EP3377247B1 - Method for manufacturing a part from amorphous metal - Google Patents

Method for manufacturing a part from amorphous metal Download PDF

Info

Publication number
EP3377247B1
EP3377247B1 EP16781383.1A EP16781383A EP3377247B1 EP 3377247 B1 EP3377247 B1 EP 3377247B1 EP 16781383 A EP16781383 A EP 16781383A EP 3377247 B1 EP3377247 B1 EP 3377247B1
Authority
EP
European Patent Office
Prior art keywords
mold
manufacture
effusivity
forming
partially amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16781383.1A
Other languages
German (de)
French (fr)
Other versions
EP3377247A1 (en
Inventor
Tommy Carozzani
Yves Winkler
Alban Dubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Publication of EP3377247A1 publication Critical patent/EP3377247A1/en
Application granted granted Critical
Publication of EP3377247B1 publication Critical patent/EP3377247B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/026Casting jewelry articles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • A44C27/003Metallic alloys
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • G04B17/285Tourbillons or carrousels
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/04Hands; Discs with a single mark or the like
    • G04B19/042Construction and manufacture of the hands; arrangements for increasing reading accuracy

Definitions

  • the present invention relates to a method of manufacturing a micromechanical part made of amorphous metal.
  • the technical field of the invention is the technical field of fine mechanics. More precisely, the invention will belong to the technical field of methods of manufacturing parts made of amorphous metal.
  • micromechanical parts can be produced by micromachining or stamping or by injection into a mold.
  • an advantageous solution consists in directly casting the part in amorphous metal so as to obtain by casting the final geometry or a geometry close to the final geometry requiring only a few alterations.
  • the lack of crystal structure implies that the properties of the amorphous metal part (especially mechanical properties, hardness and polishability) do not depend on the manufacturing method. This is a major advantage over traditional polycrystalline metals for which the foundry blanks exhibit reduced properties compared to forgings.
  • a first aspect is that cooling should not be too slow because there is then a risk of partial or total crystallization and therefore of losing the properties of amorphous metals.
  • the presence of a single crystallite can be prohibitive for reasons of mechanical properties or visual appearance, given that such crystallites will inevitably appear during the finishing steps. It is therefore essential to have sufficiently rapid cooling during casting to guarantee the amorphicity of the part.
  • the molds are made of metal, for example steel or copper, allowing heat to be quickly extracted. Depending on the ability of the alloy chosen to become amorphous, it is possible with this method to obtain parts with a thickness of the order of 10mm.
  • the second aspect to consider comes from the fact that the cooling should not be too fast because there is a risk of solidification before the mold cavity is completely filled.
  • metal molds such as copper or steel
  • thermal energy is quickly dispersed, leading to a risk of premature solidification.
  • a second drawback is a shaping problem.
  • This shaping problem comes from the small size of the mold and the footprint of the micromechanical part to be manufactured.
  • the cost of these inserts and of the additional operations linked to them can become very high, making the process unusable industrially.
  • amorphous metals have the particular characteristic of softening while remaining amorphous in a given temperature range [Tg - Tx] specific to each alloy and not very high because these temperatures Tg and Tx are low. This then makes it possible to reproduce very precisely fine and precise geometries because the viscosity of the alloy decreases sharply and the latter can be easily deformed in order to match all the details of a mold.
  • the time available before the alloy eventually crystallizes is limited. If the geometry has many complexities of low thicknesses, the time required for the complete filling of the mold may be greater than the time available, resulting in partial or complete crystallization of the part and a loss of its mechanical properties in particular.
  • LIGA consists of three main stages of treatment; lithography, electroplating and casting.
  • LIGA X-Ray technique which uses X-rays produced by a synchrotron to create structures with a high aspect ratio
  • LIGA UV technique a more accessible method that uses ultraviolet light to create structures with low aspect ratios.
  • X-Ray LIGA is a microtechnology manufacturing process developed in the early 1980s.
  • an X-ray sensitive photoresist polymer typically PMMA (poly (methyl methacrylate)
  • PMMA poly (methyl methacrylate)
  • an electrically conductive substrate is exposed to parallel high-energy x-ray beams from a synchrotron radiation source through a mask partially covered with an x-ray absorbing material.
  • Chemical removal of exposed (or unexposed) areas of the photoresistive polymer enables a three-dimensional structure to be obtained which can be filled by electrodeposition of metal.
  • the resin is chemically removed to produce a metal mold insert.
  • the mold insert can be used to produce polymer or ceramic parts by injection molding.
  • the main advantage of the LIGA technique is the precision obtained by the use of X-ray lithography (DXRL). This technique allows to have microstructures having high aspect ratios and high precision to be fabricated in a variety of materials (metals, plastics and ceramics).
  • the LIGA UV technique uses an inexpensive ultraviolet light source, such as a mercury lamp, to expose a photoresistive polymer, typically SU-8. Since heating and transmission are not a problem in optical masks, a simple chrome mask can be substituted for the sophisticated X-ray mask technique. These simplifications make the LIGA UV technique a much cheaper and more accessible technique than its X-ray counterpart. However, the LIGA UV technique is not as efficient in producing precision molds and is therefore used when the cost must be kept low and when very high aspect ratios are not required.
  • the LIGA process poses a problem concerning the choice of materials. Indeed, two materials are necessary: a material for the substrate and a material that will be deposited.
  • the material for the substrate must be photo-structurable so that plaster or zircon cannot be used.
  • For the deposited material it must be able to be deposited via electroplating so that metallic materials are the only possible ones.
  • such materials generally have thermal characteristics such that they ensure good heat dissipation and therefore good cooling. This ability to properly dissipate thermal energy would cause, for an amorphous metal alloy shaped in the LIGA mold, too rapid hardening and would therefore prevent good formation of the parts.
  • the LIGA process for the manufacture of the mold is such as to limit the possible geometries since such a three-dimensional mold would require manufacturing layer by layer.
  • Patent documents are also known in the state of the art. CH707351A2 , EP2466394A1 and EP2835698A , which relate to other examples of the manufacturing process of these parts.
  • step c) consists in dissolving said mold.
  • said first material is subjected to a rise in temperature above its melting point allowing it to locally lose any crystalline structure, said rise being followed by cooling to a temperature below its temperature. glass transition allowing said first material to become at least partially amorphous.
  • the shaping step b) is simultaneous with a treatment making said first material at least partially amorphous, by subjecting it to a temperature above its melting point followed by cooling to a temperature. temperature below its glass transition temperature allowing it to become at least partially amorphous, during a casting operation.
  • This embodiment is characterized in that the critical cooling speed of the first material is less than 10K / s.
  • the shaping is done by injection.
  • the shaping is done by centrifugal casting.
  • the second material is zircon having an effusivity of 2300 J / K / m 2 / S 0.5 .
  • the second material is of the plaster type composed mainly of gypsum and / or silica, having an effusivity of between 250 and 1000 J / K / m 2 / s 0.5 .
  • the first material has a critical cooling rate less than or equal to 10K / s.
  • the invention also relates to a component made from a first material being a metallic material capable of becoming at least partially amorphous, characterized in that it is manufactured using the method according to the invention.
  • the invention further relates to a timepiece or jewelry piece comprising the component according to the invention, said component is chosen from the list comprising a middle part, a bezel, a bracelet link, a gear train, a hand, a crown, an escapement system anchor or balance, tourbillon cage, ring, cufflink or earring or pendant.
  • the figures 1 to 6 represent the different steps of the process for producing a watch or jewelery component 1 also called the first part 1 according to the present invention.
  • This first part 1 is made of a first material.
  • This first part 1 can be a covering part such as a middle part, a bezel, a bracelet link, a ring, cufflinks or earrings or a pendant or a functional part such as a gear 3, a needle. , a crown, an anchor 5 or a balance 7 of the exhaust system 9, a tourbillon cage.
  • the first material is advantageously an at least partially amorphous material. More particularly, the material is metallic, by which it is understood that it comprises at least one metallic or metalloid element in a proportion of at least 50% by mass.
  • the first material can be a homogeneous metal alloy or an at least partially or completely amorphous metal.
  • the first material is thus chosen capable of locally losing any crystalline structure during a rise in temperature above its melting point followed by sufficiently rapid cooling to a temperature below its glass transition temperature, allowing it to become at least partially amorphous.
  • the metallic element may or may not be valuable.
  • the first stage represented in the figure 2 , consists in providing a mold 10. This mold 10 has an imprint 12 which is the negative of the part 1 to be produced. This is a so-called lost wax mold.
  • This type of mold consists of a mold 10 made of a material which can be destroyed or dissolved after use to release said part.
  • the advantage of this type of mold is its ease of manufacture and release, which is independent of the geometry of the impression. It is thus possible to easily produce imprints of complex and / or hollowed out geometries, without inserts.
  • This mold can be obtained by covering a wax or resin model, itself obtained by injection, by additive manufacturing, by machining, or by sculpture.
  • This mold 10 comprises a conduit 14 so that the liquid metal can be poured into it.
  • This mold 10 is thus made of a second material.
  • the material of the mold is chosen to have specific thermal properties.
  • the goal here is to have a mold for the lost wax casting which is made of a material allowing the amorphous material of the micromechanical part not to crystallize while completely filling the mold cavity.
  • Crystallization of amorphous metals occurs when these, when in a viscous or liquid state, are not cooled quickly enough to prevent atoms from structuring among themselves.
  • this characteristic is defined by the critical cooling rate, Rc, ie the minimum cooling rate to be observed between the melting temperature and the glass transition temperature in order to maintain an amorphous state of the material. Therefore, it becomes necessary to have a mold 10 made of a material which dissipates thermal energy sufficiently well to ensure a cooling rate R greater than Rc.
  • foundry molds are made of steel or copper alloys in order to have a high R value.
  • this capacity to dissipate thermal energy should not be too great. In the event that this capacity is too great, the risk is that the first material forming the first part freezes before being able to completely fill the cavity 12 of the mold 10.
  • the present invention proposes to use the thermal effusivity criterion E in combination with Rc.
  • This effusivity makes it possible, depending on the thickness of the first part to be produced, to obtain cooling which guarantees an amorphous state of the material, that is to say R> Rc. Indeed, if the criterion of effusivity is important, the amorphicity is linked to the thickness of the part to be manufactured. It is easily understood that, for a given thickness, a high effusivity risks causing a solidification of the material before the latter has been able to fill the whole of the mold, whereas a too low effusivity risks causing crystallization. According to the invention, it will be considered that the effusivity will be chosen within a range going from 250 to 2500 J / K / m 2 / s 0.5 .
  • the effusivity of plaster-type materials is 250 - 1000 J / K / m 2 / s 0.5, while for zircon, it will be 2300 J / K / m 2 / s 0.5 .
  • the second step consists in providing the first material, that is to say the material constituting the first part 1. Once provided with the material, the rest of this second step consists in shaping it as visible to the eyes. figures 3 and 4 . For this, a casting process is used.
  • Such a process consists in taking the first material which was provided during the third step without having subjected it to a treatment making it at least partially amorphous and putting it under liquid form.
  • This liquid form is effected by melting said first material in a pouring container 20.
  • the first material is in liquid form, it is poured into the cavity 2 of the mold.
  • the first material is then cooled so as to give it an amorphous shape.
  • the cooling is carried out by dissipation of heat from the mold 10, that is to say by using only the thermal characteristics of the material constituting the mold, in other words the cooling is carried out only thanks to the effusivity of the mold and only the mold / air interface to give the amorphous or at least partially amorphous character to the metallic material of the component.
  • the cooling is therefore carried out without the use of any quenching medium other than air or a gas, for example helium.
  • the material constituting the mold 10 will be chosen to have an effusivity within a range of 250 to 2500 J / K / m 2 / s 0.5 , this thermal effusivity of a material being the capacity of the latter to exchange thermal energy with its environment.
  • this thermal effusivity of a material being the capacity of the latter to exchange thermal energy with its environment.
  • the cooling rate R is low compared to the molds traditionally used in metal.
  • the effusivity of steel is over 10,000 J / K / m 2 / s 0.5 and copper over 35,000 J / K / m 2 / s 0.5 .
  • This critical cooling rate Rc will be less than 15 K / s.
  • alloys forming the first material can be example (composition in atomic%): Pd43Cu27Ni10P20, Pt57.5Cu14.7Ni5.3P22.5, Zr52.5Ti2.5Cu15.9Ni14.6AI12.5Ag2, Zr52.5Nb2.5Cu15.9Ni14.6AI12.5Ag2, Zr56Ti2CuFe22.5Ag4.5, Zr56Nb2Cu22.5Ag4.5Fe5AI10, Zr61Cu17.5Ni10Al7.5Ti2Nb2, and Zr44Ti11Cu9.8Ni10.2Be25. It will therefore be understood that a mold used in the present invention cannot be made of a metallic material.
  • a first piece of amorphous metal having a thickness of between 0.5mm and 1.4mm, it being understood, as explained above, that details of smaller thickness are achievable if they are punctual and limited in size.
  • parts or parts of parts thicker than 1.4mm can be made without crystallization if they are considered to be point details and small dimensions.
  • An advantage of casting a metal or alloy capable of being amorphous is having a low melting point. Indeed, the melting temperatures of metals or alloys capable of having an amorphous form are generally two to three times lower than those of conventional alloys when we consider compositions of the same types. For example, the melting temperature of the alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 is 750 ° C compared to 1500-1700 ° C of crystalline alloys based on zirconium Zr and titanium Ti. This is to prevent damage to the mold.
  • Another advantage is that the solidification shrinkage for an amorphous metal is very low, less than 1% compared to the 5-7% shrinkage for a crystalline metal. This advantage makes it possible to use the principle of casting without fear of surface defects or of significant changes in dimensions which would be the consequence of said shrinkage.
  • Another advantage is that the mechanical and polishability properties of amorphous metals do not depend on the process of workmanship as long as they are amorphous.
  • the parts obtained by casting will have the same properties as the forged, machined, or hot-deformed parts, which is a major advantage over crystalline metals whose properties depend strongly on the crystalline structure, itself linked to the history of the process for obtaining the part.
  • the casting could be of the gravitational type.
  • the metal fills the mold under the effect of gravity.
  • the casting could be of the centrifugal type.
  • centrifugal casting uses the principle that the mold is driven in rapid rotation. The liquid metal poured inside sticks to the wall by centrifugal force and solidifies. This technique allows centrifugation and pressure on the material which causes degassing and expels the impurities contained in the bath of liquid metal to the external part. Smaller cavities can be filled compared to simple gravitational casting.
  • the casting could be of the injection type.
  • Such injection casting uses the principle according to which the mold is filled by means of a piston which comes to apply a very large force to push the liquid metal. This thrust then makes it possible to introduce the liquid metal into the mold in order to better fill it.
  • the casting may be of the type by counter-gravity, by pressure molding, by vacuum casting.
  • the third stage consists in separating the first part 1 from the mold 10.
  • the mold 10 in which the amorphous metal has been overmolded to form the first part 1, is destroyed by using a jet of water under high pressure, by dissolving in water or in a chemical solution, or by mechanical removal.
  • this is chosen to specifically attack the mold 10.
  • the aim of this step is to dissolve the negative 1 without dissolving the first part 5 made of amorphous metal.
  • a hydrofluoric acid solution is used to dissolve the mold. The end result is then obtaining the first piece of amorphous metal.
  • the first step consisting in providing the negative 1 can also include the fact of preparing said negative Indeed, it is possible to decorate the negative 1 so that surface finishes can be directly produced on the first part . These surface finishes can be a “Geneva coast” decoration, beaded, diamond snailed or a satin finish.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Adornments (AREA)

Description

La présente invention concerne un procédé de fabrication d'une pièce de micromécanique en métal amorphe.The present invention relates to a method of manufacturing a micromechanical part made of amorphous metal.

Le domaine technique de l'invention est le domaine technique de la mécanique fine. Plus précisément, l'invention appartiendra au domaine technique des méthodes de fabrication des pièces en métal amorphe.The technical field of the invention is the technical field of fine mechanics. More precisely, the invention will belong to the technical field of methods of manufacturing parts made of amorphous metal.

ARRIERE PLAN TECHNOLOGIQUETECHNOLOGICAL BACKGROUND

Il est connu diverses méthodes pour réaliser des pièces de micromécanique. En effet, ces dernières peuvent être réalisées par micro-usinage ou étampage ou par injection dans un moule.Various methods are known for making micromechanical parts. Indeed, the latter can be produced by micromachining or stamping or by injection into a mold.

Pour réaliser des pièces en métal amorphe, il peut être également envisagé d'utiliser des méthodes de micro-usinage ou d'étampage.To produce parts from amorphous metal, it can also be envisaged to use micro-machining or stamping methods.

Toutefois, une solution avantageuse consiste à couler directement la pièce en métal amorphe de façon à obtenir par fonderie la géométrie finale ou une géométrie proche de la géométrie finale ne demandant que peu de retouches. L'absence de structure cristalline implique que les propriétés de la pièce en métal amorphe (en particulier les propriétés mécaniques, la dureté et la polissabilité) ne dépendent pas de la méthode de fabrication. Ceci est un avantage majeur par rapport aux métaux polycristallins traditionnels pour lesquels les pièces brutes de fonderie présentent des propriétés amoindries en comparaison aux pièces forgées.However, an advantageous solution consists in directly casting the part in amorphous metal so as to obtain by casting the final geometry or a geometry close to the final geometry requiring only a few alterations. The lack of crystal structure implies that the properties of the amorphous metal part (especially mechanical properties, hardness and polishability) do not depend on the manufacturing method. This is a major advantage over traditional polycrystalline metals for which the foundry blanks exhibit reduced properties compared to forgings.

Toutefois, pour la réalisation de pièces micromécaniques de très faibles épaisseurs (0.5 à 2mm), des inconvénients apparaissent.However, for the production of micromechanical parts of very low thickness (0.5 to 2mm), drawbacks appear.

Un premier problème provient du refroidissement du moule. Cet inconvénient peut se constater sur deux aspects. Un premier aspect est que le refroidissement ne doit pas être trop lent car il existe alors un risque de cristallisation partielle ou totale et donc de perdre les propriétés des métaux amorphes. Pour certaines pièces de micromécanique ou certaines pièces d'habillage, la présence d'une seule cristallite peut être rédhibitoire pour des raisons de propriétés mécaniques ou d'aspect visuel, étant donné que de telles cristallites apparaîtront immanquablement lors des étapes de finition. Il est donc indispensable d'avoir un refroidissement suffisamment rapide lors de la coulée pour garantir l'amorphicité de la pièce. Pour cette raison, les moules sont réalisés en métal, par exemple en acier ou en cuivre, permettant d'extraire rapidement de la chaleur. Selon la capacité de l'alliage choisi à devenir amorphe, il est possible avec cette méthode d'obtenir des pièces d'épaisseur de l'ordre de 10mm.A first problem arises from the cooling of the mold. This drawback can be seen in two aspects. A first aspect is that cooling should not be too slow because there is then a risk of partial or total crystallization and therefore of losing the properties of amorphous metals. For certain micromechanical parts or certain trim parts, the presence of a single crystallite can be prohibitive for reasons of mechanical properties or visual appearance, given that such crystallites will inevitably appear during the finishing steps. It is therefore essential to have sufficiently rapid cooling during casting to guarantee the amorphicity of the part. For this reason, the molds are made of metal, for example steel or copper, allowing heat to be quickly extracted. Depending on the ability of the alloy chosen to become amorphous, it is possible with this method to obtain parts with a thickness of the order of 10mm.

Le second aspect à considérer vient du fait que le refroidissement ne doit pas être trop rapide car il existe un risque de solidification avant que l'empreinte du moule ne soit totalement remplie. Or, avec des moules en métal comme le cuivre ou l'acier, l'énergie thermique est vite dispersée entrainant un risque de solidification précoce. Ces deux aspects contradictoires impliquent le compromis suivant : l'épaisseur des pièces coulées ne doit être ni trop petite (risque de solidification avant remplissage complet de l'empreinte), ni trop grande (risque de cristallisation). C'est pourquoi ce procédé est classiquement limité à des pièces d'épaisseur entre environ 2 et 10mm.The second aspect to consider comes from the fact that the cooling should not be too fast because there is a risk of solidification before the mold cavity is completely filled. However, with metal molds such as copper or steel, thermal energy is quickly dispersed, leading to a risk of premature solidification. These two contradictory aspects imply the following compromise: the thickness of the castings must be neither too small (risk of solidification before complete filling of the impression), nor too great (risk of crystallization). This is why this process is conventionally limited to parts with a thickness between about 2 and 10mm.

Un second inconvénient est un problème de mise en forme. Ce problème de mise en forme vient de la faible taille du moule et de l'empreinte de la pièce micromécanique à fabriquer. Pour certaines géométries, en particulier des géométries évidées, indémoulables, il peut être nécessaire de rajouter des inserts dans le moule qui devront être éliminés après la mise en forme, et perdus. Pour des formes complexes, le coût de ces inserts et des opérations supplémentaires qui y sont liées peut devenir très élevé, rendant le procédé inexploitable industriellement.A second drawback is a shaping problem. This shaping problem comes from the small size of the mold and the footprint of the micromechanical part to be manufactured. For certain geometries, in particular hollowed out geometries that cannot be molded, it may be necessary to add inserts in the mold which must be eliminated after shaping, and lost. For complex shapes, the cost of these inserts and of the additional operations linked to them can become very high, making the process unusable industrially.

Une autre solution avantageuse consiste à utiliser les propriétés de mise en forme des métaux amorphes. En effet, les métaux amorphes ont la caractéristique particulière de se ramollir tout en restant amorphes dans un intervalle de température [Tg - Tx] donné propre à chaque alliage et peu élevé car ces températures Tg et Tx sont peu élevées. Cela permet alors de reproduire très précisément des géométries fines et précises car la viscosité de l'alliage diminue fortement et ce dernier peut être facilement déformé afin d'épouser tous les détails d'un moule.Another advantageous solution consists in using the shaping properties of amorphous metals. In fact, amorphous metals have the particular characteristic of softening while remaining amorphous in a given temperature range [Tg - Tx] specific to each alloy and not very high because these temperatures Tg and Tx are low. This then makes it possible to reproduce very precisely fine and precise geometries because the viscosity of the alloy decreases sharply and the latter can be easily deformed in order to match all the details of a mold.

Toutefois, pour la réalisation de pièces micromécaniques de très faibles épaisseurs (0.5 à 2mm), la réalisation de moules adaptés est ici encore très complexe et présente les mêmes limitations qu'en fonderie.However, for the production of micromechanical parts of very low thickness (0.5 to 2mm), the production of suitable molds is here again very complex and has the same limitations as in foundry.

De plus, à une température située entre Tg et Tx, le temps à disposition avant que l'alliage ne finisse par cristalliser est limité. Si la géométrie présente de nombreuses complexités de faibles épaisseurs, le temps nécessaire au remplissage complet du moule pourra être supérieur au temps à disposition, entraînant une cristallisation partielle ou complète de la pièce et une perte de ses propriétés mécaniques en particulier.In addition, at a temperature between Tg and Tx, the time available before the alloy eventually crystallizes is limited. If the geometry has many complexities of low thicknesses, the time required for the complete filling of the mold may be greater than the time available, resulting in partial or complete crystallization of the part and a loss of its mechanical properties in particular.

Une technique similaire connue est la technologie LIGA. Le LIGA se compose de trois principales étapes de traitement; la lithographie, la galvanoplastie et le moulage. Il existe deux principales technologies de fabrication LIGA, la technique X-Ray LIGA, qui utilise les rayons X produits par un synchrotron pour créer des structures ayant un rapport d'aspect élevé, et la technique LIGA UV, une méthode plus accessible qui utilise la lumière ultraviolette pour créer des structures ayant des faibles rapports d'aspect.A similar known technique is LIGA technology. LIGA consists of three main stages of treatment; lithography, electroplating and casting. There are two main LIGA manufacturing technologies, the LIGA X-Ray technique, which uses X-rays produced by a synchrotron to create structures with a high aspect ratio, and the LIGA UV technique, a more accessible method that uses ultraviolet light to create structures with low aspect ratios.

Les caractéristiques notables de structures de LIGA fabriqué par la méthode X-ray comprennent:

  • des rapports d'aspect élevés, de l'ordre de 100:1 ;
  • des parois latérales parallèles avec un angle de flanc de l'ordre de 89,95 °;
  • parois latérales lisses avec = 10 nm, adaptées pour les miroirs optiques ;
  • hauteurs structurelles de dizaines de micromètres à quelques millimètres ;
  • les détails structurels de l'ordre de micromètres sur des distances de centimètres.
Notable features of LIGA structures fabricated by the X-ray method include:
  • high aspect ratios, of the order of 100: 1;
  • parallel side walls with a flank angle of the order of 89.95 °;
  • smooth side walls with = 10 nm, suitable for optical mirrors;
  • structural heights from tens of micrometers to a few millimeters;
  • structural details on the order of micrometers over distances of centimeters.

Le X-Ray LIGA est un procédé de fabrication en microtechnique développé au début des années 1980. Dans ce procédé, un polymère photorésistif sensible aux rayons X, typiquement PMMA (poly(méthacrylate de méthyle)), lié à un substrat électriquement conducteur, est exposé à des faisceaux parallèles de rayons X de haute énergie provenant d'une source de rayonnement de synchrotron au travers d'un masque en partie recouvert d'un matériau absorbant les rayons X. L'élimination chimique des zones exposées (ou non exposées) du polymère photorésistif permet l'obtention d'une structure en trois dimensions qui peut être remplie par une électrodéposition de métal. La résine est chimiquement enlevée pour produire un insert de moule métallique. L'insert de moule peut être utilisé pour produire des pièces en polymères ou céramiques par moulage par injection.X-Ray LIGA is a microtechnology manufacturing process developed in the early 1980s. In this process, an X-ray sensitive photoresist polymer, typically PMMA (poly (methyl methacrylate)), bonded to an electrically conductive substrate, is exposed to parallel high-energy x-ray beams from a synchrotron radiation source through a mask partially covered with an x-ray absorbing material. Chemical removal of exposed (or unexposed) areas of the photoresistive polymer enables a three-dimensional structure to be obtained which can be filled by electrodeposition of metal. The resin is chemically removed to produce a metal mold insert. The mold insert can be used to produce polymer or ceramic parts by injection molding.

Le principal avantage de la technique LIGA est la précision obtenue par l'utilisation de la lithographie à rayons X (DXRL). Cette technique permet d'avoir des microstructures ayant des rapports d'aspect élevés et une grande précision pour être fabriqués dans une variété de matériaux (métaux, matières plastiques et des céramiques).The main advantage of the LIGA technique is the precision obtained by the use of X-ray lithography (DXRL). This technique allows to have microstructures having high aspect ratios and high precision to be fabricated in a variety of materials (metals, plastics and ceramics).

La technique LIGA UV utilise une source de lumière ultraviolette peu coûteuse, comme une lampe à mercure, pour exposer un polymère photorésistif, typiquement SU-8. De fait que le chauffage et la transmission ne sont pas un problème dans les masques optiques, un masque de chrome simple peut être substitué à la technique sophistiquée de masque X-ray. Ces simplifications font de la technique LIGA UV, une technique beaucoup moins chère et plus accessible que son homologue X-ray. Cependant, la technique LIGA UV n'est pas aussi efficace pour produire des moules de précision et est donc utilisée lorsque le coût doit être maintenu bas et lorsque des rapports d'aspect très élevés ne sont pas nécessaires.The LIGA UV technique uses an inexpensive ultraviolet light source, such as a mercury lamp, to expose a photoresistive polymer, typically SU-8. Since heating and transmission are not a problem in optical masks, a simple chrome mask can be substituted for the sophisticated X-ray mask technique. These simplifications make the LIGA UV technique a much cheaper and more accessible technique than its X-ray counterpart. However, the LIGA UV technique is not as efficient in producing precision molds and is therefore used when the cost must be kept low and when very high aspect ratios are not required.

L'inconvénient d'un tel procédé est qu'il est qu'il ne permet pas la réalisation simple de pièces en trois dimensions. En effet, la fabrication de pièce en trois dimensions via le procédé LIGA est possible mais il est nécessaire de réaliser plusieurs itérations successives de photolithographie, et dépôt galvanique.The drawback of such a method is that it does not allow the simple production of three-dimensional parts. Indeed, the manufacture of three-dimensional part via the LIGA process is possible but it is necessary to carry out several successive iterations of photolithography, and galvanic deposition.

Par ailleurs, le procédé LIGA pose un problème concernant le choix des matériaux. Effectivement, deux matériaux sont nécessaires : un matériau pour le substrat et un matériau qui sera déposé. Le matériau pour le substrat doit être photo-structurable de sorte que le plâtre ou le zircon ne sont pas utilisables. Pour le matériau déposé, celui-ci doit pouvoir être déposé via galvanoplastie de sorte que les matériaux métalliques soient les seuls envisageables. Or, de tels matériaux présentent généralement des caractéristiques thermiques telles qu'ils assurent une bonne dissipation thermique et donc un bon refroidissement. Cette capacité à bien dissiper l'énergie thermique provoquerait, pour un alliage métallique amorphe mis en forme dans le moule en LIGA, un durcissement trop rapide et empêcherait donc une bonne formation des pièces.Furthermore, the LIGA process poses a problem concerning the choice of materials. Indeed, two materials are necessary: a material for the substrate and a material that will be deposited. The material for the substrate must be photo-structurable so that plaster or zircon cannot be used. For the deposited material, it must be able to be deposited via electroplating so that metallic materials are the only possible ones. However, such materials generally have thermal characteristics such that they ensure good heat dissipation and therefore good cooling. This ability to properly dissipate thermal energy would cause, for an amorphous metal alloy shaped in the LIGA mold, too rapid hardening and would therefore prevent good formation of the parts.

Enfin, le procédé LIGA pour la fabrication du moule est de nature à limiter les géométries possibles puisqu'un tel moule en trois dimensions nécessiterait une fabrication strate par strate.Finally, the LIGA process for the manufacture of the mold is such as to limit the possible geometries since such a three-dimensional mold would require manufacturing layer by layer.

On connait par ailleurs dans l'état de la technique les documents de brevets CH707351A2 , EP2466394A1 et EP2835698A , qui portent sur d'autres exemples de procédé de fabrication de ces pièces.Patent documents are also known in the state of the art. CH707351A2 , EP2466394A1 and EP2835698A , which relate to other examples of the manufacturing process of these parts.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention concerne un procédé de réalisation d'une première pièce qui pallie les inconvénients de l'art antérieur en permettant d'obtenir un procédé de fabrication d'un composant réalisé en un premier matériau métallique, ledit premier matériau étant un matériau apte à devenir au moins partiellement amorphe, ledit procédé comprenant les étapes suivantes :

  1. a) se munir d'un moule réalisé dans un second matériau, ledit moule comportant une empreinte formant le négatif du composant ;
  2. b) se munir du premier matériau et le mettre en forme dans l'empreinte dudit moule, ledit premier matériau ayant subi au plus tard au moment de ladite mise en forme un traitement lui permettant de devenir au moins partiellement amorphe;
  3. c) désolidariser le composant ainsi formé du moule ;
caractérisé en ce que le second matériau formant le moule présente une effusivité thermique allant de 250 à 2500 J/K/m2/S0.5.The invention relates to a method of producing a first part which overcomes the drawbacks of the prior art by making it possible to obtain a method of manufacturing a component made of a first material. metallic, said first material being a material capable of becoming at least partially amorphous, said process comprising the following steps:
  1. a) providing a mold made of a second material, said mold comprising an imprint forming the negative of the component;
  2. b) providing the first material and shaping it in the imprint of said mold, said first material having undergone, at the latest at the time of said shaping, a treatment allowing it to become at least partially amorphous;
  3. c) separating the component thus formed from the mold;
characterized in that the second material forming the mold has a thermal effusivity ranging from 250 to 2500 J / K / m 2 / S 0.5 .

Dans un premier mode de réalisation avantageux, l'étape c) consiste à dissoudre ledit moule.In a first advantageous embodiment, step c) consists in dissolving said mold.

Dans un second mode de réalisation avantageux, ledit premier matériau est soumis à une montée en température au-dessus de sa température de fusion lui permettant de perdre localement toute structure cristalline, ladite montée étant suivie d'un refroidissement à une température inférieure à sa température de transition vitreuse permettant audit premier matériau de devenir au moins partiellement amorphe.In a second advantageous embodiment, said first material is subjected to a rise in temperature above its melting point allowing it to locally lose any crystalline structure, said rise being followed by cooling to a temperature below its temperature. glass transition allowing said first material to become at least partially amorphous.

Dans un troisième mode de réalisation avantageux, l'étape b) de mise en forme est simultanée avec un traitement rendant ledit premier matériau au moins partiellement amorphe, en le soumettant à une température supérieure à sa température de fusion suivie d'un refroidissement à une température inférieure à sa température de transition vitreuse lui permettant de devenir au moins partiellement amorphe, lors d'une opération de coulée. Ce mode de réalisation est caractérisé en ce que la vitesse critique de refroidissement du premier matériau est inférieure à 10K/s.In a third advantageous embodiment, the shaping step b) is simultaneous with a treatment making said first material at least partially amorphous, by subjecting it to a temperature above its melting point followed by cooling to a temperature. temperature below its glass transition temperature allowing it to become at least partially amorphous, during a casting operation. This embodiment is characterized in that the critical cooling speed of the first material is less than 10K / s.

Dans un quatrième mode de réalisation avantageux, la mise en forme se fait par injection.In a fourth advantageous embodiment, the shaping is done by injection.

Dans un cinquième mode de réalisation avantageux, la mise en forme se fait par coulée centrifuge.In a fifth advantageous embodiment, the shaping is done by centrifugal casting.

Dans un autre mode de réalisation avantageux, le second matériau est du zircon ayant une effusivité de 2300 J/K/m2/S0.5.In another advantageous embodiment, the second material is zircon having an effusivity of 2300 J / K / m 2 / S 0.5 .

Dans un autre mode de réalisation avantageux, le second matériau est du type plâtre composé majoritairement de gypse et/ou de silice, ayant une effusivité comprise entre 250 et 1000 J/K/m2/s0.5.In another advantageous embodiment, the second material is of the plaster type composed mainly of gypsum and / or silica, having an effusivity of between 250 and 1000 J / K / m 2 / s 0.5 .

Dans un autre mode de réalisation avantageux, le premier matériau présente une vitesse de refroidissement critique inférieure ou égale à 10K/s.In another advantageous embodiment, the first material has a critical cooling rate less than or equal to 10K / s.

L'invention concerne également un composant réalisé dans un premier matériau étant un matériau métallique apte à devenir au moins partiellement amorphe, caractérisé en ce qu'il est fabriqué en utilisant le procédé selon l'invention.The invention also relates to a component made from a first material being a metallic material capable of becoming at least partially amorphous, characterized in that it is manufactured using the method according to the invention.

L'invention concerne en outre une pièce d'horlogerie ou de joaillerie comprenant le composant selon l'invention, ledit composant est choisi dans la liste comprenant une carrure, une lunette, un maillon de bracelet, un rouage, une aiguille, une couronne, une ancre ou un balancier de système d'échappement, une cage de tourbillon, une bague, un bouton de manchettes ou une boucle d'oreilles ou un pendentif.The invention further relates to a timepiece or jewelry piece comprising the component according to the invention, said component is chosen from the list comprising a middle part, a bezel, a bracelet link, a gear train, a hand, a crown, an escapement system anchor or balance, tourbillon cage, ring, cufflink or earring or pendant.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

Les buts, avantages et caractéristiques du procédé de réalisation d'une première pièce selon la présente invention apparaîtront plus clairement dans la description détaillée suivante d'au moins une forme de réalisation de l'invention donnée uniquement à titre d'exemple non limitatif et illustrée par les dessins annexés sur lesquels :

  • les figures 1 à 6 représentent de manière schématique les étapes du procédé selon la présente invention.
The aims, advantages and characteristics of the method for producing a first part according to the present invention will appear more clearly in the following detailed description of at least one embodiment of the invention given solely by way of non-limiting example and illustrated. by the accompanying drawings in which:
  • the figures 1 to 6 schematically represent the steps of the process according to the present invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Les figures 1 à 6 représentent les différentes étapes du procédé de réalisation d'un composant horloger ou joailler 1 appelé aussi première pièce 1 selon la présente invention. Cette première pièce 1 est réalisée en un premier matériau. Cette première pièce 1 peut être une pièce d'habillage comme une carrure, une lunette, un maillon de bracelet, une bague, des boutons de manchettes ou des boucles d'oreilles ou un pendentif ou une pièce fonctionnelle comme un rouage 3, une aiguille, une couronne, une ancre 5 ou un balancier 7 de système d'échappement 9, une cage de tourbillon.The figures 1 to 6 represent the different steps of the process for producing a watch or jewelery component 1 also called the first part 1 according to the present invention. This first part 1 is made of a first material. This first part 1 can be a covering part such as a middle part, a bezel, a bracelet link, a ring, cufflinks or earrings or a pendant or a functional part such as a gear 3, a needle. , a crown, an anchor 5 or a balance 7 of the exhaust system 9, a tourbillon cage.

Le premier matériau est avantageusement un matériau au moins partiellement amorphe. Plus particulièrement, le matériau est métallique, on comprend par là qu'il comporte au moins un élément métallique ou métalloïde dans une proportion d'au moins 50% en masse. Le premier matériau peut être un alliage métallique homogène ou un métal au moins partiellement ou totalement amorphe. Le premier matériau est ainsi choisi apte à perdre localement toute structure cristalline lors d'une montée en température au-dessus de sa température de fusion suivie d'un refroidissement suffisamment rapide à une température inférieure à sa température de transition vitreuse, lui permettant de devenir au moins partiellement amorphe. L'élément métallique pourra être précieux ou non. La première étape, représentée à la figure 2, consiste à se munir d'un moule 10. Ce moule 10 présente une empreinte 12 qui est le négatif de la pièce 1 à réaliser. Il s'agit ici d'un moule dit à cire perdue. Ce type de moule consiste en un moule 10 réalisé dans un matériau qui peut être détruit ou dissout après utilisation pour libérer ladite pièce. L'avantage de ce type de moule est sa facilité de fabrication et de démoulage, qui est indépendante de la géométrie de l'empreinte. Il est ainsi possible de réaliser facilement des empreintes de géométries complexes et/ou évidées, sans inserts. Ce moule pourra être obtenu par recouvrement d'un modèle en cire ou résine, lui-même obtenu par injection, par fabrication additive, par usinage, ou par sculpture. Ce moule 10 comprend un conduit 14 pour que le métal liquide puisse y être versé.The first material is advantageously an at least partially amorphous material. More particularly, the material is metallic, by which it is understood that it comprises at least one metallic or metalloid element in a proportion of at least 50% by mass. The first material can be a homogeneous metal alloy or an at least partially or completely amorphous metal. The first material is thus chosen capable of locally losing any crystalline structure during a rise in temperature above its melting point followed by sufficiently rapid cooling to a temperature below its glass transition temperature, allowing it to become at least partially amorphous. The metallic element may or may not be valuable. The first stage, represented in the figure 2 , consists in providing a mold 10. This mold 10 has an imprint 12 which is the negative of the part 1 to be produced. This is a so-called lost wax mold. This type of mold consists of a mold 10 made of a material which can be destroyed or dissolved after use to release said part. The advantage of this type of mold is its ease of manufacture and release, which is independent of the geometry of the impression. It is thus possible to easily produce imprints of complex and / or hollowed out geometries, without inserts. This mold can be obtained by covering a wax or resin model, itself obtained by injection, by additive manufacturing, by machining, or by sculpture. This mold 10 comprises a conduit 14 so that the liquid metal can be poured into it.

Ce moule 10 est ainsi réalisé en un second matériau. Avantageusement, le matériau du moule est choisi pour présenter des propriétés thermiques spécifiques. En effet, le but est ici d'avoir un moule pour la coulée en cire perdue qui est réalisé dans un matériau permettant au matériau amorphe de la pièce micromécanique de ne pas cristalliser tout en remplissant complètement l'empreinte du moule.This mold 10 is thus made of a second material. Advantageously, the material of the mold is chosen to have specific thermal properties. Indeed, the goal here is to have a mold for the lost wax casting which is made of a material allowing the amorphous material of the micromechanical part not to crystallize while completely filling the mold cavity.

La cristallisation des métaux amorphes se produit lorsque ceux-ci, quand ils se trouvent dans un état visqueux ou liquide, ne sont pas refroidis suffisamment rapidement pour empêcher les atomes de se structurer entre eux. Pour un alliage donné, on définit cette caractéristique par la vitesse de refroidissement critique, Rc, soit la vitesse de refroidissement minimale à respecter entre la température de fusion et la température de transition vitreuse afin de conserver un état amorphe de la matière. Par conséquent, il devient nécessaire d'avoir un moule 10 réalisé dans un matériau qui dissipe suffisamment bien l'énergie thermique pour garantir une vitesse de refroidissement R supérieure à Rc. Classiquement, les moules de fonderie sont réalisés en acier ou en alliages cuivreux afin d'avoir une valeur de R élevée.Crystallization of amorphous metals occurs when these, when in a viscous or liquid state, are not cooled quickly enough to prevent atoms from structuring among themselves. For a given alloy, this characteristic is defined by the critical cooling rate, Rc, ie the minimum cooling rate to be observed between the melting temperature and the glass transition temperature in order to maintain an amorphous state of the material. Therefore, it becomes necessary to have a mold 10 made of a material which dissipates thermal energy sufficiently well to ensure a cooling rate R greater than Rc. Conventionally, foundry molds are made of steel or copper alloys in order to have a high R value.

Toutefois, pour des pièces de faibles dimensions ou présentant des détails fins et complexes, cette capacité à dissiper l'énergie thermique ne doit pas être trop importante. Dans le cas où cette capacité est trop importante, le risque est que le premier matériau formant la première pièce ne fige avant de pouvoir remplir entièrement l'empreinte 12 du moule 10.However, for parts of small dimensions or having fine and complex details, this capacity to dissipate thermal energy should not be too great. In the event that this capacity is too great, the risk is that the first material forming the first part freezes before being able to completely fill the cavity 12 of the mold 10.

A ce titre, la présente invention se propose d'utiliser le critère d'effusivité thermique E en combinaison avec Rc.As such, the present invention proposes to use the thermal effusivity criterion E in combination with Rc.

L'effusivité thermique d'un matériau caractérise sa capacité à échanger de l'énergie thermique avec son environnement. Elle est donnée par : E = λρc

Figure imgb0001
où :

  • λ : est la conductivité thermique du matériau (en W·m1·K-1)
  • ρ : la masse volumique du matériau (en kg·m-3)
  • c : la capacité thermique massique du matériau (en J·kg-1·K-1)
L'effusivité se mesure alors en J/K/m2/s0.5.The thermal effusivity of a material characterizes its ability to exchange thermal energy with its environment. It is given by: E = λρc
Figure imgb0001
or :
  • λ: is the thermal conductivity of the material (in W m 1 K -1 )
  • ρ: the density of the material (in kg m -3 )
  • c: the specific heat capacity of the material (in J kg -1 K -1 )
The effusivity is then measured in J / K / m 2 / s 0.5 .

Cette effusivité permet, selon l'épaisseur de la première pièce à réaliser, d'obtenir un refroidissement qui garantit un état amorphe du matériau, c'est-à-dire R > Rc. En effet, si le critère d'effusivité est important, l'amorphicité est liée à l'épaisseur de la pièce à fabriquer. On comprend facilement que, pour une épaisseur donnée, une grande effusivité risque d'entrainer une solidification du matériau avant que celui-ci n'ait pu remplir la totalité du moule alors qu'une trop faible effusivité risque d'entrainer une cristallisation. Selon l'invention, on considèrera que l'effusivité sera choisie dans un intervalle allant de 250 à 2500 J/K/m2/s0.5. A titre d'exemple de matériau, l'effusivité des matériaux de type plâtre est de 250 - 1000 J/K/m2/s0.5 alors que pour le zircon, elle sera de 2300 J/K/m2/s0.5.This effusivity makes it possible, depending on the thickness of the first part to be produced, to obtain cooling which guarantees an amorphous state of the material, that is to say R> Rc. Indeed, if the criterion of effusivity is important, the amorphicity is linked to the thickness of the part to be manufactured. It is easily understood that, for a given thickness, a high effusivity risks causing a solidification of the material before the latter has been able to fill the whole of the mold, whereas a too low effusivity risks causing crystallization. According to the invention, it will be considered that the effusivity will be chosen within a range going from 250 to 2500 J / K / m 2 / s 0.5 . As an example of a material, the effusivity of plaster-type materials is 250 - 1000 J / K / m 2 / s 0.5, while for zircon, it will be 2300 J / K / m 2 / s 0.5 .

Avec les caractéristiques d'effusivité choisies pour l'invention, il est possible d'obtenir une première pièce ayant une épaisseur de 0.5mm ou plus sans figer la matière avant que l'empreinte ne soit remplie en totalité. Il est clair que des pièces ou des parties de pièce d'épaisseur inférieure à 0.5mm puissent être correctement remplies si elles sont des détails ponctuels et de faibles dimensions.With the effusivity characteristics chosen for the invention, it is possible to obtain a first part having a thickness of 0.5 mm or more without freezing the material before the imprint is completely filled. It is clear that parts or parts of parts less than 0.5mm thick can be correctly filled if they are point details and small dimensions.

La seconde étape consiste à se munir du premier matériau, c'est-à-dire du matériau constitutif de la première pièce 1. Une fois muni du matériau, la suite de cette seconde étape consiste à le mettre en forme comme visible aux figures 3 et 4. Pour cela, un procédé de coulée est utilisé.The second step consists in providing the first material, that is to say the material constituting the first part 1. Once provided with the material, the rest of this second step consists in shaping it as visible to the eyes. figures 3 and 4 . For this, a casting process is used.

Un tel procédé consiste à prendre le premier matériau dont on s'est muni lors de la troisième étape sans pour autant lui avoir fait subir un traitement le rendant au moins partiellement amorphe et de le mettre sous forme liquide. Cette mise sous forme liquide se fait par fusion dudit premier matériau dans un récipient verseur 20.Such a process consists in taking the first material which was provided during the third step without having subjected it to a treatment making it at least partially amorphous and putting it under liquid form. This liquid form is effected by melting said first material in a pouring container 20.

Une fois le premier matériau sous forme liquide, celui-ci est coulé dans l'empreinte 2 du moule. Lorsque l'empreinte 2 du moule est remplie ou au moins partiellement remplie, le premier matériau est alors refroidi de sorte à lui donner une forme amorphe. Selon l'invention, le refroidissement est opéré par dissipation de chaleur du moule 10 c'est-à-dire en utilisant uniquement les caractéristiques thermiques du matériau constitutif du moule, en d'autres termes le refroidissement n'est réalisé que grâce à l'effusivité du moule et à la seule interface moule/air pour donner le caractère amorphe ou au moins partiellement amorphe au matériau métallique du composant. Le refroidissement est donc réalisé sans utilisation d'aucun autre milieu de trempe (quenching médium) que l'air ou un gaz par exemple de l'hélium.Once the first material is in liquid form, it is poured into the cavity 2 of the mold. When the mold cavity 2 is filled or at least partially filled, the first material is then cooled so as to give it an amorphous shape. According to the invention, the cooling is carried out by dissipation of heat from the mold 10, that is to say by using only the thermal characteristics of the material constituting the mold, in other words the cooling is carried out only thanks to the effusivity of the mold and only the mold / air interface to give the amorphous or at least partially amorphous character to the metallic material of the component. The cooling is therefore carried out without the use of any quenching medium other than air or a gas, for example helium.

Pour rappel, le matériau constitutif du moule 10 sera choisi pour avoir une effusivité comprise dans un intervalle allant de 250 à 2500 J/K/m2/s0.5, cette effusivité thermique d'un matériau étant la capacité de ce dernier à échanger de l'énergie thermique avec son environnement. Ainsi, plus l'effusivité est grande est plus le refroidissement sera important, à épaisseur équivalente.As a reminder, the material constituting the mold 10 will be chosen to have an effusivity within a range of 250 to 2500 J / K / m 2 / s 0.5 , this thermal effusivity of a material being the capacity of the latter to exchange thermal energy with its environment. Thus, the greater the effusivity, the greater the cooling will be, at equivalent thickness.

Avec de telles valeurs d'effusivité, la vitesse de refroidissement R est faible par rapport aux moules traditionnellement utilisés en métal. Pour comparaison, l'effusivité de l'acier est de plus de 10'000 J/K/m2/s0.5 et du cuivre de plus de 35'000 J/K/m2/s0.5. Pour cette raison, il est nécessaire d'utiliser un premier matériau ayant une vitesse de refroidissement critique Rc faible afin de garantir un état amorphe ou partiellement amorphe de la pièce à réaliser. Cette vitesse de refroidissement critique Rc sera inférieure à 15 K/s. Des alliages utilisés sont par exemple donnés par les compositions Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 (Rc=10K/s), Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Rc=1.4K/s) ou encore Pd43Cu27Ni10P20 (Rc=0.10K/s).D'autres alliages formant le premier matériau peuvent être par exemple (composition en % atomique) : Pd43Cu27Ni10P20, Pt57.5Cu14.7Ni5.3P22.5, Zr52.5Ti2.5Cu15.9Ni14.6AI12.5Ag2, Zr52.5Nb2.5Cu15.9Ni14.6AI12.5Ag2, Zr56Ti2Cu22.5Ag4.5Fe5AI10, Zr56Nb2Cu22.5Ag4.5Fe5AI10, Zr61Cu17.5Ni10Al7.5Ti2Nb2, et Zr44Ti11Cu9.8Ni10.2Be25. On comprendra donc qu'un moule utilisé dans la présente invention ne peut être réalisé en matériau métallique.With such effusivity values, the cooling rate R is low compared to the molds traditionally used in metal. For comparison, the effusivity of steel is over 10,000 J / K / m 2 / s 0.5 and copper over 35,000 J / K / m 2 / s 0.5 . For this reason, it is necessary to use a first material having a low critical cooling rate Rc in order to guarantee an amorphous or partially amorphous state of the part to be produced. This critical cooling rate Rc will be less than 15 K / s. Alloys used are for example given by the compositions Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 (Rc = 10K / s), Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Rc = 1.4K / s) or even Pd43Cu27Ni10P20 ( Rc = 0.10K / s). Other alloys forming the first material can be example (composition in atomic%): Pd43Cu27Ni10P20, Pt57.5Cu14.7Ni5.3P22.5, Zr52.5Ti2.5Cu15.9Ni14.6AI12.5Ag2, Zr52.5Nb2.5Cu15.9Ni14.6AI12.5Ag2, Zr56Ti2CuFe22.5Ag4.5, Zr56Nb2Cu22.5Ag4.5Fe5AI10, Zr61Cu17.5Ni10Al7.5Ti2Nb2, and Zr44Ti11Cu9.8Ni10.2Be25. It will therefore be understood that a mold used in the present invention cannot be made of a metallic material.

Avec les caractéristiques d'effusivité choisies pour l'invention, il est ainsi possible d'obtenir une première pièce en métal amorphe ayant une épaisseur comprise entre 0.5mm et 1.4mm, étant entendu comme expliqué ci-dessus que des détails de plus faible épaisseur sont réalisables s'ils sont ponctuels et limités en taille. De manière similaire, des pièces ou des parties de pièces d'épaisseur supérieure à 1.4mm peuvent être réalisées sans cristallisation si elles sont considérées comme des détails ponctuels et de faibles dimensions.With the effusivity characteristics chosen for the invention, it is thus possible to obtain a first piece of amorphous metal having a thickness of between 0.5mm and 1.4mm, it being understood, as explained above, that details of smaller thickness are achievable if they are punctual and limited in size. Similarly, parts or parts of parts thicker than 1.4mm can be made without crystallization if they are considered to be point details and small dimensions.

Un avantage de la coulée d'un métal ou alliage capable d'être amorphe, est d'avoir une température de fusion peu élevée. En effet, les températures de fusion des métaux ou alliages capables d'avoir une forme amorphe, sont en général deux à trois fois plus faibles que celles des alliages classiques lorsque l'on considère des compositions de mêmes types. Par exemple, la température de fusion de l'alliage Zr41.2Ti13.8Cu12.5Ni10Be22.5 est de 750°C comparé au 1500-1700°C des alliages cristallins à base de zirconium Zr et titane Ti. Cela permet d'éviter d'endommager le moule.An advantage of casting a metal or alloy capable of being amorphous is having a low melting point. Indeed, the melting temperatures of metals or alloys capable of having an amorphous form are generally two to three times lower than those of conventional alloys when we consider compositions of the same types. For example, the melting temperature of the alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 is 750 ° C compared to 1500-1700 ° C of crystalline alloys based on zirconium Zr and titanium Ti. This is to prevent damage to the mold.

Un autre avantage est que le retrait de solidification, pour un métal amorphe, est très faible, moins de 1% par rapport au retrait de 5 à 7% pour un métal cristallin. Cet avantage permet d'utiliser le principe de la coulée sans craindre de défauts de surface ou de changements notables de dimensions qui seraient la conséquence dudit retrait.Another advantage is that the solidification shrinkage for an amorphous metal is very low, less than 1% compared to the 5-7% shrinkage for a crystalline metal. This advantage makes it possible to use the principle of casting without fear of surface defects or of significant changes in dimensions which would be the consequence of said shrinkage.

Un autre avantage est que les propriétés mécaniques et de polissabilité des métaux amorphes ne dépendent pas du procédé de fabrication tant qu'ils sont amorphes. Ainsi les pièces obtenues par coulée auront les mêmes propriétés que les pièces forgées, usinées, ou déformées à chaud, ce qui est un avantage majeur par rapport aux métaux cristallins dont les propriétés dépendent fortement de la structure cristalline, elle-même liée à l'historique du procédé d'obtention de la pièce.Another advantage is that the mechanical and polishability properties of amorphous metals do not depend on the process of workmanship as long as they are amorphous. Thus the parts obtained by casting will have the same properties as the forged, machined, or hot-deformed parts, which is a major advantage over crystalline metals whose properties depend strongly on the crystalline structure, itself linked to the history of the process for obtaining the part.

Dans une première alternative, la coulée pourra être du type gravitationnel. Dans une telle coulée le métal remplit le moule sous l'effet de la gravité.In a first alternative, the casting could be of the gravitational type. In such a casting, the metal fills the mold under the effect of gravity.

Dans une seconde alternative, la coulée pourra être du type centrifuge. Une telle coulée par centrifugation utilise le principe selon lequel le moule est entraîné en rotation rapide. Le métal liquide versé à l'intérieur se colle à la paroi par la force centrifuge et se solidifie. Cette technique permet une centrifugation et une pression sur la matière qui provoque un dégazage et expulse vers la partie externe les impuretés contenues dans le bain de métal liquide. De plus petites cavités peuvent être remplies par rapport à la coulée gravitationnelle simple.In a second alternative, the casting could be of the centrifugal type. Such centrifugal casting uses the principle that the mold is driven in rapid rotation. The liquid metal poured inside sticks to the wall by centrifugal force and solidifies. This technique allows centrifugation and pressure on the material which causes degassing and expels the impurities contained in the bath of liquid metal to the external part. Smaller cavities can be filled compared to simple gravitational casting.

Dans une troisième alternative, la coulée pourra être du type par injection. Une telle coulée par injection utilise le principe selon lequel le moule est rempli grâce à un piston qui vient appliquer une force très importante pour pousser le métal liquide. Cette poussée permet alors d'introduire le métal liquide dans le moule afin de mieux le remplir. Dans d'autres alternatives, la coulée pourra être de type par contre-gravité, par moulage sous pression, par coulée par le vide.In a third alternative, the casting could be of the injection type. Such injection casting uses the principle according to which the mold is filled by means of a piston which comes to apply a very large force to push the liquid metal. This thrust then makes it possible to introduce the liquid metal into the mold in order to better fill it. In other alternatives, the casting may be of the type by counter-gravity, by pressure molding, by vacuum casting.

La troisième étape, représentée à la figure 5, consiste à séparer la première pièce 1 du moule 10. Pour cela, le moule 10, dans lequel le métal amorphe a été surmoulé pour former la première pièce 1, est détruit par utilisation d'un jet d'eau sous haute pression, par dissolution dans de l'eau ou dans une solution chimique, ou par enlèvement mécanique. Dans le cas de l'utilisation d'une solution chimique, celle-ci est choisie pour attaquer spécifiquement le moule 10. En effet, le but de cette étape est de dissoudre le négatif 1 sans dissoudre la première pièce 5 constituée de métal amorphe. Par exemple, dans le cas d'un moule réalisé en plâtre avec liant phosphaté, une solution d'acide fluorhydrique est utilisée pour dissoudre le moule. Le résultat final est alors l'obtention de la première pièce en métal amorphe.The third stage, represented in the figure 5 , consists in separating the first part 1 from the mold 10. For this, the mold 10, in which the amorphous metal has been overmolded to form the first part 1, is destroyed by using a jet of water under high pressure, by dissolving in water or in a chemical solution, or by mechanical removal. In the case of using a chemical solution, this is chosen to specifically attack the mold 10. Indeed, the aim of this step is to dissolve the negative 1 without dissolving the first part 5 made of amorphous metal. For example, in the case of a mold made of plaster with a phosphate binder, a hydrofluoric acid solution is used to dissolve the mold. The end result is then obtaining the first piece of amorphous metal.

Ensuite, Il est prévu d'enlever le surplus de matière par voie mécanique ou chimique comme représenté à la figure 6.Then, it is planned to remove the excess material by mechanical or chemical means as shown in figure 6 .

On comprendra que diverses modifications et/ou améliorations et/ou combinaisons évidentes pour l'homme du métier peuvent être apportées aux différents modes de réalisation de l'invention exposés ci-dessus sans sortir du cadre de l'invention défini par les revendications annexées.It will be understood that various modifications and / or improvements and / or combinations obvious to a person skilled in the art can be made to the various embodiments of the invention described above without departing from the scope of the invention defined by the appended claims.

On peut également comprendre que la première étape consistant à se munir du négatif 1 peut comprendre aussi le fait de préparer ledit négatif En effet, il est possible de décorer le négatif 1 de sorte que des états de surface puissent être directement réalisés sur la première pièce. Ces états de surface peuvent être une décoration « côte de Genève », perlée, colimaçonnée diamant ou un satinage.It can also be understood that the first step consisting in providing the negative 1 can also include the fact of preparing said negative Indeed, it is possible to decorate the negative 1 so that surface finishes can be directly produced on the first part . These surface finishes can be a “Geneva coast” decoration, beaded, diamond snailed or a satin finish.

Claims (10)

  1. A method for manufacturing a component (1) having a thickness below 1.4 mm made of a first material, said first material being a metallic material that can become at least partially amorphous, and having a critical cooling rate below 15 K/s, said method comprising the following steps:
    a) providing a mold (10) made of a second material, said mold comprising a cavity (12) forming the negative of the component;
    b) providing the first material and forming it in the cavity of said mold, said first material having undergone, at the latest at the time of said forming, treatment allowing it to become at least partially amorphous;
    c) separating the component thus formed from the mold;
    characterized in that the second material forming the mold has a thermal effusivity from 250 to 2500 J/K/m2/s0.5, and in that the treatment step allowing said first material to become at least partially amorphous comprises a step of cooling, which is only accomplished owing to the effusivity of the mold and only at the mold/gas interface.
  2. The method of manufacture as claimed in claim 1, characterized in that step c) consists of dissolving said mold.
  3. The method of manufacture as claimed in claims 1 or 2, characterized in that said first material is subjected to a temperature rise above its melting point, allowing it to lose any crystalline structure locally, said rise being followed by cooling to a temperature below its glass transition temperature allowing said first material to become at least partially amorphous, the first material having a critical cooling rate below 15 K/s.
  4. The method of manufacture as claimed in claim 3, characterized in that the first material has a critical cooling rate less than or equal to 10 K/s.
  5. The method of manufacture as claimed in one of claims 1 to 4, characterized in that the forming step b) is simultaneous with treatment making said first material at least partially amorphous, by subjecting it to a temperature above its melting point followed by cooling to a temperature below its glass transition temperature allowing it to become at least partially amorphous, during a casting operation.
  6. The method of manufacture as claimed in claim 5, characterized in that forming takes place by injection.
  7. The method of manufacture as claimed in claim 5, characterized in that forming takes place by centrifugal casting.
  8. The method of manufacture as claimed in one of the preceding claims, characterized in that the second material is zircon having an effusivity of 2300 J/K/m2/s0.5.
  9. The method of manufacture as claimed in one of claims 1 to 8, characterized in that the second material is a plaster consisting predominantly of gypsum and/or silica, having an effusivity between 250 and 1000 J/K/m2/s0.5.
  10. The method of manufacture as claimed in one of claims 1 to 9, characterized in that the component (1) is a timepiece selected from the list comprising a caseband, a bezel, a bracelet link, a wheel (3), a hand, a crown wheel, pallets (5) or a balance wheel (7) of an escapement system (9), a tourbillon cage or a piece of jewelry selected from the list comprising a ring, a cuff link or an earring or a pendant.
EP16781383.1A 2015-11-18 2016-10-11 Method for manufacturing a part from amorphous metal Active EP3377247B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15195197.7A EP3170579A1 (en) 2015-11-18 2015-11-18 Method for manufacturing a part from amorphous metal
PCT/EP2016/074369 WO2017084807A1 (en) 2015-11-18 2016-10-11 Method for manufacturing an amorphous metal part

Publications (2)

Publication Number Publication Date
EP3377247A1 EP3377247A1 (en) 2018-09-26
EP3377247B1 true EP3377247B1 (en) 2021-07-28

Family

ID=54703765

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15195197.7A Withdrawn EP3170579A1 (en) 2015-11-18 2015-11-18 Method for manufacturing a part from amorphous metal
EP16781383.1A Active EP3377247B1 (en) 2015-11-18 2016-10-11 Method for manufacturing a part from amorphous metal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15195197.7A Withdrawn EP3170579A1 (en) 2015-11-18 2015-11-18 Method for manufacturing a part from amorphous metal

Country Status (7)

Country Link
US (1) US10981223B2 (en)
EP (2) EP3170579A1 (en)
JP (3) JP2019501780A (en)
CN (2) CN116809900A (en)
HK (1) HK1257133A1 (en)
RU (1) RU2018121843A (en)
WO (1) WO2017084807A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502787B1 (en) * 2017-12-22 2020-11-18 The Swatch Group Research and Development Ltd Method for manufacturing a balance for a timepiece
CH716669B1 (en) * 2019-10-03 2023-02-15 Richemont Int Sa Method of manufacturing a balance pivot shaft.
EP3839624B1 (en) * 2019-12-18 2023-09-13 Nivarox-FAR S.A. Method for manufacturing a timepiece component
CN113351846B (en) * 2021-06-15 2022-11-25 松山湖材料实验室 Preparation method of amorphous flexible gear for harmonic reducer
EP4282557A1 (en) * 2022-05-25 2023-11-29 Patek Philippe SA Genève Device for manufacturing a part from amorphous metal and method for manufacturing such a part

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492655B1 (en) * 1970-12-30 1974-01-22
JPS492655A (en) 1972-04-24 1974-01-10
JPS51126922A (en) 1975-04-30 1976-11-05 Hitachi Metals Ltd Investment casting mold
JPS54151508A (en) 1978-05-22 1979-11-28 Hitachi Ltd Gypsum mold
JPS5952018B2 (en) 1982-04-14 1984-12-17 本田技研工業株式会社 Precision casting method using water-soluble mold
US5368659A (en) * 1993-04-07 1994-11-29 California Institute Of Technology Method of forming berryllium bearing metallic glass
JPH09192777A (en) * 1996-01-05 1997-07-29 Toyota Central Res & Dev Lab Inc Gypsum mold
JPH10110A (en) 1996-06-18 1998-01-06 Daiichi Kogei:Kk Manufacture of noble metal product
US6620264B2 (en) * 2000-06-09 2003-09-16 California Institute Of Technology Casting of amorphous metallic parts by hot mold quenching
JP2002045960A (en) * 2000-08-07 2002-02-12 Tanaka Kikinzoku Kogyo Kk Method for casting amorphous alloy
US7017645B2 (en) * 2002-02-01 2006-03-28 Liquidmetal Technologies Thermoplastic casting of amorphous alloys
WO2004030848A1 (en) * 2002-09-30 2004-04-15 Liquidmetal Technologies Investment casting of bulk-solidifying amorphous alloys
US7412848B2 (en) 2002-11-22 2008-08-19 Johnson William L Jewelry made of precious a morphous metal and method of making such articles
CN100556581C (en) * 2007-06-19 2009-11-04 北京航空航天大学 A kind of method and nozzle equipment for preparing the non-crystaline amorphous metal jewellery
CN101164722A (en) * 2007-09-03 2008-04-23 北京航空航天大学 Processing net forming integrated method for amorphous alloy workpiece
EP2400353A1 (en) 2010-06-22 2011-12-28 The Swatch Group Research and Development Ltd. Hand for a timepiece
EP2400352A1 (en) 2010-06-22 2011-12-28 The Swatch Group Research and Development Ltd. Escapement system for a timepiece
EP2466394A1 (en) 2010-12-17 2012-06-20 The Swatch Group Research and Development Ltd. Capsule for a scientific instrument
CN102294435B (en) * 2011-09-15 2013-06-12 山东开泰抛丸机械有限公司 Method for casting and producing shot blasting machine blade based on firing mold on composite shell with utilization of chilled surface layer paint
CH707351A2 (en) 2012-12-21 2014-06-30 Omega Sa Decoration part for use in e.g. clock element such as dial, has set of cleavage lines of stones mounted in and out with regard to each other such that single base is masked, where material is provided as partially amorphous alloy
EP2835698A1 (en) * 2013-08-07 2015-02-11 The Swatch Group Research and Development Ltd. Casing element with metallic glass cap
EP2881488B1 (en) 2013-12-06 2017-04-19 The Swatch Group Research and Development Ltd. Bulk amorphous alloy made of beryllium-free zirconium
EP3586804A1 (en) * 2014-02-12 2020-01-01 The General Hospital Corporation Apparatus for affecting pigmentation of tissue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108290213A (en) 2018-07-17
US10981223B2 (en) 2021-04-20
JP2019501780A (en) 2019-01-24
HK1257133A1 (en) 2019-10-11
CN116809900A (en) 2023-09-29
EP3377247A1 (en) 2018-09-26
RU2018121843A (en) 2019-12-19
US20190262896A1 (en) 2019-08-29
JP2023012487A (en) 2023-01-25
WO2017084807A1 (en) 2017-05-26
JP2021079451A (en) 2021-05-27
EP3170579A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3377247B1 (en) Method for manufacturing a part from amorphous metal
EP2315673B1 (en) Decorative item produced by inlaying
EP2350746B1 (en) Method of making a bottom plate for a watch
EP2580369B1 (en) Method of manufacturing a coated amorphous metal part
EP3899072A1 (en) Injection-moulding device and method for manufacturing parts made of metallic glass
EP3121659B1 (en) Assembly of a part made of fragile material
EP3796102B1 (en) Method for manufacturing a balance for a timepiece
EP2585877B1 (en) Method for producing a watchmaking component comprising at least two parts
CH711794B1 (en) Process for manufacturing an amorphous metal part.
WO2019120959A1 (en) Balance for timepiece and method for manufacturing such a balance
CH714514B1 (en) Process for manufacturing a balance wheel for a timepiece.
CH714512A2 (en) Pendulum for a timepiece and method of manufacturing such a pendulum.
EP3120954B1 (en) Method for coating a part
FR3141247A1 (en) PROCESS FOR MANUFACTURING SEVERAL BI-MATERIAL SPECIMENS
CH699783B1 (en) Method of manufacturing a watch plate
CH703264A2 (en) Manufacturing a first piece comprising a coating, comprises producing a second piece comprising a recess forming the first part, and depositing the coating comprising a first layer on the second piece by e.g. chemical vapor deposition
FR2819206A1 (en) Moulding procedure for metal component of complex shape uses inner core of fusible material with shape determined by inner cell in component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1414260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016061282

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210728

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1414260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016061282

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

26N No opposition filed

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211011

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211028

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 8

Ref country code: CH

Payment date: 20231102

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728