徴とする樹脂組成物。
  9.  請求項1乃至8のいずれか一項に記載の樹脂組成物であって、
     積層造形物の製造に用いられることを特徴とする樹脂組成物。
  10.  請求項1乃至9のいずれか一項に記載の樹脂組成物を含むことを特徴とする積層造形物。
  11.  ヒドロキシル基を含む第1の熱可塑性樹脂と、エステル結合を含む第2の熱可塑性樹脂と、エステル交換反応触媒を有する樹脂組成物を用いて、積層造形物を製造することを特徴とする積層造形物の製造方法。
  12.  請求項11に記載の積層造形物の製造方法において、
     前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を2.5~20mol%含むことを特徴とする積層造形物の製造方法。
  13.  請求項11に記載の積層造形物の製造方法において、
     前記樹脂組成物に含まれる全てのエステル結合に対し、前記エステル交換反応触媒を5~10mol%含むことを特徴とする積層造形物の製造方法。
PCT/JP2017/038266 2016-10-31 2017-10-24 樹脂組成物 WO2018079516A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-212452 2016-10-31
JP2016212452A JP2020023591A (ja) 2016-10-31 2016-10-31 樹脂組成物

Publications (1)

Publication Number Publication Date
WO2018079516A1 true WO2018079516A1 (ja) 2018-05-03

Family

ID=62024906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038266 WO2018079516A1 (ja) 2016-10-31 2017-10-24 樹脂組成物

Country Status (2)

Country Link
JP (1) JP2020023591A (ja)
WO (1) WO2018079516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028960A (ja) * 2020-02-28 2022-02-16 共栄社化学株式会社 熱硬化性樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4230676A1 (en) 2020-10-16 2023-08-23 Toyobo Co., Ltd. Crosslinked aromatic polyester resin composition and production method therefor
JP2022174379A (ja) * 2021-05-11 2022-11-24 株式会社日立製作所 樹脂複合体、樹脂複合体の製造方法、及び樹脂複合体の解体方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261734A (ja) * 2002-03-07 2003-09-19 Kanegafuchi Chem Ind Co Ltd 熱可塑性エラストマー組成物
JP2007100108A (ja) * 2007-01-22 2007-04-19 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2008031439A (ja) * 2006-06-30 2008-02-14 Toray Ind Inc 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品
WO2015098776A1 (ja) * 2013-12-27 2015-07-02 旭硝子株式会社 樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261734A (ja) * 2002-03-07 2003-09-19 Kanegafuchi Chem Ind Co Ltd 熱可塑性エラストマー組成物
JP2008031439A (ja) * 2006-06-30 2008-02-14 Toray Ind Inc 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品
JP2007100108A (ja) * 2007-01-22 2007-04-19 Dainippon Ink & Chem Inc 硬化性樹脂組成物
WO2015098776A1 (ja) * 2013-12-27 2015-07-02 旭硝子株式会社 樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028960A (ja) * 2020-02-28 2022-02-16 共栄社化学株式会社 熱硬化性樹脂組成物
JP7152807B2 (ja) 2020-02-28 2022-10-13 共栄社化学株式会社 熱硬化性樹脂組成物

Also Published As

Publication number Publication date
JP2020023591A (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2018079516A1 (ja) 樹脂組成物
CN110382618B (zh) 热固性聚合物粉末组合物的用途
KR101226377B1 (ko) 양친매성 블록 공중합체-강인화된 에폭시 수지 및 그로부터제조된 분말 코팅
JP2019048460A (ja) 繊維強化プラスチック成形用材料の金属積層体
US20200062952A1 (en) Use of a thermosetting polymeric powder composition
JP6630695B2 (ja) 電気電子部品封止用結晶性ラジカル重合性組成物、当該組成物を使用した電気電子部品用封止体、及び当該封止体の製造方法
CN108676370A (zh) 基于石墨烯的3d打印非光固化模型蜡及其合成方法
CN102666723A (zh) 单液性环氧树脂组合物及其利用
TW201704413A (zh) 高熱傳導性低壓模塑之熱熔黏著劑
ES2771873T3 (es) Composición para la fabricación de resinas vitriméricas de tipo epoxi/anhidrido que comprenden un catalizador orgánico
WO2018159387A1 (ja) 電気電子部品用結晶性ラジカル重合性組成物、当該組成物を使用した電気電子部品成形体、及び当該電気電子部品成形体の製造方法
CN102190985A (zh) 一种通用型热熔胶粘剂的生产方法
JP7036122B2 (ja) シートモールディングコンパウンドの製造方法
JP6653305B2 (ja) 電気電子部品用結晶性ラジカル重合性組成物、当該組成物を使用した電気電子部品成形体、及び当該電気電子部品成形体の製造方法
JPH0391524A (ja) カルボキシル末端基を含むポリヒドロキシエステル、及びそれらの使用方法
TWI676651B (zh) 白色環氧模製化合物
JP2005272647A (ja) 構造用接着剤組成物
JP2020094208A (ja) 電気電子部品用結晶性ラジカル重合性組成物、当該組成物を使用した電気電子部品用成形体、及び当該成形体の製造方法
CN113736348B (zh) 一种具有光滑龟纹纹理效果的gma体系粉末涂料
KR102672479B1 (ko) 전기 전자 부품용 결정성 라디칼 중합성 조성물, 상기 조성물을 사용한 전기 전자 부품 성형체, 및 상기 전기 전자 부품 성형체의 제조 방법
JPH0496976A (ja) 標示材用樹脂組成物
CN105111419B (zh) 一种含有纳米SiO2材料的高柔韧性聚酯固化剂及其合成方法
CN107674355A (zh) 可固化液体树脂组合物
CN111732368A (zh) 一种高耐磨冲压模具材料及其制备方法
CN110093005A (zh) 一种3d打印高粘附底板性微翘曲无开裂abs改性材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP