EP2400355A1 - Shockproof system for a timepiece - Google Patents

Shockproof system for a timepiece Download PDF

Info

Publication number
EP2400355A1
EP2400355A1 EP10166878A EP10166878A EP2400355A1 EP 2400355 A1 EP2400355 A1 EP 2400355A1 EP 10166878 A EP10166878 A EP 10166878A EP 10166878 A EP10166878 A EP 10166878A EP 2400355 A1 EP2400355 A1 EP 2400355A1
Authority
EP
European Patent Office
Prior art keywords
support
spring
elastic means
bearing according
kitten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10166878A
Other languages
German (de)
French (fr)
Inventor
Michel Willemin
Yves Winkler
Jean-Luc Helfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP10166878A priority Critical patent/EP2400355A1/en
Priority to PCT/EP2011/060284 priority patent/WO2011161079A1/en
Publication of EP2400355A1 publication Critical patent/EP2400355A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/004Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • G04B31/04Shock-damping bearings with jewel hole and cap jewel

Definitions

  • the present invention relates to an anti-shock system for a mobile axis of a timepiece.
  • the shaft comprises a beam, having a support, said support being provided with a housing adapted to receive a pivot system in which the tigeron is inserted.
  • the shockproof system further comprises elastic means arranged to exert on said pivot system at least one axial force
  • the technical field of the invention is the technical field of fine mechanics.
  • the present invention relates to bearings for timepieces, more particularly of the type for damping shocks.
  • the mechanical watch manufacturers have long since designed numerous devices allowing an axis to absorb the energy resulting from an impact, in particular a side impact, by abutment against a wall of the hole of the base block that it crosses. while allowing a momentary movement of the tigeron before it is brought back to its rest position under the action of a spring.
  • the Figures 1 and 2 illustrate an inverted double-cone device that is currently used in timepieces on the market.
  • the kitten 20 is held in a housing 6 of the support 1 by a spring 10 which comprises in this example radial extensions 9 compressing the
  • the housing 6 comprises two bearing surfaces 7, 7a in the form of inverted cones on which support complementary bearing surfaces 8, 8a of the kitten 20, said bearing surfaces to be executed with very high precision.
  • the pierced stone 4, the counter pivot stone 5 and the axis of the balance arm move and the spring 10 acts alone to bring the balance shaft 3 back to its initial position.
  • the spring 10 is dimensioned to have a limit of displacement so that beyond this limit, the balance shaft 3 comes into contact with abutments 14 allowing said axis 3 to absorb the shock, which the tigers 3a of Axis 3 can not do without breaking.
  • the spring 10 cooperates with the complementary inclined planes 7, 7a; 8, 8a to refocus the kitten 20.
  • Such bearings have for example been sold under the trademark Incabloc®.
  • These springs can be made of phynox or brass and are manufactured by traditional means of cutting.
  • the use of crystalline metals for these springs can cause some problems. Indeed, the crystalline metals are characterized by a low elasticity that can lead to plastic deformation if the shocks are too high. This problem is amplified by the fact that the current springs can not be designed with complex shapes and, therefore, the elastic deformation of the current springs is very close to the elastic limit.
  • This permanent deformation can also occur during handling of said springs during their installation, when they are removed for lubrication operations or during retouching or after-sales operations.
  • the object of the invention is to overcome the drawbacks of the prior art by proposing to provide a shock-proof timepiece system that is more efficient and more shock-resistant.
  • the invention relates to the shockproof timepiece system cited above which is characterized in that the spring is made of at least partially amorphous material.
  • a first advantage of the present invention is to allow shock systems to better withstand shocks. Indeed, amorphous materials have more interesting elastic characteristics.
  • the elastic limit ⁇ e is increased, which makes it possible to increase the ratio ⁇ e / E so that the material sees the stress beyond which it does not return to its initial shape to increase. The spring can then undergo a higher stress before plastically deforming and the workpiece can thus suffer greater shocks without the anti-shock system losing efficiency.
  • Another advantage of the present invention is to make it possible to produce smaller springs. Indeed, as the amorphous materials are able to withstand higher stresses before deforming plastically, it is possible to make smaller springs without losing resistance.
  • the amorphous metal is very easy to shape and allows the manufacture of complicated shapes with greater precision. This is due to the particular characteristics of the amorphous metal which can soften while remaining amorphous for a certain time in a given temperature range [T g - T x ] specific to each alloy. It is thus possible to shape it under a relatively low stress and at a low temperature then allowing the use of a simplified process such as hot forming, while reproducing very precisely fine geometries because the viscosity of the alloy decreases significantly as a function of temperature in said temperature range [T g - T x ]. Therefore, it becomes possible to achieve complex and precise springs but simply.
  • the present invention proceeds from the general inventive idea of providing a shock absorbing system having greater reliability by using an at least partially amorphous material having at least one metal element.
  • the present invention can take different forms.
  • FIG. 1 and 2 already mentioned allow to illustrate an anti-shock system according to a first embodiment.
  • This system comprises a support 1, whose base comprises a hole 2 for the passage of the balance shaft 3 terminated by a tigeron 3a, which allows to position a kitten 20 in which are immobilized a pierced stone 4 crossed by the tigeron 3a and a counter pivot stone 5.
  • the support 1 is a part of revolution comprising a circular flange 11.
  • This flange 11 is interrupted in two diametrically opposite locations by an opening 12 so as to create two semi-circular flanges 11a, 11b.
  • the opening 12 is formed partly in the two semi-circular flanges 11a, 11b so as to materialize two returns 13.
  • the kitten 20 is held in a housing 6 of the support 1 by elastic means such as a spring 10 which comprises in this example radial extensions 9 compressing the counter pivot stone 5.
  • the spring 10 is of the axial type and has a form of lyre arranged to bear under the return semicircular rims 11a, 11b.
  • the housing 6 comprises two bearing surfaces 7, 7a in the form of inverted cones on which support complementary bearing surfaces 8, 8a of the kitten 20, said bearing surfaces to be executed with very high accuracy.
  • the spring 10 acts alone to bring the balance shaft 3 back to its initial position.
  • the spring 10 cooperates with the complementary inclined planes 7, 7a; 8, 8a to refocus the kitten 20.
  • the Figures 3 and 4 illustrate an anti-shock system according to a second embodiment.
  • the bearing comprises a support 101 of circular shape delimiting a housing 106 whose center is pierced with a hole 102 to allow the passage of a balance shaft 103 terminated by a rod 103a.
  • the support 101 can be either an independent part driven or fixed by any other means in the frame of the watch movement, or be part of another part of the movement, such as a bridge or a plate.
  • the kitten 120 which supports the pierced stone 104 traversed by the tigeron 103a and the counter-pivot stone 105 is suspended in the housing 106 by a spring 110.
  • the spring 110 shown in perspective at the figure 5 , is of the radial type and is composed of three parts.
  • a first part is constituted by a scalloped peripheral rigid ring 111 which is mounted in force against the wall 106a of the housing 106 by resting on a bead 106b located at the bottom of the housing 106 so as to provide a space allowing a certain axial movement of the spring 110.
  • the second part consists of a central rigid support 113 of generally annular shape.
  • the pierced stone 104 is driven into the opening of the support 113 whose inner wall 113a has a number of recesses 117 whose main purpose is to provide a certain elasticity for non-destructive hunting of the pierced stone 104.
  • the third part the spring 110 is constituted by elastic means 112 joining the peripheral ring 111 and the central support 113, said elastic means 112 being chosen to have a reaction force both along the axis of the beam and perpendicularly thereto.
  • the kitten 120 is made of two parts.
  • a first part integrated in the spring 110, is constituted by the central support 113 supporting the pierced stone 104, as described above.
  • a second part is constituted by a cover 123 which is fitted on the central support 113 to immobilize the counter pivot stone 105 on the upper surface 113b.
  • the casing of the cover 123 is obtained by means of tabs 125 extending along the outer wall 113c of the central support 113, through recesses 115 provided in said wall 113c between the attachment points of the arm 114, 116, 118.
  • To secure the casing of the cover 123 on the central support 113 can for example perform a bonding, welding or riveting.
  • the pierced stone 104 and the counter-pivot stone 105 can both be crimped or driven inside the wall 113a of the rigid central support 113, provided of course to give said wall a sufficient height, which will be generally greater than the height of the remainder of the spring 110.
  • the elastic means are formed by three curved arms 114, 116, 118 whose attachment points, respectively to the peripheral ring 111 and the central support 113, are angularly offset by 120 degrees. It is obvious that the elastic function could be ensured with a different number of arms, or with other forms.
  • the spring 10, 110 is made of an amorphous material or at least partially amorphous.
  • a material comprising at least one metal element is used.
  • the material will be an amorphous metal alloy. It will be understood by at least partially amorphous material that the material is capable of solidifying at least partially in amorphous phase, that is to say that it is able to locally avoid that its atoms do not arrange in crystalline form by means of a sufficient cooling rate.
  • the advantage of these amorphous metal alloys comes from the fact that, during their manufacture, the atoms of these amorphous materials do not arrange according to a particular structure as is the case for crystalline materials.
  • the elastic limit ⁇ e is different.
  • An amorphous metal is thus differentiated by an elastic limit ⁇ e higher than that of the crystalline metal by a factor of about two to three. This allows the amorphous metals to be able to undergo a greater stress before reaching the elastic limit ⁇ e .
  • Amorphous metals deform plastically more difficultly and break fragile way when the applied stress exceeds the elastic limit.
  • the metal element of said material may then comprise gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium.
  • Such springs 10, 110 have the advantage of having higher strength and longevity compared to their crystalline metal counterparts.
  • a spring 10, 110 of amorphous metal has a better resistance to the stresses applied to it during an impact because it will deform elastically over a wider stress interval and return to its initial position once the shock completed.
  • this stress interval, in which the spring 10, 110 is elastically deformed is wider for a spring 10, 110 of amorphous metal than for its crystalline metal equivalent, it allows said spring 10, 110 of amorphous metal to withstand constraints that would plastically deform a similar spring of crystalline metal.
  • these springs 10, 110 are no longer unfolded to return them to their original position and therefore they get tired less which improves their longevity.
  • the spring 10, 110 using the properties of the amorphous metals.
  • the use of such a material also makes it possible to reproduce very precisely fine geometries because the viscosity of the alloy decreases strongly as a function of the temperature in the temperature range [T g - T x ] and the alloy marries so all the details of the mold.
  • the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity of 10 12 Pa. at the temperature T g .
  • the hot forming of the metal or amorphous alloy thus makes it possible to produce complex and precise parts but also a good reproducibility of the part which is a consequent advantage for the mass production such as that of the damping system springs.
  • the casting is used.
  • This process involves casting the alloy obtained by melting the metal elements in a mold having the shape of the final piece. Once the mold filled, it is cooled rapidly to a temperature below T g to prevent crystallization of the alloy and thus obtain a spring amorphous or partially amorphous metal.
  • T g temperature below T g
  • the advantage of casting an amorphous metal with respect to the casting of a crystalline metal is to be more precise.
  • the solidification shrinkage, for an amorphous metal is very low, less than 1% relative to that of the crystalline metals which is 5 to 7%.
  • pivot-facing stone 5, 105 comprises a conical recess so that the end of the taper 3a, 103a can be inserted therein to have a difference in amplitude between the different positions of the watch minimized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)

Abstract

The bearing has a support (1) equipped with a housing designed to receive a pivot system into which a rod is inserted. A base of the support comprising a hole is provided for passage of a staff by a rod. Resilient units i.e. springs (10), exert axial force on the pivot system. The resilient units are made from partially amorphous metal alloy including a metal element selected in a list comprising gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium. The resilient units are in the shape of a loop.

Description

La présente invention concerne un système antichoc pour un axe d'un mobile d'une pièce d'horlogerie. L'axe comprend un tigeron, comportant un support, ledit support étant pourvu d'un logement prévu pour recevoir un système pivot dans lequel le tigeron est inséré. Le système antichoc comprend en outre des moyens élastiques agencés pour exercer sur ledit système pivot au moins une force axialeThe present invention relates to an anti-shock system for a mobile axis of a timepiece. The shaft comprises a beam, having a support, said support being provided with a housing adapted to receive a pivot system in which the tigeron is inserted. The shockproof system further comprises elastic means arranged to exert on said pivot system at least one axial force

Le domaine technique de l'invention est le domaine technique de la mécanique fine.The technical field of the invention is the technical field of fine mechanics.

ARRIERE PLAN TECHNOLOGIQUEBACKGROUND TECHNOLOGY

La présente invention concerne des paliers pour pièces d'horlogerie, plus particulièrement du type permettant d'amortir les chocs. Les constructeurs de montres mécaniques ont conçu depuis longtemps de nombreux dispositifs permettant à un axe d'absorber l'énergie résultant d'un choc, notamment d'un choc latéral, par butée contre une paroi du trou du bloc de base qu'il traverse, tout en permettant un déplacement momentané du tigeron avant qu'il ne soit ramené à sa position de repos sous l'action d'un ressort.The present invention relates to bearings for timepieces, more particularly of the type for damping shocks. The mechanical watch manufacturers have long since designed numerous devices allowing an axis to absorb the energy resulting from an impact, in particular a side impact, by abutment against a wall of the hole of the base block that it crosses. while allowing a momentary movement of the tigeron before it is brought back to its rest position under the action of a spring.

Les figures 1 et 2 illustrent un dispositif dit à double cône inversé qui est actuellement utilisé dans des pièces d'horlogerie se trouvant sur le marché.The Figures 1 and 2 illustrate an inverted double-cone device that is currently used in timepieces on the market.

Un support 1, dont la base comporte un trou 2 pour le passage de l'axe de balancier 3 terminé par un tigeron 3a, permet de positionner un chaton 20 dans lequel sont immobilisées une pierre percée 4 traversée par le tigeron 3a et une pierre contre-pivot 5. Le chaton 20 est maintenu dans un logement 6 du support 1 par un ressort 10 qui comprend dans cet exemple des extensions radiales 9 comprimant la pierre contre-pivot 5. Le logement 6 comporte deux portées 7, 7a en forme de cônes inversés sur lesquelles prennent appui des portées complémentaires 8, 8a du chaton 20, lesdites portées devant être exécutées avec une très grande précision. En cas de choc axial, la pierre percée 4, la pierre contre-pivot 5 et l'axe du balancier se déplacent et le ressort 10 agit seul pour ramener l'axe de balancier 3 dans sa position initiale. Le ressort 10 est dimensionné pour avoir une limite de déplacement de sorte qu'au delà de cette limite, l'axe de balancier 3 arrive en contact avec des butées 14 permettant audit axe 3 d'absorber le choc, ce que les tigerons 3a de l'axe 3 ne peuvent faire sous peine de casser. En cas de choc latéral, c'est-à-dire lorsque l'extrémité du tigeron déséquilibre le chaton 20 hors de son plan de repos, le ressort 10 coopère avec les plans inclinés complémentaires 7, 7a ; 8, 8a pour recentrer le chaton 20. De tels paliers ont par exemple été vendus sous la marque Incabloc®. Ces ressorts peuvent être réalisés en phynox ou laiton et sont fabriqués par des moyens traditionnels de découpage.A support 1, whose base comprises a hole 2 for the passage of the balance shaft 3 terminated by a tigeron 3a, allows positioning a kitten 20 in which are immobilized a pierced stone 4 traversed by the shank 3a and a counter pivot stone 5. The kitten 20 is held in a housing 6 of the support 1 by a spring 10 which comprises in this example radial extensions 9 compressing the The housing 6 comprises two bearing surfaces 7, 7a in the form of inverted cones on which support complementary bearing surfaces 8, 8a of the kitten 20, said bearing surfaces to be executed with very high precision. In the event of an axial impact, the pierced stone 4, the counter pivot stone 5 and the axis of the balance arm move and the spring 10 acts alone to bring the balance shaft 3 back to its initial position. The spring 10 is dimensioned to have a limit of displacement so that beyond this limit, the balance shaft 3 comes into contact with abutments 14 allowing said axis 3 to absorb the shock, which the tigers 3a of Axis 3 can not do without breaking. In case of lateral impact, that is to say when the end of the tigeron imbalances the kitten 20 out of its resting plane, the spring 10 cooperates with the complementary inclined planes 7, 7a; 8, 8a to refocus the kitten 20. Such bearings have for example been sold under the trademark Incabloc®. These springs can be made of phynox or brass and are manufactured by traditional means of cutting.

Or, l'utilisation de métaux cristallins pour ces ressorts peut entraîner certains problèmes. Effectivement, les métaux cristallins se caractérisent par une faible élasticité pouvant entraîner une déformation plastique si les chocs sont trop élevés. Ce problème est amplifié par le fait que les ressorts actuels ne peuvent pas être conçus avec des formes complexes et, de ce fait, la déformation élastique des ressorts actuels est très proche de la limite élastique.However, the use of crystalline metals for these springs can cause some problems. Indeed, the crystalline metals are characterized by a low elasticity that can lead to plastic deformation if the shocks are too high. This problem is amplified by the fact that the current springs can not be designed with complex shapes and, therefore, the elastic deformation of the current springs is very close to the elastic limit.

Ainsi, si un choc trop important est appliqué sur la pièce d'horlogerie, le déplacement des pierres et du balancier peut être de grande amplitude et, par conséquent, une déformation plastique c'est-à-dire permanente du ressort peut se produire. Le ressort devient moins efficace pour amortir les chocs et recentrer l'axe du balancier dans sa position de repos car il ne reprend plus sa forme d'origine et perd donc en élasticité.Thus, if an excessive shock is applied to the timepiece, the movement of the stones and the balance can be of great amplitude and, therefore, a plastic deformation that is to say permanent spring can occur. The spring becomes less efficient for damping shocks and refocus the axis of the balance in its rest position because it does not resume its original form and therefore loses elasticity.

Cette déformation permanente peut également se produire lors de la manipulation desdits ressorts lors de leur mise en place, lorsqu'ils sont retirés pour des opérations de lubrification ou lors des opérations de retouche ou de service après vente.This permanent deformation can also occur during handling of said springs during their installation, when they are removed for lubrication operations or during retouching or after-sales operations.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention a pour but de pallier les inconvénients de l'art antérieur en proposant de fournir un système antichoc de pièce d'horlogerie plus performant et qui résiste mieux aux chocs.The object of the invention is to overcome the drawbacks of the prior art by proposing to provide a shock-proof timepiece system that is more efficient and more shock-resistant.

A cet effet, l'invention concerne le système antichoc de pièce d'horlogerie cité ci-dessus qui se caractérise en ce que le ressort est réalisé en matériau au moins partiellement amorphe.For this purpose, the invention relates to the shockproof timepiece system cited above which is characterized in that the spring is made of at least partially amorphous material.

Un premier avantage de la présente invention est de permettre aux systèmes antichocs de mieux supporter les chocs. En effet, les matériaux amorphes ont des caractéristiques élastiques plus intéressantes. La limite élastique σe est augmentée, ce qui permet d'augmenter le rapport σe/E de sorte que le matériau voit la contrainte au-delà de laquelle il ne reprend pas sa forme initiale augmenter. Le ressort peut alors subir une plus forte contrainte avant de se déformer plastiquement et la pièce peut ainsi subir des chocs plus importants sans que le système antichoc ne perde en efficacité.A first advantage of the present invention is to allow shock systems to better withstand shocks. Indeed, amorphous materials have more interesting elastic characteristics. The elastic limit σ e is increased, which makes it possible to increase the ratio σ e / E so that the material sees the stress beyond which it does not return to its initial shape to increase. The spring can then undergo a higher stress before plastically deforming and the workpiece can thus suffer greater shocks without the anti-shock system losing efficiency.

Un autre avantage de la présente invention est de permettre de réaliser des ressorts plus petits. En effet, comme les matériaux amorphes sont capables de supporter des contraintes plus élevées avant de se déformer plastiquement, il est possible de réaliser des ressorts de plus faibles dimensions sans perdre en résistance.Another advantage of the present invention is to make it possible to produce smaller springs. Indeed, as the amorphous materials are able to withstand higher stresses before deforming plastically, it is possible to make smaller springs without losing resistance.

Des modes de réalisation avantageux de ce système antichoc font l'objet des revendications dépendantes 2 à 9.Advantageous embodiments of this anti-shock system are the subject of dependent claims 2 to 9.

Un des avantages de ces modes de réalisation est de permettre de réaliser des ressorts de formes plus complexes. En effet, le métal amorphe est très facile à mettre en forme et permet la fabrication de pièces aux formes compliquées avec une plus grande précision. Ceci est dû aux caractéristiques particulières du métal amorphe qui peut se ramollir tout en restant amorphe durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage. Il est ainsi possible de le mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud, tout en reproduisant très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans ledit intervalle de température [Tg - Tx]. Par conséquent, il devient possible de réaliser des ressorts complexes et précis mais simplement.One of the advantages of these embodiments is to make it possible to produce springs of more complex shapes. Indeed, the amorphous metal is very easy to shape and allows the manufacture of complicated shapes with greater precision. This is due to the particular characteristics of the amorphous metal which can soften while remaining amorphous for a certain time in a given temperature range [T g - T x ] specific to each alloy. It is thus possible to shape it under a relatively low stress and at a low temperature then allowing the use of a simplified process such as hot forming, while reproducing very precisely fine geometries because the viscosity of the alloy decreases significantly as a function of temperature in said temperature range [T g - T x ]. Therefore, it becomes possible to achieve complex and precise springs but simply.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

Les buts, avantages et caractéristiques du système antichoc selon la présente invention apparaîtront plus clairement dans la description détaillée suivante d'au moins une forme de réalisation de l'invention donnée uniquement à titre d'exemple non limitatif et illustrée par les dessins annexés sur lesquels :

  • les figures 1 et 2, déjà citées, permettent de représenter de manière schématique un système antichoc de pièce d'horlogerie selon un premier mode de réalisation de l'invention;
  • les figures 3 à 5 représentent de manière schématique un système antichoc de pièce d'horlogerie selon un second mode de réalisation de l'invention;
The objects, advantages and characteristics of the anti-shock system according to the present invention will appear more clearly in the following detailed description of at least one embodiment of the invention given solely by way of nonlimiting example and illustrated by the appended drawings in which: :
  • the Figures 1 and 2 , already mentioned, allow to schematically represent a shockproof timepiece system according to a first embodiment of the invention;
  • the Figures 3 to 5 show schematically a shockproof timepiece system according to a second embodiment of the invention;

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

La présente invention procède de l'idée générale inventive qui consiste à procurer un système amortisseur de choc ayant une plus grande fiabilité par utilisation d'un matériau au moins partiellement amorphe ayant au moins un élément métallique. La présente invention peut prendre différentes formes.The present invention proceeds from the general inventive idea of providing a shock absorbing system having greater reliability by using an at least partially amorphous material having at least one metal element. The present invention can take different forms.

Les figures 1 et 2 déjà citées permettent d'illustrer un système antichoc selon un premier mode de réalisation. Ce système comprend un support 1, dont la base comporte un trou 2 pour le passage de l'axe de balancier 3 terminé par un tigeron 3a, qui permet de positionner un chaton 20 dans lequel sont immobilisées une pierre percée 4 traversée par le tigeron 3a et une pierre contre-pivot 5. Le support 1 est une pièce de révolution comprenant un rebord circulaire 11. Ce rebord 11 est interrompu en deux endroits diamétralement opposés par une ouverture 12 de sorte à créer deux rebords semi-circulaires 11a, 11 b. L'ouverture 12 est ménagée pour partie dans les deux rebords semi-circulaires 11 a, 11 b de façon à matérialiser deux retours 13. Le chaton 20 est maintenu dans un logement 6 du support 1 par des moyens élastiques tels un ressort 10 qui comprend dans cet exemple des extensions radiales 9 comprimant la pierre contre-pivot 5. Le ressort 10 est du type axiale et présente une forme de lyre agencée pour prendre appui sous les retours des rebords semi-circulaires 11 a, 11 b. Le logement 6 comporte deux portées 7, 7a en forme de cônes inversés sur lesquelles prennent appui des portées complémentaires 8, 8a du chaton 20, lesdites portées devant être exécutées avec une très grande précision. En cas de choc axial, le ressort 10 agit seul pour ramener l'axe de balancier 3 dans sa position initiale. En cas de choc latéral, c'est-à-dire lorsque l'extrémité du tigeron déséquilibre le chaton 20 hors de son plan de repos, le ressort 10 coopère avec les plans inclinés complémentaires 7, 7a ; 8, 8a pour recentrer le chaton 20.The Figures 1 and 2 already mentioned allow to illustrate an anti-shock system according to a first embodiment. This system comprises a support 1, whose base comprises a hole 2 for the passage of the balance shaft 3 terminated by a tigeron 3a, which allows to position a kitten 20 in which are immobilized a pierced stone 4 crossed by the tigeron 3a and a counter pivot stone 5. The support 1 is a part of revolution comprising a circular flange 11. This flange 11 is interrupted in two diametrically opposite locations by an opening 12 so as to create two semi-circular flanges 11a, 11b. The opening 12 is formed partly in the two semi-circular flanges 11a, 11b so as to materialize two returns 13. The kitten 20 is held in a housing 6 of the support 1 by elastic means such as a spring 10 which comprises in this example radial extensions 9 compressing the counter pivot stone 5. The spring 10 is of the axial type and has a form of lyre arranged to bear under the return semicircular rims 11a, 11b. The housing 6 comprises two bearing surfaces 7, 7a in the form of inverted cones on which support complementary bearing surfaces 8, 8a of the kitten 20, said bearing surfaces to be executed with very high accuracy. In the event of an axial impact, the spring 10 acts alone to bring the balance shaft 3 back to its initial position. In case of lateral impact, that is to say when the end of the tigeron imbalances the kitten 20 out of its resting plane, the spring 10 cooperates with the complementary inclined planes 7, 7a; 8, 8a to refocus the kitten 20.

Les figures 3 et 4 illustrent un système antichoc selon un second mode de réalisation. Le palier comporte un support 101 de forme circulaire délimitant un logement 106 dont le centre est percé d'un trou 102 pour permettre le passage d'un axe de balancier 103 terminé par un tigeron 103a.The Figures 3 and 4 illustrate an anti-shock system according to a second embodiment. The bearing comprises a support 101 of circular shape delimiting a housing 106 whose center is pierced with a hole 102 to allow the passage of a balance shaft 103 terminated by a rod 103a.

Le support 101 peut être soit une pièce indépendante chassée ou fixée par tout autre moyen dans le bâti du mouvement horloger, soit faire partie d'une autre pièce du mouvement, tel qu'un pont ou une platine.The support 101 can be either an independent part driven or fixed by any other means in the frame of the watch movement, or be part of another part of the movement, such as a bridge or a plate.

Comme on peut le voir, le chaton 120 qui supporte la pierre percée 104 traversée par le tigeron 103a et la pierre contre-pivot 105 est suspendu dans le logement 106 par un ressort 110. Le ressort 110, représenté en perspective à la figure 5, est du type radial et est composé de trois parties. Une première partie est constituée par un anneau rigide périphérique festonné 111 qui est monté en force contre la paroi 106a du logement 106 en prenant appui sur un bourrelet 106b situé au fond du logement 106 de façon à ménager un espace permettant un certain débattement axial du ressort 110. La deuxième partie est constituée par un support rigide central 113 de forme générale annulaire. Comme on le voit sur la figure 5, la pierre percée 104 est chassée dans l'ouverture du support 113 dont la paroi intérieure 113a comporte un certain nombre d'évidements 117 ayant essentiellement pour but de procurer une certaine élasticité permettant un chassage non destructif de la pierre percée 104. La troisième partie du ressort 110 est constituée par des moyens élastiques 112 joignant l'anneau périphérique 111 et le support central 113, lesdits moyens élastiques 112 étant choisis pour avoir une force de réaction à la fois selon l'axe du balancier et perpendiculairement à celui-ci. Le chaton 120 est formé de deux parties. Une première partie intégrée au ressort 110, est constituée par le support central 113 supportant la pierre percée 104, comme décrit précédemment. Une deuxième partie est constituée par un capot 123 qui vient s'emboîter sur le support central 113 pour immobiliser la pierre contre-pivot 105 sur la portée supérieure 113b. Dans l'exemple représenté, l'emboîtage du capot 123 est obtenu au moyen de pattes 125 s'étendant le long de la paroi extérieure 113c du support central 113, à travers des dégagements 115 prévus dans ladite paroi 113c entre les points de fixation des bras 114, 116, 118. Les zones où le capot 123 ne comporte pas de pattes 125, viennent en appui sur la portée supérieure 113b du support central 113. Pour sécuriser l'emboîtage du capot 123 sur le support central 113 on peut par exemple effectuer un collage, un soudage ou un rivetage.As can be seen, the kitten 120 which supports the pierced stone 104 traversed by the tigeron 103a and the counter-pivot stone 105 is suspended in the housing 106 by a spring 110. The spring 110, shown in perspective at the figure 5 , is of the radial type and is composed of three parts. A first part is constituted by a scalloped peripheral rigid ring 111 which is mounted in force against the wall 106a of the housing 106 by resting on a bead 106b located at the bottom of the housing 106 so as to provide a space allowing a certain axial movement of the spring 110. The second part consists of a central rigid support 113 of generally annular shape. As we see on the figure 5 , the pierced stone 104 is driven into the opening of the support 113 whose inner wall 113a has a number of recesses 117 whose main purpose is to provide a certain elasticity for non-destructive hunting of the pierced stone 104. The third part the spring 110 is constituted by elastic means 112 joining the peripheral ring 111 and the central support 113, said elastic means 112 being chosen to have a reaction force both along the axis of the beam and perpendicularly thereto. The kitten 120 is made of two parts. A first part integrated in the spring 110, is constituted by the central support 113 supporting the pierced stone 104, as described above. A second part is constituted by a cover 123 which is fitted on the central support 113 to immobilize the counter pivot stone 105 on the upper surface 113b. In the example shown, the casing of the cover 123 is obtained by means of tabs 125 extending along the outer wall 113c of the central support 113, through recesses 115 provided in said wall 113c between the attachment points of the arm 114, 116, 118. The areas where the cover 123 does not have tabs 125, bear on the upper bearing surface 113b of the central support 113. To secure the casing of the cover 123 on the central support 113 can for example perform a bonding, welding or riveting.

Bien entendu, la pierre percée 104 et la pierre contre-pivot 105 peuvent être toutes deux serties ou chassées à l'intérieur de la paroi 113a du support central rigide 113, à condition bien entendu de donner à ladite paroi une hauteur suffisante, qui sera généralement supérieure à la hauteur du reste du ressort 110.Of course, the pierced stone 104 and the counter-pivot stone 105 can both be crimped or driven inside the wall 113a of the rigid central support 113, provided of course to give said wall a sufficient height, which will be generally greater than the height of the remainder of the spring 110.

Dans un exemple de la figure 5, les moyens élastiques sont formés par trois bras recourbés 114, 116, 118 dont les points d'attache, respectivement à l'anneau périphérique 111 et au support central 113, sont décalés angulairement de 120 degré. Il est bien évident que la fonction élastique pourrait être assurée avec un nombre différent de bras, ou avec d'autres formes.In an example of the figure 5 , the elastic means are formed by three curved arms 114, 116, 118 whose attachment points, respectively to the peripheral ring 111 and the central support 113, are angularly offset by 120 degrees. It is obvious that the elastic function could be ensured with a different number of arms, or with other forms.

Avantageusement, le ressort 10, 110 est réalisé en un matériau amorphe ou au moins partiellement amorphe. En particulier, on utilise un matériau comprenant au moins un élément métallique. Préférentiellement, le matériau sera un alliage métallique amorphe. On comprendra par matériau au moins partiellement amorphe que le matériau est apte à se solidifier au moins partiellement en phase amorphe, c'est-à-dire qu'il est apte à éviter localement que ses atomes ne s'arrangent sous forme cristalline moyennant une vitesse de refroidissement suffisante.Advantageously, the spring 10, 110 is made of an amorphous material or at least partially amorphous. In particular, a material comprising at least one metal element is used. Preferably, the material will be an amorphous metal alloy. It will be understood by at least partially amorphous material that the material is capable of solidifying at least partially in amorphous phase, that is to say that it is able to locally avoid that its atoms do not arrange in crystalline form by means of a sufficient cooling rate.

En effet, l'avantage de ces alliages métalliques amorphes vient du fait que, lors de leur fabrication, les atomes composant ces matériaux amorphes ne s'arrangent pas selon une structure particulière comme c'est le cas pour les matériaux cristallins. Ainsi, même si le module d'Young E d'un métal cristallin et d'un métal amorphe est sensiblement identique, la limite élastique σe est différente. Un métal amorphe se différencie ainsi par une limite élastique σe plus élevée que celle du métal cristallin d'un facteur d'environ deux à trois. Cela permet aux métaux amorphes de pouvoir subir une plus forte contrainte avant d'arriver à la limite élastique σe. Les métaux amorphes se déforment plastiquement plus difficilement et cassent de manière fragile lorsque la contrainte appliquée dépasse la limite élastique. De façon surprenante, les métaux amorphes précieux présentent de bonnes caractéristiques mécaniques. L'élément métallique dudit matériau peut alors comporter de l'or, du platine, du palladium, du rhénium, du ruthénium, du rhodium, de l'argent, de l'iridium ou de l'osmium.Indeed, the advantage of these amorphous metal alloys comes from the fact that, during their manufacture, the atoms of these amorphous materials do not arrange according to a particular structure as is the case for crystalline materials. Thus, even if the Young's modulus E of a crystalline metal and an amorphous metal is substantially identical, the elastic limit σ e is different. An amorphous metal is thus differentiated by an elastic limit σ e higher than that of the crystalline metal by a factor of about two to three. This allows the amorphous metals to be able to undergo a greater stress before reaching the elastic limit σ e . Amorphous metals deform plastically more difficultly and break fragile way when the applied stress exceeds the elastic limit. Surprisingly, precious amorphous metals have good mechanical properties. The metal element of said material may then comprise gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium.

De tels ressorts 10, 110 ont l'avantage d'avoir une résistance et une longévité plus élevée par rapport à leurs équivalents en métal cristallin.Such springs 10, 110 have the advantage of having higher strength and longevity compared to their crystalline metal counterparts.

En effet, comme le métal amorphe a une limite élastique plus élevée, il est nécessaire d'appliquer une contrainte plus élevée pour le déformer plastiquement. De ce fait, un ressort 10, 110 en métal amorphe a une meilleure résistance aux contraintes qui lui sont appliquées lors d'un choc car il va se déformer élastiquement sur un intervalle de contraintes plus large et revenir à sa position initiale une fois le choc terminé. Comme cet intervalle de contraintes, dans lequel le ressort 10, 110 se déforme élastiquement, est plus large pour un ressort 10, 110 en métal amorphe que pour son équivalent en métal cristallin, il permet audit ressort 10, 110 en métal amorphe de supporter des contraintes qui déformeraient plastiquement un ressort semblable en métal cristallin. Dès lors que la déformation est élastique, ces ressorts 10, 110 ne sont plus à déplier pour les remettre dans leur position initiale et donc ils se fatiguent moins ce qui améliore ainsi leur longévité.Indeed, since the amorphous metal has a higher elastic limit, it is necessary to apply a higher stress to deform plastically. As a result, a spring 10, 110 of amorphous metal has a better resistance to the stresses applied to it during an impact because it will deform elastically over a wider stress interval and return to its initial position once the shock completed. As this stress interval, in which the spring 10, 110 is elastically deformed, is wider for a spring 10, 110 of amorphous metal than for its crystalline metal equivalent, it allows said spring 10, 110 of amorphous metal to withstand constraints that would plastically deform a similar spring of crystalline metal. As soon as the deformation is elastic, these springs 10, 110 are no longer unfolded to return them to their original position and therefore they get tired less which improves their longevity.

Par ailleurs, comme la limite élastique d'un métal amorphe est plus élevée que celle d'un métal cristallin d'un facteur d'environ deux à trois permettant de résister à des contraintes plus élevées, il est envisageable de réduire les dimensions dudit ressort 10, 110. En effet, comme un ressort 10, 110 de système d'antichoc en métal amorphe peut supporter une plus forte contrainte sans se déformer plastiquement, il est alors possible, à contrainte équivalente, de réduire les dimensions du ressort 10, 110 par rapport à un ressort analogue réalisé en un métal cristallin.Moreover, since the elastic limit of an amorphous metal is higher than that of a crystalline metal by a factor of approximately two to three, making it possible to withstand higher stresses, it is conceivable to reduce the dimensions of said spring 10, 110. Indeed, as a spring 10, 110 shockproof system of amorphous metal can withstand a higher stress without plastically deforming, it is then possible, with equivalent stress, to reduce the dimensions of the spring 10, 110 relative to a similar spring made of a crystalline metal.

Pour réaliser ces ressorts 10, 110, plusieurs méthodes sont envisageables.To achieve these springs 10, 110, several methods are possible.

Premièrement, il est possible de les réaliser comme dans l'art antérieur, c'est-à-dire par découpage par fil ou jet d'eau ou par usinage ou étampage.First, it is possible to achieve them as in the prior art, that is to say by cutting by wire or water jet or by machining or stamping.

Néanmoins, il peut être envisagé de réaliser le ressort 10, 110 en utilisant les propriétés des métaux amorphes. En effet, le métal amorphe présente une grande facilité dans la mise en forme permettant la fabrication de pièces aux formes compliquées avec une plus grande précision. Ceci est dû aux caractéristiques particulières du métal amorphe qui peut se ramollir tout en restant amorphe durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (par exemple pour un alliage Zr41.24Ti13.77Cu12.7Ni10Be22.7, Tg=350°C et Tx=460°C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud. L'utilisation d'un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails du moule. Par exemple, pour un matériau à base de platine, la mise en forme se fait aux alentours de 300°C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1MPa, au lieu d'une viscosité de 1012 Pa.s à la température Tg.Nevertheless, it can be envisaged to make the spring 10, 110 using the properties of the amorphous metals. Indeed, the amorphous metal has a great ease in shaping allowing the manufacture of parts with complicated shapes with greater precision. This is due to the special characteristics of the amorphous metal which can soften while remaining amorphous for a certain time in a given temperature range [T g - T x ] specific to each alloy (for example for an alloy Zr 41.24 Ti 13.77 Cu 12.7 Ni 10 Be 22.7 , T g = 350 ° C and T x = 460 ° C). It is thus possible to shape them under a relatively low stress and at a low temperature then allowing the use of a simplified process such as hot forming. The use of such a material also makes it possible to reproduce very precisely fine geometries because the viscosity of the alloy decreases strongly as a function of the temperature in the temperature range [T g - T x ] and the alloy marries so all the details of the mold. For example, for a platinum-based material, the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity of 10 12 Pa. at the temperature T g .

Un procédé utilisé est le formage à chaud d'une préforme amorphe. Cette préforme est obtenue par fusion dans un four des éléments métalliques constituant l'alliage amorphe. Cette fusion est faite sous atmosphère contrôlée avec pour but d'obtenir une contamination de l'alliage en impuretés aussi faible que possible. Une fois ces éléments fondus, ils sont coulés sous forme de produit semi-fini, puis refroidis rapidement afin de conserver l'état au moins partiellement amorphe. Une fois la préforme obtenue, le formage à chaud est effectué dans le but d'obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de températures comprise entre la température de transition vitreuse Tg du matériau amorphe et la température de cristallisation Tx dudit matériau amorphe durant un temps déterminé pour conserver une structure totalement ou partiellement amorphe. Le but est alors de conserver les propriétés élastiques caractéristiques des métaux amorphes. Les différentes étapes de mise en forme définitive du ressort 10, 110 sont alors :

  1. a) Chauffage des pinces ou matrices formant le moule ayant la forme négative du ressort 10, 110 jusqu'à une température choisie,
  2. b) Introduction de la préforme en métal amorphe entre les matrices chaudes,
  3. c) Application d'une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe,
  4. d) Attente durant un temps maximal choisi,
  5. e) Ouverture des matrices,
  6. f) Refroidissement rapide du ressort en dessous de Tg de sorte que le matériau garde sa phase au moins partiellement amorphe, et
  7. g) Sortie du ressort 10, 110 des matrices.
One method used is the hot forming of an amorphous preform. This preform is obtained by melting in a furnace the metallic elements constituting the amorphous alloy. This fusion is done under a controlled atmosphere with the aim of obtaining contamination of the alloy with impurities as low as possible. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the at least partially amorphous state. Once the preform obtained, the hot forming is performed in order to obtain a final piece. This hot forming is carried out by pressing in a temperature range between the glass transition temperature T g of the amorphous material and the crystallization temperature T x of said material. amorphous for a determined time to maintain a totally or partially amorphous structure. The goal is then to retain the characteristic elastic properties of amorphous metals. The different stages of definitive shaping of the spring 10, 110 are then:
  1. a) heating the pliers or dies forming the mold having the negative shape of the spring 10, 110 to a chosen temperature,
  2. b) Introduction of the amorphous metal preform between the hot matrices,
  3. c) applying a closing force on the matrices in order to replicate the geometry of the latter on the amorphous metal preform,
  4. d) Waiting for a chosen maximum time,
  5. e) Opening of the matrices,
  6. f) rapid cooling of the spring below T g so that the material keeps its phase at least partially amorphous, and
  7. g) Spring output 10, 110 of the dies.

Le formage à chaud du métal ou alliage amorphe permet donc de réaliser des pièces complexes et précises mais aussi une bonne reproductibilité de la pièce ce qui est un avantage conséquent pour la fabrication en grande série comme celle des ressorts de système amortisseur.The hot forming of the metal or amorphous alloy thus makes it possible to produce complex and precise parts but also a good reproducibility of the part which is a consequent advantage for the mass production such as that of the damping system springs.

Selon une variante de ce procédé, la coulée est utilisée. Ce procédé consiste à couler l'alliage obtenu par fusion des éléments métalliques dans un moule possédant la forme de la pièce définitive. Une fois le moule rempli, celui-ci est refroidi rapidement jusqu'à une température inférieure à Tg afin d'éviter la cristallisation de l'alliage et ainsi obtenir un ressort en métal amorphe ou partiellement amorphe. L'avantage de la coulée d'un métal amorphe par rapport à la coulée d'un métal cristallin est d'être plus précise. Le retrait de solidification, pour un métal amorphe, est très faible, moins de 1 % par rapport à celui des métaux cristallins qui est de 5 à 7%.According to a variant of this method, the casting is used. This process involves casting the alloy obtained by melting the metal elements in a mold having the shape of the final piece. Once the mold filled, it is cooled rapidly to a temperature below T g to prevent crystallization of the alloy and thus obtain a spring amorphous or partially amorphous metal. The advantage of casting an amorphous metal with respect to the casting of a crystalline metal is to be more precise. The solidification shrinkage, for an amorphous metal, is very low, less than 1% relative to that of the crystalline metals which is 5 to 7%.

On comprendra que diverses modifications et/ou améliorations et/ou combinaisons évidentes pour l'homme du métier peuvent être apportées aux différents modes de réalisation de l'invention exposée ci-dessus sans sortir du cadre de l'invention définie par les revendications annexées.It will be understood that various modifications and / or improvements and / or combinations obvious to those skilled in the art can be made to the various embodiments of the invention set out above without departing from the scope of the invention defined by the appended claims.

On pourra également comprendre que la pierre contre pivot 5, 105 comprend un évidement conique afin que l'extrémité du tigeron 3a, 103a puisse s'y insérer permettant d'avoir un écart d'amplitude entre les différentes positions de la montre réduit au minimum.It can also be understood that the pivot-facing stone 5, 105 comprises a conical recess so that the end of the taper 3a, 103a can be inserted therein to have a difference in amplitude between the different positions of the watch minimized. .

Claims (9)

Palier amortisseur de chocs pour un axe (3, 103) d'un mobile d'une pièce d'horlogerie, ledit axe comprenant un tigeron (3a. 103a), ledit palier comportant un support (1, 101) pourvu d'un logement (6, 106) prévu pour recevoir un système pivot dans lequel le tigeron (3a. 103a) est inséré, ledit palier comprenant en outre des moyens élastiques (10, 110) agencés pour exercer sur ledit système pivot au moins une force axiale, caractérisé en ce que les moyens élastiques sont réalisés en un matériau au moins partiellement amorphe.Shock absorber bearing for an axis (3, 103) of a mobile of a timepiece, said axis comprising a tigeron (3a, 103a), said bearing comprising a support (1, 101) provided with a housing (6, 106) adapted to receive a pivot system in which the beam (3a, 103a) is inserted, said bearing further comprising elastic means (10, 110) arranged to exert on said pivot system at least one axial force, characterized in that the elastic means are made of at least partially amorphous material. Palier amortisseur de chocs selon la revendication 1, caractérisé en ce que lesdits moyens élastiques (10, 110) sont réalisés en matériau totalement amorphe.Shock absorber bearing according to claim 1, characterized in that said elastic means (10, 110) are made of totally amorphous material. Palier amortisseur de chocs selon les revendications 1 ou 2, caractérisé en ce que le matériau amorphe comporte au moins un élément métallique.Shock absorber bearing according to claims 1 or 2, characterized in that the amorphous material comprises at least one metal element. Palier amortisseur de chocs selon la revendication 3, caractérisé en ce que ledit au moins un élément métallique est du type précieux ou un alliage comprenant un tel élément métallique précieux.Shock absorbing bearing according to claim 3, characterized in that said at least one metallic element is of the precious type or an alloy comprising such a precious metal element. Palier amortisseur de chocs selon la revendication 4, caractérisé en ce que ledit élément métallique précieux comporte de l'or, du platine, du palladium, du rhénium, du ruthénium, du rhodium, de l'argent, de l'iridium ou de l'osmium.A shock absorbing bearing according to claim 4, characterized in that said precious metal element comprises gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or aluminum. 'osmium. Palier amortisseur de chocs selon l'une des revendications précédentes, caractérisé en ce que le système pivot comprend un chaton (20) agencé dans le logement (6) et supportant une pierre percée (4) traversée par le tigeron (3a) et une pierre contre-pivot (5) et en ce que le support (1) est une pièce de révolution comprenant un rebord circulaire interrompu en deux endroits diamétralement opposés par une ouverture (12) de sorte à créer deux rebords semi-circulaires (11a, 11b), ladite ouverture étant ménagée pour partie dans les deux rebords semi-circulaires de façon à matérialiser deux retours (13) sous lesquelles les moyens élastiques (10) appuient pour maintenir le chaton dans le logement (6) du support (1).Shock absorber bearing according to one of the preceding claims, characterized in that the pivot system comprises a kitten (20) arranged in the housing (6) and supporting a pierced stone (4) traversed by the tigeron (3a) and a stone against the pivot (5) and in that the support (1) is a piece of revolution comprising a circular flange interrupted in two diametrically opposite locations by an opening (12) so as to create two semi-circular flanges (11a, 11b) , said opening being formed partly in the two semi-circular flanges so as to materialize two returns (13) under which the elastic means (10) support to maintain the kitten in the housing (6) of the support (1). Palier amortisseur de chocs selon la revendication 6, caractérisé en ce que les moyens élastiques (10) sont un ressort (1) ayant une forme de lyre.Shock absorber bearing according to claim 6, characterized in that the elastic means (10) are a spring (1) having a lyre shape. Palier amortisseur de chocs selon l'une des revendications 1 à 5, caractérisé en ce que logement (106) est agencé pour recevoir un ressort (110) à déformation axiale et radiale et un chaton (120) supportant une pierre percée (104) traversée par le tigeron (103a) et une pierre contre-pivot (105), lesdits moyens élastiques (110) étant formés par un anneau périphérique rigide (111) chassé dans le logement (6) et relié par des moyens élastiques (112) à un support central rigide (113) sensiblement annulaire et en ce que le chaton (120) maintenant les deux pierres (104, 105) est suspendu au centre du ressort (110).Shock absorbing bearing according to one of claims 1 to 5, characterized in that the housing (106) is arranged to receive a spring (110) with axial and radial deformation and a kitten (120) supporting a pierced stone (104) traversed by the tigeron (103a) and a counter-pivoting stone (105), said elastic means (110) being formed by a rigid peripheral ring (111) driven into the housing (6) and connected by elastic means (112) to a rigid central support (113) substantially annular and in that the kitten (120) holding the two stones (104, 105) is suspended in the center of the spring (110). Palier amortisseur de chocs selon la revendication 8, caractérisé en ce que le chaton (120) est formé de deux parties (113, 123), l'une étant constituée par le support rigide central (113) dont la paroi interne (113a) maintient la pierre percée (104), l'autre étant formée par un capot (123) venant se solidariser au support central rigide (13) pour bloquer la pierre contre-pivot (15) sur la portée supérieure (113b) du support central (113).Shock absorbing bearing according to claim 8, characterized in that the kitten (120) is formed of two parts (113, 123), one being constituted by the central rigid support (113) whose inner wall (113a) maintains the pierced stone (104), the other being formed by a cap (123) which is secured to the rigid central support (13) to block the counter-pivot stone (15) on the upper bearing surface (113b) of the central support (113); ).
EP10166878A 2010-06-22 2010-06-22 Shockproof system for a timepiece Withdrawn EP2400355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10166878A EP2400355A1 (en) 2010-06-22 2010-06-22 Shockproof system for a timepiece
PCT/EP2011/060284 WO2011161079A1 (en) 2010-06-22 2011-06-21 Shock-absorbing system for a timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10166878A EP2400355A1 (en) 2010-06-22 2010-06-22 Shockproof system for a timepiece

Publications (1)

Publication Number Publication Date
EP2400355A1 true EP2400355A1 (en) 2011-12-28

Family

ID=43302621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10166878A Withdrawn EP2400355A1 (en) 2010-06-22 2010-06-22 Shockproof system for a timepiece

Country Status (2)

Country Link
EP (1) EP2400355A1 (en)
WO (1) WO2011161079A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757426A1 (en) * 2013-01-22 2014-07-23 Montres Breguet SA Device for guiding a clockwork arbor
EP2781972A1 (en) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Pivot for clock mechanism
CH709908A1 (en) * 2014-07-22 2016-01-29 Richemont Int Sa Landing shock absorber for a timepiece.
EP3223085A1 (en) * 2016-03-23 2017-09-27 Officine Panerai AG Device comprising a quick-adjustment spring for a clock movement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327882B (en) * 2022-08-15 2023-08-11 合肥移瑞通信技术有限公司 Protection device and wearable equipment of wrist-wearing type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878638A (en) * 1956-07-20 1959-03-24 Jaeger Ets Ed Sound-proof and shock absorbing bearing for precision mechanisms
EP0942337A1 (en) * 1997-08-28 1999-09-15 Seiko Epson Corporation Spring, power spring, hair spring, driving mechanism utilizing them, and timepiece
EP1696286A1 (en) * 2005-02-23 2006-08-30 ETA SA Manufacture Horlogère Suisse Shock-damping bearing for timepieces
CH699334A2 (en) * 2008-08-07 2010-02-15 Swatch Group Res & Dev Ltd Elastic unit e.g. spiral spring, fabricating method for watch, involves applying cutting unit on metal bar, and displacing cutting unit along translation relative to bar with determined feeding speed to produce chip forming elastic unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878638A (en) * 1956-07-20 1959-03-24 Jaeger Ets Ed Sound-proof and shock absorbing bearing for precision mechanisms
EP0942337A1 (en) * 1997-08-28 1999-09-15 Seiko Epson Corporation Spring, power spring, hair spring, driving mechanism utilizing them, and timepiece
EP1696286A1 (en) * 2005-02-23 2006-08-30 ETA SA Manufacture Horlogère Suisse Shock-damping bearing for timepieces
CH699334A2 (en) * 2008-08-07 2010-02-15 Swatch Group Res & Dev Ltd Elastic unit e.g. spiral spring, fabricating method for watch, involves applying cutting unit on metal bar, and displacing cutting unit along translation relative to bar with determined feeding speed to produce chip forming elastic unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937502B (en) * 2013-01-22 2017-07-28 蒙特雷布勒盖股份有限公司 Device for guiding clock and watch heart axle
DE102014000579A1 (en) 2013-01-22 2014-07-24 Montres Breguet Sa Device for guiding a shaft of a movement
WO2014114377A1 (en) 2013-01-22 2014-07-31 Montres Breguet Sa Device for guiding a timepiece arbor
EP2757426A1 (en) * 2013-01-22 2014-07-23 Montres Breguet SA Device for guiding a clockwork arbor
DE102014000579B4 (en) 2013-01-22 2020-08-06 Montres Breguet Sa Device for guiding a shaft of a clockwork
CN104937502A (en) * 2013-01-22 2015-09-23 蒙特雷布勒盖股份有限公司 Device for guiding timepiece arbor
EP2781972A1 (en) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Pivot for clock mechanism
US9684283B2 (en) 2013-03-19 2017-06-20 Nivarox-Far S.A. Pivot for timepiece mechanism
CN105051623A (en) * 2013-03-19 2015-11-11 尼瓦洛克斯-法尔股份有限公司 Pivot for a timepiece mechanism
WO2014146832A1 (en) 2013-03-19 2014-09-25 Nivarox-Far S.A. Pivot for a timepiece mechanism
CH709908A1 (en) * 2014-07-22 2016-01-29 Richemont Int Sa Landing shock absorber for a timepiece.
EP3223085A1 (en) * 2016-03-23 2017-09-27 Officine Panerai AG Device comprising a quick-adjustment spring for a clock movement
CH712289A1 (en) * 2016-03-23 2017-09-29 Officine Panerai Ag Quick adjustment spring for watch movement.

Also Published As

Publication number Publication date
WO2011161079A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
EP2585882B1 (en) Timepiece anti-shock system
EP2400353A1 (en) Hand for a timepiece
EP2257855B1 (en) Process of manufacturing of a composite balance
EP2585876B1 (en) Escapement system for a timepiece
EP2400354A1 (en) Dial feet for a timepiece
EP3112953B1 (en) Timepiece component having a part with a decoupled welding surface
EP3115852B1 (en) Timepiece component having a part with improved welding surface
EP2652558B1 (en) Capsule for scientific instrument
WO2011161079A1 (en) Shock-absorbing system for a timepiece
EP3502787A1 (en) Method for manufacturing a balance for a timepiece
EP3112951B1 (en) Manufacturing method comprising a modified machining step
EP3112950B1 (en) Manufacturing method comprising a modified bar turning step
EP2585877B1 (en) Method for producing a watchmaking component comprising at least two parts
CH703344A2 (en) Shock absorbing bearing for balance staff of mobile of mechanical watch, has spring that is arranged to exert axial force on pivot system and is made of partially or totally amorphous material with metal element
EP3112955B1 (en) Method for manufacturing a part comprising a modified browning step
CH705906B1 (en) Shock absorber system for an axis of a mobile of a timepiece.
WO2013087202A1 (en) Shock-absorbing system having a diaphragm for a timepiece
CH703343B1 (en) Needle of timepiece.
CH714514B1 (en) Process for manufacturing a balance wheel for a timepiece.
CH705905B1 (en) Membrane shockproof bearing for a timepiece.
CH703346A2 (en) Escapement system for use in timepiece, has rod including arms for receiving pallets, where part of system and pallet assembly are made of material that is partially amorphous and comprises metallic element
CH703360B1 (en) TIMEPIECE DIAL.
CH711214A2 (en) A method of manufacturing a part having a browning step.
CH711215A2 (en) A manufacturing method comprising a machining step.
CH707017B1 (en) Writing instrument.

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120629