EP3796101A1 - Ressort spiral pour mouvement d'horlogerie - Google Patents

Ressort spiral pour mouvement d'horlogerie Download PDF

Info

Publication number
EP3796101A1
EP3796101A1 EP19198759.3A EP19198759A EP3796101A1 EP 3796101 A1 EP3796101 A1 EP 3796101A1 EP 19198759 A EP19198759 A EP 19198759A EP 3796101 A1 EP3796101 A1 EP 3796101A1
Authority
EP
European Patent Office
Prior art keywords
spiral spring
deformation
titanium
weight
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19198759.3A
Other languages
German (de)
English (en)
Inventor
Christian Charbon
Marco Verardo
Lionel MICHELET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP19198759.3A priority Critical patent/EP3796101A1/fr
Priority to US16/936,682 priority patent/US20210088971A1/en
Priority to JP2020136578A priority patent/JP7148577B2/ja
Priority to CN202210710467.XA priority patent/CN114990402A/zh
Priority to CN202010985588.6A priority patent/CN112538587B/zh
Publication of EP3796101A1 publication Critical patent/EP3796101A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction

Definitions

  • the invention relates to a spiral spring intended to equip a balance of a clockwork movement. It also relates to the method of manufacturing this spiral spring.
  • the invention proposes to define a new type of clockwork spiral spring, based on the selection of a particular material, and to develop the appropriate manufacturing process.
  • the invention relates to a clockwork spiral spring made from an alloy of niobium and titanium.
  • the titanium content is between 1% (limit included) and 40% (limit not included) by weight.
  • it is between 5 and 35% by weight (limits included), preferably between 15 and 35% (limits included) and more preferably between 27 and 33% (limits included).
  • the remainder consists of niobium and impurities including interstitials such as H, C, N and / or O, the percentage of impurities being less than or equal to 0.3% by weight.
  • the invention also relates to the method of manufacturing this clockwork spiral spring as claimed in the appendix.
  • the invention relates to a clockwork spiral spring made from a binary type alloy comprising niobium and titanium.
  • the percentage by weight of oxygen is less than or equal to 0.10% of the total, or even less than or equal to 0.085% of the total.
  • the percentage by weight of tantalum is less than or equal to 0.10% of the total.
  • the percentage by weight of carbon is less than or equal to 0.04% of the total, in particular less than or equal to 0.020% of the total, or even less than or equal to 0.0175% of the total.
  • the percentage by weight of iron is less than or equal to 0.03% of the total, in particular less than or equal to 0.025% of the total, or even less than or equal to 0.020% of the total.
  • the percentage by weight of nitrogen is less than or equal to 0.02% of the total, in particular less than or equal to 0.015% of the total, or even less than or equal to 0.0075% of the total.
  • the percentage by weight of hydrogen is less than or equal to 0.01% of the total, in particular less than or equal to 0.0035% of the total, or even less than or equal to 0.0005% of the total.
  • the percentage by weight of nickel is less than or equal to 0.01% of the total.
  • the percentage by weight of silicon is less than or equal to 0.01% of the total.
  • the percentage by weight of nickel is less than or equal to 0.01% of the total, in particular less than or equal to 0.16% of the total.
  • the percentage by weight of copper is less than or equal to 0.01% of the total, in particular less than or equal to 0.005% of the total.
  • the percentage by weight of aluminum is less than or equal to 0.01% of the total.
  • this spiral spring has a two-phase microstructure comprising niobium in the centered cubic beta phase and titanium in the compact hexagonal alpha phase.
  • thermoelastic coefficient also called CTE of the alloy
  • CTE the thermoelastic coefficient
  • dM dT 1 2 E of dT - ⁇ + 3 2 ⁇ ⁇ 86400 s j ° C
  • M and T are respectively the rate and the temperature.
  • E is the Young's modulus of the spiral spring, and, in this formula, E, ⁇ and ⁇ are expressed in ° C -1 .
  • CT is the thermal coefficient of the oscillator, (1 / E.
  • DE / dT DE / dT
  • is the expansion coefficient of the balance and ⁇ that of the balance spring.
  • the hardened beta-phase alloy exhibits a strongly positive CTE, and the precipitation of the alpha phase which has a strongly negative CTE makes it possible to bring the two-phase alloy to a CTE close to zero, which is particularly favorable.
  • too high a percentage of titanium leads to the formation of brittle phases.
  • a percentage of titanium less than 40% by weight makes it possible to obtain a good compromise between the various desired properties.
  • the interaction between dislocations and C, H, N, O interstitials present in the alloy as well as the interaction between dislocations and alpha titanium precipitates also play a favorable role on CTE. .
  • the setting in motion of the dislocations as a function of the temperature causes a reduction in the Young's modulus of the spiral spring which counteracts the positive anomaly of the beta phase.
  • the spiral spring produced with this alloy has an elastic limit greater than or equal to 500 MPa and more precisely between 500 and 1000 MPa.
  • it has a modulus of elasticity less than or equal to 120 GPa and preferably less than or equal to 110 GPa.
  • each strain is performed with a given strain rate between 1 and 5, this strain rate corresponding to the classic formula 2ln (d0 / d), where d0 is the diameter of the last beta hardening, and where d is the diameter of the hardened wire.
  • the global accumulation of the deformations over the whole of this succession of sequences brings a total rate of deformation of between 1 and 14.
  • Each coupled sequence of deformation-heat treatment comprises, each time, a heat treatment of precipitation of the alpha Ti phase. .
  • Beta quenching prior to the deformation and heat treatment sequences is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C, under vacuum, followed by a gas cooling.
  • this beta quenching is a solution treatment, for 1 hour at 800 ° C. under vacuum, followed by cooling under gas.
  • the heat treatment is a precipitation treatment lasting between 1 hour and 200 hours at a temperature between 300 ° C and 700 ° C. More particularly, the duration is between 5 hours and 30 hours at a temperature between 400 ° C and 600 ° C.
  • the method comprises between one and five coupled sequences of deformation-heat treatment.
  • the first coupled strain-heat treatment sequence comprises a first strain with at least 30% reduction in section.
  • each coupled sequence of heat-treatment-strain comprises a strain between two heat treatments with at least 25% reduction in section.
  • a surface layer of ductile material is added to the blank, taken from among copper, nickel, cupro- nickel, cupro-magnanese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, or the like, to facilitate forming into a wire shape during deformation.
  • the wire is freed from its layer of ductile material, in particular by chemical attack.
  • the surface layer of ductile material is deposited so as to constitute a spiral spring, the pitch of which is not a multiple of the thickness of the blade.
  • the surface layer of ductile material is deposited so as to constitute a spring whose pitch is variable.
  • ductile material or copper is thus added at a given moment to facilitate the shaping in the form of wire, so that a thickness of 10 to 500 micrometers remains on the wire. with a final diameter of 0.3 to 1 millimeters.
  • the wire is stripped of its layer of ductile or copper material in particular by chemical attack, then is rolled flat before the manufacture of the spring proper by slipping.
  • the supply of ductile or copper material can be galvanic, or else mechanical, it is then a jacket or a tube of ductile or copper material. which is fitted to a large diameter niobium-titanium alloy bar, and then which is thinned during the deformation steps of the composite bar.
  • a diffusion barrier layer for example nb, can be added between the nb-Ti and the Cu in order to avoid the formation of intermetallics which are harmful to the deformability of the material.
  • the thickness of this layer is chosen so as to correspond to a thickness of 100 nm to 1 ⁇ m on the wire with a diameter of 0.1 mm.
  • the layer can be removed in particular by chemical attack, with a solution based on cyanides or based on acids, for example nitric acid.
  • a very fine two-phase lamellar microstructure in particular nanometric, comprising or composed of beta niobium and alpha titanium.
  • This alloy combines a very high elastic limit, greater than at least 500 MPa, and a very low modulus of elasticity, of the order of 80 GPa to 120 GPa. This combination of properties works well for a spiral spring.
  • the alloy after the deformation-heat treatment sequences exhibits a ⁇ 110> texture.
  • this niobium-titanium alloy according to the invention can easily be covered with ductile material or copper, which greatly facilitates its deformation by drawing.
  • a binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, also exhibits an effect similar to that of "Elinvar", with a thermoelastic coefficient practically zero. within the temperature range of usual use of watches, and suitable for the manufacture of self-compensating balance springs.

Abstract

La présente invention concerne un ressort spiral (1) destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral (1) est réalisé dans un alliage de niobium et de titane constitué en poids de:
- niobium : balance à 100% ;
- titane avec un pourcentage supérieur ou égal à 1% et inférieur à 40% ;
- des traces d'autres éléments choisis parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant compris entre 0 et 1600 ppm du total en poids et la somme desdites traces étant inférieure ou égale à 0.3% en poids.
La présente invention concerne également son procédé de fabrication.

Description

    Domaine de l'invention
  • L'invention concerne un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie. Elle se rapporte également au procédé de fabrication de ce ressort spiral.
  • Arrière-plan de l'invention
  • La fabrication de ressorts spiraux pour l'horlogerie doit faire face à des contraintes souvent à première vue incompatibles :
    • nécessité d'obtention d'une limite élastique élevée,
    • facilité d'élaboration, notamment de tréfilage et de laminage,
    • excellente tenue en fatigue,
    • stabilité des performances dans le temps,
    • faibles sections.
  • La réalisation de ressorts spiraux est en outre centrée sur le souci de la compensation thermique, de façon à garantir des performances chronométriques régulières. Il faut pour cela obtenir un coefficient thermoélastique proche de zéro.
  • Toute amélioration sur au moins l'un des points, et en particulier sur la tenue mécanique de l'alliage utilisé, représente donc une avancée significative.
  • Résumé de l'invention
  • L'invention se propose de définir un nouveau type de ressort spiral d'horlogerie, basé sur la sélection d'un matériau particulier, et de mettre au point le procédé de fabrication adéquat.
  • A cet effet, l'invention concerne un ressort spiral d'horlogerie réalisé dans un alliage de niobium et de titane. Selon l'invention, la teneur en titane est comprise en poids entre 1% (borne comprise) et 40% (borne non comprise). Avantageusement, elle est comprise en poids entre 5 et 35% (bornes comprises), de préférence entre 15 et 35% (bornes comprises) et plus préférentiellement entre 27 et 33% (bornes comprises). Le reste est constitué de niobium et d'impuretés dont des interstitiels tels que H, C, N et/ou O, le pourcentage d'impuretés étant inférieur ou égal à 0.3% en poids.
  • L'invention concerne également le procédé de fabrication de ce ressort spiral d'horlogerie tel que revendiqué en annexe.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée, un ressort spiral réalisé avec un alliage Nb-Ti selon l'invention ;
    • la figure 2 représente les courbes d'évolution du module de Young en fonction de la température rapporté sur le module de Young à 20°C pour respectivement le Nb pur et un alliage Nb-Ti selon l'invention avec 30% en poids de Ti.
    Description détaillée des modes de réalisation préférés
  • L'invention concerne un ressort spiral d'horlogerie réalisé dans un alliage de type binaire comportant du niobium et du titane.
  • Selon l'invention, cet alliage comporte en poids:
    • du niobium : balance à 100% ;
    • du titane dans un pourcentage supérieur ou égal à 1% et inférieur à 40%. Plus particulièrement, cet alliage comporte une proportion en poids de titane comprise entre 5 et 35%, de préférence entre 15 et 35% et plus préférentiellement entre 27 et 33% ;
    • des traces d'autres éléments choisis parmi O, H, C, Fe, Ta, N, Ni, Si, Cu et/ou Al, chacun desdits éléments étant compris entre 0 et 1600 ppm du total en poids, et la somme de ces traces étant inférieure ou égale à 0.3%. En d'autres mots, le total des pourcentages en poids du titane et du niobium est compris entre 99.7% et 100% du total.
  • Le pourcentage en poids d'oxygène est inférieur ou égal à 0.10% du total, voire encore inférieur ou égal à 0.085% du total.
  • Le pourcentage en poids de tantale est inférieur ou égal à 0.10% du total.
  • Le pourcentage en poids de carbone est inférieur ou égal à 0.04% du total, notamment inférieur ou égal à 0.020% du total, voire encore inférieur ou égal à 0.0175% du total.
  • Le pourcentage en poids de fer est inférieur ou égal à 0.03% du total, notamment inférieur ou égal à 0.025% du total, voire encore inférieur ou égal à 0.020% du total.
  • Le pourcentage en poids d'azote est inférieur ou égal à 0.02% du total, notamment inférieur ou égal à 0.015% du total, voire encore inférieur ou égal à 0.0075% du total.
  • Le pourcentage en poids d'hydrogène est inférieur ou égal à 0.01 % du total, notamment inférieur ou égal à 0.0035% du total, voire encore inférieur ou égal à 0.0005% du total.
  • Le pourcentage en poids de nickel est inférieur ou égal à 0.01% du total.
  • Le pourcentage en poids de silicium est inférieur ou égal à 0.01% du total.
  • Le pourcentage en poids de nickel est inférieur ou égal à 0.01% du total, notamment inférieur ou égal à 0.16% du total.
  • Le pourcentage en poids de cuivre est inférieur ou égal à 0.01 % du total, notamment inférieur ou égal à 0.005% du total.
  • Le pourcentage en poids d'aluminium est inférieur ou égal à 0.01 % du total.
  • De façon avantageuse, ce ressort spiral a une microstructure bi-phasée comportant du niobium en phase bêta cubique centré et du titane en phase alpha hexagonal compact.
  • Pour obtenir une telle microstructure, et convenant à l'élaboration d'un ressort, il est nécessaire de précipiter une partie de la phase alpha par traitement thermique.
  • Plus le taux de titane est élevé, plus la proportion maximale de phase alpha qui peut être précipitée par traitement thermique est élevée, ce qui incite à rechercher une forte proportion de titane. Mais a contrario, plus le taux de titane est élevé, plus il est difficile d'obtenir uniquement une précipitation de la phase alpha aux joints de grains. L'apparition de précipités de type Widmastätten alpha-Ti intragranulaire ou la phase w intragranulaire rend la déformation du matériau difficile, voire impossible, ce qui ne convient alors pas à la réalisation d'un ressort spiral, et il convient alors de ne pas incorporer trop de titane dans l'alliage. En outre, l'application de cet alliage à un ressort spiral nécessite des propriétés aptes à garantir le maintien des performances chronométriques malgré la variation des températures d'utilisation d'une montre incorporant un tel ressort spiral. Le coefficient thermoélastique, dit aussi CTE de l'alliage, a alors une grande importance. Pour former un oscillateur chronométrique avec un balancier en CuBe ou en maillechort, un CTE de +/- 10 ppm/°C doit être atteint. La formule qui lie le CTE de l'alliage et les coefficients de dilatation du spiral et du balancier est la suivante : CT = dM dT = 1 2 E dE dT β + 3 2 α × 86400 s j°C
    Figure imgb0001
    Les variables M et T sont respectivement la marche et la température. E est le module de Young du ressort spiral, et, dans cette formule, E, β et α s'expriment en °C-1.
    CT est le coefficient thermique de l'oscillateur, (1/E. dE/dT) est le CTE de l'alliage spiral, β est le coefficient de dilatation du balancier et α celui du spiral. L'alliage en phase bêta écroui présente un CTE fortement positif, et la précipitation de la phase alpha qui possède un CTE fortement négatif permet de ramener l'alliage biphasé à un CTE proche de zéro, ce qui est particulièrement favorable. Cependant, comme mentionné plus haut, un pourcentage trop élevé de titane mène à la formation de phases fragiles. Un pourcentage de titane inférieur à 40% en poids permet d'obtenir un bon compromis entre les différentes propriétés recherchées. Il est par ailleurs supposé que l'interaction entre les dislocations et les interstitiels C, H, N, O présents dans l'alliage de même que l'interaction entre les dislocations et les précipités de titane alpha jouent également un rôle favorable sur le CTE. La mise en mouvement des dislocations en fonction de la température provoque une diminution du module de Young du ressort spiral qui contrecarre l'anomalie positive de la phase bêta.
  • Le ressort spiral élaboré avec cet alliage a une limite élastique supérieure ou égale à 500 MPa et plus précisément comprise entre 500 et 1000 MPa. De façon avantageuse, il a un module d'élasticité inférieur ou égal à 120 GPa et de préférence inférieur ou égal à 110 GPa.
  • L'invention concerne également le procédé de fabrication du ressort spiral d'horlogerie, caractérisé en ce qu'on met en œuvre successivement les étapes suivantes :
    • élaboration d'une ébauche dans un alliage comportant du niobium et du titane et plus précisément :
      • du niobium : balance à 100% ;
      • un pourcentage en poids de titane supérieur ou égal à 1% du total et inférieur à 40% du total ;
      • des traces d'autres éléments choisis parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant compris entre 0 et 1600 ppm du total en poids, et la somme desdites traces étant inférieure ou égale à 0.3% en poids;
    • une trempe de type bêta de ladite ébauche, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase bêta ;
    • application audit alliage de séquences de déformation suivie d'un traitement thermique. On entend par déformation une déformation par tréfilage et/ou laminage. Le tréfilage peut nécessiter l'utilisation d'une ou plusieurs filières lors d'une même séquence ou lors de différentes séquences si nécessaire. Le tréfilage est réalisé jusqu'à l'obtention d'un fil de section ronde. Le laminage peut être effectué lors de la même séquence de déformation que le tréfilage ou dans une autre séquence. Avantageusement, la dernière séquence appliquée à l'alliage est un laminage de préférence à profil rectangulaire compatible avec la section d'entrée d'une broche d'estrapadage. Ces séquences mènent à l'obtention d'une microstructure bi-phasée comportant du niobium bêta et du titane alpha, avec une limite élastique supérieure ou égale à 500 MPa et un module d'élasticité inférieur ou égal à 120 GPa et de préférence à 110 GPa.
    • estrapadage pour former un ressort spiral, suivi d'un traitement thermique final.
  • Dans ces séquences couplées de déformation-traitement thermique, chaque déformation est effectuée avec un taux de déformation donné compris entre 1 et 5, ce taux de déformation répondant à la formule classique 2ln(d0/d), où d0 est le diamètre de la dernière trempe bêta, et où d est le diamètre du fil écroui. Le cumul global des déformations sur l'ensemble de cette succession de séquences amène un taux total de déformation compris entre 1 et 14. Chaque séquence couplée de déformation-traitement thermique comporte, à chaque fois, un traitement thermique de précipitation de la phase alpha Ti.
  • La trempe bêta préalable aux séquences de déformation et de traitement thermique est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.
  • Plus particulièrement encore, cette trempe bêta est un traitement de mise en solution, d'1 heure à 800°C sous vide, suivie d'un refroidissement sous gaz.
  • Pour revenir aux séquences couplées de déformation-traitement thermique, le traitement thermique est un traitement de précipitation d'une durée comprise entre 1 heure et 200 heures à une température comprise entre 300°C et 700°C. Plus particulièrement, la durée est comprise entre 5 heures et 30 heures à une température comprise entre 400°C et 600°C.
  • Plus particulièrement, le procédé comporte entre une et cinq séquences couplées de déformation-traitement thermique.
  • Plus particulièrement, la première séquence couplée de déformation-traitement thermique comporte une première déformation avec au moins 30 % de réduction de section.
  • Plus particulièrement, chaque séquence couplée de déformation-traitement thermique, autre que la première, comporte une déformation entre deux traitements thermiques avec au moins 25 % de réduction de section.
  • Plus particulièrement, après cette élaboration de ladite ébauche en alliage, et avant les séquences de déformation-traitement thermique, dans une étape supplémentaire, on ajoute à l'ébauche une couche superficielle de matériau ductile pris parmi le cuivre, le nickel, le cupro-nickel, le cupro-magnanèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, ou similaire, pour faciliter la mise en forme sous forme de fil lors de la déformation. Et, après les séquences de déformation-traitement thermique ou après l'étape d'estrapadage, on débarrasse le fil de sa couche du matériau ductile, notamment par attaque chimique.
  • Dans une variante, on dépose la couche superficielle de matériau ductile de façon à constituer un ressort spiral dont le pas n'est pas un multiple de l'épaisseur de la lame. Dans une autre variante, on dépose la couche superficielle de matériau ductile de façon à constituer un ressort dont le pas est variable.
  • Dans une application horlogère particulière, du matériau ductile ou du cuivre est ainsi ajouté à un moment donné pour faciliter la mise en forme sous forme de fil, de telle manière à ce qu'il en reste une épaisseur de 10 à 500 micromètres sur le fil au diamètre final de 0.3 à 1 millimètres. Le fil est débarrassé de sa couche de matériau ductile ou cuivre notamment par attaque chimique, puis est laminé à plat avant la fabrication du ressort proprement dit par estrapadage.
  • L'apport de matériau ductile ou cuivre peut être galvanique, ou bien mécanique, c'est alors une chemise ou un tube de matériau ductile ou cuivre qui est ajusté sur une barre d'alliage niobium-titane à un gros diamètre, puis qui est amincie au cours des étapes de déformation du barreau composite.
  • Une couche barrière de diffusion, par exemple du nb, peut être ajoutée entre le nb-Ti et le Cu afin d'éviter la formation d'intermétalliques néfastes à la déformabilité du matériau. L'épaisseur de cette couche est choisie de manière à correspondre à une épaisseur de 100 nm à 1 µm sur le fil à diamètre 0.1 mm.
  • L'enlèvement de la couche est notamment réalisable par attaque chimique, avec une solution à base de cyanures ou à base d'acides, par exemple d'acide nitrique.
  • Par une combinaison adéquate de séquences de déformation et de traitement thermique, il est possible d'obtenir une microstructure bi-phasée lamellaire très fine, en particulier nanométrique, comportant ou composée de niobium bêta et de titane alpha. Cet alliage combine une limite élastique très élevée, supérieure au moins à 500 MPa et un module d'élasticité très bas, de l'ordre de 80 GPa à 120 GPa. Cette combinaison de propriétés convient bien pour un ressort spiral. L'alliage après les séquences de déformation-traitement thermique présente une texture <110>. En outre, cet alliage niobium-titane selon l'invention se laisse facilement recouvrir de matériau ductile ou cuivre, ce qui facilite grandement sa déformation par tréfilage.
  • Un alliage de type binaire comportant du niobium et du titane, du type sélectionné ci-dessus pour la mise en œuvre de l'invention, présente également un effet similaire à celui de l' « Elinvar », avec un coefficient thermo-élastique pratiquement nul dans la plage de températures d'utilisation usuelle de montres, et apte à la fabrication de spiraux auto-compensateurs.
  • Plus précisément, si on compare à la figure 2, l'évolution du module de Young (E(T)/E20°C) en fonction de la température pour du Nb pur et un alliage de Nb-Ti selon l'invention avec 30% en poids de Ti, on observe que les deux courbes sont en S avec pour différence notable que la présence de Ti permet de réduire fortement l'écart entre le minimum et le maximum de la courbe selon aussi bien l'axe des abscisses que l'axe des ordonnées. Plus précisément, la présence de Ti dans l'alliage et le procédé de fabrication selon l'invention tentent à lisser la courbe via la diminution du maximum de la courbe. Cet effet positif sur la réduction du maximum avec l'alliage selon l'invention est attribué à un ensemble de facteurs qui sont :
    • la texture cristallographique de l'alliage qui est influencée par le taux de réduction depuis la trempe bêta,
    • la densité de dislocations ajustée via les traitements thermiques qui induisent des phénomènes de restauration, voire de recristallisation,
    • la concentration en interstitiels qui vont interagir avec les dislocations,
    • le pourcentage de Ti en phase alpha
    • la densité de précipités dans l'alliage (nombre de précipités Ti en phase alpha par unité de volume) .

Claims (18)

  1. Ressort spiral (1) destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral (1) est réalisé dans un alliage de niobium et de titane constitué en poids de :
    - niobium : balance à 100% ;
    - titane avec un pourcentage supérieur ou égal à 1 % et inférieur à 40%,
    - des traces d'autres éléments choisis parmi O, H, C, Fe, Ta, N, Ni, Si, Cu et/ou Al, chacun desdits éléments étant compris entre 0 et 1600 ppm du total en poids et la somme desdites traces étant inférieure ou égale à 0.3% en poids.
  2. Ressort spiral (1) selon la revendication 1, caractérisé en ce que ledit alliage comporte un pourcentage en poids de titane compris entre 5 et 35%.
  3. Ressort spiral (1) selon la revendication 1, caractérisé en ce que ledit alliage comporte un pourcentage en poids de titane compris entre 15 et 35%.
  4. Ressort spiral (1) selon la revendication 1, caractérisé en ce que ledit alliage comporte un pourcentage en poids de titane compris entre 27 et 33%.
  5. Ressort spiral (1) selon l'une des revendications précédentes, caractérisé en ce qu'il a une microstructure bi-phasée comportant du niobium en phase bêta et du titane en phase alpha.
  6. Ressort spiral (1) selon l'une des revendications précédentes, caractérisé en ce qu'il a une limite élastique supérieure ou égale à 500 MPa, et un module d'élasticité inférieur ou égal à 120 GPa, de préférence inférieur ou égal à 110 GPa.
  7. Procédé de fabrication d'un ressort spiral (1) destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce qu'il comprend successivement :
    - une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué en poids de :
    - niobium : balance à 100% ;
    - titane avec un pourcentage supérieur ou égal à 1% et inférieur à 40%,
    - des traces d'autres éléments choisis parmi O, H, C, Fe, Ta, N, Ni, Si, Cu et/ou Al, chacun desdits éléments étant compris entre 0 et 1600 ppm du total en poids et la somme desdites traces étant inférieure ou égale à 0.3% en poids ;
    - une étape de trempe de type bêta de ladite ébauche, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase bêta,
    - une étape d'application audit alliage d'une succession de séquences de déformation suivie d'un traitement thermique intermédiaire,
    - une étape estrapadage pour former le ressort spiral (1),
    - une étape de traitement thermique final.
  8. Procédé de fabrication d'un ressort spiral (1) selon la revendication 7, caractérisé en ce que la déformation durant chaque séquence est réalisée par tréfilage et/ou laminage.
  9. Procédé de fabrication d'un ressort spiral (1) selon la revendication 8, caractérisé en ce qu'on effectue la déformation de la dernière séquence par laminage à plat.
  10. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 9, caractérisé en ce que la déformation de chaque séquence est effectuée avec un taux de déformation donné compris entre 1 et 5, le cumul global des déformations sur l'ensemble de ladite succession de séquences amenant un taux total de déformation compris entre 1 et 14.
  11. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 10, caractérisé en ce que la trempe de type bêta est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.
  12. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 11, caractérisé en ce que la trempe de type bêta est un traitement de mise en solution d'1 heure à 800°C sous vide, suivie d'un refroidissement sous gaz.
  13. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 12, caractérisé en ce que le traitement thermique final ainsi que le traitement thermique intermédiaire de chaque séquence est un traitement de précipitation du Ti en phase alpha d'une durée comprise entre 1 heure et 200 heures à une température comprise entre 300°C et 700°C.
  14. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 13, caractérisé en ce que le traitement thermique final ainsi que le traitement thermique intermédiaire de chaque séquence est un traitement de précipitation du Ti en phase alpha d'une durée comprise entre 5 heures et 30 heures à une température comprise entre 400°C et 600°C.
  15. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 14, caractérisé en ce que ledit procédé comporte entre une et cinq dites séquences de déformation suivie d'un traitement thermique intermédiaire.
  16. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 15, caractérisé en ce que la première dite séquence de déformation suivie d'un traitement thermique intermédiaire comporte une première déformation avec au moins 30 % de réduction de section.
  17. Procédé de fabrication d'un ressort spiral (1) selon la revendication 16, caractérisé en ce que chaque dite séquence de déformation suivie d'un traitement thermique intermédiaire, autre que la première, comporte une déformation entre deux traitements thermiques intermédiaires avec au moins 25 % de réduction de section.
  18. Procédé de fabrication d'un ressort spiral (1) selon l'une des revendications 7 à 17, caractérisé en ce que, après l'étape d'élaboration de l'ébauche en alliage, et avant l'étape d'application d'une succession de séquences, on ajoute à ladite ébauche une couche superficielle de matériau ductile pris parmi le cuivre, le nickel, le cupro-nickel, le cupro-magnanèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil et en ce que, avant ou après l'étape d'estrapadage, on débarrasse ledit fil de sa couche dudit matériau ductile par attaque chimique.
EP19198759.3A 2019-09-20 2019-09-20 Ressort spiral pour mouvement d'horlogerie Pending EP3796101A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19198759.3A EP3796101A1 (fr) 2019-09-20 2019-09-20 Ressort spiral pour mouvement d'horlogerie
US16/936,682 US20210088971A1 (en) 2019-09-20 2020-07-23 Balance spring for a horological movement
JP2020136578A JP7148577B2 (ja) 2019-09-20 2020-08-13 計時器用ムーブメントのためのバランスばね
CN202210710467.XA CN114990402A (zh) 2019-09-20 2020-09-18 用于钟表机芯的摆轮游丝
CN202010985588.6A CN112538587B (zh) 2019-09-20 2020-09-18 用于钟表机芯的摆轮游丝

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19198759.3A EP3796101A1 (fr) 2019-09-20 2019-09-20 Ressort spiral pour mouvement d'horlogerie

Publications (1)

Publication Number Publication Date
EP3796101A1 true EP3796101A1 (fr) 2021-03-24

Family

ID=67998402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19198759.3A Pending EP3796101A1 (fr) 2019-09-20 2019-09-20 Ressort spiral pour mouvement d'horlogerie

Country Status (4)

Country Link
US (1) US20210088971A1 (fr)
EP (1) EP3796101A1 (fr)
JP (1) JP7148577B2 (fr)
CN (2) CN112538587B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502289B1 (fr) * 2017-12-21 2022-11-09 Nivarox-FAR S.A. Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
EP4123393A1 (fr) 2021-07-23 2023-01-25 Nivarox-FAR S.A. Ressort spiral pour mouvement d'horlogerie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070133355A1 (en) * 2003-11-07 2007-06-14 Seik Epson Corporation Timepiece and spring thereof
CN107710081A (zh) * 2015-06-03 2018-02-16 Eta瑞士钟表制造股份有限公司 经由快慢针组件精细调节的谐振器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795413A (en) * 1996-12-24 1998-08-18 General Electric Company Dual-property alpha-beta titanium alloy forgings
DE69710445T2 (de) * 1997-06-20 2002-10-10 Rolex Montres Selbstkompensierende Spiralfeder für mechanische Uhrwerkunruhspiralfederoszillator und Verfahren zu deren Herstellung
CA2272730C (fr) * 1998-05-26 2004-07-27 Kabushiki Kaisha Kobe Seiko Sho Alliage de titane de type .alpha. + .beta., bande en alliage de titane, procede de laminage a froid de l'alliage et procede de fabrication d'une telle bande laminee a froid
US6767418B1 (en) * 1999-04-23 2004-07-27 Terumo Kabushiki Kaisha Ti-Zr type alloy and medical appliance formed thereof
EP1258786B1 (fr) * 2001-05-18 2008-02-20 Rolex Sa Spiral auto-compensateur pour oscillateur mécanique balancier-spiral
JP2005140764A (ja) * 2003-10-14 2005-06-02 Nakagami Corporation:Kk ワーク表面検査装置
JP2006037150A (ja) * 2004-07-26 2006-02-09 Nippon Sozai Kk Ti系高強度超弾性合金
FR2894987B1 (fr) * 2005-12-15 2008-03-14 Ascometal Sa Acier a ressorts, et procede de fabrication d'un ressort utilisant cet acier, et ressort realise en un tel acier
EP2264553B1 (fr) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Ressort thermocompensé et son procédé de fabrication
JP6212473B2 (ja) * 2013-12-27 2017-10-11 株式会社神戸製鋼所 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
EP2924514B1 (fr) * 2014-03-24 2017-09-13 Nivarox-FAR S.A. Ressort d'horlogerie en acier inoxydable austénitique
US20170067137A1 (en) * 2015-09-07 2017-03-09 Seiko Epson Corporation Titanium sintered body and ornament
EP3252542B1 (fr) * 2016-06-01 2022-05-18 Rolex Sa Pièce de fixation d'un ressort-spiral horloger
FR3064281B1 (fr) * 2017-03-24 2022-11-11 Univ De Lorraine Alliage de titane beta metastable, ressort d'horlogerie a base d'un tel alliage et son procede de fabrication
EP3422116B1 (fr) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Ressort spiral d'horlogerie
CH714492A2 (fr) * 2017-12-21 2019-06-28 Nivarox Sa Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication.
EP3502785B1 (fr) * 2017-12-21 2020-08-12 Nivarox-FAR S.A. Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication
EP3502288B1 (fr) * 2017-12-21 2020-10-14 Nivarox-FAR S.A. Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
EP3502289B1 (fr) * 2017-12-21 2022-11-09 Nivarox-FAR S.A. Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
EP3502787B1 (fr) * 2017-12-22 2020-11-18 The Swatch Group Research and Development Ltd Procédé de fabrication d'un balancier pour pièce d'horlogerie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070133355A1 (en) * 2003-11-07 2007-06-14 Seik Epson Corporation Timepiece and spring thereof
CN107710081A (zh) * 2015-06-03 2018-02-16 Eta瑞士钟表制造股份有限公司 经由快慢针组件精细调节的谐振器

Also Published As

Publication number Publication date
JP2021051065A (ja) 2021-04-01
JP7148577B2 (ja) 2022-10-05
US20210088971A1 (en) 2021-03-25
CN114990402A (zh) 2022-09-02
CN112538587B (zh) 2022-08-16
CN112538587A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
EP3422116B1 (fr) Ressort spiral d&#39;horlogerie
EP3502289B1 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie
EP3502785B1 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication
EP3502288B1 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie
EP3796101A1 (fr) Ressort spiral pour mouvement d&#39;horlogerie
EP3671359B1 (fr) Procédé de formation d&#39;un ressort spirale d&#39;horlogerie à base titane
EP3889691B1 (fr) Spiral horloger en alliage nb-hf
EP3422115B1 (fr) Ressort spiralé d&#39;horlogerie
CH714494A2 (fr) Ressort spiralé d&#39;horlogerie, notamment un ressort de barillet ou un ressort-spiral.
EP4060425A1 (fr) Spiral pour un mouvement horloger
EP4060424A1 (fr) Spiral pour mouvement d&#39;horlogerie
CH714492A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication.
EP3845971B1 (fr) Procede de fabrication de ressort spiral pour mouvement d&#39;horlogerie
CH718455A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et procédé de fabrication de ce ressort spiral.
CH716155A2 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie.
CH718454A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et procédé de fabrication de ce ressort spiral.
CH716622A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie en alliage de niobium et de titane et son procédé de fabrication.
EP3736638B1 (fr) Procede de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie
CH714493A2 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie.
EP4123393A1 (fr) Ressort spiral pour mouvement d&#39;horlogerie
CH715683A2 (fr) Ressort spiralé d&#39;horlogerie à base titane.
CH718850A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie.
EP3828642A1 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication
CH716853A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication.
CH716156B1 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210924

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230321

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611