EP3502787A1 - Procédé de fabrication d'un balancier pour pièce d'horlogerie - Google Patents

Procédé de fabrication d'un balancier pour pièce d'horlogerie Download PDF

Info

Publication number
EP3502787A1
EP3502787A1 EP17210299.8A EP17210299A EP3502787A1 EP 3502787 A1 EP3502787 A1 EP 3502787A1 EP 17210299 A EP17210299 A EP 17210299A EP 3502787 A1 EP3502787 A1 EP 3502787A1
Authority
EP
European Patent Office
Prior art keywords
metal alloy
serge
balance
ppm
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17210299.8A
Other languages
German (de)
English (en)
Other versions
EP3502787B1 (fr
Inventor
Alexandre Haemmerli
François Gueissaz
Jean-Claude Martin
Lionel Paratte
Yves Winkler
Gianni Di Domenico
Pascal Winkler
Jean-Luc Helfer
Lionel TOMBEZ
Baptiste Hinaux
Donald William Corson
Michel Willemin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP17210299.8A priority Critical patent/EP3502787B1/fr
Priority to EP20201790.1A priority patent/EP3796102B1/fr
Priority to US16/150,524 priority patent/US11307535B2/en
Priority to JP2018216249A priority patent/JP6770049B2/ja
Priority to CN201811455309.4A priority patent/CN109960137B/zh
Priority to CN202110265760.5A priority patent/CN112965355A/zh
Publication of EP3502787A1 publication Critical patent/EP3502787A1/fr
Application granted granted Critical
Publication of EP3502787B1 publication Critical patent/EP3502787B1/fr
Priority to US17/669,476 priority patent/US11640140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/222Compensation of mechanisms for stabilising frequency for the effect of variations of temperature with balances
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/006Mechanisms for setting frequency by adjusting the devices fixed on the balance
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0002Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe
    • G04D3/0035Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism
    • G04D3/0038Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism for balances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/026Casting jewelry articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance

Definitions

  • the invention relates to a method of manufacturing a balance for a timepiece comprising a serge, a hub and at least one arm connecting the hub to said serge.
  • the oscillator or resonator of a mechanical watch consists of a spiral spring and a flywheel called balance.
  • the thermal variations vary the stiffness of the hairspring, as well as the geometries of the hairspring and the balance, which modifies the spring constant and the inertia, and therefore the frequency of oscillation.
  • Watchmakers have worked hard to have temperature-stable oscillators and several tracks have been explored / exploited, including one that won a Charles-Edouard Nicolas Nobel Prize for the development of the Elinvar alloy whose elastic modulus increases with the temperature and compensates for the increase of inertia of the pendulum.
  • the monocrystalline quartz spiral allows a thermal compensation of the change of inertia of the balance.
  • the quartz is limited to materials having a coefficient of thermal expansion of the order of 10 ppm / ° C, which corresponds for example titanium and platinum.
  • the main problem of these materials is the machinability and control of fine structure and / or a perfect finish (mirror polished by example).
  • titanium its relatively low density limits its use for large pendulums and in the case of platinum its high price limits its use to prestige and luxury products.
  • the object of the present invention is to remedy these drawbacks by proposing a method of manufacturing a balance made of new materials allowing a simpler and more precise manufacture, so as to reduce, for example, the dispersion of inertia and / or unbalance within the same batch of production.
  • a metal alloy balance can be realized using a simplified manufacturing process such as a casting process or a hot forming process.
  • the metal alloy in its at least partially amorphous form has the property of having a much larger elastic range than its crystalline equivalent, thanks to the absence of dislocation. This property makes it possible to overmould or integrate the balance wheel elements to improve the centering and to adjust the inertia and / or unbalance.
  • a pendulum 1 for a timepiece Such a rocker 1 comprises in a traditional way a serge 2, continuous or not, defining the outer diameter of the rocker 1, a hub 4, forming its central portion and provided with a hole 6 for receiving a shaft (not shown) defining the pivot axis of the balance 1.
  • the hub 4 is integrally connected to the serge 2 by arms 8.
  • the arms 8 are here four in number and are arranged at 90 °. We also usually find rockers with two or three arms, arranged respectively at 180 ° or 120 °.
  • the serge 2, the hub 4 and the arms 8 are made of the same metal alloy.
  • the rocker 1 is monobloc, that is to say, made in one piece.
  • the balance 1 may for example be made entirely of a platinum or palladium-based alloy which will be described in detail below. Platinum in particular having a high density (21000 kg / m 3 ), the platinum alloy used in the invention also has a high density (15.5 g / cm 3 ), so that the addition of elements in dense material to increase the inertia of the pendulum will not necessarily be necessary.
  • the cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or totally amorphous alloy.
  • the balance 1 can also be made entirely for example in a titanium-based alloy or zirconium which will be described in detail below. Since zirconium, for example, has a lower density, the zirconium alloy used in the invention also has a lower density (6.5 g / cm 3 ), so that the addition of denser material elements to increase the inertia of the balance is recommended, especially if one wishes to realize a small balance for small movements. These elements make it possible to increase the inertia of the balance while keeping an aesthetic serge geometry and with good aerodynamic properties.
  • the serge 2 may comprise overmolded first inertia adjusting elements 10, said first inertia adjusting elements being made of a material having a density greater than the density of the metal alloy.
  • These first adjustment elements of the inertia 10 may for example be tungsten or tungsten carbide, and are obtained by overmolding.
  • the method according to the invention comprises a step of overmoulding said first inertia adjusting elements 10 in the serge 2, by means of inserts placed in the mold before the introduction of the metal alloy, and overmoulded, said first inertia adjusting members being made of a first material having a density greater than the density of said metal alloy.
  • the arms and the hub of the balance are made of a metal alloy, the serge being made of a material having a density greater than the density of said metal alloy used for the arms and the hub.
  • This material may itself be the platinum or palladium-based metal alloy as defined below or another material.
  • the arms and the hub of the balance are made of the zirconium-based amorphous metal alloy as defined below to make it possible to couple the balance with a spiral, preferably in monocrystalline quartz, and the serge is made in another material having a density greater than the density of the alloy zirconium-based metal used for the arms and the hub to improve the inertia of the balance.
  • the cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or totally amorphous alloy.
  • the methods of the invention according to the first or second embodiments advantageously utilize the properties of a metal alloy capable of being in at least partially amorphous form when heated to easily form it to realize a metal alloy balance.
  • a metal alloy capable of being in a form at least partially amorphous when heated allows a great ease in shaping allowing the manufacture of parts with complicated shapes with greater precision.
  • the use of such a material also makes it possible to reproduce fine geometries very precisely because the viscosity of the alloy decreases sharply as a function of the temperature in the temperature range [Tg-Tx] and the alloy thus allies the details of the negative.
  • the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity from 10 to 12 Pa.s at the Tg temperature.
  • the use of dies has the advantage of creating highly accurate three-dimensional parts, which can not be cut or stamped.
  • a method advantageously used is the hot forming of an amorphous preform.
  • This preform is obtained by melting in a furnace metal elements intended to form the metal alloy. This fusion is done under controlled atmosphere with the aim of obtaining a contamination of the alloy with oxygen as low as possible. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the partially or totally amorphous state.
  • the hot forming is performed in order to obtain a final piece. This hot forming is carried out by pressing in a temperature range between the glass transition temperature Tg and the crystallization temperature Tx of the metal alloy for a predetermined time to maintain an at least partially amorphous structure. This is done in order to maintain the characteristic elastic properties of the amorphous metals.
  • the pendulum can also be made by casting or injection. This process consists of casting or injecting the heated metal alloy at a temperature between its transition temperature vitreous and its crystallization temperature to be at least partially amorphous in a mold having the shape of the final piece.
  • the mold can be reused or dissolved to free the parts.
  • the molding process has the advantage of perfectly replicating the geometry of the balance, including any decorations or surface patterning. Less dispersion of inertia and better centering on a rocker production batch are obtained.
  • the molding process provides a balance with aesthetic geometry, with sharp interior angles, a serge profile and / or curved arm, and a perfect finish. It is also possible to provide a non-continuous serge.
  • the mold will be made of silicon by a DRIE process. It is obvious that the mold can also be produced by machining by milling, laser, spark erosion or any other type of machining.
  • the characteristic elastic properties of the amorphous metals are used to overmold or integrate functional and / or decorative elements in the serge and / or at the arms and / or at the hub for example by means of corresponding inserts placed in the mold before introducing the heated metal alloy between its glass transition temperature and its crystallization temperature to be at least partially amorphous.
  • the serge 2 may comprise housings 12 intended to receive second inertia and / or unbalance adjusting elements 14, 15 as shown in FIG. figure 3 .
  • These housings 12 may advantageously be provided during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
  • the second adjustment elements of the inertia and / or unbalance 14, 15 may be for example flyweights, slit weights, pins 14, cotter pins, or pins with unbalance 15, which act as flyweights. These elements are hunted or clipped in the dwellings 12.
  • On the figure 3 are represented a pin 14 inserted into its housing 12, and a pin with unbalance 15 inserted into its housing 12.
  • the figure 4 shows a sectional view along line AA of the figure 3 representing the pin with unbalance 15 inserted in the housing 12 provided in the serge 2.
  • the dwellings 12 shown on the figure 3 may also constitute housings intended to receive aesthetic and / or luminescent elements, such as tritium tubes (not shown), or capsules of phosphorescent materials (Superluminova, for example) or fluorescent.
  • aesthetic and / or luminescent elements such as tritium tubes (not shown), or capsules of phosphorescent materials (Superluminova, for example) or fluorescent.
  • one or the other of the methods comprises a step of overmolding flexible centering elements 16, 17 on the hub 4, on its inner periphery or on its surface.
  • the hub 4 may include integrated flexible centering elements, which allow self-centering of the balance when mounted on an axis by the elastic deformation of said flexible centering elements.
  • said integrated flexible centering elements 16 are resilient blades provided on the inner periphery of the hub 4 so as to be positioned in the hole 6.
  • said integrated flexible centering elements 17 are provided on the surface of the hub 4 and are distributed around the hole 6. The flexible centering elements 16 and 17 can advantageously be put in place during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
  • one or the other of the methods comprises a step of overmolding third inertia adjusting elements 19, 20, 22a, 22b flexible in the arm 8.
  • at least one of one of the arms 8 carries third integrated flexible inertia adjustment elements.
  • a third flexible buckling inertia adjusting member 20 is provided in the housing 18 for adjusting the frequency.
  • the third adjustment element of the inertia 20 is made of a material having different expansion properties of the metal alloy of the balance of the invention, such as silicon or silicon oxide.
  • the end of the arm 8 on the side of the serge 2 ends in three branches 8a, 8b, 8c forming between them two housings 18a, 18b in which are incorporated third inertia adjusting elements 22a, 22b flexible multi- stable ratchet for frequency adjustment.
  • These third flexible inertia adjusting elements 19, 20, 22a, 22b for adjusting the frequency can be used as well when the entire balance is in the same metal alloy as when the arms are made of metal alloy, the balance of the balance, and in particular the serge, being in another material.
  • a mold having microstructures forming a decor or a photonic network it is used in one or other of the methods of the invention a mold having microstructures forming a decor or a photonic network.
  • one of the arm 8, the serge 2 and the hub 4 has a structured surface state. Only one of the elements may have a structured surface condition or all the elements of the balance may have a structured surface state, this structured surface state may be the same or different.
  • the figure 10 represents a pendulum of the invention for which the serge 2 has a structured surface state different from the structured surface state presented by the arm 8. This structured surface state can be a polished, satin, sandblasted, pearled, sunny state etc.
  • microstructures forming a photonic network in order to replicate these microstructures on the surface of the balance.
  • These microstructures can make it possible to create a photonic crystal giving the piece a certain color, a hologram, or a diffraction grating that can constitute an anti-counterfeiting element.
  • the structures are directly introduced into the mold, and are replicated during the manufacture of the balances by hot forming, which no longer requires termination operations. It is also possible to add a logo to the mold.
  • the metal alloy used in the processes of the invention has a coefficient of thermal expansion typically less than 25 ppm / ° C and greater than 7 ppm / ° C, and is capable of being in at least partially amorphous form when it is heated to a temperature between its glass transition temperature and its crystallization temperature.
  • the metal alloy used in the processes of the invention is based on an element selected from the group consisting of platinum, zirconium, titanium, palladium, nickel, aluminum and iron.
  • element-based means that said metal alloy contains at least 50% by weight of said element.
  • Said metal alloy used in the present invention may be platinum-based and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 12 ppm / ° C.
  • the metal alloy used in the present invention can also be based on zirconium and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 11 ppm / ° C.
  • the metal alloy used in the present invention may also be based on palladium and has a coefficient of thermal expansion less than 20 ppm / ° C, preferably between 13 ppm / ° C and 18 ppm / ° C.
  • the alloys used in the invention contain no impurities. However, they may include traces of impurities that can result, often unavoidably, the development of said alloys.
  • the alloys used in the present invention have a coefficient of thermal expansion less than 12 ppm / ° C and greater than 8 ppm / ° C, they can be used to achieve at least a portion of a balance that will be paired with a hairspring preferably monocrystalline quartz.
  • the alloys used in the present invention having a coefficient of thermal expansion of less than 20 ppm / ° C and greater than 13 ppm / ° C can be used to make at least a portion of a pendulum that will be paired with a metal hairspring or in silicon.
  • Such an alloy has a coefficient of thermal expansion of between 11 and 12 ppm / ° C.
  • Such an alloy has a coefficient of thermal expansion of between 10.5 and 11 ppm / ° C.
  • Such an alloy has a coefficient of thermal expansion of between 15 and 16 ppm / ° C.
  • the balance according to the invention is made of a material that makes it possible to use a simple manufacturing process while having a coefficient of thermal expansion that makes it possible to match it to a monocrystalline quartz spiral, and / or to a metal or silicon preferably monocrystalline quartz.
  • the balance according to the invention also makes it possible to have at least arms having a coefficient of thermal expansion enabling it to be paired with a spiral of monocrystalline quartz, and / or of metal or silicon, while having great inertia while keeping a compact and aesthetic serge geometry, of small volume, using a suitable serge, or comprising elements made of a material of greater density, or being itself made of a material of greater density.

Abstract

L'invention concerne un procédé de fabrication d'un balancier en alliage métallique par moulage, ledit procédé comprenant les étapes suivantes:
a) réaliser un moule ayant la forme négative du balancier (1)
b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et pour former un balancier
d) refroidir ledit alliage métallique pour obtenir un balancier (1) dans ledit alliage métallique
e) libérer le balancier (1) obtenu à l'étape d) de son moule

Description

    Domaine de l'invention
  • L'invention concerne un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge.
  • Arrière-plan de l'invention
  • L'oscillateur ou résonateur d'une montre mécanique est constitué d'un ressort spiral et d'un volant d'inertie appelé balancier. Les variations thermiques font varier la rigidité du spiral, ainsi que les géométries du spiral et du balancier, ce qui modifie la constante de ressort et l'inertie, et donc la fréquence d'oscillation. Les horlogers ont beaucoup travaillé pour avoir des oscillateurs stables en température et plusieurs voies ont été explorées/exploitées dont une qui a valu un Prix Nobel à Charles-Edouard Guillaume pour le développement de l'alliage Elinvar dont le module d'élasticité augmente avec la température et compense l'augmentation d'inertie du balancier. Par la suite, le développement du silicium oxydé, donc compensé thermiquement, a surpassé les performances de l'Elinvar et a pour avantage d'être moins sensible aux champs magnétiques. De même le spiral en quartz monocristallin permet une compensation thermique du changement d'inertie du balancier. Mais contrairement au silicium oxydé dont l'épaisseur d'oxyde peut être variée suivant le matériau de balancier utilisé, le quartz est limité aux matériaux ayant un coefficient de dilatation thermique de l'ordre de 10 ppm/°C, ce qui correspond par exemple au titane et au platine. Le problème principal de ces matériaux est l'usinabilité et la maîtrise de structure fine et/ou d'une finition parfaite (poli miroir par exemple). Dans le cas du titane, sa relativement faible densité limite son utilisation pour des grands balanciers et dans le cas du platine son prix élevé limite son utilisation à des produits de prestige et de luxe.
  • Résumé de l'invention
  • La présente invention a pour but de remédier à ces inconvénients en proposant un procédé de fabrication d'un balancier réalisé dans de nouveaux matériaux permettant une fabrication plus simple et plus précise, de manière à réduire par exemple la dispersion d'inertie et/ou de balourd au sein d'un même lot de production.
  • A cet effet, l'invention se rapporte tout d'abord à un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, la serge, le moyeu et les bras étant réalisés dans un alliage métallique, ledit procédé comprenant les étapes suivantes:
    1. a) réaliser un moule ayant la forme négative du balancier
    2. b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
    3. c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier
    4. d) refroidir ledit alliage métallique pour obtenir un balancier dans ledit alliage métallique
    5. e) libérer le balancier obtenu à l'étape d) de son moule.
  • La présente invention concerne également un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, le moyeu et le bras étant réalisés dans un alliage métallique, et la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu et le bras sont réalisés, ledit procédé comprenant les étapes suivantes:
    1. a) réaliser un moule ayant la forme négative du balancier a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
    2. b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
    3. c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
    4. d) refroidir ledit alliage métallique pour obtenir un balancier avec inserts
    5. e) libérer le balancier obtenu à l'étape d) de son moule.
  • Grâce aux propriétés des métaux amorphes, un balancier en alliage métallique peut être réalisé en utilisant un procédé de fabrication simplifié tel qu'un procédé de coulée ou un procédé de formage à chaud. En outre, l'alliage métallique sous sa forme au moins partiellement amorphe a pour propriété d'avoir une plage élastique bien plus grande que son équivalent cristallin, grâce à l'absence de dislocation. Cette propriété permet de surmouler ou d'intégrer au balancier des éléments permettant d'améliorer le centrage ainsi que de régler l'inertie et/ou le balourd.
  • Description sommaire des dessins
  • D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
    • la figure 1 est une vue en perspective d'un balancier fabriqué selon l'invention ;
    • la figure 2 est une vue de dessus partielle d'une variante de balancier réalisé selon l'invention ;
    • la figure 3 est une vue de dessus partielle d'une autre variante de balancier réalisé selon l'invention ;
    • la figure 4 est une vue en coupe selon l'axe A-A de la figure 3 ; et
    • les figures 5 à 10 sont des vues de dessus partielles d'autres variantes de balancier réalisé selon l'invention.
    Description détaillée des modes de réalisation préférés
  • En référence à la figure 1, il est représenté un balancier 1 pour pièce d'horlogerie. Un tel balancier 1 comprend d'une manière traditionnelle une serge 2, continue ou non, définissant le diamètre extérieur du balancier 1, un moyeu 4, formant sa partie centrale et muni d'un trou 6 destiné à recevoir un arbre (non représenté) définissant l'axe de pivotement du balancier 1. Le moyeu 4 est relié solidairement à la serge 2 par des bras 8. Les bras 8 sont ici au nombre de quatre et sont disposés à 90°. On trouve aussi usuellement des balanciers avec deux ou trois bras, disposés respectivement à 180° ou 120°.
  • Selon un premier mode de réalisation, la serge 2, le moyeu 4 et les bras 8 sont réalisés dans un même alliage métallique. D'une manière avantageuse, le balancier 1 est monobloc, c'est-à-dire réalisé d'une seule pièce.
  • Le balancier 1 peut par exemple être réalisé entièrement dans un alliage à base de platine ou de palladium qui sera décrit en détail ci-après. Le platine notamment présentant une grande masse volumique (21000 kg/m3), l'alliage en platine utilisé dans l'invention présente également une masse volumique élevée (15.5 g/cm3), de sorte que l'ajout d'éléments en matériau dense pour augmenter l'inertie du balancier ne sera pas forcément nécessaire.
  • A cet effet, conformément à un premier mode de réalisation de l'invention, le procédé de fabrication d'un balancier 1, dans lequel la serge 2, le moyeu 4 et le bras 8 sont réalisés dans un même alliage métallique, comprend les étapes suivantes:
    1. a) réaliser un moule ayant la forme négative du balancier 1, y compris d'éventuelles structures décoratives de surface
    2. b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
    3. c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier
    4. d) refroidir ledit alliage métallique pour obtenir un balancier 1 dans ledit alliage métallique
    5. e) libérer le balancier 1 obtenu à l'étape d) de son moule.
  • L'étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.
  • Le balancier 1 peut également être réalisé entièrement par exemple dans un alliage à base de titane ou de zirconium qui sera décrit en détails ci-après. Le zirconium par exemple présentant une masse volumique plus faible, l'alliage en zirconium utilisé dans l'invention présente également une masse volumique plus faible (6.5 g/cm3), de sorte que l'ajout d'éléments en matériau plus dense pour augmenter l'inertie du balancier est recommandé, notamment si l'on souhaite réaliser un balancier de petite taille pour de petits mouvements. Ces éléments permettent d'augmenter l'inertie du balancier tout en gardant une géométrie de serge esthétique et avec de bonnes propriétés aérodynamiques.
  • Ainsi, selon une première variante représentée sur la figure 2, la serge 2 peut comprendre des premiers éléments de réglage de l'inertie 10 surmoulés, lesdits premiers éléments de réglage de l'inertie 10 étant réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique de l'alliage métallique. Ces premiers éléments de réglage de l'inertie 10 peuvent par exemple être en tungstène ou carbure de tungstène, et sont obtenus par surmoulage.
  • A cet effet, le procédé selon l'invention comprend une étape de surmoulage desdits premiers éléments de réglage de l'inertie 10 dans la serge 2, au moyen d'inserts placés dans le moule avant l'introduction de l'alliage métallique, et surmoulés, lesdits premiers éléments de réglage de l'inertie 10 étant réalisés dans un premier matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique.
  • Selon un second mode de réalisation, les bras et le moyeu du balancier sont réalisés dans un alliage métallique, la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique utilisé pour les bras et le moyeu. Ce matériau peut être lui-même l'alliage métallique à base de platine ou de palladium tel que défini ci-dessous ou un autre matériau. Par exemple, les bras et le moyeu du balancier sont réalisés dans l'alliage métallique amorphe à base de zirconium tel que défini ci-dessous pour permettre d'appairer le balancier avec un spiral de préférence en quartz monocristallin, et la serge est réalisée dans un autre matériau présentant une masse volumique supérieure à la masse volumique de l'alliage métallique à base de zirconium utilisé pour les bras et le moyeu afin d'améliorer l'inertie du balancier.
  • A cet effet, conformément à un second mode de réalisation de l'invention, le procédé de fabrication d'un balancier pour pièce d'horlogerie dans lequel le moyeu 4 et les bras 8 sont réalisés dans un alliage métallique, et la serge 2 est réalisée dans un second matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu 4 et les bras 8 sont réalisés, comprend les étapes suivantes:
    1. a) réaliser un moule ayant la forme négative du balancier, y compris d'éventuelles structures décoratives de surface a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
    2. b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
    3. c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
    4. d) refroidir ledit alliage métallique pour obtenir un balancier avec ses inserts
    5. e) libérer le balancier obtenu à l'étape d) de son moule.
  • L'étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.
  • Les procédés de l'invention selon le premier ou deuxième modes de réalisation utilisent de manière avantageuse les propriétés d'un alliage métallique capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé pour le mettre facilement en forme afin de réaliser un balancier en alliage métallique.
  • En effet, un alliage métallique capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé permet une grande facilité dans la mise en forme permettant la fabrication de pièces aux formes compliquées avec une plus grande précision. Cela est dû aux caractéristiques particulières des « métaux amorphes » qui peuvent se ramollir tout en restant amorphes durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (par exemple pour l'alliage à base de Zr : Tg=440°C et Tx=520°C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud. L'utilisation d'un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails du négatif. Par exemple, pour un matériau à base de platine tel que défini ci-dessous, la mise en forme se fait aux alentours de 300°C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1MPa, au lieu d'une viscosité de 1012 Pa.s à la température Tg. L'utilisation de matrices a pour avantage la création de pièces en trois dimensions de grande précision, ce que le découpage ou l'étampage ne permettent pas d'obtenir.
  • Un procédé utilisé avantageusement est le formage à chaud d'une préforme amorphe. Cette préforme est obtenue par fusion dans un four des éléments métalliques destinés à constituer l'alliage métallique. Cette fusion est faite sous atmosphère contrôlée avec pour but d'obtenir une contamination de l'alliage en oxygène aussi faible que possible. Une fois ces éléments fondus, ils sont coulés sous forme de produit semi-fini, puis refroidis rapidement afin de conserver l'état partiellement ou totalement amorphe. Une fois la préforme réalisée, le formage à chaud est effectué dans le but d'obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de température comprise entre la température de transition vitreuse Tg et la température de cristallisation Tx de l'alliage métallique durant un temps déterminé pour conserver une structure au moins partiellement amorphe. Ceci est fait dans le but de conserver les propriétés élastiques caractéristiques des métaux amorphes.
  • Typiquement pour l'alliage à base de Zr et pour une température de 440°C, le temps de pressage ne devra pas dépasser 120 secondes environ. Ainsi, le formage à chaud permet de conserver l'état amorphe initial de la préforme. Les différentes étapes de mise en forme définitive du balancier monobloc selon l'invention sont alors :
    1. 1) chauffage des matrices ayant la forme négative du balancier jusqu'à une température choisie
    2. 2) introduction de la préforme en métal amorphe entre les matrices chaudes,
    3. 3) application d'une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe,
    4. 4) attente durant un temps maximal choisi,
    5. 5) ouverture des matrices,
    6. 6) refroidissement du balancier, et
    7. 7) sortie du balancier des matrices.
  • Bien entendu, le balancier peut être aussi réalisé par coulée ou par injection. Ce procédé consiste à couler ou injecter l'alliage métallique chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe dans un moule possédant la forme de la pièce définitive.
  • Le moule peut être réutilisé ou dissout pour libérer les pièces. Le procédé par moulage présente l'avantage de répliquer parfaitement la géométrie du balancier, y compris d'éventuels décors ou structuration de surface. On obtient une moins grande dispersion d'inertie et un meilleur centrage sur un lot de production de balanciers. Le procédé par moulage permet d'obtenir un balancier à la géométrie esthétique, avec des angles intérieurs vifs, un profil de serge et/ou de bras bombé, et une finition parfaite. Il est également possible de prévoir une serge non continue. Pour une qualité maximale, le moule sera réalisé dans du silicium par un procédé DRIE. Il est bien évident que le moule peut également être réalisé par usinage par fraisage, laser, électroérosion ou tout autre type d'usinage.
  • Les propriétés élastiques caractéristiques des métaux amorphes sont utilisées pour surmouler ou intégrer des éléments fonctionnels et/ou décoratifs dans la serge et/ou au niveau des bras et/ou au niveau du moyeu par exemple au moyen d'inserts correspondants placés dans le moule avant l'introduction de l'alliage métallique chauffé entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe.
  • Indépendamment du premier ou second modes de réalisation des procédés de l'invention, la serge 2 peut comprendre des logements 12 destinés à recevoir des deuxièmes éléments de réglage de l'inertie et/ou de balourd 14, 15 comme représenté sur la figure 3. Ces logements 12 peuvent avantageusement être prévus lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention. Les deuxièmes éléments de réglage de l'inertie et/ou de balourd 14, 15 peuvent être par exemple des masselottes, des masselottes fendues, des goupilles 14, des goupilles fendues, ou des goupilles avec balourd 15, qui font office de masselottes. Ces éléments sont chassés ou clippés dans les logements correspondants 12. Sur la figure 3 sont représentées une goupille 14 insérée dans son logement 12, ainsi qu'une goupille avec balourd 15 insérée dans son logement 12. La figure 4 montre une vue en coupe selon la ligne A-A de la figure 3 représentant la goupille avec balourd 15 insérée dans le logement 12 prévu dans la serge 2.
  • Il est bien évident que ces éléments pour augmenter l'inertie du balancier sont utilisés préférentiellement avec une serge réalisée dans un matériau de faible densité, tel que le titane ou le zirconium mais peuvent être aussi utilisés avec une serge dans un autre matériau.
  • Pour augmenter l'inertie du balancier, il est également possible de prévoir une serge plus épaisse ou plus large, notamment dans le cas de balanciers plus grands.
  • Les logements 12 représentés sur la figure 3 peuvent également constituer des logements destinés à recevoir des éléments esthétiques et/ ou luminescents, tels que des tubes de tritium (non représentés), ou des capsules de matériaux phosphorescents (du type Superluminova, par exemple) ou fluorescents.
  • Selon une autre variante de l'invention, l'un ou l'autre des procédés comprend une étape de surmoulage d'éléments de centrage flexibles 16, 17 sur le moyeu 4, sur son pourtour intérieur ou à sa surface. Ainsi, le moyeu 4 peut comprendre des éléments de centrage flexibles intégrés, qui permettent un auto-centrage du balancier lors de son montage sur un axe grâce à la déformation élastique desdits éléments de centrage flexibles.
  • Selon la figure 5, lesdits éléments de centrage flexibles intégrés 16 sont des lames élastiques prévues sur le pourtour intérieur du moyeu 4 de manière à être positionnées dans le trou 6. Selon la figure 6, lesdits éléments de centrage flexibles intégrés 17 sont prévus sur la surface du moyeu 4 et sont répartis autour du trou 6. Les éléments de centrage flexibles 16 et 17 peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention.
  • Selon une autre variante de l'invention, l'un ou l'autre des procédés comprend une étape de surmoulage de troisièmes éléments de réglage de l'inertie 19, 20, 22a, 22b flexibles dans le bras 8. Ainsi, au moins l'un des bras 8 porte des troisièmes éléments de réglage de l'inertie flexibles intégrés.
  • Selon la figure 7, l'extrémité du bras 8 du côté de la serge 2 se termine en deux branches 8a, 8b formant entre elles un logement 18 dans lequel est intégré un troisième élément de réglage de l'inertie 19 flexible bistable en « V » pour le réglage de la fréquence.
  • Selon la figure 8, il est prévu dans le logement 18 un troisième élément de réglage de l'inertie 20 flexible en flambage pour le réglage de la fréquence. A cet effet, le troisième élément de réglage de l'inertie 20 est réalisé dans un matériau présentant des propriétés de dilatation différentes de l'alliage métallique du balancier de l'invention, tel que le silicium ou l'oxyde de silicium.
  • Selon la figure 9, l'extrémité du bras 8 du côté de la serge 2 se termine en trois branches 8a, 8b, 8c formant entre elles deux logements 18a, 18b dans lesquels sont intégrés des troisièmes éléments de réglage de l'inertie 22a, 22b flexibles multi-stables à cliquet pour le réglage de la fréquence.
  • Ces troisièmes éléments de réglage de l'inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention.
  • Ces troisièmes éléments de réglage de l'inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent être aussi bien utilisés lorsque l'ensemble du balancier est dans un même alliage métallique que lorsque les bras sont en alliage métallique, le reste du balancier, et notamment la serge, étant dans un autre matériau.
  • Selon une autre variante de l'invention, on utilise dans l'un ou l'autre des procédés de l'invention un moule présentant des microstructures formant un décor ou un réseau photonique. Ainsi, l'un du bras 8, de la serge 2 et du moyeu 4 présente un état de surface structuré. Seul l'un des éléments peut présenter un état de surface structuré ou tous les éléments du balancier peuvent présenter un état de surface structuré, cet état de surface structuré pouvant être identique ou différent. La figure 10 représente un balancier de l'invention pour lequel la serge 2 présente un état de surface structuré différent de l'état de surface structuré présenté par le bras 8. Cet état de surface structuré peut être un état poli, satiné, sablé, perlé, ensoleillé, etc. Il est possible de prévoir également dans le moule pour la fabrication du balancier des microstructures formant un réseau photonique afin de répliquer ces microstructures à la surface du balancier. Ces microstructures peuvent permettre de créer un cristal photonique donnant à la pièce une certaine couleur, un hologramme, ou un réseau de diffraction pouvant constituer un élément anti-contrefaçon. Les structures sont directement introduites dans le moule, et sont répliquées lors de la fabrication des balanciers par formage à chaud, ce qui ne nécessite plus d'opérations de terminaison. Il est également possible d'ajouter un logo au moule.
  • L'alliage métallique utilisé dans les procédés de l'invention présente un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et supérieur à 7 ppm/°C, et est capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation.
  • De préférence, l'alliage métallique utilisé dans les procédés de l'invention est à base d'un élément choisi parmi le groupe constitué du platine, du zirconium, du titane, du palladium, du nickel, de l'aluminium et du fer.
  • Dans la présente description, l'expression «à base d'un élément » signifie que ledit alliage métallique contient au moins 50% en poids dudit élément.
  • Ledit alliage métallique utilisé dans la présente invention peut être à base de platine et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 12 ppm/°C.
  • Un tel alliage métallique à base de platine peut être constitué, en valeurs en % atomique, de
    • une base de platine dont la teneur constitue la balance,
    • 13 à 17% de cuivre
    • 3 à 7% de nickel
    • 20 à 25% de phosphore.
  • L'alliage métallique utilisé dans la présente invention peut aussi être à base de zirconium et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 11 ppm/°C.
  • Un tel alliage métallique à base de zirconium peut être constitué, en valeurs en % atomique, de
    • une base de zirconium dont la teneur constitue la balance,
    • 14 à 20% de cuivre
    • 12 à 13% de nickel
    • 9 à 11 % d'aluminium
    • 2 à 4 % de niobium.
  • L'alliage métallique utilisé dans la présente invention peut aussi être à base de palladium et présente un coefficient de dilatation thermique inférieur à 20 ppm/°C, de préférence compris entre 13 ppm/°C et 18 ppm/°C.
  • Un tel alliage métallique à base de palladium peut être constitué, en valeurs en % atomique, de
    • une base de palladium, dont la teneur constitue la balance,
    • 25 à 30% de cuivre
    • 8 à 12% de nickel
    • 18 à 22% de phosphore.
  • Idéalement, les alliages utilisés dans l'invention ne contiennent aucune impureté. Toutefois, ils peuvent comprendre des traces d'impuretés qui peuvent résulter, de manière souvent inévitable, de l'élaboration desdits alliages.
  • Lorsque les alliages utilisés dans la présente invention présentent un coefficient de dilatation thermique inférieur à 12 ppm/°C et supérieur à 8 ppm/°C, ils peuvent être utilisés pour réaliser au moins une partie d'un balancier qui sera appairé à un spiral de préférence en quartz monocristallin. Les alliages utilisés dans la présente invention présentant un coefficient de dilatation thermique inférieur à 20 ppm/°C et supérieur à 13 ppm/°C peuvent être utilisés pour réaliser au moins une partie d'un balancier qui sera appairé à un spiral en métal ou en silicium.
  • Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de platine est constitué, en valeurs en % atomique, de :
    • 57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P
  • Un tel alliage présente un coefficient de dilatation thermique compris entre 11 et 12 ppm/°C.
  • Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de zirconium est constitué, en valeurs en % atomique, de :
    • 58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb
  • Un tel alliage présente un coefficient de dilatation thermique compris entre 10.5 et 11 ppm/°C.
  • Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de palladium est constitué, en valeurs en % atomique, de :
    • 43% Pd, 27% Cu, 10% Ni, 20% P
  • Un tel alliage présente un coefficient de dilatation thermique compris entre 15 et 16 ppm/°C.
  • Ainsi, le balancier selon l'invention est réalisé dans un matériau permettant d'utiliser un procédé de fabrication simple tout en présentant un coefficient de dilatation thermique permettant de l'appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, de préférence en quartz monocristallin. Le balancier selon l'invention permet également d'avoir au moins des bras présentant un coefficient de dilatation thermique permettant de l'appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, tout en ayant une grande inertie en gardant une géométrie de serge compacte et esthétique, de petit volume, à l'aide d'une serge adéquate, soit comprenant des éléments réalisés dans un matériau de plus grande densité, soit étant elle-même réalisée dans un matériau de plus grande densité.

Claims (16)

  1. Procédé de fabrication d'un balancier (1) pour pièce d'horlogerie comprenant une serge (2), un moyeu (4) et au moins un bras (8) reliant le moyeu (4) à ladite serge (2), la serge (2), le moyeu (4) et le bras (8) étant réalisés dans un alliage métallique, ledit procédé comprenant les étapes suivantes:
    a) réaliser un moule ayant la forme négative du balancier (1)
    b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
    c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé au chaud et former un balancier
    d) refroidir ledit alliage métallique pour obtenir un balancier (1) dans ledit alliage métallique
    e) libérer le balancier (1) obtenu à l'étape d) de son moule.
  2. Procédé selon la revendication précédente, caractérisé en ce qu'il comprend une étape de surmoulage de premiers éléments de réglage de l'inertie (10) dans la serge (2), lesdits premiers éléments de réglage de l'inertie (10) étant réalisés dans un premier matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique.
  3. Procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge (2), un moyeu (4) et au moins un bras (8) reliant le moyeu (4) à ladite serge (2), le moyeu (4) et le bras (8) étant réalisés dans un alliage métallique, et la serge (2) étant réalisée dans un second matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu (4) et le bras (8) sont réalisés, ledit procédé comprenant les étapes suivantes:
    a) réaliser un moule ayant la forme négative du balancier
    a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
    b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
    c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
    d) refroidir ledit alliage métallique pour obtenir un balancier avec inserts
    e) libérer le balancier obtenu à l'étape d) de son moule.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la serge (2) comprend des logements (12) destinés à recevoir des deuxièmes éléments de réglage de l'inertie et/ou de balourd (14, 15).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la serge (2) comprend des logements (12) destinés à recevoir des éléments décoratifs et/ou luminescents.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape de surmoulage d'éléments de centrage flexibles (16, 17) sur le moyeu (4).
  7. Procédé selon la revendication précédente, caractérisé en ce que lesdits éléments de centrage flexibles (16) intégrés sont prévus sur le pourtour intérieur du moyeu (4).
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape de surmoulage de troisièmes éléments de réglage de l'inertie (19, 20, 22a, 22b) flexibles dans le bras (8).
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le moule présente des microstructures formant un décor ou un réseau photonique.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit alliage métallique est à base d'un élément choisi parmi le groupe constitué du platine, du zirconium, du titane, du palladium, du nickel, de l'aluminium et du fer.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit alliage métallique est à base de platine et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 12 ppm/°C.
  12. Procédé selon la revendication 11, caractérisé en ce que l'alliage métallique à base de platine est constitué, en valeurs en % atomique, de
    - une base de platine dont la teneur constitue la balance,
    - 13 à 17% de cuivre
    - 3 à 7% de nickel
    - 20 à 25% de phosphore.
  13. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que ledit alliage métallique est à base de zirconium et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 11 ppm/°C.
  14. Procédé selon la revendication 13, caractérisé en ce que l'alliage métallique à base de zirconium est constitué, en valeurs en % atomique, de
    - une base de zirconium dont la teneur constitue la balance,
    - 14 à 20% de cuivre
    - 12 à 13% de nickel
    - 9 à 11 % d'aluminium
    - 2 à 4 % de niobium.
  15. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que ledit alliage métallique est à base de palladium et présente un coefficient de dilatation thermique inférieur à 20 ppm/°C, de préférence compris entre 13 ppm/°C et 18 ppm/°C.
  16. Procédé selon la revendication 15, caractérisé en ce que l'alliage métallique à base de palladium est constitué, en valeurs en % atomique, de
    - une base de palladium, dont la teneur constitue la balance,
    - 25 à 30% de cuivre
    - 8 à 12% de nickel
    - 18 à 22% de phosphore.
EP17210299.8A 2017-12-22 2017-12-22 Procédé de fabrication d'un balancier pour pièce d'horlogerie Active EP3502787B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17210299.8A EP3502787B1 (fr) 2017-12-22 2017-12-22 Procédé de fabrication d'un balancier pour pièce d'horlogerie
EP20201790.1A EP3796102B1 (fr) 2017-12-22 2017-12-22 Procede de fabrication d'un balancier pour piece d'horlogerie
US16/150,524 US11307535B2 (en) 2017-12-22 2018-10-03 Process for producing a balance wheel for a timepiece
JP2018216249A JP6770049B2 (ja) 2017-12-22 2018-11-19 計時器用のバランス車を製造する方法
CN201811455309.4A CN109960137B (zh) 2017-12-22 2018-11-30 用于制造钟表的摆轮的方法
CN202110265760.5A CN112965355A (zh) 2017-12-22 2018-11-30 用于制造钟表的摆轮的方法
US17/669,476 US11640140B2 (en) 2017-12-22 2022-02-11 Process for producing a balance wheel for a timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17210299.8A EP3502787B1 (fr) 2017-12-22 2017-12-22 Procédé de fabrication d'un balancier pour pièce d'horlogerie

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP20201790.1A Division EP3796102B1 (fr) 2017-12-22 2017-12-22 Procede de fabrication d'un balancier pour piece d'horlogerie
EP20201790.1A Division-Into EP3796102B1 (fr) 2017-12-22 2017-12-22 Procede de fabrication d'un balancier pour piece d'horlogerie

Publications (2)

Publication Number Publication Date
EP3502787A1 true EP3502787A1 (fr) 2019-06-26
EP3502787B1 EP3502787B1 (fr) 2020-11-18

Family

ID=60811893

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17210299.8A Active EP3502787B1 (fr) 2017-12-22 2017-12-22 Procédé de fabrication d'un balancier pour pièce d'horlogerie
EP20201790.1A Active EP3796102B1 (fr) 2017-12-22 2017-12-22 Procede de fabrication d'un balancier pour piece d'horlogerie

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20201790.1A Active EP3796102B1 (fr) 2017-12-22 2017-12-22 Procede de fabrication d'un balancier pour piece d'horlogerie

Country Status (4)

Country Link
US (2) US11307535B2 (fr)
EP (2) EP3502787B1 (fr)
JP (1) JP6770049B2 (fr)
CN (2) CN109960137B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716669A1 (fr) * 2019-10-03 2021-04-15 Richemont Int Sa Procédé de fabrication d'un arbre de pivotement de balancier.
CN115537599A (zh) * 2022-10-13 2022-12-30 东莞理工学院 一种高弹性模量及近零线膨胀系数的钛铌合金及其制备方法
CN115537598A (zh) * 2022-10-10 2022-12-30 东莞理工学院 一种宽温域可调控线性低热膨胀钛铌合金及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3796101A1 (fr) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Ressort spiral pour mouvement d'horlogerie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395402A1 (fr) * 2010-06-11 2011-12-14 Montres Breguet SA Balancier haute fréquence pour pièce d'horlogerie
EP2703909A1 (fr) * 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
EP3170579A1 (fr) * 2015-11-18 2017-05-24 The Swatch Group Research and Development Ltd. Procédé de fabrication d'une pièce en métal amorphe

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US387973A (en) * 1887-12-02 1888-08-14 Watch-balance
CH621669GA3 (en) * 1977-12-23 1981-02-27 Method of manufacturing a pivoted clockwork balance and clockwork balance obtained according to this method
DE1258786T1 (de) * 2001-05-18 2003-08-14 Rolex Sa Selbstkompensierende Feder für einen mechanischen Oszillator vom Unruh-Spiralfeder-Typ
US7293599B2 (en) * 2002-09-30 2007-11-13 Liquidmetal Technologies, Inc. Investment casting of bulk-solidifying amorphous alloys
CN101589347A (zh) 2006-12-21 2009-11-25 康普利计时股份有限公司 用于钟表的机械振荡器
EP2104008A1 (fr) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Organe régulateur monobloc et son procédé de fabrication
EP2104005A1 (fr) 2008-03-20 2009-09-23 Nivarox-FAR S.A. Balancier composite et son procédé de fabrication
CH707106B1 (fr) 2012-12-21 2014-04-30 Montres Tudor SA Vis de réglage et balancier d'horlogerie comprenant une telle vis pour le réglage de l'inertie.
CN206178347U (zh) 2015-11-13 2017-05-17 尼瓦洛克斯-法尔股份有限公司 带有惯量调节的摆轮、钟表机芯和钟表件
EP3182211A1 (fr) * 2015-12-17 2017-06-21 Nivarox-FAR S.A. Pièce composite avec moyens élastiques sous contrainte
EP3217228B1 (fr) 2016-03-07 2019-08-28 Montres Breguet S.A. Dispositif bilame sensible aux variations de température
EP3217229B1 (fr) 2016-03-07 2020-01-01 Montres Breguet S.A. Système de compensation thermique auxiliaire réglable
EP3252545B1 (fr) 2016-06-03 2019-10-16 The Swatch Group Research and Development Ltd. Mécanisme d'horlogerie à réglage d'inertie de balancier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395402A1 (fr) * 2010-06-11 2011-12-14 Montres Breguet SA Balancier haute fréquence pour pièce d'horlogerie
EP2703909A1 (fr) * 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
EP3170579A1 (fr) * 2015-11-18 2017-05-24 The Swatch Group Research and Development Ltd. Procédé de fabrication d'une pièce en métal amorphe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AGILENT: "Material Expansion Coefficients", LASER AND OPTICS USER'S MANUAL, 31 December 2002 (2002-12-31), USA, XP055485562, Retrieved from the Internet <URL:https://psec.uchicago.edu/thermal_coefficients/cte_metals_05517-90143.pdf> [retrieved on 20180619] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716669A1 (fr) * 2019-10-03 2021-04-15 Richemont Int Sa Procédé de fabrication d'un arbre de pivotement de balancier.
CN115537598A (zh) * 2022-10-10 2022-12-30 东莞理工学院 一种宽温域可调控线性低热膨胀钛铌合金及其制备方法
CN115537598B (zh) * 2022-10-10 2023-06-20 东莞理工学院 一种宽温域可调控线性低热膨胀钛铌合金及其制备方法
CN115537599A (zh) * 2022-10-13 2022-12-30 东莞理工学院 一种高弹性模量及近零线膨胀系数的钛铌合金及其制备方法
CN115537599B (zh) * 2022-10-13 2023-06-06 东莞理工学院 一种高弹性模量及近零线膨胀系数的钛铌合金及其制备方法

Also Published As

Publication number Publication date
US20220163923A1 (en) 2022-05-26
US11307535B2 (en) 2022-04-19
US20190196408A1 (en) 2019-06-27
EP3796102B1 (fr) 2022-04-20
US11640140B2 (en) 2023-05-02
EP3796102A1 (fr) 2021-03-24
JP6770049B2 (ja) 2020-10-14
CN109960137A (zh) 2019-07-02
CN112965355A (zh) 2021-06-15
JP2019113533A (ja) 2019-07-11
CN109960137B (zh) 2021-04-09
EP3502787B1 (fr) 2020-11-18

Similar Documents

Publication Publication Date Title
EP3502787B1 (fr) Procédé de fabrication d&#39;un balancier pour pièce d&#39;horlogerie
EP2585876B1 (fr) Systeme d&#39;echappement pour piece d&#39;horlogerie
EP2257855B1 (fr) Procédé de fabrication d&#39;un balancier composite
EP2257856B1 (fr) Organe régulateur monobloc et son procédé de fabrication
EP2400353A1 (fr) Aiguille de pièce d&#39;horlogerie
EP2585882B1 (fr) Systeme antichoc de piece d&#39;horlogerie
EP3182212B1 (fr) Pièce composite avec moyens élastiques sous contrainte
EP2585880A1 (fr) Pieds de cadran de piece d&#39;horlogerie
WO2009115470A1 (fr) Spiral monobloc en matériau à base de silicium et son procédé de fabrication
EP3377247B1 (fr) Procede de fabrication d&#39;une piece en metal amorphe
CH714514A2 (fr) Procédé de fabrication d&#39;un balancier pour pièce d&#39;horlogerie.
WO2019120959A1 (fr) Balancier pour piece d&#39;horlogerie et procede de fabrication d&#39;un tel balancier
CH714512A2 (fr) Balancier pour pièce d&#39;horlogerie et procédé de fabrication d&#39;un tel balancier.
WO2011161079A1 (fr) Systeme antichoc pour piece d&#39;horlogerie
WO2011161181A1 (fr) Assemblage de pieces en materiau fragile
CH703343B1 (fr) Aiguille de pièce d&#39;horlogerie.
CH719106A1 (fr) Composant horloger ou joaillier monolithique multi-métallique réalisé par frittage.
WO2023078693A1 (fr) Composant horloger contrasté réalisé en impression multi-métallique
CH703344A2 (fr) Systeme antichoc pour piece d&#39;horlogerie.
CH711923B1 (fr) Procédé de fabrication d&#39;une pièce composite avec moyens élastiques sous contrainte, pièce composite et assortiment horloger.
CH707017B1 (fr) Instrument d&#39;écriture.
CH703360B1 (fr) Cadran de piece d&#39;horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017027690

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1336420

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1336420

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201118

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017027690

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 7