EP3502787A1 - Method for manufacturing a balance for a timepiece - Google Patents
Method for manufacturing a balance for a timepiece Download PDFInfo
- Publication number
- EP3502787A1 EP3502787A1 EP17210299.8A EP17210299A EP3502787A1 EP 3502787 A1 EP3502787 A1 EP 3502787A1 EP 17210299 A EP17210299 A EP 17210299A EP 3502787 A1 EP3502787 A1 EP 3502787A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal alloy
- serge
- balance
- ppm
- hub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 83
- 238000002425 crystallisation Methods 0.000 claims abstract description 18
- 230000008025 crystallization Effects 0.000 claims abstract description 18
- 230000009477 glass transition Effects 0.000 claims abstract description 17
- 238000001816 cooling Methods 0.000 claims abstract description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 15
- 229910052763 palladium Inorganic materials 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical compound [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 4
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 229910000942 Elinvar Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000005300 metallic glass Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/063—Balance construction
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/222—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature with balances
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/006—Mechanisms for setting frequency by adjusting the devices fixed on the balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D3/00—Watchmakers' or watch-repairers' machines or tools for working materials
- G04D3/0002—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe
- G04D3/0035—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism
- G04D3/0038—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism for balances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D25/00—Special casting characterised by the nature of the product
- B22D25/02—Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
- B22D25/026—Casting jewelry articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C16/00—Alloys based on zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
Definitions
- the invention relates to a method of manufacturing a balance for a timepiece comprising a serge, a hub and at least one arm connecting the hub to said serge.
- the oscillator or resonator of a mechanical watch consists of a spiral spring and a flywheel called balance.
- the thermal variations vary the stiffness of the hairspring, as well as the geometries of the hairspring and the balance, which modifies the spring constant and the inertia, and therefore the frequency of oscillation.
- Watchmakers have worked hard to have temperature-stable oscillators and several tracks have been explored / exploited, including one that won a Charles-Edouard Nicolas Nobel Prize for the development of the Elinvar alloy whose elastic modulus increases with the temperature and compensates for the increase of inertia of the pendulum.
- the monocrystalline quartz spiral allows a thermal compensation of the change of inertia of the balance.
- the quartz is limited to materials having a coefficient of thermal expansion of the order of 10 ppm / ° C, which corresponds for example titanium and platinum.
- the main problem of these materials is the machinability and control of fine structure and / or a perfect finish (mirror polished by example).
- titanium its relatively low density limits its use for large pendulums and in the case of platinum its high price limits its use to prestige and luxury products.
- the object of the present invention is to remedy these drawbacks by proposing a method of manufacturing a balance made of new materials allowing a simpler and more precise manufacture, so as to reduce, for example, the dispersion of inertia and / or unbalance within the same batch of production.
- a metal alloy balance can be realized using a simplified manufacturing process such as a casting process or a hot forming process.
- the metal alloy in its at least partially amorphous form has the property of having a much larger elastic range than its crystalline equivalent, thanks to the absence of dislocation. This property makes it possible to overmould or integrate the balance wheel elements to improve the centering and to adjust the inertia and / or unbalance.
- a pendulum 1 for a timepiece Such a rocker 1 comprises in a traditional way a serge 2, continuous or not, defining the outer diameter of the rocker 1, a hub 4, forming its central portion and provided with a hole 6 for receiving a shaft (not shown) defining the pivot axis of the balance 1.
- the hub 4 is integrally connected to the serge 2 by arms 8.
- the arms 8 are here four in number and are arranged at 90 °. We also usually find rockers with two or three arms, arranged respectively at 180 ° or 120 °.
- the serge 2, the hub 4 and the arms 8 are made of the same metal alloy.
- the rocker 1 is monobloc, that is to say, made in one piece.
- the balance 1 may for example be made entirely of a platinum or palladium-based alloy which will be described in detail below. Platinum in particular having a high density (21000 kg / m 3 ), the platinum alloy used in the invention also has a high density (15.5 g / cm 3 ), so that the addition of elements in dense material to increase the inertia of the pendulum will not necessarily be necessary.
- the cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or totally amorphous alloy.
- the balance 1 can also be made entirely for example in a titanium-based alloy or zirconium which will be described in detail below. Since zirconium, for example, has a lower density, the zirconium alloy used in the invention also has a lower density (6.5 g / cm 3 ), so that the addition of denser material elements to increase the inertia of the balance is recommended, especially if one wishes to realize a small balance for small movements. These elements make it possible to increase the inertia of the balance while keeping an aesthetic serge geometry and with good aerodynamic properties.
- the serge 2 may comprise overmolded first inertia adjusting elements 10, said first inertia adjusting elements being made of a material having a density greater than the density of the metal alloy.
- These first adjustment elements of the inertia 10 may for example be tungsten or tungsten carbide, and are obtained by overmolding.
- the method according to the invention comprises a step of overmoulding said first inertia adjusting elements 10 in the serge 2, by means of inserts placed in the mold before the introduction of the metal alloy, and overmoulded, said first inertia adjusting members being made of a first material having a density greater than the density of said metal alloy.
- the arms and the hub of the balance are made of a metal alloy, the serge being made of a material having a density greater than the density of said metal alloy used for the arms and the hub.
- This material may itself be the platinum or palladium-based metal alloy as defined below or another material.
- the arms and the hub of the balance are made of the zirconium-based amorphous metal alloy as defined below to make it possible to couple the balance with a spiral, preferably in monocrystalline quartz, and the serge is made in another material having a density greater than the density of the alloy zirconium-based metal used for the arms and the hub to improve the inertia of the balance.
- the cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or totally amorphous alloy.
- the methods of the invention according to the first or second embodiments advantageously utilize the properties of a metal alloy capable of being in at least partially amorphous form when heated to easily form it to realize a metal alloy balance.
- a metal alloy capable of being in a form at least partially amorphous when heated allows a great ease in shaping allowing the manufacture of parts with complicated shapes with greater precision.
- the use of such a material also makes it possible to reproduce fine geometries very precisely because the viscosity of the alloy decreases sharply as a function of the temperature in the temperature range [Tg-Tx] and the alloy thus allies the details of the negative.
- the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity from 10 to 12 Pa.s at the Tg temperature.
- the use of dies has the advantage of creating highly accurate three-dimensional parts, which can not be cut or stamped.
- a method advantageously used is the hot forming of an amorphous preform.
- This preform is obtained by melting in a furnace metal elements intended to form the metal alloy. This fusion is done under controlled atmosphere with the aim of obtaining a contamination of the alloy with oxygen as low as possible. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the partially or totally amorphous state.
- the hot forming is performed in order to obtain a final piece. This hot forming is carried out by pressing in a temperature range between the glass transition temperature Tg and the crystallization temperature Tx of the metal alloy for a predetermined time to maintain an at least partially amorphous structure. This is done in order to maintain the characteristic elastic properties of the amorphous metals.
- the pendulum can also be made by casting or injection. This process consists of casting or injecting the heated metal alloy at a temperature between its transition temperature vitreous and its crystallization temperature to be at least partially amorphous in a mold having the shape of the final piece.
- the mold can be reused or dissolved to free the parts.
- the molding process has the advantage of perfectly replicating the geometry of the balance, including any decorations or surface patterning. Less dispersion of inertia and better centering on a rocker production batch are obtained.
- the molding process provides a balance with aesthetic geometry, with sharp interior angles, a serge profile and / or curved arm, and a perfect finish. It is also possible to provide a non-continuous serge.
- the mold will be made of silicon by a DRIE process. It is obvious that the mold can also be produced by machining by milling, laser, spark erosion or any other type of machining.
- the characteristic elastic properties of the amorphous metals are used to overmold or integrate functional and / or decorative elements in the serge and / or at the arms and / or at the hub for example by means of corresponding inserts placed in the mold before introducing the heated metal alloy between its glass transition temperature and its crystallization temperature to be at least partially amorphous.
- the serge 2 may comprise housings 12 intended to receive second inertia and / or unbalance adjusting elements 14, 15 as shown in FIG. figure 3 .
- These housings 12 may advantageously be provided during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
- the second adjustment elements of the inertia and / or unbalance 14, 15 may be for example flyweights, slit weights, pins 14, cotter pins, or pins with unbalance 15, which act as flyweights. These elements are hunted or clipped in the dwellings 12.
- On the figure 3 are represented a pin 14 inserted into its housing 12, and a pin with unbalance 15 inserted into its housing 12.
- the figure 4 shows a sectional view along line AA of the figure 3 representing the pin with unbalance 15 inserted in the housing 12 provided in the serge 2.
- the dwellings 12 shown on the figure 3 may also constitute housings intended to receive aesthetic and / or luminescent elements, such as tritium tubes (not shown), or capsules of phosphorescent materials (Superluminova, for example) or fluorescent.
- aesthetic and / or luminescent elements such as tritium tubes (not shown), or capsules of phosphorescent materials (Superluminova, for example) or fluorescent.
- one or the other of the methods comprises a step of overmolding flexible centering elements 16, 17 on the hub 4, on its inner periphery or on its surface.
- the hub 4 may include integrated flexible centering elements, which allow self-centering of the balance when mounted on an axis by the elastic deformation of said flexible centering elements.
- said integrated flexible centering elements 16 are resilient blades provided on the inner periphery of the hub 4 so as to be positioned in the hole 6.
- said integrated flexible centering elements 17 are provided on the surface of the hub 4 and are distributed around the hole 6. The flexible centering elements 16 and 17 can advantageously be put in place during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
- one or the other of the methods comprises a step of overmolding third inertia adjusting elements 19, 20, 22a, 22b flexible in the arm 8.
- at least one of one of the arms 8 carries third integrated flexible inertia adjustment elements.
- a third flexible buckling inertia adjusting member 20 is provided in the housing 18 for adjusting the frequency.
- the third adjustment element of the inertia 20 is made of a material having different expansion properties of the metal alloy of the balance of the invention, such as silicon or silicon oxide.
- the end of the arm 8 on the side of the serge 2 ends in three branches 8a, 8b, 8c forming between them two housings 18a, 18b in which are incorporated third inertia adjusting elements 22a, 22b flexible multi- stable ratchet for frequency adjustment.
- These third flexible inertia adjusting elements 19, 20, 22a, 22b for adjusting the frequency can be used as well when the entire balance is in the same metal alloy as when the arms are made of metal alloy, the balance of the balance, and in particular the serge, being in another material.
- a mold having microstructures forming a decor or a photonic network it is used in one or other of the methods of the invention a mold having microstructures forming a decor or a photonic network.
- one of the arm 8, the serge 2 and the hub 4 has a structured surface state. Only one of the elements may have a structured surface condition or all the elements of the balance may have a structured surface state, this structured surface state may be the same or different.
- the figure 10 represents a pendulum of the invention for which the serge 2 has a structured surface state different from the structured surface state presented by the arm 8. This structured surface state can be a polished, satin, sandblasted, pearled, sunny state etc.
- microstructures forming a photonic network in order to replicate these microstructures on the surface of the balance.
- These microstructures can make it possible to create a photonic crystal giving the piece a certain color, a hologram, or a diffraction grating that can constitute an anti-counterfeiting element.
- the structures are directly introduced into the mold, and are replicated during the manufacture of the balances by hot forming, which no longer requires termination operations. It is also possible to add a logo to the mold.
- the metal alloy used in the processes of the invention has a coefficient of thermal expansion typically less than 25 ppm / ° C and greater than 7 ppm / ° C, and is capable of being in at least partially amorphous form when it is heated to a temperature between its glass transition temperature and its crystallization temperature.
- the metal alloy used in the processes of the invention is based on an element selected from the group consisting of platinum, zirconium, titanium, palladium, nickel, aluminum and iron.
- element-based means that said metal alloy contains at least 50% by weight of said element.
- Said metal alloy used in the present invention may be platinum-based and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 12 ppm / ° C.
- the metal alloy used in the present invention can also be based on zirconium and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 11 ppm / ° C.
- the metal alloy used in the present invention may also be based on palladium and has a coefficient of thermal expansion less than 20 ppm / ° C, preferably between 13 ppm / ° C and 18 ppm / ° C.
- the alloys used in the invention contain no impurities. However, they may include traces of impurities that can result, often unavoidably, the development of said alloys.
- the alloys used in the present invention have a coefficient of thermal expansion less than 12 ppm / ° C and greater than 8 ppm / ° C, they can be used to achieve at least a portion of a balance that will be paired with a hairspring preferably monocrystalline quartz.
- the alloys used in the present invention having a coefficient of thermal expansion of less than 20 ppm / ° C and greater than 13 ppm / ° C can be used to make at least a portion of a pendulum that will be paired with a metal hairspring or in silicon.
- Such an alloy has a coefficient of thermal expansion of between 11 and 12 ppm / ° C.
- Such an alloy has a coefficient of thermal expansion of between 10.5 and 11 ppm / ° C.
- Such an alloy has a coefficient of thermal expansion of between 15 and 16 ppm / ° C.
- the balance according to the invention is made of a material that makes it possible to use a simple manufacturing process while having a coefficient of thermal expansion that makes it possible to match it to a monocrystalline quartz spiral, and / or to a metal or silicon preferably monocrystalline quartz.
- the balance according to the invention also makes it possible to have at least arms having a coefficient of thermal expansion enabling it to be paired with a spiral of monocrystalline quartz, and / or of metal or silicon, while having great inertia while keeping a compact and aesthetic serge geometry, of small volume, using a suitable serge, or comprising elements made of a material of greater density, or being itself made of a material of greater density.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Adornments (AREA)
- Forging (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Micromachines (AREA)
Abstract
L'invention concerne un procédé de fabrication d'un balancier en alliage métallique par moulage, ledit procédé comprenant les étapes suivantes:
a) réaliser un moule ayant la forme négative du balancier (1)
b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et pour former un balancier
d) refroidir ledit alliage métallique pour obtenir un balancier (1) dans ledit alliage métallique
e) libérer le balancier (1) obtenu à l'étape d) de son moule
The invention relates to a process for producing a metal alloy balance by molding, said method comprising the following steps:
a) producing a mold having the negative shape of the balance (1)
b) providing a metal alloy having a coefficient of thermal expansion of less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature
c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed hot and to form a pendulum
d) cooling said metal alloy to obtain a balance (1) in said metal alloy
e) releasing the balance (1) obtained in step d) of its mold
Description
L'invention concerne un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge.The invention relates to a method of manufacturing a balance for a timepiece comprising a serge, a hub and at least one arm connecting the hub to said serge.
L'oscillateur ou résonateur d'une montre mécanique est constitué d'un ressort spiral et d'un volant d'inertie appelé balancier. Les variations thermiques font varier la rigidité du spiral, ainsi que les géométries du spiral et du balancier, ce qui modifie la constante de ressort et l'inertie, et donc la fréquence d'oscillation. Les horlogers ont beaucoup travaillé pour avoir des oscillateurs stables en température et plusieurs voies ont été explorées/exploitées dont une qui a valu un Prix Nobel à Charles-Edouard Guillaume pour le développement de l'alliage Elinvar dont le module d'élasticité augmente avec la température et compense l'augmentation d'inertie du balancier. Par la suite, le développement du silicium oxydé, donc compensé thermiquement, a surpassé les performances de l'Elinvar et a pour avantage d'être moins sensible aux champs magnétiques. De même le spiral en quartz monocristallin permet une compensation thermique du changement d'inertie du balancier. Mais contrairement au silicium oxydé dont l'épaisseur d'oxyde peut être variée suivant le matériau de balancier utilisé, le quartz est limité aux matériaux ayant un coefficient de dilatation thermique de l'ordre de 10 ppm/°C, ce qui correspond par exemple au titane et au platine. Le problème principal de ces matériaux est l'usinabilité et la maîtrise de structure fine et/ou d'une finition parfaite (poli miroir par exemple). Dans le cas du titane, sa relativement faible densité limite son utilisation pour des grands balanciers et dans le cas du platine son prix élevé limite son utilisation à des produits de prestige et de luxe.The oscillator or resonator of a mechanical watch consists of a spiral spring and a flywheel called balance. The thermal variations vary the stiffness of the hairspring, as well as the geometries of the hairspring and the balance, which modifies the spring constant and the inertia, and therefore the frequency of oscillation. Watchmakers have worked hard to have temperature-stable oscillators and several tracks have been explored / exploited, including one that won a Charles-Edouard Guillaume Nobel Prize for the development of the Elinvar alloy whose elastic modulus increases with the temperature and compensates for the increase of inertia of the pendulum. Subsequently, the development of oxidized silicon, thus thermally compensated, has surpassed the performance of Elinvar and has the advantage of being less sensitive to magnetic fields. Similarly, the monocrystalline quartz spiral allows a thermal compensation of the change of inertia of the balance. But unlike oxidized silicon whose oxide thickness can be varied according to the rocker material used, the quartz is limited to materials having a coefficient of thermal expansion of the order of 10 ppm / ° C, which corresponds for example titanium and platinum. The main problem of these materials is the machinability and control of fine structure and / or a perfect finish (mirror polished by example). In the case of titanium, its relatively low density limits its use for large pendulums and in the case of platinum its high price limits its use to prestige and luxury products.
La présente invention a pour but de remédier à ces inconvénients en proposant un procédé de fabrication d'un balancier réalisé dans de nouveaux matériaux permettant une fabrication plus simple et plus précise, de manière à réduire par exemple la dispersion d'inertie et/ou de balourd au sein d'un même lot de production.The object of the present invention is to remedy these drawbacks by proposing a method of manufacturing a balance made of new materials allowing a simpler and more precise manufacture, so as to reduce, for example, the dispersion of inertia and / or unbalance within the same batch of production.
A cet effet, l'invention se rapporte tout d'abord à un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, la serge, le moyeu et les bras étant réalisés dans un alliage métallique, ledit procédé comprenant les étapes suivantes:
- a) réaliser un moule ayant la forme négative du balancier
- b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier
- d) refroidir ledit alliage métallique pour obtenir un balancier dans ledit alliage métallique
- e) libérer le balancier obtenu à l'étape d) de son moule.
- a) make a mold having the negative shape of the balance
- b) providing a metal alloy having a coefficient of thermal expansion of less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature
- c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed hot and form a pendulum
- d) cooling said metal alloy to obtain a balance in said metal alloy
- e) release the balance obtained in step d) of its mold.
La présente invention concerne également un procédé de fabrication d'un balancier pour pièce d'horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, le moyeu et le bras étant réalisés dans un alliage métallique, et la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu et le bras sont réalisés, ledit procédé comprenant les étapes suivantes:
- a) réaliser un moule ayant la forme négative du balancier a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
- b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
- d) refroidir ledit alliage métallique pour obtenir un balancier avec inserts
- e) libérer le balancier obtenu à l'étape d) de son moule.
- a) producing a mold having the negative shape of the rocker a ') inserting into the mold a serge or serge elements made of a material having a density greater than the density of said metal alloy
- b) providing a metal alloy having a coefficient of thermal expansion of less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature
- c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed hot and overmold the serge or the serge elements to form a balance with inserts
- d) cooling said metal alloy to obtain a rocker with inserts
- e) release the balance obtained in step d) of its mold.
Grâce aux propriétés des métaux amorphes, un balancier en alliage métallique peut être réalisé en utilisant un procédé de fabrication simplifié tel qu'un procédé de coulée ou un procédé de formage à chaud. En outre, l'alliage métallique sous sa forme au moins partiellement amorphe a pour propriété d'avoir une plage élastique bien plus grande que son équivalent cristallin, grâce à l'absence de dislocation. Cette propriété permet de surmouler ou d'intégrer au balancier des éléments permettant d'améliorer le centrage ainsi que de régler l'inertie et/ou le balourd.Due to the properties of the amorphous metals, a metal alloy balance can be realized using a simplified manufacturing process such as a casting process or a hot forming process. In addition, the metal alloy in its at least partially amorphous form has the property of having a much larger elastic range than its crystalline equivalent, thanks to the absence of dislocation. This property makes it possible to overmould or integrate the balance wheel elements to improve the centering and to adjust the inertia and / or unbalance.
D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
- la
figure 1 est une vue en perspective d'un balancier fabriqué selon l'invention ; - la
figure 2 est une vue de dessus partielle d'une variante de balancier réalisé selon l'invention ; - la
figure 3 est une vue de dessus partielle d'une autre variante de balancier réalisé selon l'invention ; - la
figure 4 est une vue en coupe selon l'axe A-A de lafigure 3 ; et - les
figures 5 à 10 sont des vues de dessus partielles d'autres variantes de balancier réalisé selon l'invention.
- the
figure 1 is a perspective view of a rocker manufactured according to the invention; - the
figure 2 is a partial top view of a pendulum variant made according to the invention; - the
figure 3 is a partial top view of another embodiment of the balance made according to the invention; - the
figure 4 is a sectional view along the axis AA of thefigure 3 ; and - the
Figures 5 to 10 are partial top views of other variants of pendulum made according to the invention.
En référence à la
Selon un premier mode de réalisation, la serge 2, le moyeu 4 et les bras 8 sont réalisés dans un même alliage métallique. D'une manière avantageuse, le balancier 1 est monobloc, c'est-à-dire réalisé d'une seule pièce.According to a first embodiment, the
Le balancier 1 peut par exemple être réalisé entièrement dans un alliage à base de platine ou de palladium qui sera décrit en détail ci-après. Le platine notamment présentant une grande masse volumique (21000 kg/m3), l'alliage en platine utilisé dans l'invention présente également une masse volumique élevée (15.5 g/cm3), de sorte que l'ajout d'éléments en matériau dense pour augmenter l'inertie du balancier ne sera pas forcément nécessaire.The
A cet effet, conformément à un premier mode de réalisation de l'invention, le procédé de fabrication d'un balancier 1, dans lequel la serge 2, le moyeu 4 et le bras 8 sont réalisés dans un même alliage métallique, comprend les étapes suivantes:
- a) réaliser un moule ayant la forme négative du
balancier 1, y compris d'éventuelles structures décoratives de surface - b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier
- d) refroidir ledit alliage métallique pour obtenir un
balancier 1 dans ledit alliage métallique - e) libérer le
balancier 1 obtenu à l'étape d) de son moule.
- a) making a mold having the negative shape of the
balance 1, including any decorative surface structures - b) providing a metal alloy having a coefficient of thermal expansion typically less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature
- c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed hot and form a pendulum
- d) cooling said metal alloy to obtain a
balance 1 in said metal alloy - e) release the
balance 1 obtained in step d) of its mold.
L'étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.The cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or totally amorphous alloy.
Le balancier 1 peut également être réalisé entièrement par exemple dans un alliage à base de titane ou de zirconium qui sera décrit en détails ci-après. Le zirconium par exemple présentant une masse volumique plus faible, l'alliage en zirconium utilisé dans l'invention présente également une masse volumique plus faible (6.5 g/cm3), de sorte que l'ajout d'éléments en matériau plus dense pour augmenter l'inertie du balancier est recommandé, notamment si l'on souhaite réaliser un balancier de petite taille pour de petits mouvements. Ces éléments permettent d'augmenter l'inertie du balancier tout en gardant une géométrie de serge esthétique et avec de bonnes propriétés aérodynamiques.The
Ainsi, selon une première variante représentée sur la
A cet effet, le procédé selon l'invention comprend une étape de surmoulage desdits premiers éléments de réglage de l'inertie 10 dans la serge 2, au moyen d'inserts placés dans le moule avant l'introduction de l'alliage métallique, et surmoulés, lesdits premiers éléments de réglage de l'inertie 10 étant réalisés dans un premier matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique.For this purpose, the method according to the invention comprises a step of overmoulding said first
Selon un second mode de réalisation, les bras et le moyeu du balancier sont réalisés dans un alliage métallique, la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique utilisé pour les bras et le moyeu. Ce matériau peut être lui-même l'alliage métallique à base de platine ou de palladium tel que défini ci-dessous ou un autre matériau. Par exemple, les bras et le moyeu du balancier sont réalisés dans l'alliage métallique amorphe à base de zirconium tel que défini ci-dessous pour permettre d'appairer le balancier avec un spiral de préférence en quartz monocristallin, et la serge est réalisée dans un autre matériau présentant une masse volumique supérieure à la masse volumique de l'alliage métallique à base de zirconium utilisé pour les bras et le moyeu afin d'améliorer l'inertie du balancier.According to a second embodiment, the arms and the hub of the balance are made of a metal alloy, the serge being made of a material having a density greater than the density of said metal alloy used for the arms and the hub. This material may itself be the platinum or palladium-based metal alloy as defined below or another material. For example, the arms and the hub of the balance are made of the zirconium-based amorphous metal alloy as defined below to make it possible to couple the balance with a spiral, preferably in monocrystalline quartz, and the serge is made in another material having a density greater than the density of the alloy zirconium-based metal used for the arms and the hub to improve the inertia of the balance.
A cet effet, conformément à un second mode de réalisation de l'invention, le procédé de fabrication d'un balancier pour pièce d'horlogerie dans lequel le moyeu 4 et les bras 8 sont réalisés dans un alliage métallique, et la serge 2 est réalisée dans un second matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu 4 et les bras 8 sont réalisés, comprend les étapes suivantes:
- a) réaliser un moule ayant la forme négative du balancier, y compris d'éventuelles structures décoratives de surface a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique
- b) se munir d'un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation
- c) introduire dans le moule l'alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts
- d) refroidir ledit alliage métallique pour obtenir un balancier avec ses inserts
- e) libérer le balancier obtenu à l'étape d) de son moule.
- a) producing a mold having the negative shape of the beam, including any decorative surface structures a ') inserting into the mold a serge or serge elements made of a material having a density greater than the density of said alloy metallic
- b) providing a metal alloy having a coefficient of thermal expansion typically less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature
- c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed hot and overmold the serge or the serge elements to form a balance with inserts
- d) cooling said metal alloy to obtain a balance with its inserts
- e) release the balance obtained in step d) of its mold.
L'étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.The cooling step d) can be carried out at a cooling rate chosen to obtain a crystalline, partially amorphous or totally amorphous alloy.
Les procédés de l'invention selon le premier ou deuxième modes de réalisation utilisent de manière avantageuse les propriétés d'un alliage métallique capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé pour le mettre facilement en forme afin de réaliser un balancier en alliage métallique.The methods of the invention according to the first or second embodiments advantageously utilize the properties of a metal alloy capable of being in at least partially amorphous form when heated to easily form it to realize a metal alloy balance.
En effet, un alliage métallique capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé permet une grande facilité dans la mise en forme permettant la fabrication de pièces aux formes compliquées avec une plus grande précision. Cela est dû aux caractéristiques particulières des « métaux amorphes » qui peuvent se ramollir tout en restant amorphes durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (par exemple pour l'alliage à base de Zr : Tg=440°C et Tx=520°C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud. L'utilisation d'un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails du négatif. Par exemple, pour un matériau à base de platine tel que défini ci-dessous, la mise en forme se fait aux alentours de 300°C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1MPa, au lieu d'une viscosité de 1012 Pa.s à la température Tg. L'utilisation de matrices a pour avantage la création de pièces en trois dimensions de grande précision, ce que le découpage ou l'étampage ne permettent pas d'obtenir.Indeed, a metal alloy capable of being in a form at least partially amorphous when heated allows a great ease in shaping allowing the manufacture of parts with complicated shapes with greater precision. This is due to the particular characteristics of "amorphous metals" which can soften while remaining amorphous for a certain time in a given temperature range [Tg - Tx] specific to each alloy (for example for the Zr-based alloy: Tg = 440 ° C and Tx = 520 ° C). It is thus possible to shape them under a relatively low stress and at a low temperature then allowing the use of a simplified process such as hot forming. The use of such a material also makes it possible to reproduce fine geometries very precisely because the viscosity of the alloy decreases sharply as a function of the temperature in the temperature range [Tg-Tx] and the alloy thus allies the details of the negative. For example, for a platinum-based material as defined below, the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity from 10 to 12 Pa.s at the Tg temperature. The use of dies has the advantage of creating highly accurate three-dimensional parts, which can not be cut or stamped.
Un procédé utilisé avantageusement est le formage à chaud d'une préforme amorphe. Cette préforme est obtenue par fusion dans un four des éléments métalliques destinés à constituer l'alliage métallique. Cette fusion est faite sous atmosphère contrôlée avec pour but d'obtenir une contamination de l'alliage en oxygène aussi faible que possible. Une fois ces éléments fondus, ils sont coulés sous forme de produit semi-fini, puis refroidis rapidement afin de conserver l'état partiellement ou totalement amorphe. Une fois la préforme réalisée, le formage à chaud est effectué dans le but d'obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de température comprise entre la température de transition vitreuse Tg et la température de cristallisation Tx de l'alliage métallique durant un temps déterminé pour conserver une structure au moins partiellement amorphe. Ceci est fait dans le but de conserver les propriétés élastiques caractéristiques des métaux amorphes.A method advantageously used is the hot forming of an amorphous preform. This preform is obtained by melting in a furnace metal elements intended to form the metal alloy. This fusion is done under controlled atmosphere with the aim of obtaining a contamination of the alloy with oxygen as low as possible. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the partially or totally amorphous state. Once the preform is made, the hot forming is performed in order to obtain a final piece. This hot forming is carried out by pressing in a temperature range between the glass transition temperature Tg and the crystallization temperature Tx of the metal alloy for a predetermined time to maintain an at least partially amorphous structure. This is done in order to maintain the characteristic elastic properties of the amorphous metals.
Typiquement pour l'alliage à base de Zr et pour une température de 440°C, le temps de pressage ne devra pas dépasser 120 secondes environ. Ainsi, le formage à chaud permet de conserver l'état amorphe initial de la préforme. Les différentes étapes de mise en forme définitive du balancier monobloc selon l'invention sont alors :
- 1) chauffage des matrices ayant la forme négative du balancier jusqu'à une température choisie
- 2) introduction de la préforme en métal amorphe entre les matrices chaudes,
- 3) application d'une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe,
- 4) attente durant un temps maximal choisi,
- 5) ouverture des matrices,
- 6) refroidissement du balancier, et
- 7) sortie du balancier des matrices.
- 1) heating the dies having the negative shape of the balance to a chosen temperature
- 2) introduction of the amorphous metal preform between the hot matrices,
- 3) applying a closing force on the matrices in order to replicate the geometry of the latter on the amorphous metal preform,
- 4) wait for a chosen maximum time,
- 5) opening of the matrices,
- 6) cooling the balance, and
- 7) output of the pendulum of the matrices.
Bien entendu, le balancier peut être aussi réalisé par coulée ou par injection. Ce procédé consiste à couler ou injecter l'alliage métallique chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe dans un moule possédant la forme de la pièce définitive.Of course, the pendulum can also be made by casting or injection. This process consists of casting or injecting the heated metal alloy at a temperature between its transition temperature vitreous and its crystallization temperature to be at least partially amorphous in a mold having the shape of the final piece.
Le moule peut être réutilisé ou dissout pour libérer les pièces. Le procédé par moulage présente l'avantage de répliquer parfaitement la géométrie du balancier, y compris d'éventuels décors ou structuration de surface. On obtient une moins grande dispersion d'inertie et un meilleur centrage sur un lot de production de balanciers. Le procédé par moulage permet d'obtenir un balancier à la géométrie esthétique, avec des angles intérieurs vifs, un profil de serge et/ou de bras bombé, et une finition parfaite. Il est également possible de prévoir une serge non continue. Pour une qualité maximale, le moule sera réalisé dans du silicium par un procédé DRIE. Il est bien évident que le moule peut également être réalisé par usinage par fraisage, laser, électroérosion ou tout autre type d'usinage.The mold can be reused or dissolved to free the parts. The molding process has the advantage of perfectly replicating the geometry of the balance, including any decorations or surface patterning. Less dispersion of inertia and better centering on a rocker production batch are obtained. The molding process provides a balance with aesthetic geometry, with sharp interior angles, a serge profile and / or curved arm, and a perfect finish. It is also possible to provide a non-continuous serge. For maximum quality, the mold will be made of silicon by a DRIE process. It is obvious that the mold can also be produced by machining by milling, laser, spark erosion or any other type of machining.
Les propriétés élastiques caractéristiques des métaux amorphes sont utilisées pour surmouler ou intégrer des éléments fonctionnels et/ou décoratifs dans la serge et/ou au niveau des bras et/ou au niveau du moyeu par exemple au moyen d'inserts correspondants placés dans le moule avant l'introduction de l'alliage métallique chauffé entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe.The characteristic elastic properties of the amorphous metals are used to overmold or integrate functional and / or decorative elements in the serge and / or at the arms and / or at the hub for example by means of corresponding inserts placed in the mold before introducing the heated metal alloy between its glass transition temperature and its crystallization temperature to be at least partially amorphous.
Indépendamment du premier ou second modes de réalisation des procédés de l'invention, la serge 2 peut comprendre des logements 12 destinés à recevoir des deuxièmes éléments de réglage de l'inertie et/ou de balourd 14, 15 comme représenté sur la
Il est bien évident que ces éléments pour augmenter l'inertie du balancier sont utilisés préférentiellement avec une serge réalisée dans un matériau de faible densité, tel que le titane ou le zirconium mais peuvent être aussi utilisés avec une serge dans un autre matériau.It is obvious that these elements to increase the inertia of the balance are used preferentially with a serge made of a low density material, such as titanium or zirconium but can also be used with a serge in another material.
Pour augmenter l'inertie du balancier, il est également possible de prévoir une serge plus épaisse ou plus large, notamment dans le cas de balanciers plus grands.To increase the inertia of the balance, it is also possible to provide a thicker or wider serge, especially in the case of larger balances.
Les logements 12 représentés sur la
Selon une autre variante de l'invention, l'un ou l'autre des procédés comprend une étape de surmoulage d'éléments de centrage flexibles 16, 17 sur le moyeu 4, sur son pourtour intérieur ou à sa surface. Ainsi, le moyeu 4 peut comprendre des éléments de centrage flexibles intégrés, qui permettent un auto-centrage du balancier lors de son montage sur un axe grâce à la déformation élastique desdits éléments de centrage flexibles.According to another variant of the invention, one or the other of the methods comprises a step of overmolding flexible centering
Selon la
Selon une autre variante de l'invention, l'un ou l'autre des procédés comprend une étape de surmoulage de troisièmes éléments de réglage de l'inertie 19, 20, 22a, 22b flexibles dans le bras 8. Ainsi, au moins l'un des bras 8 porte des troisièmes éléments de réglage de l'inertie flexibles intégrés.According to another variant of the invention, one or the other of the methods comprises a step of overmolding third
Selon la
Selon la
Selon la
Ces troisièmes éléments de réglage de l'inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l'invention.These third flexible
Ces troisièmes éléments de réglage de l'inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent être aussi bien utilisés lorsque l'ensemble du balancier est dans un même alliage métallique que lorsque les bras sont en alliage métallique, le reste du balancier, et notamment la serge, étant dans un autre matériau.These third flexible
Selon une autre variante de l'invention, on utilise dans l'un ou l'autre des procédés de l'invention un moule présentant des microstructures formant un décor ou un réseau photonique. Ainsi, l'un du bras 8, de la serge 2 et du moyeu 4 présente un état de surface structuré. Seul l'un des éléments peut présenter un état de surface structuré ou tous les éléments du balancier peuvent présenter un état de surface structuré, cet état de surface structuré pouvant être identique ou différent. La
L'alliage métallique utilisé dans les procédés de l'invention présente un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et supérieur à 7 ppm/°C, et est capable d'être sous une forme au moins partiellement amorphe lorsqu'il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation.The metal alloy used in the processes of the invention has a coefficient of thermal expansion typically less than 25 ppm / ° C and greater than 7 ppm / ° C, and is capable of being in at least partially amorphous form when it is heated to a temperature between its glass transition temperature and its crystallization temperature.
De préférence, l'alliage métallique utilisé dans les procédés de l'invention est à base d'un élément choisi parmi le groupe constitué du platine, du zirconium, du titane, du palladium, du nickel, de l'aluminium et du fer.Preferably, the metal alloy used in the processes of the invention is based on an element selected from the group consisting of platinum, zirconium, titanium, palladium, nickel, aluminum and iron.
Dans la présente description, l'expression «à base d'un élément » signifie que ledit alliage métallique contient au moins 50% en poids dudit élément.In the present description, the term "element-based" means that said metal alloy contains at least 50% by weight of said element.
Ledit alliage métallique utilisé dans la présente invention peut être à base de platine et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 12 ppm/°C.Said metal alloy used in the present invention may be platinum-based and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 12 ppm / ° C.
Un tel alliage métallique à base de platine peut être constitué, en valeurs en % atomique, de
- une base de platine dont la teneur constitue la balance,
- 13 à 17% de cuivre
- 3 à 7% de nickel
- 20 à 25% de phosphore.
- a platinum base whose content constitutes the balance,
- 13 to 17% copper
- 3 to 7% nickel
- 20 to 25% phosphorus.
L'alliage métallique utilisé dans la présente invention peut aussi être à base de zirconium et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 11 ppm/°C.The metal alloy used in the present invention can also be based on zirconium and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 11 ppm / ° C.
Un tel alliage métallique à base de zirconium peut être constitué, en valeurs en % atomique, de
- une base de zirconium dont la teneur constitue la balance,
- 14 à 20% de cuivre
- 12 à 13% de nickel
- 9 à 11 % d'aluminium
- 2 à 4 % de niobium.
- a zirconium base whose content constitutes the balance,
- 14 to 20% copper
- 12 to 13% nickel
- 9 to 11% aluminum
- 2-4% niobium.
L'alliage métallique utilisé dans la présente invention peut aussi être à base de palladium et présente un coefficient de dilatation thermique inférieur à 20 ppm/°C, de préférence compris entre 13 ppm/°C et 18 ppm/°C.The metal alloy used in the present invention may also be based on palladium and has a coefficient of thermal expansion less than 20 ppm / ° C, preferably between 13 ppm / ° C and 18 ppm / ° C.
Un tel alliage métallique à base de palladium peut être constitué, en valeurs en % atomique, de
- une base de palladium, dont la teneur constitue la balance,
- 25 à 30% de cuivre
- 8 à 12% de nickel
- 18 à 22% de phosphore.
- a palladium base, the contents of which constitute the balance,
- 25 to 30% copper
- 8 to 12% nickel
- 18 to 22% of phosphorus.
Idéalement, les alliages utilisés dans l'invention ne contiennent aucune impureté. Toutefois, ils peuvent comprendre des traces d'impuretés qui peuvent résulter, de manière souvent inévitable, de l'élaboration desdits alliages.Ideally, the alloys used in the invention contain no impurities. However, they may include traces of impurities that can result, often unavoidably, the development of said alloys.
Lorsque les alliages utilisés dans la présente invention présentent un coefficient de dilatation thermique inférieur à 12 ppm/°C et supérieur à 8 ppm/°C, ils peuvent être utilisés pour réaliser au moins une partie d'un balancier qui sera appairé à un spiral de préférence en quartz monocristallin. Les alliages utilisés dans la présente invention présentant un coefficient de dilatation thermique inférieur à 20 ppm/°C et supérieur à 13 ppm/°C peuvent être utilisés pour réaliser au moins une partie d'un balancier qui sera appairé à un spiral en métal ou en silicium.When the alloys used in the present invention have a coefficient of thermal expansion less than 12 ppm / ° C and greater than 8 ppm / ° C, they can be used to achieve at least a portion of a balance that will be paired with a hairspring preferably monocrystalline quartz. The alloys used in the present invention having a coefficient of thermal expansion of less than 20 ppm / ° C and greater than 13 ppm / ° C can be used to make at least a portion of a pendulum that will be paired with a metal hairspring or in silicon.
Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de platine est constitué, en valeurs en % atomique, de :
- 57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P
- 57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P
Un tel alliage présente un coefficient de dilatation thermique compris entre 11 et 12 ppm/°C.Such an alloy has a coefficient of thermal expansion of between 11 and 12 ppm / ° C.
Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de zirconium est constitué, en valeurs en % atomique, de :
- 58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb
- 58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb
Un tel alliage présente un coefficient de dilatation thermique compris entre 10.5 et 11 ppm/°C.Such an alloy has a coefficient of thermal expansion of between 10.5 and 11 ppm / ° C.
Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de palladium est constitué, en valeurs en % atomique, de :
- 43% Pd, 27% Cu, 10% Ni, 20% P
- 43% Pd, 27% Cu, 10% Ni, 20% P
Un tel alliage présente un coefficient de dilatation thermique compris entre 15 et 16 ppm/°C.Such an alloy has a coefficient of thermal expansion of between 15 and 16 ppm / ° C.
Ainsi, le balancier selon l'invention est réalisé dans un matériau permettant d'utiliser un procédé de fabrication simple tout en présentant un coefficient de dilatation thermique permettant de l'appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, de préférence en quartz monocristallin. Le balancier selon l'invention permet également d'avoir au moins des bras présentant un coefficient de dilatation thermique permettant de l'appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, tout en ayant une grande inertie en gardant une géométrie de serge compacte et esthétique, de petit volume, à l'aide d'une serge adéquate, soit comprenant des éléments réalisés dans un matériau de plus grande densité, soit étant elle-même réalisée dans un matériau de plus grande densité.Thus, the balance according to the invention is made of a material that makes it possible to use a simple manufacturing process while having a coefficient of thermal expansion that makes it possible to match it to a monocrystalline quartz spiral, and / or to a metal or silicon preferably monocrystalline quartz. The balance according to the invention also makes it possible to have at least arms having a coefficient of thermal expansion enabling it to be paired with a spiral of monocrystalline quartz, and / or of metal or silicon, while having great inertia while keeping a compact and aesthetic serge geometry, of small volume, using a suitable serge, or comprising elements made of a material of greater density, or being itself made of a material of greater density.
Claims (16)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17210299.8A EP3502787B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
EP20201790.1A EP3796102B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
US16/150,524 US11307535B2 (en) | 2017-12-22 | 2018-10-03 | Process for producing a balance wheel for a timepiece |
JP2018216249A JP6770049B2 (en) | 2017-12-22 | 2018-11-19 | How to make a balanced car for timekeepers |
CN202110265760.5A CN112965355A (en) | 2017-12-22 | 2018-11-30 | Method for manufacturing balance wheel of clock |
CN201811455309.4A CN109960137B (en) | 2017-12-22 | 2018-11-30 | Method for manufacturing balance wheel of clock |
US17/669,476 US11640140B2 (en) | 2017-12-22 | 2022-02-11 | Process for producing a balance wheel for a timepiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17210299.8A EP3502787B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20201790.1A Division EP3796102B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
EP20201790.1A Division-Into EP3796102B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3502787A1 true EP3502787A1 (en) | 2019-06-26 |
EP3502787B1 EP3502787B1 (en) | 2020-11-18 |
Family
ID=60811893
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20201790.1A Active EP3796102B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
EP17210299.8A Active EP3502787B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20201790.1A Active EP3796102B1 (en) | 2017-12-22 | 2017-12-22 | Method for manufacturing a balance for a timepiece |
Country Status (4)
Country | Link |
---|---|
US (2) | US11307535B2 (en) |
EP (2) | EP3796102B1 (en) |
JP (1) | JP6770049B2 (en) |
CN (2) | CN109960137B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH716669A1 (en) * | 2019-10-03 | 2021-04-15 | Richemont Int Sa | Method of manufacturing a pendulum pivot shaft. |
CN115537599A (en) * | 2022-10-13 | 2022-12-30 | 东莞理工学院 | Titanium-niobium alloy with high elastic modulus and near-zero line expansion coefficient and preparation method thereof |
CN115537598A (en) * | 2022-10-10 | 2022-12-30 | 东莞理工学院 | Wide-temperature-range adjustable linear low-thermal-expansion titanium-niobium alloy and preparation method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3796101A1 (en) * | 2019-09-20 | 2021-03-24 | Nivarox-FAR S.A. | Hairspring for clock movement |
US20220329102A1 (en) * | 2019-10-10 | 2022-10-13 | NexFi Technology Inc. | Flywheel, flywheel designing method, and flywheel power storage system |
EP3839646A1 (en) * | 2019-12-18 | 2021-06-23 | The Swatch Group Research and Development Ltd | Oscillating winding mass provided with a decorative element for automatic movement of a timepiece |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2395402A1 (en) * | 2010-06-11 | 2011-12-14 | Montres Breguet SA | High frequency balance wheel for timepiece |
EP2703909A1 (en) * | 2012-09-04 | 2014-03-05 | The Swatch Group Research and Development Ltd. | Paired balance wheel - hairspring resonator |
EP3170579A1 (en) * | 2015-11-18 | 2017-05-24 | The Swatch Group Research and Development Ltd. | Method for manufacturing a part from amorphous metal |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US387973A (en) * | 1887-12-02 | 1888-08-14 | Watch-balance | |
CH621669GA3 (en) * | 1977-12-23 | 1981-02-27 | Method of manufacturing a pivoted clockwork balance and clockwork balance obtained according to this method | |
DE1258786T1 (en) * | 2001-05-18 | 2003-08-14 | Rolex S.A., Genf/Geneve | Self-compensating spring for a mechanical oscillator of the balance spring type |
AU2003279096A1 (en) * | 2002-09-30 | 2004-04-23 | Liquidmetal Technologies | Investment casting of bulk-solidifying amorphous alloys |
CN101589347A (en) | 2006-12-21 | 2009-11-25 | 康普利计时股份有限公司 | Mechanical oscillator for timepiece |
EP2104005A1 (en) * | 2008-03-20 | 2009-09-23 | Nivarox-FAR S.A. | Composite balance and method of manufacturing thereof |
EP2104008A1 (en) * | 2008-03-20 | 2009-09-23 | Nivarox-FAR S.A. | Single-body regulating organ and method for manufacturing same |
CH707106B1 (en) | 2012-12-21 | 2014-04-30 | Montres Tudor SA | adjusting screw and watch balance wheel comprising such a screw for adjusting the inertia. |
CN206178347U (en) | 2015-11-13 | 2017-05-17 | 尼瓦洛克斯-法尔股份有限公司 | Balance, clock cassette mechanism and clock and watch spare with inertia is adjusted |
EP3182211A1 (en) | 2015-12-17 | 2017-06-21 | Nivarox-FAR S.A. | Composite part with resilient means under stress |
EP3217229B1 (en) | 2016-03-07 | 2020-01-01 | Montres Breguet S.A. | Adjustable auxiliary thermal compensation system |
EP3217228B1 (en) | 2016-03-07 | 2019-08-28 | Montres Breguet S.A. | Bimetal device sensitive to temperature changes |
EP3252545B1 (en) | 2016-06-03 | 2019-10-16 | The Swatch Group Research and Development Ltd. | Timepiece mechanism with balance wheel inertia adjustment |
-
2017
- 2017-12-22 EP EP20201790.1A patent/EP3796102B1/en active Active
- 2017-12-22 EP EP17210299.8A patent/EP3502787B1/en active Active
-
2018
- 2018-10-03 US US16/150,524 patent/US11307535B2/en active Active
- 2018-11-19 JP JP2018216249A patent/JP6770049B2/en active Active
- 2018-11-30 CN CN201811455309.4A patent/CN109960137B/en active Active
- 2018-11-30 CN CN202110265760.5A patent/CN112965355A/en active Pending
-
2022
- 2022-02-11 US US17/669,476 patent/US11640140B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2395402A1 (en) * | 2010-06-11 | 2011-12-14 | Montres Breguet SA | High frequency balance wheel for timepiece |
EP2703909A1 (en) * | 2012-09-04 | 2014-03-05 | The Swatch Group Research and Development Ltd. | Paired balance wheel - hairspring resonator |
EP3170579A1 (en) * | 2015-11-18 | 2017-05-24 | The Swatch Group Research and Development Ltd. | Method for manufacturing a part from amorphous metal |
Non-Patent Citations (1)
Title |
---|
AGILENT: "Material Expansion Coefficients", LASER AND OPTICS USER'S MANUAL, 31 December 2002 (2002-12-31), USA, XP055485562, Retrieved from the Internet <URL:https://psec.uchicago.edu/thermal_coefficients/cte_metals_05517-90143.pdf> [retrieved on 20180619] * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH716669A1 (en) * | 2019-10-03 | 2021-04-15 | Richemont Int Sa | Method of manufacturing a pendulum pivot shaft. |
CN115537598A (en) * | 2022-10-10 | 2022-12-30 | 东莞理工学院 | Wide-temperature-range adjustable linear low-thermal-expansion titanium-niobium alloy and preparation method thereof |
CN115537598B (en) * | 2022-10-10 | 2023-06-20 | 东莞理工学院 | Wide-temperature-range adjustable linear low-thermal-expansion titanium-niobium alloy and preparation method thereof |
CN115537599A (en) * | 2022-10-13 | 2022-12-30 | 东莞理工学院 | Titanium-niobium alloy with high elastic modulus and near-zero line expansion coefficient and preparation method thereof |
CN115537599B (en) * | 2022-10-13 | 2023-06-06 | 东莞理工学院 | Titanium-niobium alloy with high elastic modulus and near-zero linear expansion coefficient and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109960137A (en) | 2019-07-02 |
US20190196408A1 (en) | 2019-06-27 |
US20220163923A1 (en) | 2022-05-26 |
US11307535B2 (en) | 2022-04-19 |
JP6770049B2 (en) | 2020-10-14 |
EP3796102B1 (en) | 2022-04-20 |
CN112965355A (en) | 2021-06-15 |
CN109960137B (en) | 2021-04-09 |
EP3796102A1 (en) | 2021-03-24 |
JP2019113533A (en) | 2019-07-11 |
EP3502787B1 (en) | 2020-11-18 |
US11640140B2 (en) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3502787B1 (en) | Method for manufacturing a balance for a timepiece | |
EP2585876B1 (en) | Escapement system for a timepiece | |
EP2257855B1 (en) | Process of manufacturing of a composite balance | |
EP2400353A1 (en) | Hand for a timepiece | |
EP2585882B1 (en) | Timepiece anti-shock system | |
EP3182212B1 (en) | Composite part with resilient means under stress | |
WO2009115463A1 (en) | Integral adjusting member and method for making same | |
WO2011161080A1 (en) | Timepiece dial feet | |
EP3377247B1 (en) | Method for manufacturing a part from amorphous metal | |
WO2009115470A1 (en) | Integral hairspring made of a silicon-based material and method for making same | |
CH714514A2 (en) | Method of manufacturing a pendulum for a timepiece | |
WO2019120959A1 (en) | Balance for timepiece and method for manufacturing such a balance | |
CH714512A2 (en) | Pendulum for a timepiece and method of manufacturing such a pendulum. | |
EP2400355A1 (en) | Shockproof system for a timepiece | |
CH705420B1 (en) | Assembly of piece made of fragile material. | |
CH703343B1 (en) | Needle of timepiece. | |
CH719106A1 (en) | Multi-metallic monolithic watchmaker or jeweler component made by sintering. | |
CH711923B1 (en) | Process for manufacturing a composite part with elastic means under stress, composite part and watch assortment. | |
EP4426161A1 (en) | Contrasting watch component made by multi-metal printing | |
CH703344A2 (en) | Shock absorbing bearing for balance staff of mobile of mechanical watch, has spring that is arranged to exert axial force on pivot system and is made of partially or totally amorphous material with metal element | |
CH707017B1 (en) | Writing instrument. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200102 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200612 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017027690 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1336420 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1336420 Country of ref document: AT Kind code of ref document: T Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210218 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210219 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210218 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017027690 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201222 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201222 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210318 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211222 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 7 Ref country code: DE Payment date: 20231121 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 7 |