EP3502787B1 - Procédé de fabrication d'un balancier pour pièce d'horlogerie - Google Patents
Procédé de fabrication d'un balancier pour pièce d'horlogerie Download PDFInfo
- Publication number
- EP3502787B1 EP3502787B1 EP17210299.8A EP17210299A EP3502787B1 EP 3502787 B1 EP3502787 B1 EP 3502787B1 EP 17210299 A EP17210299 A EP 17210299A EP 3502787 B1 EP3502787 B1 EP 3502787B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal alloy
- balance
- ppm
- felloe
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title description 19
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 72
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 25
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 25
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 15
- 238000002425 crystallisation Methods 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 230000009477 glass transition Effects 0.000 claims description 13
- 229910052763 palladium Inorganic materials 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical compound [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- 230000008025 crystallization Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010453 quartz Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 229910000942 Elinvar Inorganic materials 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000005300 metallic glass Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/063—Balance construction
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/222—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature with balances
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/006—Mechanisms for setting frequency by adjusting the devices fixed on the balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D3/00—Watchmakers' or watch-repairers' machines or tools for working materials
- G04D3/0002—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe
- G04D3/0035—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism
- G04D3/0038—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism for balances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D25/00—Special casting characterised by the nature of the product
- B22D25/02—Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
- B22D25/026—Casting jewelry articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C16/00—Alloys based on zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
Definitions
- the invention relates to a method of manufacturing a balance for a timepiece comprising a rim, a hub and at least one arm connecting the hub to said rim.
- the oscillator or resonator of a mechanical watch is made up of a spiral spring and a flywheel called a balance.
- the thermal variations cause the stiffness of the hairspring to vary, as well as the geometries of the hairspring and the balance, which modifies the spring constant and inertia, and therefore the frequency of oscillation.
- Watchmakers have worked hard to have temperature-stable oscillators and several avenues have been explored / exploited, one of which won a Nobel Prize to Charles-Edouardclair for the development of the Elinvar alloy whose modulus of elasticity increases with temperature and compensates for the increase in inertia of the balance.
- the monocrystalline quartz hairspring enables thermal compensation for the change in inertia of the balance.
- quartz is limited to materials having a thermal expansion coefficient of the order of 10 ppm / ° C, which corresponds for example titanium and platinum.
- the main problem with these materials is the machinability and control of fine structure and / or a perfect finish (mirror polished by example).
- titanium its relatively low density limits its use for large pendulums and in the case of platinum, its high price limits its use to prestige and luxury products.
- the object of the present invention is to remedy these drawbacks by proposing a method for manufacturing a balance made of new materials allowing simpler and more precise manufacture, so as to reduce, for example, the dispersion of inertia and / or of unbalance within the same production batch.
- the invention relates to a method according to claim 1.
- a metal alloy balance wheel can be made using a simplified manufacturing process such as a casting process or a hot forming process.
- the metal alloy in its at least partially amorphous form has the property of having a much larger elastic range than its crystalline equivalent, thanks to the absence of dislocation. This property makes it possible to overmold or integrate into the balance elements making it possible to improve the centering as well as to adjust the inertia and / or the unbalance.
- a balance 1 for a timepiece conventionally comprises a rim 2, continuous or not, defining the outer diameter of the balance 1, a hub 4, forming its central part and provided with a hole 6 intended to receive a shaft (not shown) defining the pivot axis of the balance 1.
- the hub 4 is integrally connected to the rim 2 by arms 8.
- the arms 8 are here four in number and are arranged at 90 °. We also usually find balances with two or three arms, arranged respectively at 180 ° or 120 °.
- the rim 2, the hub 4 and the arms 8 are made from the same metal alloy.
- the balance 1 is in one piece, that is to say produced in one piece.
- the balance 1 can for example be made entirely from an alloy based on platinum or palladium which will be described in detail below. Since platinum in particular has a high density (21,000 kg / m 3 ), the platinum alloy used in the invention also has a high density (15.5 g / cm 3 ), so that the addition of elements in dense material to increase the inertia of the balance will not necessarily be necessary.
- the cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline alloy, partially amorphous or completely amorphous.
- the balance wheel 1 can also be produced entirely, for example, from an alloy based on titanium or on zirconium which will be described in detail below.
- Zirconium for example having a lower density
- the zirconium alloy used in the invention also has a lower density (6.5 g / cm 3 ), so that the addition of elements in denser material to increase the inertia of the balance is recommended, especially if you want to make a small balance for small movements. These elements make it possible to increase the inertia of the balance while keeping an aesthetic serge geometry and with good aerodynamic properties.
- the rim 2 can comprise first elements for adjusting the inertia 10 overmolded, said first elements for adjusting the inertia 10 being made of a material having a density greater than the density of the metal alloy.
- These first elements for adjusting the inertia 10 may for example be made of tungsten or tungsten carbide, and are obtained by overmolding.
- the method according to the invention comprises a step of overmolding said first inertia adjustment elements 10 in the rim 2, by means of inserts placed in the mold before the introduction of the metal alloy, and overmolded, said first inertia adjusting elements 10 being made of a first material having a density greater than the density of said metal alloy.
- the arms and the hub of the balance are made of a metal alloy, the rim being made of a material having a density greater than the density of said metal alloy used for the arms and the hub.
- This material can itself be the metal alloy based on platinum or palladium as defined below or another material.
- the arms and the hub of the balance wheel are made in the amorphous metal alloy based on zirconium as defined below to allow the balance to be paired with a hairspring, preferably in monocrystalline quartz, and the rim is made in another material having a density greater than the density of the alloy zirconium-based metal used for the arms and the hub to improve the inertia of the balance.
- the cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or completely amorphous alloy.
- the methods of the invention according to the first or second embodiments advantageously use the properties of a metal alloy capable of being in an at least partially amorphous form when heated to easily shape it in order to achieve a metal alloy balance.
- a metal alloy capable of being in an at least partially amorphous form when it is heated allows great ease in shaping allowing the manufacture of parts with complicated shapes with greater precision.
- One method advantageously used is the hot forming of an amorphous preform.
- This preform is obtained by melting in a furnace the metallic elements intended to constitute the metallic alloy. This fusion is carried out in a controlled atmosphere with the aim of obtaining a contamination of the alloy with oxygen as low as possible. Once these elements are melted, they are cast in the form of a semi-finished product, then cooled rapidly in order to maintain the partially or totally amorphous state.
- the hot forming is carried out in order to obtain a final part. This hot forming is carried out by pressing in a temperature range between the glass transition temperature Tg and the crystallization temperature Tx of the metal alloy for a determined time to maintain an at least partially amorphous structure. This is done with the aim of retaining the elastic properties characteristic of amorphous metals.
- the balance can also be produced by casting or by injection.
- This process consists in casting or injecting the metal alloy heated to a temperature between its transition temperature vitreous and its crystallization temperature to be at least partially amorphous in a mold having the shape of the final part.
- the mold can be reused or dissolved to release the parts.
- the molding process has the advantage of perfectly replicating the geometry of the balance, including any decorations or surface structuring. This results in less dispersion of inertia and better centering on a production batch of balances.
- the molding process makes it possible to obtain a balance with an aesthetic geometry, with sharp interior angles, a serge profile and / or curved arm, and a perfect finish. It is also possible to provide a non-continuous serge.
- the mold will be made in silicon by a DRIE process. It is obvious that the mold can also be produced by machining by milling, laser, electroerosion or any other type of machining.
- the elastic properties characteristic of amorphous metals are used to overmold or integrate functional and / or decorative elements in the rim and / or at the level of the arms and / or at the level of the hub, for example by means of corresponding inserts placed in the front mold. the introduction of the heated metal alloy between its glass transition temperature and its crystallization temperature to be at least partially amorphous.
- the rim 2 may comprise housings 12 intended to receive second elements for adjusting the inertia and / or unbalance 14, as shown in FIG. figure 3 .
- These housings 12 can advantageously be provided during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
- the second inertia and / or unbalance adjustment elements 14, 15 can be, for example, weights, slotted weights, pins 14, split pins, or pins with unbalance 15, which act as weights. These elements are driven out or clipped into the housing correspondents 12.
- On the figure 3 shown are a pin 14 inserted into its housing 12, as well as a pin with unbalance 15 inserted into its housing 12.
- the figure 4 shows a sectional view along line AA of the figure 3 showing the pin with unbalance 15 inserted in the housing 12 provided in the rim 2.
- these elements to increase the inertia of the balance are preferably used with a rim made of a low density material, such as titanium or zirconium, but can also be used with a rim made of another material.
- the 12 units shown on the figure 3 can also constitute housings intended to receive aesthetic and / or luminescent elements, such as tritium tubes (not shown), or capsules of phosphorescent materials (of the Superluminova type, for example) or fluorescent.
- aesthetic and / or luminescent elements such as tritium tubes (not shown), or capsules of phosphorescent materials (of the Superluminova type, for example) or fluorescent.
- one or the other of the methods comprises a step of overmolding flexible centering elements 16, 17 on the hub 4, on its inner periphery or on its surface.
- the hub 4 can include integrated flexible centering elements, which allow self-centering of the balance when it is mounted on an axis thanks to the elastic deformation of said flexible centering elements.
- said integrated flexible centering elements 16 are elastic blades provided on the inner periphery of the hub 4 so as to be positioned in the hole 6.
- said integrated flexible centering elements 17 are provided on the surface of the hub 4 and are distributed around the hole 6. The flexible centering elements 16 and 17 can advantageously be put in place during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
- one or the other of the methods comprises a step of overmolding third flexible inertia adjustment elements 19, 20, 22a, 22b in the arm 8.
- at least l one of the arms 8 carries integrated flexible third inertia adjustment elements.
- the end of the arm 8 on the side of the rim 2 ends in two branches 8a, 8b forming between them a housing 18 in which is integrated a third element for adjusting the inertia 19 flexible bistable "V" for the adjustment frequency.
- the housing 18 there is provided in the housing 18 a third element 20 for adjusting the inertia 20 flexible in buckling for adjusting the frequency.
- the third inertia adjusting element 20 is made of a material having expansion properties different from the metal alloy of the balance of the invention, such as silicon or silicon oxide.
- the end of the arm 8 on the side of the rim 2 ends in three branches 8a, 8b, 8c forming between them two housings 18a, 18b in which are integrated third elements for adjusting the inertia 22a, 22b flexible multi- stable ratchet for frequency adjustment.
- These third flexible inertia adjustment elements 19, 20, 22a, 22b for the frequency adjustment can advantageously be put in place during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
- These third flexible inertia adjustment elements 19, 20, 22a, 22b for frequency adjustment can be used as well when the entire balance wheel is in the same metal alloy as when the arms are made of a metal alloy, the rest of the balance, and in particular the rim, being in another material.
- one or the other of the methods of the invention is used a mold having microstructures forming a decoration or a photonic network.
- one of the arm 8, of the rim 2 and of the hub 4 has a structured surface condition. Only one of the elements can have a structured surface condition or all the elements of the balance can have a structured surface condition, this structured surface condition being able to be identical or different.
- the figure 10 shows a balance of the invention for which the rim 2 has a structured surface condition different from the structured surface condition presented by the arm 8.
- This structured surface condition can be a polished, satin, sandblasted, pearl, sunny condition , etc.
- microstructures forming a photonic network in order to replicate these microstructures on the surface of the balance.
- These microstructures can make it possible to create a photonic crystal giving the part a certain color, a hologram, or a diffraction grating which can constitute an anti-counterfeiting element.
- the structures are introduced directly into the mold, and are replicated during the manufacture of the balances by hot forming, which no longer requires termination operations. It is also possible to add a logo to the mold.
- the metal alloy used in the methods of the invention exhibits a coefficient of thermal expansion typically less than 25 ppm / ° C and greater than 7 ppm / ° C, and is capable of being in at least partially amorphous form when it is heated to a temperature between its glass transition temperature and its crystallization temperature.
- the metal alloy used in the methods of the invention is based on an element chosen from the group consisting of platinum, zirconium, titanium, palladium, nickel, aluminum and iron.
- the expression “based on an element” means that said metal alloy contains at least 50% by weight of said element.
- Said metal alloy used in the present invention may be based on platinum and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 12 ppm / ° C.
- the metal alloy used in the present invention can also be based on zirconium and has a coefficient of thermal expansion below 12 ppm / ° C, preferably between 8 ppm / ° C and 11 ppm / ° C.
- the metal alloy used in the present invention can also be based on palladium and has a coefficient of thermal expansion of less than 20 ppm / ° C, preferably between 13 ppm / ° C and 18 ppm / ° C.
- the alloys used in the invention do not contain any impurities. However, they can include traces of impurities which can result, often inevitably, from the production of said alloys.
- the alloys used in the present invention have a thermal expansion coefficient of less than 12 ppm / ° C and greater than 8 ppm / ° C, they can be used to make at least part of a balance which will be paired with a hairspring. preferably monocrystalline quartz.
- the alloys used in the present invention having a coefficient of thermal expansion of less than 20 ppm / ° C and greater than 13 ppm / ° C can be used to make at least part of a balance which will be paired with a metal hairspring or in silicon.
- said metallic alloy used in the present invention based on platinum consists, in atomic% values, of: 57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P
- Such an alloy has a coefficient of thermal expansion of between 11 and 12 ppm / ° C.
- said metal alloy used in the present invention based on zirconium consists, in atomic% values, of: 58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb
- Such an alloy has a thermal expansion coefficient of between 10.5 and 11 ppm / ° C.
- said metal alloy used in the present invention based on palladium consists, in atomic% values, of: 43% Pd, 27% Cu, 10% Ni, 20% P
- Such an alloy has a coefficient of thermal expansion of between 15 and 16 ppm / ° C.
- the balance according to the invention is made of a material making it possible to use a simple manufacturing process while having a thermal expansion coefficient making it possible to pair it with a monocrystalline quartz hairspring, and / or in metal or silicon. , preferably monocrystalline quartz.
- the balance according to the invention also makes it possible to have at least arms having a thermal expansion coefficient allowing it to be paired with a monocrystalline quartz hairspring, and / or in metal or in silicon, while having a great inertia while keeping a compact and aesthetic serge geometry, of small volume, using a suitable serge, either comprising elements made of a material of greater density, or itself being made of a material of greater density.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Adornments (AREA)
- Forging (AREA)
- Micromachines (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
- L'invention concerne un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge.
- L'oscillateur ou résonateur d'une montre mécanique est constitué d'un ressort spiral et d'un volant d'inertie appelé balancier. Les variations thermiques font varier la rigidité du spiral, ainsi que les géométries du spiral et du balancier, ce qui modifie la constante de ressort et l'inertie, et donc la fréquence d'oscillation. Les horlogers ont beaucoup travaillé pour avoir des oscillateurs stables en température et plusieurs voies ont été explorées/exploitées dont une qui a valu un Prix Nobel à Charles-Edouard Guillaume pour le développement de l'alliage Elinvar dont le module d'élasticité augmente avec la température et compense l'augmentation d'inertie du balancier. Par la suite, le développement du silicium oxydé, donc compensé thermiquement, a surpassé les performances de l'Elinvar et a pour avantage d'être moins sensible aux champs magnétiques. De même le spiral en quartz monocristallin permet une compensation thermique du changement d'inertie du balancier. Mais contrairement au silicium oxydé dont l'épaisseur d'oxyde peut être variée suivant le matériau de balancier utilisé, le quartz est limité aux matériaux ayant un coefficient de dilatation thermique de l'ordre de 10 ppm/°C, ce qui correspond par exemple au titane et au platine. Le problème principal de ces matériaux est l'usinabilité et la maîtrise de structure fine et/ou d'une finition parfaite (poli miroir par exemple). Dans le cas du titane, sa relativement faible densité limite son utilisation pour des grands balanciers et dans le cas du platine son prix élevé limite son utilisation à des produits de prestige et de luxe.
- On connaît des procédés de fabrication de balancier par moulage d'un matériau partiellement amorphe, comme dans
EP 3 170 579 A1 . - La présente invention a pour but de remédier à ces inconvénients en proposant un procédé de fabrication d'un balancier réalisé dans de nouveaux matériaux permettant une fabrication plus simple et plus précise, de manière à réduire par exemple la dispersion d'inertie et/ou de balourd au sein d'un même lot de production.
- A cet effet, l'invention se rapporte à un procédé selon la revendication 1.
- La présente invention concerne également un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, le moyeu et le bras étant réalisés dans un alliage métallique, et la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu et le bras sont réalisés, ledit procédé comprenant les étapes suivantes:
- a) réaliser un moule ayant la forme négative du balancier
- a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
- b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
- d) refroidir ledit alliage métallique pour obtenir un balancier avec inserts
- e) libérer le balancier obtenu à l'étape d) de son moule.
- Grâce aux propriétés des métaux amorphes, un balancier en alliage métallique peut être réalisé en utilisant un procédé de fabrication simplifié tel qu'un procédé de coulée ou un procédé de formage à chaud. En outre, l'alliage métallique sous sa forme au moins partiellement amorphe a pour propriété d'avoir une plage élastique bien plus grande que son équivalent cristallin, grâce à l'absence de dislocation. Cette propriété permet de surmouler ou d'intégrer au balancier des éléments permettant d'améliorer le centrage ainsi que de régler l'inertie et/ou le balourd.
- D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
- la
figure 1 est une vue en perspective d'un balancier fabriqué selon l'invention ; - la
figure 2 est une vue de dessus partielle d'une variante de balancier réalisé selon l'invention ; - la
figure 3 est une vue de dessus partielle d'une autre variante de balancier réalisé selon l'invention ; - la
figure 4 est une vue en coupe selon l'axe A-A de lafigure 3 ; et - les
figures 5 à 10 sont des vues de dessus partielles d'autres variantes de balancier réalisé selon l'invention. - En référence à la
figure 1 , il est représenté un balancier 1 pour pièce d'horlogerie. Un tel balancier 1 comprend d'une manière traditionnelle une serge 2, continue ou non, définissant le diamètre extérieur du balancier 1, un moyeu 4, formant sa partie centrale et muni d'un trou 6 destiné à recevoir un arbre (non représenté) définissant l'axe de pivotement du balancier 1. Le moyeu 4 est relié solidairement à la serge 2 par des bras 8. Les bras 8 sont ici au nombre de quatre et sont disposés à 90°. On trouve aussi usuellement des balanciers avec deux ou trois bras, disposés respectivement à 180° ou 120°. - Selon un premier mode de réalisation, la serge 2, le moyeu 4 et les bras 8 sont réalisés dans un même alliage métallique. D'une manière avantageuse, le balancier 1 est monobloc, c'est-à-dire réalisé d'une seule pièce.
- Le balancier 1 peut par exemple être réalisé entièrement dans un alliage à base de platine ou de palladium qui sera décrit en détail ci-après. Le platine notamment présentant une grande masse volumique (21000 kg/m3), l'alliage en platine utilisé dans l'invention présente également une masse volumique élevée (15.5 g/cm3), de sorte que l'ajout d'éléments en matériau dense pour augmenter l'inertie du balancier ne sera pas forcément nécessaire.
- A cet effet, conformément à un premier mode de réalisation de l'invention, le procédé de fabrication d'un balancier 1, dans lequel la serge 2, le moyeu 4 et le bras 8 sont réalisés dans un même alliage métallique, comprend les étapes suivantes:
- a) réaliser un moule ayant la forme négative du balancier 1, y compris d'éventuelles structures décoratives de surface
- b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier
- d) refroidir ledit alliage métallique pour obtenir un balancier 1 dans ledit alliage métallique
- e) libérer le balancier 1 obtenu à l'étape d) de son moule.
- L'étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.
- Le balancier 1 peut également être réalisé entièrement par exemple dans un alliage à base de titane ou de zirconium qui sera décrit en détails ci-après. Le zirconium par exemple présentant une masse volumique plus faible, l'alliage en zirconium utilisé dans l'invention présente également une masse volumique plus faible (6.5 g/cm3), de sorte que l'ajout d'éléments en matériau plus dense pour augmenter l'inertie du balancier est recommandé, notamment si l'on souhaite réaliser un balancier de petite taille pour de petits mouvements. Ces éléments permettent d'augmenter l'inertie du balancier tout en gardant une géométrie de serge esthétique et avec de bonnes propriétés aérodynamiques.
- Ainsi, selon une première variante représentée sur la
figure 2 , la serge 2 peut comprendre des premiers éléments de réglage de l'inertie 10 surmoulés, lesdits premiers éléments de réglage de l'inertie 10 étant réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique de l'alliage métallique. Ces premiers éléments de réglage de l'inertie 10 peuvent par exemple être en tungstène ou carbure de tungstène, et sont obtenus par surmoulage. - A cet effet, le procédé selon l'invention comprend une étape de surmoulage desdits premiers éléments de réglage de l'inertie 10 dans la serge 2, au moyen d'inserts placés dans le moule avant l'introduction de l'alliage métallique, et surmoulés, lesdits premiers éléments de réglage de l'inertie 10 étant réalisés dans un premier matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique.
- Selon un second mode de réalisation, les bras et le moyeu du balancier sont réalisés dans un alliage métallique, la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique utilisé pour les bras et le moyeu. Ce matériau peut être lui-même l'alliage métallique à base de platine ou de palladium tel que défini ci-dessous ou un autre matériau. Par exemple, les bras et le moyeu du balancier sont réalisés dans l'alliage métallique amorphe à base de zirconium tel que défini ci-dessous pour permettre d'appairer le balancier avec un spiral de préférence en quartz monocristallin, et la serge est réalisée dans un autre matériau présentant une masse volumique supérieure à la masse volumique de l'alliage métallique à base de zirconium utilisé pour les bras et le moyeu afin d'améliorer l'inertie du balancier.
- A cet effet, conformément à un second mode de réalisation de l'invention, le procédé de fabrication d'un balancier pour pièce d'horlogerie dans lequel le moyeu 4 et les bras 8 sont réalisés dans un alliage métallique, et la serge 2 est réalisée dans un second matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu 4 et les bras 8 sont réalisés, comprend les étapes suivantes:
- a) réaliser un moule ayant la forme négative du balancier, y compris d'éventuelles structures décoratives de surface
- a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
- b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
- d) refroidir ledit alliage métallique pour obtenir un balancier avec ses inserts
- e) libérer le balancier obtenu à l'étape d) de son moule.
- L'étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.
- Les procédés de l'invention selon le premier ou deuxième modes de réalisation utilisent de manière avantageuse les propriétés d'un alliage métallique capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé pour le mettre facilement en forme afin de réaliser un balancier en alliage métallique.
- En effet, un alliage métallique capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé permet une grande facilité dans la mise en forme permettant la fabrication de pièces aux formes compliquées avec une plus grande précision. Cela est dû aux caractéristiques particulières des « métaux amorphes » qui peuvent se ramollir tout en restant amorphes durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (par exemple pour l'alliage à base de Zr : Tg=440°C et Tx=520°C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud. L'utilisation d'un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails du négatif. Par exemple, pour un matériau à base de platine tel que défini ci-dessous, la mise en forme se fait aux alentours de 300°C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1MPa, au lieu d'une viscosité de 1012 Pa.s à la température Tg. L'utilisation de matrices a pour avantage la création de pièces en trois dimensions de grande précision, ce que le découpage ou l'étampage ne permettent pas d'obtenir.
- Un procédé utilisé avantageusement est le formage à chaud d'une préforme amorphe. Cette préforme est obtenue par fusion dans un four des éléments métalliques destinés à constituer l'alliage métallique. Cette fusion est faite sous atmosphère contrôlée avec pour but d'obtenir une contamination de l'alliage en oxygène aussi faible que possible. Une fois ces éléments fondus, ils sont coulés sous forme de produit semi-fini, puis refroidis rapidement afin de conserver l'état partiellement ou totalement amorphe. Une fois la préforme réalisée, le formage à chaud est effectué dans le but d'obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de température comprise entre la température de transition vitreuse Tg et la température de cristallisation Tx de l'alliage métallique durant un temps déterminé pour conserver une structure au moins partiellement amorphe. Ceci est fait dans le but de conserver les propriétés élastiques caractéristiques des métaux amorphes.
- Typiquement pour l'alliage à base de Zr et pour une température de 440°C, le temps de pressage ne devra pas dépasser 120 secondes environ. Ainsi, le formage à chaud permet de conserver l'état amorphe initial de la préforme. Les différentes étapes de mise en forme définitive du balancier monobloc selon l'invention sont alors :
- 1) chauffage des matrices ayant la forme négative du balancier jusqu'à une température choisie
- 2) introduction de la préforme en métal amorphe entre les matrices chaudes,
- 3) application d'une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe,
- 4) attente durant un temps maximal choisi,
- 5) ouverture des matrices,
- 6) refroidissement du balancier, et
- 7) sortie du balancier des matrices.
- Bien entendu, le balancier peut être aussi réalisé par coulée ou par injection. Ce procédé consiste à couler ou injecter l'alliage métallique chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe dans un moule possédant la forme de la pièce définitive.
- Le moule peut être réutilisé ou dissout pour libérer les pièces. Le procédé par moulage présente l'avantage de répliquer parfaitement la géométrie du balancier, y compris d'éventuels décors ou structuration de surface. On obtient une moins grande dispersion d'inertie et un meilleur centrage sur un lot de production de balanciers. Le procédé par moulage permet d'obtenir un balancier à la géométrie esthétique, avec des angles intérieurs vifs, un profil de serge et/ou de bras bombé, et une finition parfaite. Il est également possible de prévoir une serge non continue. Pour une qualité maximale, le moule sera réalisé dans du silicium par un procédé DRIE. Il est bien évident que le moule peut également être réalisé par usinage par fraisage, laser, électroérosion ou tout autre type d'usinage.
- Les propriétés élastiques caractéristiques des métaux amorphes sont utilisées pour surmouler ou intégrer des éléments fonctionnels et/ou décoratifs dans la serge et/ou au niveau des bras et/ou au niveau du moyeu par exemple au moyen d'inserts correspondants placés dans le moule avant l'introduction de l'alliage métallique chauffé entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe.
- Indépendamment du premier ou second modes de réalisation des procédés de l'invention, la serge 2 peut comprendre des logements 12 destinés à recevoir des deuxièmes éléments de réglage de l'inertie et/ou de balourd 14, 15 comme représenté sur la
figure 3 . Ces logements 12 peuvent avantageusement être prévus lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention. Les deuxièmes éléments de réglage de l'inertie et/ou de balourd 14, 15 peuvent être par exemple des masselottes, des masselottes fendues, des goupilles 14, des goupilles fendues, ou des goupilles avec balourd 15, qui font office de masselottes. Ces éléments sont chassés ou clippés dans les logements correspondants 12. Sur lafigure 3 sont représentées une goupille 14 insérée dans son logement 12, ainsi qu'une goupille avec balourd 15 insérée dans son logement 12. Lafigure 4 montre une vue en coupe selon la ligne A-A de lafigure 3 représentant la goupille avec balourd 15 insérée dans le logement 12 prévu dans la serge 2. - Il est bien évident que ces éléments pour augmenter l'inertie du balancier sont utilisés préférentiellement avec une serge réalisée dans un matériau de faible densité, tel que le titane ou le zirconium mais peuvent être aussi utilisés avec une serge dans un autre matériau.
- Pour augmenter l'inertie du balancier, il est également possible de prévoir une serge plus épaisse ou plus large, notamment dans le cas de balanciers plus grands.
- Les logements 12 représentés sur la
figure 3 peuvent également constituer des logements destinés à recevoir des éléments esthétiques et/ ou luminescents, tels que des tubes de tritium (non représentés), ou des capsules de matériaux phosphorescents (du type Superluminova, par exemple) ou fluorescents. - Selon une autre variante de l'invention, l'un ou l'autre des procédés comprend une étape de surmoulage d'éléments de centrage flexibles 16, 17 sur le moyeu 4, sur son pourtour intérieur ou à sa surface. Ainsi, le moyeu 4 peut comprendre des éléments de centrage flexibles intégrés, qui permettent un auto-centrage du balancier lors de son montage sur un axe grâce à la déformation élastique desdits éléments de centrage flexibles.
- Selon la
figure 5 , lesdits éléments de centrage flexibles intégrés 16 sont des lames élastiques prévues sur le pourtour intérieur du moyeu 4 de manière à être positionnées dans le trou 6. Selon lafigure 6 , lesdits éléments de centrage flexibles intégrés 17 sont prévus sur la surface du moyeu 4 et sont répartis autour du trou 6. Les éléments de centrage flexibles 16 et 17 peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention. - Selon une autre variante de l'invention, l'un ou l'autre des procédés comprend une étape de surmoulage de troisièmes éléments de réglage de l'inertie 19, 20, 22a, 22b flexibles dans le bras 8. Ainsi, au moins l'un des bras 8 porte des troisièmes éléments de réglage de l'inertie flexibles intégrés.
- Selon la
figure 7 , l'extrémité du bras 8 du côté de la serge 2 se termine en deux branches 8a, 8b formant entre elles un logement 18 dans lequel est intégré un troisième élément de réglage de l'inertie 19 flexible bistable en « V » pour le réglage de la fréquence. - Selon la
figure 8 , il est prévu dans le logement 18 un troisième élément de réglage de l'inertie 20 flexible en flambage pour le réglage de la fréquence. A cet effet, le troisième élément de réglage de l'inertie 20 est réalisé dans un matériau présentant des propriétés de dilatation différentes de l'alliage métallique du balancier de l'invention, tel que le silicium ou l'oxyde de silicium. - Selon la
figure 9 , l'extrémité du bras 8 du côté de la serge 2 se termine en trois branches 8a, 8b, 8c formant entre elles deux logements 18a, 18b dans lesquels sont intégrés des troisièmes éléments de réglage de l'inertie 22a, 22b flexibles multi-stables à cliquet pour le réglage de la fréquence. - Ces troisièmes éléments de réglage de l'inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention.
- Ces troisièmes éléments de réglage de l'inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent être aussi bien utilisés lorsque l'ensemble du balancier est dans un même alliage métallique que lorsque les bras sont en alliage métallique, le reste du balancier, et notamment la serge, étant dans un autre matériau.
- Selon une autre variante de l'invention, on utilise dans l'un ou l'autre des procédés de l'invention un moule présentant des microstructures formant un décor ou un réseau photonique. Ainsi, l'un du bras 8, de la serge 2 et du moyeu 4 présente un état de surface structuré. Seul l'un des éléments peut présenter un état de surface structuré ou tous les éléments du balancier peuvent présenter un état de surface structuré, cet état de surface structuré pouvant être identique ou différent. La
figure 10 représente un balancier de l'invention pour lequel la serge 2 présente un état de surface structuré différent de l'état de surface structuré présenté par le bras 8. Cet état de surface structuré peut être un état poli, satiné, sablé, perlé, ensoleillé, etc. Il est possible de prévoir également dans le moule pour la fabrication du balancier des microstructures formant un réseau photonique afin de répliquer ces microstructures à la surface du balancier. Ces microstructures peuvent permettre de créer un cristal photonique donnant à la pièce une certaine couleur, un hologramme, ou un réseau de diffraction pouvant constituer un élément anti-contrefaçon. Les structures sont directement introduites dans le moule, et sont répliquées lors de la fabrication des balanciers par formage à chaud, ce qui ne nécessite plus d'opérations de terminaison. Il est également possible d'ajouter un logo au moule. - L'alliage métallique utilisé dans les procédés de l'invention présente un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et supérieur à 7 ppm/°C, et est capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation.
- De préférence, l'alliage métallique utilisé dans les procédés de l'invention est à base d'un élément choisi parmi le groupe constitué du platine, du zirconium, du titane, du palladium, du nickel, de l'aluminium et du fer.
- Dans la présente description, l'expression «à base d'un élément » signifie que ledit alliage métallique contient au moins 50% en poids dudit élément.
- Ledit alliage métallique utilisé dans la présente invention peut être à base de platine et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 12 ppm/°C.
- Un tel alliage métallique à base de platine peut être constitué, en valeurs en % atomique, de
- une base de platine dont la teneur constitue la balance,
- 13 à 17% de cuivre
- 3 à 7% de nickel
- 20 à 25% de phosphore.
- L'alliage métallique utilisé dans la présente invention peut aussi être à base de zirconium et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 11 ppm/°C.
- Un tel alliage métallique à base de zirconium peut être constitué, en valeurs en % atomique, de
- une base de zirconium dont la teneur constitue la balance,
- 14 à 20% de cuivre
- 12 à 13% de nickel
- 9 à 11% d'aluminium
- 2 à 4 % de niobium.
- L'alliage métallique utilisé dans la présente invention peut aussi être à base de palladium et présente un coefficient de dilatation thermique inférieur à 20 ppm/°C, de préférence compris entre 13 ppm/°C et 18 ppm/°C.
- Un tel alliage métallique à base de palladium peut être constitué, en valeurs en % atomique, de
- une base de palladium, dont la teneur constitue la balance,
- 25 à 30% de cuivre
- 8 à 12% de nickel
- 18 à 22% de phosphore.
- Idéalement, les alliages utilisés dans l'invention ne contiennent aucune impureté. Toutefois, ils peuvent comprendre des traces d'impuretés qui peuvent résulter, de manière souvent inévitable, de l'élaboration desdits alliages.
- Lorsque les alliages utilisés dans la présente invention présentent un coefficient de dilatation thermique inférieur à 12 ppm/°C et supérieur à 8 ppm/°C, ils peuvent être utilisés pour réaliser au moins une partie d'un balancier qui sera appairé à un spiral de préférence en quartz monocristallin. Les alliages utilisés dans la présente invention présentant un coefficient de dilatation thermique inférieur à 20 ppm/°C et supérieur à 13 ppm/°C peuvent être utilisés pour réaliser au moins une partie d'un balancier qui sera appairé à un spiral en métal ou en silicium.
- Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de platine est constitué, en valeurs en % atomique, de :
57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P - Un tel alliage présente un coefficient de dilatation thermique compris entre 11 et 12 ppm/°C.
- Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de zirconium est constitué, en valeurs en % atomique, de :
58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb - Un tel alliage présente un coefficient de dilatation thermique compris entre 10.5 et 11 ppm/°C.
- Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de palladium est constitué, en valeurs en % atomique, de :
43% Pd, 27% Cu, 10% Ni, 20% P - Un tel alliage présente un coefficient de dilatation thermique compris entre 15 et 16 ppm/°C.
- Ainsi, le balancier selon l'invention est réalisé dans un matériau permettant d'utiliser un procédé de fabrication simple tout en présentant un coefficient de dilatation thermique permettant de l'appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, de préférence en quartz monocristallin. Le balancier selon l'invention permet également d'avoir au moins des bras présentant un coefficient de dilatation thermique permettant de l'appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, tout en ayant une grande inertie en gardant une géométrie de serge compacte et esthétique, de petit volume, à l'aide d'une serge adéquate, soit comprenant des éléments réalisés dans un matériau de plus grande densité, soit étant elle-même réalisée dans un matériau de plus grande densité.
Claims (15)
- Procédé de fabrication d'un balancier (1) pour pièce d'horlogerie comprenant une serge (2), un moyeu (4) et au moins un bras (8) reliant le moyeu (4) à ladite serge (2), la serge (2), le moyeu (4) et le bras (8) étant réalisés dans un alliage métallique, ledit procédé comprenant les étapes suivantes:a) réaliser un moule ayant la forme négative du balancier (1)b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisationc) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancierd) refroidir ledit alliage métallique pour obtenir un balancier (1) dans ledit alliage métalliquee) libérer le balancier (1) obtenu à l'étape d) de son moule,le procédé étant caractérisé en ce qu'il comprend une étape de surmoulage de premiers éléments de réglage de l'inertie (10) dans la serge (2), lesdits premiers éléments de réglage de l'inertie (10) étant réalisés dans un premier matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique.
- Procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge (2), un moyeu (4) et au moins un bras (8) reliant le moyeu (4) à ladite serge (2), le moyeu (4) et le bras (8) étant réalisés dans un alliage métallique, et la serge (2) étant réalisée dans un second matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu (4) et le bras (8) sont réalisés, ledit procédé comprenant les étapes suivantes:a) réaliser un moule ayant la forme négative du balanciera') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métalliqueb) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisationc) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec insertsd) refroidir ledit alliage métallique pour obtenir un balancier avec insertse) libérer le balancier obtenu à l'étape d) de son moule.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que la serge (2) comprend des logements (12) destinés à recevoir des deuxièmes éléments de réglage de l'inertie et/ou de balourd (14, 15).
- Procédé selon l'une des revendications précédentes, caractérisé en ce que la serge (2) comprend des logements (12) destinés à recevoir des éléments décoratifs et/ou luminescents.
- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape de surmoulage d'éléments de centrage flexibles (16, 17) sur le moyeu (4).
- Procédé selon la revendication précédente, caractérisé en ce que lesdits éléments de centrage flexibles (16) intégrés sont prévus sur le pourtour intérieur du moyeu (4).
- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape de surmoulage de troisièmes éléments de réglage de l'inertie (19, 20, 22a, 22b) flexibles dans le bras (8).
- Procédé selon l'une des revendications précédentes, caractérisé en ce que le moule présente des microstructures formant un décor ou un réseau photonique.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit alliage métallique est à base d'un élément choisi parmi le groupe constitué du platine, du zirconium, du titane, du palladium, du nickel, de l'aluminium et du fer.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit alliage métallique est à base de platine et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 12 ppm/°C.
- Procédé selon la revendication 10, caractérisé en ce que l'alliage métallique à base de platine est constitué, en valeurs en % atomique, de- une base de platine dont la teneur constitue la balance,- 13 à 17% de cuivre- 3 à 7% de nickel- 20 à 25% de phosphore.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que ledit alliage métallique est à base de zirconium et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 11 ppm/°C.
- Procédé selon la revendication 12, caractérisé en ce que l'alliage métallique à base de zirconium est constitué, en valeurs en % atomique, de- une base de zirconium dont la teneur constitue la balance,- 14 à 20% de cuivre- 12 à 13% de nickel- 9 à 11% d'aluminium- 2 à 4 % de niobium.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que ledit alliage métallique est à base de palladium et présente un coefficient de dilatation thermique inférieur à 20 ppm/°C, de préférence compris entre 13 ppm/°C et 18 ppm/°C.
- Procédé selon la revendication 14, caractérisé en ce que l'alliage métallique à base de palladium est constitué, en valeurs en % atomique, de- une base de palladium, dont la teneur constitue la balance,- 25 à 30% de cuivre- 8 à 12% de nickel- 18 à 22% de phosphore.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17210299.8A EP3502787B1 (fr) | 2017-12-22 | 2017-12-22 | Procédé de fabrication d'un balancier pour pièce d'horlogerie |
EP20201790.1A EP3796102B1 (fr) | 2017-12-22 | 2017-12-22 | Procede de fabrication d'un balancier pour piece d'horlogerie |
US16/150,524 US11307535B2 (en) | 2017-12-22 | 2018-10-03 | Process for producing a balance wheel for a timepiece |
JP2018216249A JP6770049B2 (ja) | 2017-12-22 | 2018-11-19 | 計時器用のバランス車を製造する方法 |
CN202110265760.5A CN112965355A (zh) | 2017-12-22 | 2018-11-30 | 用于制造钟表的摆轮的方法 |
CN201811455309.4A CN109960137B (zh) | 2017-12-22 | 2018-11-30 | 用于制造钟表的摆轮的方法 |
US17/669,476 US11640140B2 (en) | 2017-12-22 | 2022-02-11 | Process for producing a balance wheel for a timepiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17210299.8A EP3502787B1 (fr) | 2017-12-22 | 2017-12-22 | Procédé de fabrication d'un balancier pour pièce d'horlogerie |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20201790.1A Division EP3796102B1 (fr) | 2017-12-22 | 2017-12-22 | Procede de fabrication d'un balancier pour piece d'horlogerie |
EP20201790.1A Division-Into EP3796102B1 (fr) | 2017-12-22 | 2017-12-22 | Procede de fabrication d'un balancier pour piece d'horlogerie |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3502787A1 EP3502787A1 (fr) | 2019-06-26 |
EP3502787B1 true EP3502787B1 (fr) | 2020-11-18 |
Family
ID=60811893
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20201790.1A Active EP3796102B1 (fr) | 2017-12-22 | 2017-12-22 | Procede de fabrication d'un balancier pour piece d'horlogerie |
EP17210299.8A Active EP3502787B1 (fr) | 2017-12-22 | 2017-12-22 | Procédé de fabrication d'un balancier pour pièce d'horlogerie |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20201790.1A Active EP3796102B1 (fr) | 2017-12-22 | 2017-12-22 | Procede de fabrication d'un balancier pour piece d'horlogerie |
Country Status (4)
Country | Link |
---|---|
US (2) | US11307535B2 (fr) |
EP (2) | EP3796102B1 (fr) |
JP (1) | JP6770049B2 (fr) |
CN (2) | CN109960137B (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3796101A1 (fr) * | 2019-09-20 | 2021-03-24 | Nivarox-FAR S.A. | Ressort spiral pour mouvement d'horlogerie |
CH716669B1 (fr) * | 2019-10-03 | 2023-02-15 | Richemont Int Sa | Procédé de fabrication d'un arbre de pivotement de balancier. |
US20220329102A1 (en) * | 2019-10-10 | 2022-10-13 | NexFi Technology Inc. | Flywheel, flywheel designing method, and flywheel power storage system |
EP3839646A1 (fr) * | 2019-12-18 | 2021-06-23 | The Swatch Group Research and Development Ltd | Masse de remontage oscillante munie d'un element decoratif pour mouvement automatique de pièce d'horlogerie |
CN115537598B (zh) * | 2022-10-10 | 2023-06-20 | 东莞理工学院 | 一种宽温域可调控线性低热膨胀钛铌合金及其制备方法 |
CN115537599B (zh) * | 2022-10-13 | 2023-06-06 | 东莞理工学院 | 一种高弹性模量及近零线膨胀系数的钛铌合金及其制备方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US387973A (en) * | 1887-12-02 | 1888-08-14 | Watch-balance | |
CH621669GA3 (en) * | 1977-12-23 | 1981-02-27 | Method of manufacturing a pivoted clockwork balance and clockwork balance obtained according to this method | |
DE1258786T1 (de) * | 2001-05-18 | 2003-08-14 | Rolex S.A., Genf/Geneve | Selbstkompensierende Feder für einen mechanischen Oszillator vom Unruh-Spiralfeder-Typ |
AU2003279096A1 (en) * | 2002-09-30 | 2004-04-23 | Liquidmetal Technologies | Investment casting of bulk-solidifying amorphous alloys |
CN101589347A (zh) | 2006-12-21 | 2009-11-25 | 康普利计时股份有限公司 | 用于钟表的机械振荡器 |
EP2104005A1 (fr) * | 2008-03-20 | 2009-09-23 | Nivarox-FAR S.A. | Balancier composite et son procédé de fabrication |
EP2104008A1 (fr) * | 2008-03-20 | 2009-09-23 | Nivarox-FAR S.A. | Organe régulateur monobloc et son procédé de fabrication |
EP2395402B1 (fr) * | 2010-06-11 | 2014-03-12 | Montres Breguet SA | Balancier haute fréquence pour pièce d'horlogerie |
EP2703909A1 (fr) | 2012-09-04 | 2014-03-05 | The Swatch Group Research and Development Ltd. | Résonateur balancier - spiral appairé |
CH707106B1 (fr) | 2012-12-21 | 2014-04-30 | Montres Tudor SA | Vis de réglage et balancier d'horlogerie comprenant une telle vis pour le réglage de l'inertie. |
CN206178347U (zh) | 2015-11-13 | 2017-05-17 | 尼瓦洛克斯-法尔股份有限公司 | 带有惯量调节的摆轮、钟表机芯和钟表件 |
EP3170579A1 (fr) * | 2015-11-18 | 2017-05-24 | The Swatch Group Research and Development Ltd. | Procédé de fabrication d'une pièce en métal amorphe |
EP3182211A1 (fr) | 2015-12-17 | 2017-06-21 | Nivarox-FAR S.A. | Pièce composite avec moyens élastiques sous contrainte |
EP3217229B1 (fr) | 2016-03-07 | 2020-01-01 | Montres Breguet S.A. | Système de compensation thermique auxiliaire réglable |
EP3217228B1 (fr) | 2016-03-07 | 2019-08-28 | Montres Breguet S.A. | Dispositif bilame sensible aux variations de température |
EP3252545B1 (fr) | 2016-06-03 | 2019-10-16 | The Swatch Group Research and Development Ltd. | Mécanisme d'horlogerie à réglage d'inertie de balancier |
-
2017
- 2017-12-22 EP EP20201790.1A patent/EP3796102B1/fr active Active
- 2017-12-22 EP EP17210299.8A patent/EP3502787B1/fr active Active
-
2018
- 2018-10-03 US US16/150,524 patent/US11307535B2/en active Active
- 2018-11-19 JP JP2018216249A patent/JP6770049B2/ja active Active
- 2018-11-30 CN CN201811455309.4A patent/CN109960137B/zh active Active
- 2018-11-30 CN CN202110265760.5A patent/CN112965355A/zh active Pending
-
2022
- 2022-02-11 US US17/669,476 patent/US11640140B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109960137A (zh) | 2019-07-02 |
US20190196408A1 (en) | 2019-06-27 |
US20220163923A1 (en) | 2022-05-26 |
US11307535B2 (en) | 2022-04-19 |
JP6770049B2 (ja) | 2020-10-14 |
EP3796102B1 (fr) | 2022-04-20 |
CN112965355A (zh) | 2021-06-15 |
EP3502787A1 (fr) | 2019-06-26 |
CN109960137B (zh) | 2021-04-09 |
EP3796102A1 (fr) | 2021-03-24 |
JP2019113533A (ja) | 2019-07-11 |
US11640140B2 (en) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3502787B1 (fr) | Procédé de fabrication d'un balancier pour pièce d'horlogerie | |
EP2485095B1 (fr) | Balancier composite | |
EP2585876B1 (fr) | Systeme d'echappement pour piece d'horlogerie | |
EP2400353A1 (fr) | Aiguille de pièce d'horlogerie | |
EP2350746B1 (fr) | Procédé de fabrication d'une platine de montre | |
EP3377247B1 (fr) | Procede de fabrication d'une piece en metal amorphe | |
EP2580369B1 (fr) | Procede de fabrication d'une piece en metal amorphe revetue | |
WO2009115470A1 (fr) | Spiral monobloc en matériau à base de silicium et son procédé de fabrication | |
CH714514A2 (fr) | Procédé de fabrication d'un balancier pour pièce d'horlogerie. | |
WO2019120959A1 (fr) | Balancier pour piece d'horlogerie et procede de fabrication d'un tel balancier | |
CH714512A2 (fr) | Balancier pour pièce d'horlogerie et procédé de fabrication d'un tel balancier. | |
EP2400355A1 (fr) | Système antichoc pour pièce d'horlogerie | |
CH705420B1 (fr) | Assemblage de pièce en matériau fragile. | |
EP2708372A1 (fr) | Instrument d'écriture | |
CH703343B1 (fr) | Aiguille de pièce d'horlogerie. | |
CH711923B1 (fr) | Procédé de fabrication d'une pièce composite avec moyens élastiques sous contrainte, pièce composite et assortiment horloger. | |
CH719106A1 (fr) | Composant horloger ou joaillier monolithique multi-métallique réalisé par frittage. | |
EP4307053A1 (fr) | Procédé de fabrication d'un composant horloger | |
CH703344A2 (fr) | Systeme antichoc pour piece d'horlogerie. | |
CH707017A2 (fr) | Instrument d'écriture. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200102 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200612 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017027690 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1336420 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1336420 Country of ref document: AT Kind code of ref document: T Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210218 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210219 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210218 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017027690 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201222 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201222 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211222 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 7 Ref country code: DE Payment date: 20231121 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 7 |