WO2015098531A1 - 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ - Google Patents
高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ Download PDFInfo
- Publication number
- WO2015098531A1 WO2015098531A1 PCT/JP2014/082728 JP2014082728W WO2015098531A1 WO 2015098531 A1 WO2015098531 A1 WO 2015098531A1 JP 2014082728 W JP2014082728 W JP 2014082728W WO 2015098531 A1 WO2015098531 A1 WO 2015098531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- amount
- strength
- rolled material
- wire
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/003—Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/06—Extraction of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
Definitions
- the present invention relates to a rolled material for high-strength springs and a wire for high-strength springs using the same. Specifically, it is a rolled material and a wire useful as a material for a high-strength spring used in a tempered state, that is, quenched and tempered. Particularly, a rolled material excellent in wire drawing workability, and a tensile strength after wire processing is 1900 MPa.
- the present invention relates to a high-strength spring wire having excellent corrosion fatigue characteristics even with high strength as described above.
- Coil springs used in automobiles for example, valve springs and suspension springs used in engines and suspensions, are required to be light in weight to reduce exhaust gas and improve fuel efficiency, and require high strength.
- wire drawing is performed for the purpose of improving the dimensional accuracy of the wire diameter and homogenizing the structure by plastic working before the heat treatment for quenching and tempering.
- the wire drawing rate may be increased in order to make the structure more uniform, and the rolled material needs to have good wire drawing workability.
- a spring with increased strength is poor in toughness, tends to be brittle with hydrogen, and deteriorates corrosion fatigue characteristics.
- Controlling with a chemical composition is known as a method for enhancing the drawability of a rolled material for high-strength springs and the corrosion fatigue properties of high-strength spring wires.
- these methods use a large amount of alloy elements, which is not always desirable from the viewpoint of increasing manufacturing costs and saving resources.
- the steel wire is heated to a quenching temperature and hot-formed into a spring shape, and then oil-cooled and tempered, and the steel wire is quenched and tempered and then cold-formed into a spring shape.
- the method is known.
- quenching and tempering before forming is performed by high-frequency heating.
- Patent Document 1 discloses a structure in which a wire is cold drawn and then quenched and tempered by high-frequency induction heating. A technique for adjusting the above is disclosed.
- the structure fraction of pearlite is 30% or less
- the structure fraction composed of martensite and bainite is 70% or more
- cold drawing is performed at a predetermined area reduction rate, followed by quenching and tempering. Undissolved carbides are reduced and delayed fracture characteristics are improved.
- Patent Document 2 a rolled wire is drawn in an example and subjected to quenching and tempering treatment by induction heating. This technology focuses on achieving both high strength and moldability (coiling properties), and does not consider any hydrogen embrittlement resistance.
- Patent Document 3 focuses on the amount of hydrogen in steel evaluated by the total amount of hydrogen released when the temperature is raised from room temperature to 350 ° C., and is hot rolled with excellent wire drawing workability under strong wire drawing conditions. Proposes wire rods. However, Patent Document 3 pays attention only to the wire drawing property in a special process called strong wire drawing, and does not consider any hydrogen embrittlement resistance after quenching and tempering which is most important in a suspension spring or the like.
- the present invention has been made in view of the above circumstances, and its purpose is a material for high-strength springs including both hot winding and cold winding, and the amount of alloying element added is
- An object of the present invention is to provide a rolled material that has excellent wire drawing workability even if it is suppressed and can exhibit excellent corrosion fatigue properties after quenching and tempering.
- the rolled material for high-strength springs of the present invention that has achieved the above problems is % By mass C: 0.39 to 0.65%, Si: 1.5 to 2.5%, Mn: 0.15 to 1.2%, P: more than 0%, 0.015% or less, S: more than 0%, 0.015% or less, Al: 0.001 to 0.1%, Cu: 0.1 to 0.80%, Ni: 0.1 to 0.80% The balance is iron and inevitable impurities, Non-diffusible hydrogen content is 0.40 mass ppm or less, The area ratio of ferrite expressed as a percentage satisfies the following formula (1), and the total area ratio of bainite and martensite is 2% or less. Ferrite area ratio ⁇ (0.77- [C]) / 0.77- [C] / 3 +0.08 ⁇ ⁇ 100 (1) However, in said (1) Formula, [element name] means content represented by the mass% of each element.
- the rolled material for high-strength springs of the present invention preferably further contains one or more of the following (a), (b), (c), and (d) in mass%.
- the rolled material for high-strength springs of the present invention preferably has an ideal critical diameter D i of 65 to 140 mm.
- the ideal critical diameter D i does not contain B
- the following formula (2) is used.
- it is calculated using the following formula (3).
- it is calculated using the following formula (3).
- the present invention also includes a high-strength spring wire having a tensile strength of 1900 MPa or more obtained by drawing and quenching and tempering any of the above-described rolled materials for high-strength springs.
- the amount of non-diffusible hydrogen in the rolled material is suppressed and the formation of supercooled structures such as bainite and martensite is suppressed without adding a large amount of alloy elements.
- the rolled material of the present invention appropriately adjusts the area ratio of ferrite according to the C concentration. Specifically, the higher the C concentration, the more the area ratio of ferrite is reduced.
- the wire subjected to quenching and tempering has excellent corrosion fatigue characteristics even at a high strength of 1900 MPa or more.
- FIG. 1 is a graph showing the influence of the C content and the ferrite area ratio on hydrogen embrittlement resistance.
- the wire drawing workability of the rolled material is usually affected by the ductility of the rolled material. If the ductility of the substrate is poor, or if the supercooled structure is present and the ductility is lowered, it is broken at the time of wire drawing and the productivity is greatly reduced. Therefore, the wire drawing workability can be improved by increasing the ductility of the rolled material.
- the present inventors examined factors affecting the ductility, hydrogen embrittlement resistance and corrosion resistance of steel materials from various angles. As a result, if both the ferrite area ratio of the rolled material and particularly the amount of hydrogen in the steel expressed by the amount of non-diffusible hydrogen are properly controlled, the ductility of the rolled material is improved and the rolled material is drawn and quenched. It was revealed that the hydrogen embrittlement resistance when tempering was significantly improved. Furthermore, the present inventors have found that the corrosion resistance can be improved by appropriately adjusting the chemical composition, and as a result, the corrosion fatigue characteristics can be greatly improved. Below, the structure
- the ferrite structure tends to become a dilute region of carbide after quenching and tempering, and when a dilute region of carbide occurs, it becomes a fracture starting point as a strength-decreasing portion.
- carbide has the ability to detoxify hydrogen by trapping hydrogen, but the dilute region of carbide becomes an area lacking such capability, and hydrogen embrittlement easily occurs and is easily broken.
- it is necessary to have a structure in which the carbide is uniformly dispersed at the stage of the rolled material before quenching and tempering.
- the pearlite structure which is a layered structure of ferrite and carbide
- reduce the ratio of the ferrite structure It is important for the inventors to reduce the area ratio of the ferrite structure to a ratio of the ferrite structure obtained when allowed to cool after rolling, in order to improve hydrogen embrittlement resistance, and when allowed to cool after rolling. It has been found that the resulting ferrite structure is closely related to the C content.
- the ratio of the ferrite structure obtained by cooling after rolling was expressed by the right side of the following formula (1). It became clear that The rolled material of the present invention is characterized in that the ratio of the ferrite structure is controlled so as to satisfy the relationship of the following expression (1).
- [element name] means the content of each element expressed in mass%.
- a ferrite area ratio means the ratio represented by a percentage. Ferrite area ratio ⁇ (0.77- [C]) / 0.77- [C] / 3 +0.08 ⁇ ⁇ 100 (1)
- FIG. 1 is a graph showing the influence of C content and ferrite area ratio on hydrogen embrittlement resistance, based on example data described later.
- the ratio of the ferrite structure obtained by cooling after rolling tends to decrease as the C amount increases.
- the ferrite area ratio increases as the C amount increases. It has a great feature in that it is further reduced.
- the ratio of the ferrite structure is preferably reduced by 10% or more than the ratio of the ferrite structure obtained by cooling after rolling, that is, the following formula (1-2) is satisfied. It is preferable. Ferrite area ratio ⁇ ⁇ (0.77 ⁇ [C]) / 0.77 ⁇ [C] / 3 +0.08 ⁇ ⁇ 100 ⁇ 0.9 (1-2)
- the wire drawing workability is significantly lowered. Accordingly, even if they are contained, they are 2 area% or less, preferably 1 area% or less, and most preferably 0 area%.
- the rolled material of the present invention suppresses the formation of ferrite, bainite and martensite, and the structure other than these is pearlite.
- the amount of hydrogen in the rolled material of the present invention will be described.
- the amount of non-diffusible hydrogen is set to 0.40 mass ppm or less. If the amount of non-diffusible hydrogen is large, hydrogen accumulates around the inclusions and segregation zones in the rolled material, causing fine cracks and lowering the wire drawing workability of the rolled material. In addition, if the amount of non-diffusible hydrogen is large, the allowable amount of hydrogen that penetrates before the steel material becomes brittle decreases, and even a small amount of hydrogen that enters during use as a spring causes embrittlement of the steel material, making it easier to break early. The hydrogen embrittlement resistance decreases.
- the amount of non-diffusible hydrogen is preferably 0.35 mass ppm or less, more preferably 0.30 mass ppm or less.
- Non-diffusible hydrogen is the amount of hydrogen measured by the method described in the examples below. Specifically, when the steel material is heated at 100 ° C./hour, it is released at 300 to 600 ° C. Means the total amount of hydrogen.
- the rolled material for high-strength springs according to the present invention is a low alloy steel in which the content of alloy elements is suppressed, and its chemical composition is as follows.
- this invention also includes the wire which drawn and quenched and tempered the said rolling material,
- the chemical composition is the same as the chemical composition of a rolling material.
- C 0.39 to 0.65%
- C is an element necessary for securing the strength of the spring wire, and is also necessary for generating fine carbides that serve as hydrogen trap sites.
- the C content is set to 0.39% or more.
- the minimum with the preferable amount of C is 0.45% or more, More preferably, it is 0.50% or more.
- the amount of C becomes excessive, coarse retained austenite and undissolved carbides are likely to be formed even after quenching and tempering, and hydrogen embrittlement resistance may be lowered instead.
- C is an element that deteriorates the corrosion resistance, it is necessary to suppress the amount of C in order to enhance the corrosion fatigue characteristics of a spring product such as a suspension spring that is the final product.
- the C content is set to 0.65% or less.
- the upper limit with preferable C amount is 0.62% or less, More preferably, it is 0.60% or less.
- Si 1.5-2.5%
- Si is an element necessary for securing strength and has an effect of making carbide fine.
- the Si amount was determined to be 1.5% or more.
- the minimum with the preferable amount of Si is 1.7% or more, More preferably, it is 1.9% or more.
- Si is also an element that promotes decarburization, when the amount of Si is excessive, formation of a decarburized layer on the surface of the steel material is promoted, and a peeling process for removing the decarburized layer is required, resulting in an increase in manufacturing cost.
- undissolved carbides increase, and hydrogen embrittlement resistance decreases.
- the Si amount was determined to be 2.5% or less.
- the upper limit with preferable Si amount is 2.3% or less, More preferably, it is 2.2% or less, More preferably, it is 2.1% or less.
- Mn 0.15 to 1.2% Mn is used as a deoxidizing element and reacts with S, which is a harmful element in steel, to form MnS, which is an element useful for detoxification of S. Mn is also an element contributing to strength improvement. In order to exhibit these effects effectively, the amount of Mn was determined to be 0.15% or more. The minimum with the preferable amount of Mn is 0.2% or more, More preferably, it is 0.3% or more. However, when the amount of Mn is excessive, the toughness is lowered and the steel material becomes brittle. From such a viewpoint, the amount of Mn was determined to be 1.2% or less. The upper limit with the preferable amount of Mn is 1.0% or less, More preferably, it is 0.85% or less, More preferably, it is 0.70% or less.
- P more than 0% and not more than 0.015%
- P is a harmful element that deteriorates ductility such as coiling property of a rolled material, that is, a wire, and therefore it is desirable that P be as small as possible. Further, P is easily segregated at the grain boundary and causes embrittlement at the grain boundary, and the grain boundary is easily broken by hydrogen, which adversely affects the resistance to hydrogen embrittlement. From this point of view, the P content is set to 0.015% or less.
- the upper limit with the preferable amount of P is 0.010% or less, More preferably, it is 0.008% or less. The smaller the amount of P, the better. However, it is usually contained in an amount of about 0.001%.
- S more than 0% and not more than 0.015%
- S is a harmful element that deteriorates ductility such as coiling property of the rolled material in the same manner as P described above.
- S is easily segregated at the grain boundary and causes embrittlement of the grain boundary, and the grain boundary is easily broken by hydrogen, which adversely affects the resistance to hydrogen embrittlement.
- the S content is set to 0.015% or less.
- the upper limit with the preferable amount of S is 0.010% or less, More preferably, it is 0.008% or less. The smaller the amount of S, the better. However, it is usually contained in an amount of about 0.001%.
- Al 0.001 to 0.1%
- Al is mainly added as a deoxidizing element. Moreover, it reacts with N to form AlN to render the solid solution N harmless and contribute to the refinement of the structure.
- the Al content is determined to be 0.001% or more.
- the minimum with preferable Al amount is 0.002% or more, More preferably, it is 0.005% or more.
- Al is an element that promotes decarburization in the same way as Si, it is necessary to suppress the amount of Al in spring steel containing a large amount of Si.
- the amount of Al is set to 0.1% or less.
- the upper limit with preferable Al amount is 0.07% or less, More preferably, it is 0.030% or less, Most preferably, it is 0.020% or less.
- Cu 0.1 to 0.80% Cu is an element effective for suppressing surface layer decarburization and improving corrosion resistance. Therefore, the Cu amount is determined to be 0.1% or more.
- the minimum with the preferable amount of Cu is 0.15% or more, More preferably, it is 0.20% or more, More preferably, it is 0.25% or more.
- the Cu amount is set to 0.80% or less.
- the upper limit of the amount of Cu is preferably 0.70% or less, more preferably 0.60% or less, still more preferably 0.48% or less, particularly preferably 0.35% or less, and most preferably 0.8. 30% or less.
- Ni 0.1 to 0.80%
- Ni is an element effective for suppressing surface decarburization and improving corrosion resistance, similarly to Cu. Therefore, the amount of Ni is determined to be 0.1% or more.
- a preferable lower limit of the Ni amount is 0.15% or more, more preferably 0.20% or more, still more preferably 0.35% or more, and most preferably 0.45% or more. However, if Ni is excessively contained, the cost increases. Therefore, the Ni content is set to 0.80% or less.
- the upper limit of the amount of Ni is preferably 0.70% or less, more preferably 0.60% or less, still more preferably 0.55% or less, 0.48% or less, 0.35% or less. More preferably, it is 0.30% or less.
- the basic components of the rolled material of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel.
- the rolled material for springs of the present invention can achieve high strength and excellent coiling and hydrogen embrittlement resistance with the above-described chemical composition even if an alloy element such as Cu is suppressed, but it can improve corrosion resistance depending on the application. For the purpose, the following elements may be further contained.
- Cr more than 0% and 1.2% or less Cr is an element effective for improving corrosion resistance.
- the Cr content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.10% or more.
- Cr has a strong tendency to generate carbides, forms unique carbides in steel, and is an element that easily dissolves in cementite at a high concentration. Although it is effective to contain a small amount of Cr, since the heating time in the quenching process is short in high-frequency heating, austenitization in which carbide, cementite and the like are dissolved in the base material tends to be insufficient.
- the Cr content is preferably 1.2% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
- Ti More than 0% and 0.13% or less Ti is an element useful for detoxifying S by reacting with S to form a sulfide. Ti also has the effect of forming a carbonitride to refine the structure. In order to effectively exhibit such an effect, the Ti content is preferably 0.02% or more, more preferably 0.05% or more, and further preferably 0.06% or more. However, when the amount of Ti becomes excessive, coarse Ti sulfide may be formed and ductility may deteriorate. Therefore, the Ti amount is preferably 0.13% or less. From the viewpoint of cost reduction, the content is preferably 0.10% or less, and more preferably 0.09% or less.
- B More than 0% and 0.01% or less B is an element that improves hardenability, has an effect of strengthening the prior austenite grain boundary, and contributes to suppression of fracture.
- the B content is preferably 0.0005% or more, more preferably 0.0010% or more.
- the amount of B is preferably 0.01% or less, more preferably 0.0050% or less, and still more preferably 0.0040% or less.
- Nb more than 0%, 0.1% or less
- Nb is an element that forms carbonitrides with C and N, and contributes mainly to refinement of the structure.
- the Nb content is preferably 0.003% or more, more preferably 0.005% or more, and still more preferably 0.01% or more.
- the Nb amount is preferably 0.1% or less. From the viewpoint of cost reduction, it is preferably 0.07% or less.
- Mo more than 0% and 0.5% or less Mo, like Nb, forms carbonitrides with C and N, and is an element that contributes to refinement of the structure. It is also an effective element for securing strength after tempering.
- the Mo amount is preferably 0.15% or more, more preferably 0.20% or more, and further preferably 0.25% or more.
- the Mo amount is preferably 0.5% or less, and more preferably 0.4% or less.
- V More than 0% and 0.4% or less V is an element contributing to strength improvement and crystal grain refinement.
- the V amount is preferably 0.1% or more, more preferably 0.15% or more, and further preferably 0.20% or more.
- the V amount is preferably 0.4% or less, more preferably 0.3% or less.
- Nb, Mo and V may be contained alone or in combination of two or more.
- the rolled material of the present invention contains O and N as inevitable impurities, and these amounts are preferably adjusted to the following ranges.
- the upper limit of the O amount is preferably 0.002% or less, more preferably 0.0015% or less, and still more preferably 0.0013% or less.
- the lower limit of the amount of O is generally 0.0002% or more (preferably 0.0004% or more) in industrial production.
- N more than 0% and 0.007% or less
- the N amount is preferably as small as possible, for example 0.007% or less, more preferably 0.005% or less.
- the productivity is significantly reduced.
- N also forms nitrides with Al and contributes to the refinement of crystal grains. From such a viewpoint, the N content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more.
- the ideal critical diameter D i represented by the following formula (2) or (3) is preferably 65 to 140 mm.
- the upper limit of the ideal critical diameter D i is preferably 140 mm or less.
- the upper limit of the ideal critical diameter D i is more preferably 135 mm or less, still more preferably 130 mm or less, and particularly preferably 120 mm or less.
- the lower limit of the ideal critical diameter D i is preferably 65 mm or more, more preferably 70 mm or more, and further preferably 80 mm or more.
- a degassing process is performed by a molten steel process, and the amount of hydrogen in the molten steel is set to 2.5 mass ppm or less.
- a vacuum tank equipped with two dip tubes is installed in the ladle, Ar gas is blown from the side of one dip tube, and the buoyancy is used to circulate the molten steel to the vacuum tank. It is effective to perform degassing. This method is excellent in hydrogen removal capability and inclusion reduction.
- the amount of hydrogen in the molten steel is preferably 2.0 mass ppm or less, more preferably 1.8 mass ppm or less, still more preferably 1.5 mass ppm or less, and particularly preferably 1.0 mass ppm or less.
- the homogenization treatment before the bulk rolling is performed at 1100 ° C. or higher, preferably 1200 ° C. or higher for 10 hours or longer.
- the average cooling rate from 400 to 100 ° C. after rolling is 0.5 ° C./second or less, preferably 0.3 ° C./second or less.
- the rolling conditions are preferably adjusted as follows, and the following (i) to (iii) are It is preferable that the rolling conditions satisfy all of them.
- Coil winding temperature TL before starting cooling 900 ° C. or more
- the coil winding temperature TL before starting cooling needs to be an austenite single phase. Therefore, TL is more preferably 910 ° C or higher, and still more preferably 930 ° C or higher.
- the upper limit of TL is not particularly limited, and is approximately about 1000 ° C. although it depends on the finish rolling temperature.
- the average cooling rate at TL to 650 ° C. is preferably 2 ° C./second or more, more preferably 2.3 ° C./second or more, and further preferably 2.5 ° C./second or more.
- the cooling rate at TL to 650 ° C. is increased too much, supercooled structures such as martensite and bainite are likely to appear. Therefore, the average cooling rate at TL to 650 ° C.
- the average cooling rate at 650 to 400 ° C. is preferably 2 ° C./second or less, more preferably 1.5 ° C./second or less, and further preferably 1 ° C./second or less.
- the minimum of this average cooling rate is not specifically limited, For example, it is about 0.3 degree-C / sec.
- the rolled material is drawn at a reduction in area of about 5 to 35%, then quenched at about 900 to 1000 ° C., and tempered at about 300 to 520 ° C.
- the quenching temperature is preferably 900 ° C. or higher in order to sufficiently austenite, and 1000 ° C. or lower is preferable in order to prevent crystal grain coarsening.
- the tempering heating temperature may be set to an appropriate temperature in the range of 300 to 520 ° C. according to the target value of the wire strength. When quenching and tempering is performed by high frequency heating, the quenching and tempering time is about 10 to 60 seconds, respectively.
- the thus obtained wire of the present invention can realize a high tensile strength of 1900 MPa or more.
- the tensile strength can be preferably 1950 MPa or more, and more preferably 2000 MPa or more.
- the upper limit of the tensile strength is not particularly limited, but is approximately 2500 MPa.
- the wire of the present invention uses the rolled material of the present invention, it can exhibit excellent corrosion fatigue characteristics even at a high strength of 1900 MPa or more.
- the structure was identified in the following manner, the amount of non-diffusible hydrogen was measured, and the wire drawing workability was measured.
- Non-diffusible hydrogen content A test piece having a width of 20 mm and a length of 40 mm was cut out from the rolled material. Using a gas chromatography apparatus, the test piece was heated at a temperature increase rate of 100 ° C./hour, and the amount of released hydrogen at 300 to 600 ° C. was measured, which was defined as the amount of non-diffusible hydrogen.
- Wire drawing workability was evaluated by drawing in a tensile test. A JIS No. 14 test piece was cut out from the rolled material, and a tensile test was performed with a universal testing machine under a crosshead speed of 10 mm / min in accordance with JIS Z2241 (2011), and the aperture RA was measured.
- the rolled material was drawn to a diameter of 12.5 mm, that is, cold drawn and quenched and tempered.
- the area reduction rate of the wire drawing described above is about 23.6%, and the conditions for quenching and tempering are as follows.
- Quenching and tempering conditions ⁇ High-frequency heating ⁇ Heating rate: 200 ° C./second ⁇ Quenching: 950 ° C., 20 seconds, water cooling / tempering: 300 to 520 ° C., 20 seconds, water cooling
- the wire after wire drawing and quenching and tempering was evaluated for tensile strength, hydrogen embrittlement resistance, and corrosion resistance.
- test piece having a diameter of 10 mm and a length of 100 mm was cut out from the wire after quenching and tempering by cutting.
- the test piece was sprayed with 5% NaCl aqueous solution for 8 hours and kept in a humid environment at 35 ° C. and a relative humidity of 60% for 16 hours. This was taken as one cycle and repeated for a total of 7 cycles. The weight difference was measured, and this was regarded as corrosion weight loss.
- Test No. 1 to 4, 7 to 11, 15 to 18, 21 to 25, 33, 34, 37 to 40, 45 to 47, 49 to 53, 55 to 60, 65 to 81 are steels whose chemical compositions are appropriately adjusted. Is manufactured under the above-mentioned preferable manufacturing conditions, the amount of non-diffusible hydrogen, the area ratio of the ferrite and the supercooled structure satisfy the requirements of the present invention. Accordingly, the drawn RA in the tensile test of the rolled material is 30% or more, and the wire drawing workability is excellent, and the wire obtained by drawing and quenching and tempering the rolled material has an excellent tensile strength of 1900 MPa or more. Has strength.
- the wire after quenching and tempering has a breaking time of 1000 seconds or more in the hydrogen embrittlement resistance evaluation test
- the corrosion weight loss in the corrosion resistance evaluation test is 5.0 g or less
- both the resistance to hydrogen embrittlement and corrosion resistance are better.
- the “reduction rate” in Tables 4 to 6 is a value expressed as a percentage of the difference between the value on the right side of equation (1) and the actual ferrite area ratio value to the value on the right side of equation (1). is there.
- the above test No. In other cases, the steel chemical composition, the amount of non-diffusible hydrogen, the ferrite area ratio, and the supercooled structure area ratio do not satisfy the requirements of the present invention. As a result, the tensile strength, hydrogen embrittlement resistance, and corrosion resistance of the wire were inferior.
- No. No. 41 had a large amount of Mn, reduced toughness and reduced hydrogen embrittlement resistance.
- No. No. 42 has a large amount of P and S, causing embrittlement at the grain boundaries, resulting in a decrease in hydrogen embrittlement resistance.
- No. No. 43 had a large amount of S and caused embrittlement at grain boundaries, resulting in a decrease in hydrogen embrittlement resistance.
- No. 44 since Cu and Ni were not added, the corrosion resistance was lowered.
- the rolled material and wire of the present invention can be suitably used for coil springs used in automobiles and the like, for example, valve springs and suspension springs used in engines and suspensions, etc., and are industrially useful.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Extraction Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
質量%で、
C :0.39~0.65%、
Si:1.5~2.5%、
Mn:0.15~1.2%、
P :0%超、0.015%以下、
S :0%超、0.015%以下、
Al:0.001~0.1%、
Cu:0.1~0.80%、
Ni:0.1~0.80%
を含有し、残部が鉄及び不可避不純物であり、
非拡散性水素量が0.40質量ppm以下であり、
百分率で表されるフェライトの面積率が下記(1)式を満たすとともに、ベイナイトとマルテンサイトの合計面積率が2%以下であることを特徴とする。
フェライト面積率<{(0.77-[C])/0.77-[C]/3
+0.08}×100 ・・・(1)
但し、上記(1)式中、[元素名]は各元素の質量%で表される含有量を意味する。
(a)Cr:0%超、1.2%以下
(b)Ti:0%超、0.13%以下
(c)B :0%超、0.01%以下
(d)Nb:0%超、0.1%以下、Mo:0%超、0.5%以下、及びV:0%超、0.4%以下よりなる群から選ばれる少なくとも1種
Di=25.4×(0.171+0.001×[C]+0.265×[C]2)
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo]) ・・・(2)
Di=25.4×(0.171+0.001×[C]+0.265×[C]2)
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo])
×(6.849017-46.78647×[C]+196.6635×[C]2
-471.3978×[C]3+587.8504×[C]4
-295.0410×[C]5) ・・・(3)
但し、上記(2)、(3)式中、[元素名]は各元素の質量%で表される含有量を意味する。
フェライト面積率<{(0.77-[C])/0.77-[C]/3
+0.08}×100 ・・・(1)
フェライト面積率≦{(0.77-[C])/0.77-[C]/3
+0.08}×100×0.9 ・・・(1-2)
Cは、ばね用ワイヤの強度を確保するのに必要な元素であるとともに、水素トラップサイトとなる微細炭化物を生成させるためにも必要である。こうした観点から、C量を0.39%以上と定めた。C量の好ましい下限は0.45%以上であり、より好ましくは0.50%以上である。しかし、C量が過剰になると、焼入れ焼戻し後も粗大な残留オーステナイトや未固溶の炭化物が生成しやすくなり、耐水素脆性が却って低下する場合がある。また、Cは耐食性を劣化させる元素でもあるため、最終製品である懸架ばね等のばね製品の腐食疲労特性を高めるにはC量を抑える必要がある。こうした観点から、C量を0.65%以下と定めた。C量の好ましい上限は0.62%以下であり、より好ましくは0.60%以下である。
Siは、強度を確保するのに必要な元素であるとともに、炭化物を微細にする効果がある。こうした効果を有効に発揮させるため、Si量を1.5%以上と定めた。Si量の好ましい下限は1.7%以上であり、より好ましくは1.9%以上である。一方、Siは脱炭を促進させる元素でもあるため、Si量が過剰になると鋼材表面の脱炭層形成が促進され、脱炭層削除のためのピーリング工程が必要となり、製造コストの増加を招く。また、未固溶炭化物も多くなり、耐水素脆性が低下する。こうした観点から、Si量を2.5%以下と定めた。Si量の好ましい上限は2.3%以下であり、より好ましくは2.2%以下であり、更に好ましくは2.1%以下である。
Mnは、脱酸元素として利用されると共に、鋼中の有害元素であるSと反応してMnSを形成し、Sの無害化に有益な元素である。また、Mnは強度向上に寄与する元素でもある。これらの効果を有効に発揮させるため、Mn量を0.15%以上と定めた。Mn量の好ましい下限は0.2%以上であり、より好ましくは0.3%以上である。しかし、Mn量が過剰になると靭性が低下して鋼材が脆化する。こうした観点から、Mn量を1.2%以下と定めた。Mn量の好ましい上限は1.0%以下であり、より好ましくは0.85%以下であり、更に好ましくは0.70%以下である。
Pは、圧延材、すなわち線材の、コイリング性などの延性を劣化させる有害元素であるため、できるだけ少ない方が望ましい。また、Pは粒界に偏析しやすく、粒界脆化を招き、水素により粒界が破壊しやすくなり、耐水素脆性に悪影響を及ぼす。こうした観点からP量を0.015%以下と定めた。P量の好ましい上限は0.010%以下であり、より好ましくは0.008%以下である。P量は少なければ少ない程好ましいが、通常0.001%程度含まれる。
Sは、上記したPと同様に圧延材の、コイリング性などの延性を劣化させる有害元素であるため、できるだけ少ない方が望ましい。また、Sは粒界に偏析しやすく、粒界脆化を招き、水素により粒界が破壊しやすくなり、耐水素脆性に悪影響を及ぼす。こうした観点から、S量を0.015%以下と定めた。S量の好ましい上限は0.010%以下であり、より好ましくは0.008%以下である。S量は少なければ少ない程好ましいが、通常0.001%程度含まれる。
Alは、主に脱酸元素として添加される。また、Nと反応してAlNを形成して固溶Nを無害化すると共に組織の微細化にも寄与する。これらの効果を十分に発揮させるため、Al量を0.001%以上と定めた。Al量の好ましい下限は0.002%以上であり、より好ましくは0.005%以上である。しかしながら、AlはSiと同様に脱炭を促進させる元素でもあるため、Siを多く含有するばね用鋼ではAl量を抑える必要があり、本発明ではAl量を0.1%以下と定めた。Al量の好ましい上限は0.07%以下であり、より好ましくは0.030%以下、特に好ましくは0.020%以下である。
Cuは、表層脱炭の抑制や耐食性の向上に有効な元素である。そこでCu量は0.1%以上と定めた。Cu量の好ましい下限は0.15%以上であり、より好ましくは0.20%以上であり、更に好ましくは0.25%以上である。しかしながら、Cuが過剰に含まれると、熱間加工時に割れが発生したり、コストが増加する。そこで、Cu量を0.80%以下と定めた。Cu量の好ましい上限は0.70%以下であり、より好ましくは0.60%以下であり、更に好ましくは0.48%以下であり、特に0.35%以下が好ましく、最も好ましくは0.30%以下である。
Niは、Cuと同様に表層脱炭の抑制や耐食性の向上に有効な元素である。そこでNi量を0.1%以上と定めた。Ni量の好ましい下限は0.15%以上であり、より好ましくは0.20%以上であり、更に好ましくは0.35%以上であり、最も好ましくは0.45%以上である。しかしながら、Niが過剰に含まれるとコストが増加する。従ってNi量を0.80%以下と定めた。Ni量の好ましい上限は0.70%以下であり、より好ましくは0.60%以下であり、更に好ましくは0.55%以下であり、0.48%以下であること、0.35%以下であること、0.30%以下であることも一層好ましい。
Crは、耐食性の向上に有効な元素である。このような効果を有効に発揮させるため、Cr量は0.01%以上が好ましく、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Crは炭化物生成傾向が強く、鋼材中で独自の炭化物を形成すると共に、セメンタイト中に高濃度で溶け込みやすい元素である。少量のCrを含有することは有効であるが、高周波加熱では焼入れ工程の加熱時間が短時間となるので、炭化物、セメンタイト等を母材に溶け込ませるオーステナイト化が不十分となりやすい。そのため、Crを多く含有していると、Cr系炭化物や金属Crが高濃度に固溶したセメンタイトの溶け残りが発生し、応力集中源となって破壊しやすく、耐水素脆性が劣化することになる。従って、Cr量は1.2%以下が好ましく、より好ましくは0.8%以下であり、更に好ましくは0.6%以下である。
Tiは、Sと反応して硫化物を形成してSの無害化を図るのに有用な元素である。また、Tiは炭窒化物を形成して組織を微細化する効果も有する。このような効果を有効に発揮させるため、Ti量は0.02%以上が好ましく、より好ましくは0.05%以上であり、更に好ましくは0.06%以上である。しかしながら、Ti量が過剰になると、粗大なTi硫化物が形成されて延性が劣化することがある。従って、Ti量は0.13%以下が好ましい。コスト低減の観点からは0.10%以下とすることが好ましく、0.09%以下が更に好ましい。
Bは、焼入れ性向上元素であり、また旧オーステナイト結晶粒界を強化する効果があり、破壊の抑制に寄与する元素である。このような効果を有効に発揮させるため、B量は0.0005%以上が好ましく、より好ましくは0.0010%以上である。しかしながら、B量が過剰になっても上記効果が飽和するため、B量は0.01%以下が好ましく、より好ましくは0.0050%以下、さらに好ましくは0.0040%以下である。
Nbは、CやNと炭窒化物を形成し、主に組織微細化に寄与する元素である。このような効果を有効に発揮させるため、Nb量は0.003%以上が好ましく、より好ましくは0.005%以上であり、更に好ましくは0.01%以上である。しかしながら、Nb量が過剰になると粗大炭窒化物が形成されて鋼材の延性が劣化する。そこで、Nb量は0.1%以下が好ましい。コスト低減の観点からは0.07%以下とすることが好ましい。
MoもNbと同様に、CやNと炭窒化物を形成し、組織微細化に寄与する元素である。また焼戻し後の強度確保にも有効な元素である。このような効果を有効に発揮させるため、Mo量は0.15%以上が好ましく、より好ましくは0.20%以上、更に好ましくは0.25%以上である。しかしながら、Mo量が過剰になると、粗大炭窒化物が形成されて鋼材の、コイリング性などの延性が劣化する。そこで、Mo量は0.5%以下が好ましく、より好ましくは0.4%以下である。
Vは、強度向上や結晶粒微細化に寄与する元素である。このような効果を有効に発揮させるため、V量は0.1%以上が好ましく、より好ましくは0.15%以上であり、更に好ましくは0.20%以上である。しかしながら、V量が過剰になるとコストが増加する。そこで、V量は0.4%以下が好ましく、より好ましくは0.3%以下である。
O量が過剰になると、粗大なAl2O3などの酸化物系介在物が形成され、疲労特性に悪影響を及ぼす。そこで、O量の上限は0.002%以下が好ましく、より好ましくは0.0015%以下、更に好ましくは0.0013%以下である。一方、O量の下限は、工業生産上、一般的には0.0002%以上(好ましくは0.0004%以上)である。
N量は、多くなるほどTiやAlと共に粗大な窒化物を形成し、疲労特性に悪影響を及ぼす。そこで、N量はできるだけ少ないことが好ましく、例えば0.007%以下、より好ましくは0.005%以下としても良い。一方、N量を低減しすぎると生産性が著しく低下する。また、NはAlと共に窒化物を形成して結晶粒の微細化に貢献する。このような観点からは、N量を0.001%以上とすることが好ましく、より好ましくは0.002%以上、更に好ましくは0.003%以上である。
Di=25.4×(0.171+0.001×[C]+0.265×[C]2)
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo]) ・・・(2)
Di=25.4×(0.171+0.001×[C]+0.265×[C]2)
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo])
×(6.849017-46.78647×[C]+196.6635×[C]2
-471.3978×[C]3+587.8504×[C]4
-295.0410×[C]5) ・・・(3)
但し、上記(2)、(3)式中、[元素名]は各元素の質量%で表される含有量を意味する。
例えば、2次精錬工程で取鍋中に二本の浸漬管を備えた真空槽を装着し、片方の浸漬管側面からArガスを吹き込み、その浮力を利用して溶鋼を真空槽へ環流させる真空脱ガスを行うことが効果的である。この方法は、水素除去能力と介在物低減に優れている。溶鋼中の水素量は2.0質量ppm以下が好ましく、1.8質量ppm以下がより好ましく、1.5質量ppm以下が更に好ましく、特に1.0質量ppm以下が好ましい。
フェライトの割合を低減するためには、冷却開始前のコイル巻取り温度TLをオーステナイト単相とする必要がある。従ってTLは910℃以上がより好ましく、更に好ましくは930℃以上である。TLの上限は特に限定されず、仕上圧延温度にもよるが、概ね1000℃程度である。
TL~650℃の温度域ではパーライト変態を生じさせるため、冷却速度を上げてフェライトの生成を抑制する必要がある。従って、TL~650℃での平均冷却速度は、2℃/秒以上が好ましく、より好ましくは2.3℃/秒以上であり、更に好ましくは2.5℃/秒以上である。しかし、TL~650℃での冷却速度を上げすぎるとマルテンサイトやベイナイトなどの過冷組織が出やすくなる。そこでTL~650℃での平均冷却速度は、5℃/秒以下が好ましく、より好ましくは4.5℃/秒以下であり、更に好ましくは4℃/秒以下である。
(iii)650~400℃での平均冷却速度:2℃/秒以下
さらに、過冷組織が生成し始める650~400℃での冷却速度は遅くするのが好ましい。650~400℃での平均冷却速度は2℃/秒以下が好ましく、より好ましくは1.5℃/秒以下であり、更に好ましくは1℃/秒以下である。該平均冷却速度の下限は特に限定されないが、例えば0.3℃/秒程度である。
圧延材の横断面をバフ研磨し、腐食液によりエッチングした後、ミクロ組織を光学顕微鏡により観察して、フェライト組織と、ベイナイト及びマルテンサイト組織(以下、ベイナイト組織及びマルテンサイト組織を合わせて過冷組織と呼ぶ)の面積率を測定した。測定は表層から1mm深さの位置で測定した。観察視野は400μm×300μmであり、5視野について測定を行い、その平均値を各組織の割合とした。また、パーライト組織の割合は、100%からフェライト及び過冷組織の割合を差し引くことによって求めた。
前記圧延材から幅20mm×長さ40mmの試験片を切出した。ガスクロマトグラフィ装置を用い、該試験片を100℃/時間の昇温速度で昇温して300~600℃での放出水素量を測定し、これを非拡散性水素量とした。
伸線加工性は引張試験の絞りにより評価した。前記圧延材からJIS14号試験片を切出し、JIS Z2241(2011)に従い、万能試験機にてクロスヘッドスピード10mm/分の条件で引張試験を行い、絞りRAを測定した。
・高周波加熱
・加熱速度:200℃/秒
・焼入れ:950℃、20秒、水冷却
・焼戻し:300~520℃の各温度、20秒、水冷却
焼入れ焼戻し後のワイヤを所定長さに切断し、チャック間距離200mm、引張速度5mm/minとして、JIS Z2241(2011)に従って引張試験を行った。
焼入れ焼戻し後のワイヤから、幅10mm×厚さ1.5mm×長さ65mmの試験片を切出した。そして、該試験片に4点曲げにより1400MPaの応力を負荷した状態で、該試験片を0.5mol/Lの硫酸と0.01mol/Lのチオシアン酸カリウムの混合溶液に浸漬した。ポテンショスタットを用いて飽和カロメル電極(Saturated Calomel Electrode、SCE)よりも卑な-700mVの電圧をかけ、割れが発生するまでの破断時間を測定した。
焼入れ焼戻し後のワイヤから、切削加工で直径10mm×長さ100mmの試験片を切出した。該試験片に5%NaCl水溶液で8時間塩水噴霧を行い、35℃、相対湿度60%の湿潤環境にて16時間保持し、これを1サイクルとして、全部で7サイクル繰返し、試験前後の試験片の重量差を測定し、これを腐食減量とした。
Claims (5)
- 質量%で、
C :0.39~0.65%、
Si:1.5~2.5%、
Mn:0.15~1.2%、
P :0%超、0.015%以下、
S :0%超、0.015%以下、
Al:0.001~0.1%、
Cu:0.1~0.80%、
Ni:0.1~0.80%
を含有し、残部が鉄及び不可避不純物であり、
非拡散性水素量が0.40質量ppm以下であり、
百分率で表されるフェライトの面積率が下記(1)式を満たすとともに、ベイナイトとマルテンサイトの合計面積率が2%以下であることを特徴とする高強度ばね用圧延材。
フェライト面積率<{(0.77-[C])/0.77-[C]/3+0.08}×100 ・・・(1)
但し、上記(1)式中、[元素名]は各元素の質量%で表される含有量を意味する。 - 更に、質量%で下記(a)、(b)、(c)、(d)のいずれかに属する1種以上を含有する請求項1に記載の高強度ばね用圧延材。
(a)Cr:0%超、1.2%以下
(b)Ti:0%超、0.13%以下
(c)B :0%超、0.01%以下
(d)Nb:0%超、0.1%以下、Mo:0%超、0.5%以下、及びV:0%超、0.4%以下よりなる群から選ばれる少なくとも1種 - Bを含有しない時は下記(2)式を用い、Bを含有する時は下記(3)式を用いて算出される理想臨界直径Diが65~140mmである請求項1または2に記載の高強度ばね用圧延材。
Di=25.4×(0.171+0.001×[C]+0.265×[C]2)
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo]) ・・・(2)
Di=25.4×(0.171+0.001×[C]+0.265×[C]2)
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo])
×(6.849017-46.78647×[C]+196.6635×[C]2
-471.3978×[C]3+587.8504×[C]4
-295.0410×[C]5) ・・・(3)
但し、上記(2)、(3)式中、[元素名]は各元素の質量%で表される含有量を意味する。 - 請求項1または2に記載の高強度ばね用圧延材を伸線し、焼入れ焼戻し処理した、引張強度1900MPa以上の高強度ばね用ワイヤ。
- 請求項3に記載の高強度ばね用圧延材を伸線し、焼入れ焼戻し処理した、引張強度1900MPa以上の高強度ばね用ワイヤ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480070614.5A CN105849297A (zh) | 2013-12-27 | 2014-12-10 | 高强度弹簧用轧制材和使用了它的高强度弹簧用丝材 |
MX2016008501A MX2016008501A (es) | 2013-12-27 | 2014-12-10 | Material laminado para resorte de alta resistencia, y cable para resorte de alta resistencia que utiliza el mismo. |
EP14875039.1A EP3088551A4 (en) | 2013-12-27 | 2014-12-10 | Rolled steel material for high-strength spring and wire for high-strength spring using same |
US15/107,994 US20160319393A1 (en) | 2013-12-27 | 2014-12-10 | Rolled material for high strength spring, and wire for high strength spring using the same |
KR1020167020136A KR20160102526A (ko) | 2013-12-27 | 2014-12-10 | 고강도 스프링용 압연재 및 이것을 이용한 고강도 스프링용 와이어 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-272569 | 2013-12-27 | ||
JP2013272569 | 2013-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098531A1 true WO2015098531A1 (ja) | 2015-07-02 |
Family
ID=53478395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082728 WO2015098531A1 (ja) | 2013-12-27 | 2014-12-10 | 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ |
Country Status (8)
Country | Link |
---|---|
US (1) | US20160319393A1 (ja) |
EP (1) | EP3088551A4 (ja) |
JP (1) | JP6212473B2 (ja) |
KR (1) | KR20160102526A (ja) |
CN (2) | CN109112262A (ja) |
MX (1) | MX2016008501A (ja) |
TW (1) | TWI535860B (ja) |
WO (1) | WO2015098531A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122827A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社神戸製鋼所 | 高強度ばね用ワイヤおよびその製造方法 |
WO2017122828A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社神戸製鋼所 | 高強度ばね用圧延材 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6452454B2 (ja) * | 2014-02-28 | 2019-01-16 | 株式会社神戸製鋼所 | 高強度ばね用圧延材および高強度ばね用ワイヤ |
JP6458927B2 (ja) * | 2014-10-07 | 2019-01-30 | 大同特殊鋼株式会社 | 線材圧延性に優れた高強度ばね鋼 |
JP6447799B1 (ja) | 2017-06-15 | 2019-01-09 | 新日鐵住金株式会社 | ばね鋼用圧延線材 |
WO2019003397A1 (ja) * | 2017-06-28 | 2019-01-03 | 三菱製鋼株式会社 | 中空スタビライザーの製造方法 |
KR102020385B1 (ko) * | 2017-09-29 | 2019-11-04 | 주식회사 포스코 | 내부식 피로특성이 우수한 스프링용 선재, 강선 및 이들의 제조방법 |
CN113748224B (zh) | 2019-06-19 | 2022-05-03 | 日本制铁株式会社 | 线材 |
EP3796101A1 (fr) * | 2019-09-20 | 2021-03-24 | Nivarox-FAR S.A. | Ressort spiral pour mouvement d'horlogerie |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002115023A (ja) * | 2000-10-10 | 2002-04-19 | Nippon Steel Corp | 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法 |
JP2004143482A (ja) | 2002-10-22 | 2004-05-20 | Nippon Steel Corp | 高強度冷間成形ばね用鋼線とその製造方法 |
JP2005023404A (ja) * | 2003-07-01 | 2005-01-27 | Kobe Steel Ltd | 耐腐食疲労性に優れたばね用鋼 |
JP2005029870A (ja) * | 2003-07-11 | 2005-02-03 | Kobe Steel Ltd | 耐水素脆化特性に優れた高強度鋼およびその製造方法 |
JP2006183137A (ja) | 2004-11-30 | 2006-07-13 | Nippon Steel Corp | 高強度ばね用鋼線 |
JP2006241528A (ja) * | 2005-03-03 | 2006-09-14 | Kobe Steel Ltd | 冷間加工性と品質安定性に優れた高強度ばね用鋼 |
JP2007231347A (ja) | 2006-02-28 | 2007-09-13 | Kobe Steel Ltd | 伸線加工性に優れた線材およびその製造方法 |
JP2007327084A (ja) * | 2006-06-06 | 2007-12-20 | Kobe Steel Ltd | 伸線加工性に優れた線材およびその製造方法 |
JP2009024245A (ja) * | 2007-07-23 | 2009-02-05 | Kobe Steel Ltd | 疲労特性に優れたばね用線材 |
JP2011184705A (ja) * | 2010-03-04 | 2011-09-22 | Kobe Steel Ltd | 高強度中空ばね用シームレス鋼管の製造方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487746A (en) * | 1987-06-19 | 1989-03-31 | Kobe Steel Ltd | Ultra-high-strength extra fine wire |
JPS63317626A (ja) * | 1987-06-19 | 1988-12-26 | Kobe Steel Ltd | 超高強度極細線の製造方法 |
JPH01224540A (ja) * | 1988-02-29 | 1989-09-07 | Kobe Steel Ltd | 微細ばね |
US5951944A (en) * | 1994-12-21 | 1999-09-14 | Mitsubishi Steel Mfg. Co., Ltd. | Lowly decarburizable spring steel |
US5776267A (en) * | 1995-10-27 | 1998-07-07 | Kabushiki Kaisha Kobe Seiko Sho | Spring steel with excellent resistance to hydrogen embrittlement and fatigue |
JP3816721B2 (ja) * | 2000-04-07 | 2006-08-30 | 株式会社神戸製鋼所 | 耐遅れ破壊性と首下靭性、または耐遅れ破壊性と鍛造性および首下靭性に優れた高強度線材並びにその製造方法 |
JP3918587B2 (ja) * | 2002-03-07 | 2007-05-23 | 大同特殊鋼株式会社 | 冷間成形用ばね鋼 |
JP4423253B2 (ja) * | 2005-11-02 | 2010-03-03 | 株式会社神戸製鋼所 | 耐水素脆化特性に優れたばね用鋼、並びに該鋼から得られる鋼線及びばね |
JP4423254B2 (ja) * | 2005-12-02 | 2010-03-03 | 株式会社神戸製鋼所 | コイリング性と耐水素脆化特性に優れた高強度ばね鋼線 |
JP4027956B2 (ja) * | 2006-01-23 | 2007-12-26 | 株式会社神戸製鋼所 | 耐脆性破壊特性に優れた高強度ばね鋼およびその製造方法 |
KR100797327B1 (ko) * | 2006-10-11 | 2008-01-22 | 주식회사 포스코 | 냉간가공성이 우수한 고강도, 고인성 스프링용 강선재,상기 강선재의 제조방법 및 상기 강선재로부터 스프링을제조하는 방법 |
US8734599B2 (en) * | 2006-10-11 | 2014-05-27 | Posco | Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same |
JP4310359B2 (ja) * | 2006-10-31 | 2009-08-05 | 株式会社神戸製鋼所 | 疲労特性と伸線性に優れた硬引きばね用鋼線 |
JP4699342B2 (ja) * | 2006-11-17 | 2011-06-08 | 株式会社神戸製鋼所 | 疲労限度比に優れた高強度冷間鍛造用非調質鋼 |
JP5157230B2 (ja) * | 2007-04-13 | 2013-03-06 | 新日鐵住金株式会社 | 伸線加工性の優れた高炭素鋼線材 |
CN102268604A (zh) * | 2007-07-20 | 2011-12-07 | 株式会社神户制钢所 | 弹簧用钢线材及其制造方法 |
CN101624679B (zh) * | 2007-07-20 | 2011-08-17 | 株式会社神户制钢所 | 弹簧用钢线材及其制造方法 |
JP5121360B2 (ja) * | 2007-09-10 | 2013-01-16 | 株式会社神戸製鋼所 | 耐脱炭性および伸線加工性に優れたばね用鋼線材およびその製造方法 |
JP5250609B2 (ja) * | 2010-11-11 | 2013-07-31 | 日本発條株式会社 | 高強度ばね用鋼、高強度ばねの製造方法及び高強度ばね |
JP5655627B2 (ja) * | 2011-02-24 | 2015-01-21 | 新日鐵住金株式会社 | 耐水素脆化特性に優れた高強度ばね用鋼 |
JP6452454B2 (ja) * | 2014-02-28 | 2019-01-16 | 株式会社神戸製鋼所 | 高強度ばね用圧延材および高強度ばね用ワイヤ |
-
2014
- 2014-12-09 JP JP2014248907A patent/JP6212473B2/ja not_active Ceased
- 2014-12-10 WO PCT/JP2014/082728 patent/WO2015098531A1/ja active Application Filing
- 2014-12-10 CN CN201811092603.3A patent/CN109112262A/zh active Pending
- 2014-12-10 CN CN201480070614.5A patent/CN105849297A/zh active Pending
- 2014-12-10 MX MX2016008501A patent/MX2016008501A/es unknown
- 2014-12-10 EP EP14875039.1A patent/EP3088551A4/en not_active Withdrawn
- 2014-12-10 KR KR1020167020136A patent/KR20160102526A/ko not_active Application Discontinuation
- 2014-12-10 US US15/107,994 patent/US20160319393A1/en not_active Abandoned
- 2014-12-15 TW TW103143676A patent/TWI535860B/zh not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002115023A (ja) * | 2000-10-10 | 2002-04-19 | Nippon Steel Corp | 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法 |
JP2004143482A (ja) | 2002-10-22 | 2004-05-20 | Nippon Steel Corp | 高強度冷間成形ばね用鋼線とその製造方法 |
JP2005023404A (ja) * | 2003-07-01 | 2005-01-27 | Kobe Steel Ltd | 耐腐食疲労性に優れたばね用鋼 |
JP2005029870A (ja) * | 2003-07-11 | 2005-02-03 | Kobe Steel Ltd | 耐水素脆化特性に優れた高強度鋼およびその製造方法 |
JP2006183137A (ja) | 2004-11-30 | 2006-07-13 | Nippon Steel Corp | 高強度ばね用鋼線 |
JP2006241528A (ja) * | 2005-03-03 | 2006-09-14 | Kobe Steel Ltd | 冷間加工性と品質安定性に優れた高強度ばね用鋼 |
JP2007231347A (ja) | 2006-02-28 | 2007-09-13 | Kobe Steel Ltd | 伸線加工性に優れた線材およびその製造方法 |
JP2007327084A (ja) * | 2006-06-06 | 2007-12-20 | Kobe Steel Ltd | 伸線加工性に優れた線材およびその製造方法 |
JP2009024245A (ja) * | 2007-07-23 | 2009-02-05 | Kobe Steel Ltd | 疲労特性に優れたばね用線材 |
JP2011184705A (ja) * | 2010-03-04 | 2011-09-22 | Kobe Steel Ltd | 高強度中空ばね用シームレス鋼管の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122827A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社神戸製鋼所 | 高強度ばね用ワイヤおよびその製造方法 |
WO2017122828A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社神戸製鋼所 | 高強度ばね用圧延材 |
Also Published As
Publication number | Publication date |
---|---|
TW201538747A (zh) | 2015-10-16 |
KR20160102526A (ko) | 2016-08-30 |
CN105849297A (zh) | 2016-08-10 |
EP3088551A4 (en) | 2017-08-23 |
CN109112262A (zh) | 2019-01-01 |
TWI535860B (zh) | 2016-06-01 |
EP3088551A1 (en) | 2016-11-02 |
JP6212473B2 (ja) | 2017-10-11 |
MX2016008501A (es) | 2016-09-14 |
US20160319393A1 (en) | 2016-11-03 |
JP2015143391A (ja) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6452454B2 (ja) | 高強度ばね用圧延材および高強度ばね用ワイヤ | |
JP6212473B2 (ja) | 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ | |
US9970072B2 (en) | High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring | |
JP4381355B2 (ja) | 耐遅れ破壊特性に優れた引張強さ1600MPa級以上の鋼およびその成型品の製造方法 | |
JP6503584B2 (ja) | 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および熱処理板の製造方法 | |
JP6234845B2 (ja) | 焼付け硬化性と曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板 | |
JP5364859B1 (ja) | コイリング性と耐水素脆性に優れた高強度ばね用鋼線およびその製造方法 | |
RU2714975C1 (ru) | Способ изготовления высокопрочной стальной полосы с улучшенными свойствами для дальнейшей обработки и стальная полоса такого типа | |
JPWO2014171427A1 (ja) | 熱延鋼板 | |
JP2017048412A (ja) | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 | |
JP2008202124A (ja) | 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法 | |
WO2011078165A1 (ja) | 高強度ばね用鋼 | |
WO2015060311A1 (ja) | 絞り加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板 | |
JP2014173151A (ja) | 加工性と疲労特性に優れた高強度熱延鋼板及びその製造方法 | |
WO2020039697A1 (ja) | 高強度鋼板及びその製造方法 | |
WO2014181728A1 (ja) | 引張強度が1180MPa以上の強度-曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板 | |
JP2017057460A (ja) | 高強度合金化溶融亜鉛めっき鋼板と該鋼板用熱延鋼板及びそれらの製造方法 | |
JP2015063732A (ja) | 穴拡げ性と伸びと溶接特性に優れた高強度熱延鋼板及びその製造方法 | |
JP6037087B1 (ja) | 高強度冷延鋼板およびその製造方法 | |
WO2017191792A1 (ja) | ばね巻き性に優れるばね用鋼線及びその製造方法 | |
JP2009191330A (ja) | 電縫鋼管 | |
JP5870825B2 (ja) | 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 | |
JP2023071938A (ja) | 延性及び加工性に優れた高強度鋼板、及びその製造方法 | |
JP6201570B2 (ja) | 加工性と溶接特性に優れた高強度熱延鋼板及びその製造方法 | |
JP2016222985A (ja) | 高周波焼入れ用非調質鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875039 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15107994 Country of ref document: US Ref document number: MX/A/2016/008501 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014875039 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014875039 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167020136 Country of ref document: KR Kind code of ref document: A |