EP2400352A1 - Escapement system for a timepiece - Google Patents

Escapement system for a timepiece Download PDF

Info

Publication number
EP2400352A1
EP2400352A1 EP10166938A EP10166938A EP2400352A1 EP 2400352 A1 EP2400352 A1 EP 2400352A1 EP 10166938 A EP10166938 A EP 10166938A EP 10166938 A EP10166938 A EP 10166938A EP 2400352 A1 EP2400352 A1 EP 2400352A1
Authority
EP
European Patent Office
Prior art keywords
exhaust system
anchor
amorphous
alloy
escape wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10166938A
Other languages
German (de)
French (fr)
Inventor
Christian Charbon
Yves Winkler
Marco Verardo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43242969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2400352(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP10166938A priority Critical patent/EP2400352A1/en
Priority to PCT/EP2011/060511 priority patent/WO2011161193A1/en
Priority to JP2013515896A priority patent/JP5657107B2/en
Priority to US13/703,837 priority patent/US20130148480A1/en
Priority to CN201510772543.XA priority patent/CN105319939B/en
Priority to EP11726830.0A priority patent/EP2585876B1/en
Priority to CN2011800310854A priority patent/CN103026303A/en
Publication of EP2400352A1 publication Critical patent/EP2400352A1/en
Priority to HK16107517.1A priority patent/HK1219545A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel

Definitions

  • the present invention relates to an exhaust system.
  • This exhaust system comprises an anchor provided with a fork intended to cooperate with a pin mounted on a plate, and a rod comprising arms intended to receive pallets in order to cooperate with at least one escape wheel.
  • the technical field of the invention is the technical field of fine mechanics, and more particularly of watchmaking
  • the timepieces include a power source such as the barrel providing energy to the room and in particular to the gear wheels. These wheels cooperate with the exhaust system via the escape wheel.
  • the rotation of the latter is regulated by the anchor of the exhaust system whose pulses are provided by the balance spring.
  • the exhaust system includes an anchor pivotally mounted on an axle.
  • This anchor comprises a rod provided with a fork, at a first end, intended to cooperate with a pin mounted on a plate, and provided with arms, at a second end, intended to receive pallets in order to cooperate with the wheel. exhaust.
  • the anchor pivots on its axis so that the paddles of the arms come into contact with the teeth of the escape wheel in order to regulate the rotation of the wheels.
  • the efficiency of the exhaust is relatively low.
  • the operation of the exhaust system comprises friction, shock and dissipation of energy in the materials components of the wheel and the anchor in particular.
  • a material used is for example 15P or 20AP steel. These materials are crystalline materials Gold, a disadvantage of crystalline metal components is their low mechanical strength when high stresses are applied. Indeed, each material is characterized by its Young's modulus E also called modulus of elasticity (generally expressed in GPa), characterizing its resistance to deformation. Each material is also characterized by its elastic limit ⁇ e (generally expressed in GPa) which represents the stress beyond which the material deforms plastically.
  • the efficiency of an escapement is related to the energy restitution factor during shocks, these shocks being the shocks between the pallets of the anchor of the escape wheel and the shocks between the ankle of the plate and the fork entrance.
  • the kinetic energy accumulated during the displacement of the anchor or the escape wheel is dependent on the moment of inertia which is a function of the mass and the radius of inertia, and therefore dimensions.
  • the maximum energy that can be stored elastically is calculated as the ratio between the square of the elastic limit ⁇ e on the one hand and the Young's modulus E on the other hand, the low elastic limit of the crystalline metals leads to a low level of energy storage capacity.
  • the steels 15P or 20AP are dense and therefore the anchors and escapement wheels have high masses. The moment of inertia is then high and the kinetic energy accumulated during the movements of the anchor and the escape wheel is important.
  • watchmaking traditionally uses hardened sulfur-lead carbon steels that offer good machinability and very good mechanical properties, but which are magnetic.
  • Non-magnetic alternatives are rare and generally more difficult to machine and offer poorer mechanical properties.
  • the invention aims to overcome the disadvantages of the prior art by proposing to provide an exhaust system with higher efficiency and simpler to achieve.
  • the invention relates to the exhaust system cited above which is characterized in that at least a portion of the exhaust system is made of an at least partially amorphous material and comprising at least one metal element.
  • a first advantage of the present invention is to allow the exhaust system to have a better energy restitution factor than current exhausts.
  • an amorphous metal is characterized by the fact that, during its manufacture, the atoms composing these amorphous materials do not arrange according to a particular structure as is the case for crystalline materials.
  • a Amorphous metal is then differentiated by an elastic limit ⁇ eA higher than ⁇ eC of the crystalline metal by a factor of two to three.
  • the elastic limit ⁇ e is increased making it possible to increase the ratio ⁇ e / E so that the stress limit beyond which the material does not return to its initial shape increases, and especially so that the maximum energy that can be stored elastically increases.
  • Another advantage of the present invention is to allow great ease in shaping allowing the development of complicated shapes with greater precision.
  • the amorphous metals have the particular characteristic of softening while remaining amorphous for a certain time in a given temperature range [Tg - Tx] specific to each alloy (with Tx: crystallization temperature and Tg: glass transition temperature ). It is thus possible to shape them under a relatively low pressure stress and a low temperature then allowing the use of a simplified process compared to machining and stamping.
  • the exhaust system 1 comprises a Swiss anchor 7 formed by a main face (visible to the figure 1 ) in projection.
  • the Swiss anchor 7 is mainly formed by a rod 9 connecting the fork 11 and the arms 13.
  • the fork 11 comprises two horns 15 opposite each other which is mounted on a stinger 17 in order to cooperate respectively with a pin fixed on said plate 5 of the balance shaft and the lower part of said plate 5.
  • the rod 9 receives, between the two arms 13, a rod 19 for rotating the anchor between a bridge and the plate of the movement.
  • a pallet 21 intended to come into contact with the escape wheel 23 via its teeth 25.
  • the pallets may, for example, be formed of synthetic ruby.
  • the present invention may also be used for the type coaxial escapement as in watchmaking.
  • At least a part of the exhaust system 1, that is to say the plate 5 or the anchor 7 or the escape wheel 23 is made of an at least partially amorphous material comprising at least a metallic element.
  • This metal element may be valuable such as gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium. It will be understood by at least partially amorphous material that the material is capable of solidifying at least partially in the amorphous phase.
  • all parts of the exhaust system 1 are made of at least partially amorphous material comprising at least one metal element. Nevertheless, these parts can be made of different amorphous materials.
  • amorphous metal alloys comes from the fact that, during their manufacture, the atoms composing these amorphous materials do not arrange in a particular structure as is the case for crystalline materials. Thus, even if the Young E moduli of a crystalline metal and an amorphous metal are substantially identical, their elastic limits ⁇ e are different. An amorphous metal is then differentiated by an elastic limit ⁇ eA higher than that ⁇ eC of the crystalline metal by a factor substantially equal to two. A higher elastic limit therefore means that a piece of amorphous metal alloy or amorphous metal deforms plastically under a higher stress than the same piece of crystalline metal.
  • the losses of an exhaust system 1 are related to the friction between the pallets 21 of the anchor 7 and the teeth 25 of the escape wheel 23 during the training phase and to the shocks between the teeth 25 of the escape wheel 23 and the pallets 21 of the anchor 7 during the fall phase.
  • the losses due to shocks between the teeth 25 of the escape wheel 23 and the pallets 21 of the anchor 7 during the fall phase are a function of the kinetic energy.
  • This kinetic energy, accumulated during the operation of the exhaust system 1, is dependent on the moment of inertia.
  • This moment of inertia is a function of the mass and the radius of inertia.
  • the maximum specific resistance is of the order of 200-250 MPa * cm 3 / g.
  • the specific resistance of the amorphous alloys is of the order of 300-400 MPa * cm 3 / g.
  • Another solution is to reduce the mass of the part by removing material, preferably in the areas contributing most to the moment of inertia, that is to say in the parts furthest from the axis of rotation of the room. It is possible, for example, to make recesses 29, crossing or not, and / or to locally reduce the thickness 27 of the part.
  • an amorphous alloy having a mechanical strength greater than the crystalline alloy will be chosen. Given the advantageous specific resistance of the amorphous alloys, the density of the amorphous alloy may be chosen to be equal to or slightly less than that of the crystalline alloy and consequently the moment of inertia of the system 1 will be decreased.
  • a third possibility is to reduce the dimensions of the elements of the exhaust system 1 such as the anchor 7 or the wheel 23 or the plate 5.
  • this decrease dimensions and mass do not cause a decrease in the mechanical strength of the exhaust system 1.
  • the specific resistance of the amorphous alloys being greater in comparison with the crystalline alloys, the density of the amorphous alloy chosen may be equal to or less than that of the crystalline alloy used for the standard part, and consequently the moment of inertia and the size of the system 1 may be reduced.
  • the exhaust system 1 which are metal or amorphous metal alloy. This makes it possible to keep the same size as an exhaust system 1 made of crystalline material and thus to keep standard dimensions while having a better resistance to stresses.
  • the use of such a material also makes it possible to reproduce fine geometries very precisely because the viscosity of the alloy decreases sharply as a function of the temperature in the temperature range [Tg-Tx] and the alloy thus allies the details of the negative.
  • the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity of 10 12 Pa. s at the temperature Tg.
  • the use of dies has the advantage of creating three-dimensional pieces of high precision, which can not be cut or stamped.
  • One method used is the hot forming of an amorphous preform.
  • This preform is obtained by melting the metal elements intended to constitute the amorphous alloy in a furnace. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the at least partially amorphous state. Once the preform is made, the hot forming is performed in order to obtain a final piece. This hot forming is performed by pressing in a temperature range between its glass transition temperature Tg and its crystallization temperature Tx for a predetermined time to maintain a totally or partially amorphous structure. This is done in order to maintain the characteristic elastic properties of the amorphous metals.
  • the elements of the exhaust system can be made by casting or injection. This process involves casting the alloy obtained by melting the metal elements in a mold having the shape of the final piece. Once the mold is filled, it is rapidly cooled to a temperature below Tg in order to avoid crystallization of the alloy and thus obtain a system 1 of amorphous or partially amorphous metal.
  • pallets 21 of the anchor 7 are made of metal or amorphous alloy. These pallets 21 can form one and the same piece with said anchor or be overmolded after manufacture of the anchor 7. It then becomes possible that the pallets 21 and the anchor 7 are made of metal or amorphous alloy but different from each other. one of the other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gears, Cams (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)
  • Forging (AREA)

Abstract

The system (1) has a pallet (7) equipped with a fork intended to collaborate with a pin mounted on a plate (5). The pallet comprises a rod with an arm intended to accept pallet stones (21) so as to collaborate with an escapement wheel (23), where a part of the system is made of partially amorphous metal alloy or completely amorphous metal. The wheel, pallet and the pallet stones are respectively made of a partially amorphous metal alloy, where the pallet stones and the pallet are made of a single piece. The metal alloy is non-magnetic.

Description

La présente invention concerne un système d'échappement. Ce système d'échappement comporte une ancre munie d'une fourchette destinée à coopérer avec une cheville montée sur un plateau, et une baguette comportant des bras destinés à recevoir des palettes afin de coopérer avec au moins une roue d'échappementThe present invention relates to an exhaust system. This exhaust system comprises an anchor provided with a fork intended to cooperate with a pin mounted on a plate, and a rod comprising arms intended to receive pallets in order to cooperate with at least one escape wheel.

Le domaine technique de l'invention est le domaine technique de la mécanique fine.et plus particulièrement de l'horlogerieThe technical field of the invention is the technical field of fine mechanics, and more particularly of watchmaking

ARRIERE PLAN TECHNOLOGIQUEBACKGROUND TECHNOLOGY

Les pièces d'horlogerie comprennent une source d'énergie comme le barillet fournissant de l'énergie à la pièce et notamment aux rouages de transmission. Ces rouages coopèrent avec le système d'échappement via la roue d'échappement. La rotation de cette dernière est régulée par l'ancre du système d'échappement dont les impulsions sont fournies par le balancier spiral. Le système d'échappement comporte une ancre montée en pivotement sur un axe. Cette ancre comprend une baguette munie d'une fourchette, à une première extrémité, destinée à coopérer avec une cheville montée sur un plateau, et munie de bras, à une seconde extrémité, destinés à recevoir des palettes afin de coopérer avec la roue d'échappement. Lors de son fonctionnement, l'ancre pivote sur son axe de sorte que les palettes des bras entrent en contact avec les dents de la roue d'échappement afin de réguler la rotation des rouages.The timepieces include a power source such as the barrel providing energy to the room and in particular to the gear wheels. These wheels cooperate with the exhaust system via the escape wheel. The rotation of the latter is regulated by the anchor of the exhaust system whose pulses are provided by the balance spring. The exhaust system includes an anchor pivotally mounted on an axle. This anchor comprises a rod provided with a fork, at a first end, intended to cooperate with a pin mounted on a plate, and provided with arms, at a second end, intended to receive pallets in order to cooperate with the wheel. exhaust. During operation, the anchor pivots on its axis so that the paddles of the arms come into contact with the teeth of the escape wheel in order to regulate the rotation of the wheels.

Or, actuellement, le rendement de l'échappement est relativement faible. En effet, le fonctionnement du système d'échappement comporte des frottements, des chocs et de la dissipation d'énergie dans les matériaux constitutifs de la roue et de l'ancre notamment. Un matériau utilisé est par exemple l'acier 15P ou 20AP. Ces matériaux sont des matériaux cristallins Or, un inconvénient des composants en métal cristallin est leur faible tenu mécanique lorsque des contraintes élevées sont appliquées. En effet, chaque matériau se caractérise par son module d'Young E également appelé module d'élasticité (exprimé généralement en GPa), caractérisant sa résistance à la déformation. Chaque matériau est aussi caractérisé par sa limite élastique σe (exprimée généralement en GPa) qui représente la contrainte au-delà de laquelle le matériau se déforme plastiquement. Il est alors possible, pour des dimensions données, de comparer les matériaux en établissant pour chacun le rapport de leur limite élastique sur leur module d'Young σe/E, ledit rapport étant représentatif de la déformation élastique de chaque matériau. Ainsi, plus ce rapport est élevé, plus la limite de déformation élastique du matériau est élevée. Typiquement, pour un alliage du type Cu-Be, le module d'Young E est égal à 130 GPa et la limite d'élasticité σe est égale à 1 GPa, ce qui donne un rapport σe/E de l'ordre de 0,007 c'est-à-dire faible. Les pièces en métal ou alliage cristallin possèdent, par conséquent, une capacité limitée de déformation élastique.However, at present, the efficiency of the exhaust is relatively low. Indeed, the operation of the exhaust system comprises friction, shock and dissipation of energy in the materials components of the wheel and the anchor in particular. A material used is for example 15P or 20AP steel. These materials are crystalline materials Gold, a disadvantage of crystalline metal components is their low mechanical strength when high stresses are applied. Indeed, each material is characterized by its Young's modulus E also called modulus of elasticity (generally expressed in GPa), characterizing its resistance to deformation. Each material is also characterized by its elastic limit σ e (generally expressed in GPa) which represents the stress beyond which the material deforms plastically. It is then possible, for given dimensions, to compare the materials by establishing for each the ratio of their elastic limit on their Young's modulus σ e / E, said ratio being representative of the elastic deformation of each material. Thus, the higher this ratio, the higher the limit of elastic deformation of the material. Typically, for an alloy of the Cu-Be type, the Young's modulus E is equal to 130 GPa and the elastic limit σ e is equal to 1 GPa, which gives a ratio σ e / E of the order of 0.007 i.e. low. Parts made of metal or crystalline alloy have, therefore, a limited capacity for elastic deformation.

En outre, le rendement d'un échappement est lié au facteur de restitution de l'énergie lors des chocs, ces chocs étant les chocs entre les palettes de l'ancre de la roue d'échappement et les chocs entre la cheville du plateau et l'entrée de fourchette.In addition, the efficiency of an escapement is related to the energy restitution factor during shocks, these shocks being the shocks between the pallets of the anchor of the escape wheel and the shocks between the ankle of the plate and the fork entrance.

Or, l'énergie cinétique accumulée lors du déplacement de l'ancre ou de la roue d'échappement est dépendante du moment d'inertie qui est fonction de la masse et du rayon d'inertie, donc des dimensions.However, the kinetic energy accumulated during the displacement of the anchor or the escape wheel is dependent on the moment of inertia which is a function of the mass and the radius of inertia, and therefore dimensions.

Dès lors que l'énergie maximale pouvant être stockée élastiquement se calcule comme étant le rapport entre le carré de la limite élastique σe d'une part et le module d'Young E d'autre part, la faible limite élastique des métaux cristallins entraîne un faible niveau de capacité de stockage d'énergie. Or, les aciers 15P ou 20AP sont denses et donc les ancres et roues d'échappements ont de fortes masses. Le moment d'inertie est alors élevé et l'énergie cinétique accumulée lors des déplacements de l'ancre et de la roue d'échappement est donc important.Since the maximum energy that can be stored elastically is calculated as the ratio between the square of the elastic limit σ e on the one hand and the Young's modulus E on the other hand, the low elastic limit of the crystalline metals leads to a low level of energy storage capacity. However, the steels 15P or 20AP are dense and therefore the anchors and escapement wheels have high masses. The moment of inertia is then high and the kinetic energy accumulated during the movements of the anchor and the escape wheel is important.

Toutefois, comme les métaux cristallins ne peuvent pas stocker une grande énergie, il se produit des pertes d'énergie lors des chocs levées/dents de la roue d'échappement et lors des chocs entre la cheville du plateau et l'entrée de fourchette.However, since the crystalline metals can not store a large amount of energy, energy losses occur during raised shocks / teeth of the escape wheel and during shocks between the plate pin and the fork entry.

En conséquence, une part non négligeable d'énergie délivrée par le barillet est perdue lors du fonctionnement de la pièce d'horlogerie, réduisant ainsi sa réserve de marche.As a result, a significant amount of energy delivered by the barrel is lost during operation of the timepiece, thus reducing its power reserve.

Par ailleurs, l'horlogerie utilise traditionnellement les aciers au carbone au soufre et au plomb trempés-revenus qui offrent une bonne usinabilité et de très bonnes propriétés mécaniques mais qui sont magnétiques. Les alternatives amagnétiques sont rares et généralement plus difficiles à usiner et offrant de moins bonnes propriétés mécaniques.In addition, watchmaking traditionally uses hardened sulfur-lead carbon steels that offer good machinability and very good mechanical properties, but which are magnetic. Non-magnetic alternatives are rare and generally more difficult to machine and offer poorer mechanical properties.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention a pour but de pallier les inconvénients de l'art antérieur en proposant de fournir un système d'échappement au rendement plus élevé et plus simple à réaliser.The invention aims to overcome the disadvantages of the prior art by proposing to provide an exhaust system with higher efficiency and simpler to achieve.

A cet effet, l'invention concerne le système d'échappement cité ci-dessus qui se caractérise en ce qu'au moins une partie du système d'échappement est réalisé en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.For this purpose, the invention relates to the exhaust system cited above which is characterized in that at least a portion of the exhaust system is made of an at least partially amorphous material and comprising at least one metal element.

Un premier avantage de la présente invention est de permettre au système d'échappement d'avoir un meilleur facteur de restitution de l'énergie que les échappements actuels. Effectivement, un métal amorphe se caractérise par le fait que, lors de sa fabrication, les atomes composant ces matériaux amorphes ne s'arrangent pas selon une structure particulière comme c'est le cas pour les matériaux cristallins Ainsi, même si les modules d'Young E d'un métal cristallin et d'un métal amorphe sont sensiblement identiques, leurs limites élastiques σe sont différentes. Un métal amorphe se différencie alors par une limite élastique σeA plus élevée que celle σeC du métal cristallin d'un facteur de deux à trois. La limite élastique σe est augmentée permettant d'augmenter le rapport σe/E de sorte que la limite de contrainte au-delà de laquelle le matériau ne reprend pas sa forme initiale augmente, et surtout de sorte que l'énergie maximale pouvant être stockée élastiquement augmente.A first advantage of the present invention is to allow the exhaust system to have a better energy restitution factor than current exhausts. Indeed, an amorphous metal is characterized by the fact that, during its manufacture, the atoms composing these amorphous materials do not arrange according to a particular structure as is the case for crystalline materials Thus, even if the modules of Young E of a crystalline metal and an amorphous metal are substantially identical, their elastic limits σ e are different. A Amorphous metal is then differentiated by an elastic limit σ eA higher than σ eC of the crystalline metal by a factor of two to three. The elastic limit σ e is increased making it possible to increase the ratio σ e / E so that the stress limit beyond which the material does not return to its initial shape increases, and especially so that the maximum energy that can be stored elastically increases.

Un autre avantage de la présente invention est de permettre une grande facilité dans la mise en forme permettant l'élaboration de pièces aux formes compliquées avec une plus grande précision. En effet, les métaux amorphes ont la caractéristique particulière de se ramollir tout en restant amorphes durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (avec Tx : température de cristallisation et Tg : température de transition vitreuse). Il est ainsi possible de les mettre en forme sous une contrainte de pression relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié par rapport à un usinage et emboutissage. L'utilisation d'un tel matériau permet en outre de, dans le cas d'une mise en forme par moulage, reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails d'un négatif. On entend par négatif, un moule qui présente en creux un profil complémentaire à celui du composant recherché. Il devient alors aisé de réaliser des designs complexes mais de façon précise.Another advantage of the present invention is to allow great ease in shaping allowing the development of complicated shapes with greater precision. Indeed, the amorphous metals have the particular characteristic of softening while remaining amorphous for a certain time in a given temperature range [Tg - Tx] specific to each alloy (with Tx: crystallization temperature and Tg: glass transition temperature ). It is thus possible to shape them under a relatively low pressure stress and a low temperature then allowing the use of a simplified process compared to machining and stamping. The use of such a material also makes it possible, in the case of shaping by molding, to reproduce very precisely fine geometries because the viscosity of the alloy decreases sharply as a function of the temperature in the range of temperature [Tg - Tx] and the alloy thus marries all the details of a negative. Negative means, a mold which has a hollow profile complementary to that of the desired component. It then becomes easy to make complex but precise designs.

Des modes de réalisation avantageux de ce système d'échappement font l'objet des revendications dépendantes 2 à 12.Advantageous embodiments of this exhaust system are the subject of dependent claims 2 to 12.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

Les buts, avantages et caractéristiques du système d'échappement selon la présente invention apparaîtront plus clairement dans la description détaillée suivante d'au moins une forme de réalisation de l'invention donnée uniquement à titre d'exemple non limitatif et illustrée par les dessins annexés sur lesquels :

  • les figures 1 et 2 représentent de manière schématique un système d'échappement de pièce d'horlogerie selon l'invention;
The aims, advantages and characteristics of the exhaust system according to the present invention will appear more clearly in the following detailed description of at least one embodiment of the invention given solely by way of nonlimiting example and illustrated by the appended drawings. on which ones :
  • the Figures 1 and 2 schematically represent a timepiece exhaust system according to the invention;

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Sur les figures 1 et 2 est représenté un système d'échappement 1 avec son résonateur 3, c'est à dire le balancier spiral. De manière habituelle, le résonateur 3 coopère avec le système d'échappement 1 à l'aide d'un plateau 5 monté sur l'axe de balancier. Le système d'échappement 1 comporte une ancre 7 suisse formée par une face principale (visible à la figure 1) en projection. L'ancre 7 suisse est principalement formée par une baguette 9 reliant la fourchette 11 et les bras 13. La fourchette 11 comporte deux cornes 15 en vis-à-vis sous lesquelles est monté un dard 17 afin de coopérer respectivement avec une goupille fixée sur ledit plateau 5 de l'axe de balancier et la partie basse dudit plateau 5.On the Figures 1 and 2 is represented an exhaust system 1 with its resonator 3, that is to say the balance spring. In the usual way, the resonator 3 cooperates with the exhaust system 1 by means of a plate 5 mounted on the balance shaft. The exhaust system 1 comprises a Swiss anchor 7 formed by a main face (visible to the figure 1 ) in projection. The Swiss anchor 7 is mainly formed by a rod 9 connecting the fork 11 and the arms 13. The fork 11 comprises two horns 15 opposite each other which is mounted on a stinger 17 in order to cooperate respectively with a pin fixed on said plate 5 of the balance shaft and the lower part of said plate 5.

La baguette 9 reçoit, entre les deux bras 13, une tige 19 destinée à monter en rotation l'ancre entre un pont et la platine du mouvement. Enfin, sur chaque bras 13, est ajustée une palette 21 destinée à entrer en contact avec la roue d'échappement 23 par l'intermédiaire de ses dents 25. Les palettes peuvent, à titre d'exemple, être formées en rubis synthétique. Bien entendu, la présente invention pourra être également utilisée pour l'échappement coaxial de type comme en horlogerie.The rod 9 receives, between the two arms 13, a rod 19 for rotating the anchor between a bridge and the plate of the movement. Finally, on each arm 13 is fitted a pallet 21 intended to come into contact with the escape wheel 23 via its teeth 25. The pallets may, for example, be formed of synthetic ruby. Of course, the present invention may also be used for the type coaxial escapement as in watchmaking.

Préférentiellement selon l'invention, au moins une partie du système d'échappement 1 c'est-à-dire le plateau 5 ou l'ancre 7 ou la roue d'échappement 23 est réalisé en un matériau au moins partiellement amorphe comprenant au moins un élément métallique. Cet élément métallique peut être précieux tel que de l'or, du platine, du palladium, du rhénium, du ruthénium, du rhodium, de l'argent, de l'iridium ou de l'osmium. On comprendra par matériau au moins partiellement amorphe que le matériau est apte à se solidifier au moins partiellement en phase amorphe.Preferably according to the invention, at least a part of the exhaust system 1, that is to say the plate 5 or the anchor 7 or the escape wheel 23 is made of an at least partially amorphous material comprising at least a metallic element. This metal element may be valuable such as gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium. It will be understood by at least partially amorphous material that the material is capable of solidifying at least partially in the amorphous phase.

Bien entendu, on comprendra que, dans une réalisation particulière, toutes les parties du système d'échappement 1 sont réalisées en un matériau au moins partiellement amorphe comprenant au moins un élément métallique. Néanmoins, ces parties peuvent être réalisées en différents matériaux amorphes.Of course, it will be understood that, in a particular embodiment, all parts of the exhaust system 1 are made of at least partially amorphous material comprising at least one metal element. Nevertheless, these parts can be made of different amorphous materials.

L'avantage des alliages métalliques amorphes vient du fait que, lors de leur fabrication, les atomes composant ces matériaux amorphes ne s'arrangent pas selon une structure particulière comme c'est le cas pour les matériaux cristallins. Ainsi, même si les modules d'Young E d'un métal cristallin et d'un métal amorphe sont sensiblement identiques, leurs limites élastiques σe sont différentes. Un métal amorphe se différencie alors par une limite élastique σeA plus élevée que celle σeC du métal cristallin d'un facteur sensiblement égal à deux. Une limite élastique plus élevée signifie donc qu'une pièce en alliage métallique amorphe ou métal amorphe se déforme plastiquement sous une contrainte plus élevée que la même pièce en métal cristallin.The advantage of amorphous metal alloys comes from the fact that, during their manufacture, the atoms composing these amorphous materials do not arrange in a particular structure as is the case for crystalline materials. Thus, even if the Young E moduli of a crystalline metal and an amorphous metal are substantially identical, their elastic limits σ e are different. An amorphous metal is then differentiated by an elastic limit σ eA higher than that σ eC of the crystalline metal by a factor substantially equal to two. A higher elastic limit therefore means that a piece of amorphous metal alloy or amorphous metal deforms plastically under a higher stress than the same piece of crystalline metal.

Or, les pertes d'un système d'échappement 1 sont liées aux frottements entre les palettes 21 de l'ancre 7 et les dents 25 de la roue d'échappement 23 lors de la phase d'entrainement et aux chocs entre les dents 25 de la roue d'échappement 23 et les palettes 21 de l'ancre 7 lors de la phase de chute.However, the losses of an exhaust system 1 are related to the friction between the pallets 21 of the anchor 7 and the teeth 25 of the escape wheel 23 during the training phase and to the shocks between the teeth 25 of the escape wheel 23 and the pallets 21 of the anchor 7 during the fall phase.

Les pertes liées aux chocs entre les dents 25 de la roue d'échappement 23 et les palettes 21 de l'ancre 7 lors de la phase de chute sont fonction de l'énergie cinétique. Cette énergie cinétique, accumulée lors du fonctionnement du système d'échappement 1, est dépendante du moment d'inertie. Ce moment d'inertie est fonction de la masse et du rayon d'inertie. Dans le cas d'une roue d'échappement, plus celle-ci aura un grand diamètre ou plus la masse de cette roue 23 sera importante et plus le moment d'inertie de ladite roue 23 sera élevé. Cette augmentation du moment d'inertie a pour conséquence une augmentation de l'énergie cinétique de ladite roue d'échappement 23. Par conséquent, lors des chocs entre les dents 25 de la roue d'échappement 23 et les palettes 21 de l'ancre 7, lors de la phase de chute, l'énergie cinétique accumulée est dissipée sans être transmise. Ainsi, pour diminuer ces pertes, une diminution de l'énergie cinétique de la roue 23 est une solution. De ce fait, une diminution de la masse ou du diamètre de ladite roue d'échappement 23 entraîne une diminution du moment d'inertie et donc de l'énergie cinétique de ladite roue d'échappement 23.The losses due to shocks between the teeth 25 of the escape wheel 23 and the pallets 21 of the anchor 7 during the fall phase are a function of the kinetic energy. This kinetic energy, accumulated during the operation of the exhaust system 1, is dependent on the moment of inertia. This moment of inertia is a function of the mass and the radius of inertia. In the case of an escape wheel, the greater it will have a large diameter or the greater the mass of the wheel 23 will be significant and the moment of inertia of said wheel 23 will be high. This increase in the moment of inertia results in an increase in the kinetic energy of said escape wheel 23. Consequently, during shocks between the teeth 25 of the escape wheel 23 and the pallets 21 of the anchor 7, during the fall phase, the accumulated kinetic energy is dissipated without being transmitted. Thus, to reduce these losses, a decrease in the kinetic energy of the wheel 23 is a solution. As a result, a decrease in the mass or diameter of said escape wheel 23 results in a reduction of the moment of inertia and thus of the kinetic energy of said escape wheel 23.

Une caractéristique importante du matériau utilisé pour la fabrication de telles pièces est donc de maximiser la résistance spécifique qui est définie par le rapport de la limite élastique sur la densité. Pour les alliages cristallins, la résistance spécifique maximale est de l'ordre de 200-250 MPa*cm3/g. Par contre, la résistance spécifique des alliages amorphes est de l'ordre de 300-400 MPa*cm3/g.An important characteristic of the material used for the manufacture of such pieces is thus to maximize the specific resistance which is defined by the ratio of the elastic limit to the density. For crystalline alloys, the maximum specific resistance is of the order of 200-250 MPa * cm 3 / g. On the other hand, the specific resistance of the amorphous alloys is of the order of 300-400 MPa * cm 3 / g.

Il est ainsi possible, pour une géométrie de pièce et une résistance mécanique nécessaire données, d'utiliser un alliage amorphe ayant une densité nettement inférieure à celle de l'alliage cristallin satisfaisant au même critère. En conséquence, le moment d'inertie du système sera diminué et son fonctionnement amélioré.It is thus possible, for a given piece geometry and a required mechanical strength, to use an amorphous alloy having a density significantly lower than that of the crystalline alloy satisfying the same criterion. As a result, the moment of inertia of the system will be decreased and its operation improved.

Une autre solution consiste à diminuer la masse de la pièce en retirant de la matière, préférentiellement dans les zones contribuant le plus au moment d'inertie, c'est-à-dire dans les parties les plus éloignées de l'axe de rotation de la pièce. Il est possible par exemple de réaliser des évidements 29, traversant ou non, et/ou de diminuer localement l'épaisseur 27 de la pièce. Pour compenser cette diminution de matière, un alliage amorphe ayant une résistance mécanique supérieure à l'alliage cristallin sera choisi. Etant donné la résistance spécifique avantageuse des alliages amorphes, la densité de l'alliage amorphe pourra être choisie égale voir légèrement inférieure à celle de l'alliage cristallin et en conséquence le moment d'inertie du système 1 sera diminué.Another solution is to reduce the mass of the part by removing material, preferably in the areas contributing most to the moment of inertia, that is to say in the parts furthest from the axis of rotation of the room. It is possible, for example, to make recesses 29, crossing or not, and / or to locally reduce the thickness 27 of the part. To compensate for this decrease in material, an amorphous alloy having a mechanical strength greater than the crystalline alloy will be chosen. Given the advantageous specific resistance of the amorphous alloys, the density of the amorphous alloy may be chosen to be equal to or slightly less than that of the crystalline alloy and consequently the moment of inertia of the system 1 will be decreased.

Une troisième possibilité est de réduire les dimensions des éléments du système d'échappement 1 comme l'ancre 7 ou la roue 23 ou le plateau 5. En choisissant un alliage amorphe de résistance mécanique plus élevée que l'alliage cristallin utilisé pour les dimensions actuels, cette diminution des dimensions et de la masse n'entraînent pas de baisse de la résistance mécanique du système d'échappement 1. Toutefois, la résistance spécifique des alliages amorphes étant plus grande en comparaison des alliages cristallins, la densité de l'alliage amorphe choisi pourra être égale ou inférieure à celle de l'alliage cristallin utilisé pour la pièce standard, et en conséquence le moment d'inertie ainsi que l'encombrement du système 1 pourront être réduits.A third possibility is to reduce the dimensions of the elements of the exhaust system 1 such as the anchor 7 or the wheel 23 or the plate 5. By choosing an amorphous alloy of higher mechanical strength than the crystalline alloy used for the current dimensions , this decrease dimensions and mass do not cause a decrease in the mechanical strength of the exhaust system 1. However, the specific resistance of the amorphous alloys being greater in comparison with the crystalline alloys, the density of the amorphous alloy chosen may be equal to or less than that of the crystalline alloy used for the standard part, and consequently the moment of inertia and the size of the system 1 may be reduced.

Préférentiellement, on choisira de diminuer la masse des parties du système d'échappement 1 qui sont en métal ou alliage métallique amorphe. Cela permet de garder le même encombrement qu'un système d'échappement 1 en matériau cristallin et donc de garder des dimensions standard tout en ayant une meilleure résistance aux contraintes.Preferably, it will be chosen to reduce the mass of the parts of the exhaust system 1 which are metal or amorphous metal alloy. This makes it possible to keep the same size as an exhaust system 1 made of crystalline material and thus to keep standard dimensions while having a better resistance to stresses.

Pour réaliser un tel système d'échappement en métal amorphe il est avantageux d'utiliser les propriétés du métal amorphe pour le mettre en forme. En effet, le métal amorphe permet une grande facilité dans la mise en forme permettant l'élaboration de pièces aux formes compliquées avec une plus grande précision. Cela est dû aux caractéristiques particulières du métal amorphe qui peut se ramollir tout en restant amorphe durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (par exemple pour un alliage Zr41.24Ti13.75Cu12.5N10Be22.5, Tg=350°C et Tx=460°C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud. L'utilisation d'un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails du négatif. Par exemple, pour un matériau à base de platine, la mise en forme se fait aux alentours de 300°C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1 MPa, au lieu d'une viscosité de 1012 Pa.s à la température Tg. L'utilisation de matrices a pour avantage la création de pièces en trois dimensions de grande précision, ce que le découpage ou l'étampage ne permettent pas d'obtenir.To achieve such an amorphous metal exhaust system it is advantageous to use the properties of the amorphous metal to shape it. Indeed, the amorphous metal allows great ease in shaping allowing the development of complicated shapes with greater precision. This is due to the particular characteristics of the amorphous metal which can soften while remaining amorphous for a certain time in a given temperature range [Tg - Tx] specific to each alloy (for example for an alloy Zr 41.24 Ti 13.75 Cu 12.5 N 10 Be 22.5 , Tg = 350 ° C and Tx = 460 ° C). It is thus possible to shape them under a relatively low stress and at a low temperature then allowing the use of a simplified process such as hot forming. The use of such a material also makes it possible to reproduce fine geometries very precisely because the viscosity of the alloy decreases sharply as a function of the temperature in the temperature range [Tg-Tx] and the alloy thus allies the details of the negative. For example, for a platinum-based material, the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity of 10 12 Pa. s at the temperature Tg. The use of dies has the advantage of creating three-dimensional pieces of high precision, which can not be cut or stamped.

Un procédé utilisé est le formage à chaud d'une préforme amorphe. Cette préforme est obtenue par fusion des éléments métalliques destinés à constituer l'alliage amorphe dans un four. Une fois ces éléments fondus, ils sont coulés sous forme de produit semi-fini, puis refroidis rapidement afin de conserver l'état au moins partiellement amorphe. Une fois la préforme réalisée, le formage à chaud est réalisé dans le but d'obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de température comprise entre sa température de transition vitreuse Tg et sa température de cristallisation Tx durant un temps déterminé pour conserver une structure totalement ou partiellement amorphe. Ceci est fait dans le but de conserver les propriétés élastiques caractéristiques des métaux amorphes.One method used is the hot forming of an amorphous preform. This preform is obtained by melting the metal elements intended to constitute the amorphous alloy in a furnace. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the at least partially amorphous state. Once the preform is made, the hot forming is performed in order to obtain a final piece. This hot forming is performed by pressing in a temperature range between its glass transition temperature Tg and its crystallization temperature Tx for a predetermined time to maintain a totally or partially amorphous structure. This is done in order to maintain the characteristic elastic properties of the amorphous metals.

Typiquement pour l'alliage Zr41.2Ti13.8Cu12.5Ni10Be22.5 et pour une température de 440°C, le temps de pressage ne devra pas dépasser 120 secondes environ. Ainsi, le formage à chaud permet de conserver l'état au moins partiellement amorphe initial de la préforme. Les différentes étapes de mise en forme définitive d'un élément du système d'échappement sont alors :

  1. a) Chauffage des matrices ayant la forme négative de l'élément du système d'échappement 1 jusqu'à une température choisie
  2. b) Introduction de la préforme en métal amorphe entre les matrices chaudes,
  3. c) Application d'une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe,
  4. d) Attente durant un temps maximal choisi,
  5. e) Ouverture des matrices,
  6. f) Refroidissement rapide de l'élément du système d'échappement en dessous de Tg de sorte que le matériau garde son état au moins partiellement amorphe, et
  7. g) Sortie de l'élément du système d'échappement 1 des matrices.
Typically for the alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 and for a temperature of 440 ° C, the pressing time should not exceed about 120 seconds. Thus, hot forming makes it possible to maintain the at least partially initial amorphous state of the preform. The different stages of definitive formatting of an element of the exhaust system are then:
  1. a) Heating the dies having the negative form of the element of the exhaust system 1 up to a chosen temperature
  2. b) Introduction of the amorphous metal preform between the hot matrices,
  3. c) applying a closing force on the matrices in order to replicate the geometry of the latter on the amorphous metal preform,
  4. d) Waiting for a chosen maximum time,
  5. e) Opening of the matrices,
  6. f) Fast cooling of the exhaust system element below Tg so that the material keeps its at least partially amorphous state, and
  7. g) Exit of the element of the exhaust system 1 of the dies.

Ces caractéristiques de facilité de mise en forme, de précision de la pièce obtenue et de très bonne reproductibilité sont ainsi très utiles pour la réalisation des épaisseurs variables et des évidements. Cette facilité de mise en forme permet également de réaliser des pièces complexes facilement comme par exemple le plateau 5 du système d'échappement 1 avec sa goupille.These characteristics of ease of formatting, accuracy of the part obtained and very good reproducibility are thus very useful for the realization of variable thicknesses and recesses. This ease of formatting also makes it possible to produce complex parts easily, such as, for example, the plate 5 of the exhaust system 1 with its pin.

De surcroît, la possibilité de mettre en forme facilement des pièces complexes permet justement de pouvoir réaliser des designs compliqués. Or, ceci peut être intéressant pour la mise en forme des dents de la roue d'échappement et la mise en forme de l'ancre de façon à améliorer la coopération entre la roue d'échappement et l'ancre.In addition, the ability to easily shape complex parts makes it possible to perform complicated designs. However, this can be interesting for shaping the teeth of the escape wheel and the shaping of the anchor so as to improve the cooperation between the escape wheel and the anchor.

On comprendra que diverses modifications et/ou améliorations et/ou combinaisons évidentes pour l'homme du métier peuvent être apportées aux différents modes de réalisation de l'invention exposée ci-dessus sans sortir du cadre de l'invention définie par les revendications annexées.It will be understood that various modifications and / or improvements and / or combinations obvious to those skilled in the art can be made to the various embodiments of the invention set out above without departing from the scope of the invention defined by the appended claims.

Bien entendu, on comprendra que les éléments du système d'échappement peuvent être réalisés par coulée ou par injection. Ce procédé consiste à couler l'alliage obtenu par fusion des éléments métalliques dans un moule possédant la forme de la pièce définitive. Une fois le moule rempli, celui-ci est refroidi rapidement jusqu'à une température inférieure à Tg afin d'éviter la cristallisation de l'alliage et ainsi obtenir un système 1 en métal amorphe ou partiellement amorphe.Of course, it will be understood that the elements of the exhaust system can be made by casting or injection. This process involves casting the alloy obtained by melting the metal elements in a mold having the shape of the final piece. Once the mold is filled, it is rapidly cooled to a temperature below Tg in order to avoid crystallization of the alloy and thus obtain a system 1 of amorphous or partially amorphous metal.

Bien entendu, on peut également imaginer que les palettes 21 de l'ancre 7 soient réalisées en métal ou alliage amorphe. Ces palettes 21 peuvent ne former qu'une seule et même pièce avec ladite ancre ou être surmoulées après fabrication de l'ancre 7. Il devient alors envisageable que les palettes 21 et l'ancre 7 soient en métal ou alliage amorphe mais différents l'un de l'autre.Of course, one can also imagine that the pallets 21 of the anchor 7 are made of metal or amorphous alloy. These pallets 21 can form one and the same piece with said anchor or be overmolded after manufacture of the anchor 7. It then becomes possible that the pallets 21 and the anchor 7 are made of metal or amorphous alloy but different from each other. one of the other.

Claims (12)

Système d'échappement comportant une ancre (7) munie d'une fourchette (11) destinée à coopérer avec une cheville montée sur un plateau (5), et d'une baguette (9) comportant des bras (13) destinés à recevoir des palettes (21) afin de coopérer avec au moins une roue d'échappement (23), caractérisé en ce qu'au moins une partie du système d'échappement est réalisée en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.An escapement system comprising an anchor (7) provided with a fork (11) intended to cooperate with an anchor mounted on a plate (5), and a rod (9) comprising arms (13) intended to receive pallets (21) for cooperating with at least one escape wheel (23), characterized in that at least part of the exhaust system is made of an at least partially amorphous material and comprising at least one metal element. Système d'échappement selon la revendication 1, caractérisé en ce que l'ancre (7) est réalisée en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.Exhaust system according to claim 1, characterized in that the anchor (7) is made of at least partially amorphous material and comprising at least one metal element. Système d'échappement selon les revendications 1 ou 2, caractérisé en ce que les palettes (21) de l'ancre (7) sont réalisée en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.Exhaust system according to claims 1 or 2, characterized in that the pallets (21) of the anchor (7) are made of at least partially amorphous material and comprising at least one metal element. Système d'échappement selon les revendications 1 ou 2 ou 3, caractérisé en ce que les palettes (21) de l'ancre et l'ancre (7) forment une seule et même pièce.Exhaust system according to claims 1 or 2 or 3, characterized in that the pallets (21) of the anchor and the anchor (7) form a single piece. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce que la roue d'échappement (23) est réalisée en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.Exhaust system according to one of the preceding claims, characterized in that the escape wheel (23) is made of at least partially amorphous material and comprising at least one metal element. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce que le plateau (5) est réalisé en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.Exhaust system according to one of the preceding claims, characterized in that the plate (5) is made of at least partially amorphous material and comprising at least one metal element. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie du système d'échappement comprend des évidements (29) afin de réduire le moment d'inertie de cette partie.Exhaust system according to one of the preceding claims, characterized in that at least part of the system exhaust includes recesses (29) to reduce the moment of inertia of this part. Système d'échappement selon la revendication 7, caractérisé en ce que les évidements sont traversants.Exhaust system according to claim 7, characterized in that the recesses are through. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie du système d'échappement comprend des zones amincies (27) afin de réduire le moment d'inertie de cette partie.Exhaust system according to one of the preceding claims, characterized in that at least a part of the exhaust system comprises thinned zones (27) in order to reduce the moment of inertia of this part. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce que ladite ancre (7), ladite roue d'échappement (23) et ledit plateau (5) sont réalisés en un matériau au moins partiellement amorphe et comprenant au moins un élément métallique.Exhaust system according to one of the preceding claims, characterized in that said anchor (7), said escape wheel (23) and said plate (5) are made of at least partially amorphous material and comprising at least one metal element. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce que le matériau est totalement amorphe.Exhaust system according to one of the preceding claims, characterized in that the material is totally amorphous. Système d'échappement selon l'une des revendications précédentes, caractérisé en ce que le matériau est totalement métallique.Exhaust system according to one of the preceding claims, characterized in that the material is completely metallic.
EP10166938A 2010-06-22 2010-06-22 Escapement system for a timepiece Withdrawn EP2400352A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP10166938A EP2400352A1 (en) 2010-06-22 2010-06-22 Escapement system for a timepiece
PCT/EP2011/060511 WO2011161193A1 (en) 2010-06-22 2011-06-22 Escapement system for timepiece
JP2013515896A JP5657107B2 (en) 2010-06-22 2011-06-22 Escapement system for clock
US13/703,837 US20130148480A1 (en) 2010-06-22 2011-06-22 Escapement system for a timepiece
CN201510772543.XA CN105319939B (en) 2010-06-22 2011-06-22 Eacapement for clock and watch
EP11726830.0A EP2585876B1 (en) 2010-06-22 2011-06-22 Escapement system for a timepiece
CN2011800310854A CN103026303A (en) 2010-06-22 2011-06-22 Escapement system for a timepiece
HK16107517.1A HK1219545A1 (en) 2010-06-22 2016-06-28 Escapement system for timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10166938A EP2400352A1 (en) 2010-06-22 2010-06-22 Escapement system for a timepiece

Publications (1)

Publication Number Publication Date
EP2400352A1 true EP2400352A1 (en) 2011-12-28

Family

ID=43242969

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10166938A Withdrawn EP2400352A1 (en) 2010-06-22 2010-06-22 Escapement system for a timepiece
EP11726830.0A Active EP2585876B1 (en) 2010-06-22 2011-06-22 Escapement system for a timepiece

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11726830.0A Active EP2585876B1 (en) 2010-06-22 2011-06-22 Escapement system for a timepiece

Country Status (6)

Country Link
US (1) US20130148480A1 (en)
EP (2) EP2400352A1 (en)
JP (1) JP5657107B2 (en)
CN (2) CN103026303A (en)
HK (1) HK1219545A1 (en)
WO (1) WO2011161193A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941572A (en) * 2013-01-17 2014-07-23 奥米加股份有限公司 Part for clockwork
RU2605828C1 (en) * 2014-05-16 2016-12-27 Ниварокс-Фар С.А. Clock mechanism having contact pair without lubrication
CN106919035A (en) * 2015-12-10 2017-07-04 尼瓦洛克斯-法尔股份有限公司 Contactless Cylinder Escapement
WO2019123380A1 (en) * 2017-12-20 2019-06-27 Patek Philippe Sa Geneve Pallet assembly for timepiece movement
EP3882712A1 (en) * 2020-03-18 2021-09-22 The Swatch Group Research and Development Ltd Mechanical timepiece movement provided with an escapement including an elastically deformable anchor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657106B2 (en) * 2010-06-22 2015-01-21 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Shock absorber bearing for watch
CH707503A2 (en) * 2013-01-17 2014-07-31 Omega Sa Pivoting axle i.e. non-magnetic balance axle, for clockwork movement of timepiece, has pivot made of composite material having metal matrix charged with hard particles in order to limit sensitivity of axle to magnetic fields
CN105849650B (en) * 2013-12-23 2018-09-21 尼瓦洛克斯-法尔股份有限公司 Contactless cylinder escapement for clock and watch
EP2942147B1 (en) 2014-05-08 2018-11-21 Nivarox-FAR S.A. Clock escapement mechanism without lubrication
EP2952971B1 (en) * 2014-06-05 2016-10-12 Nivarox-FAR S.A. Pallet for escapement mechanism of a watch movement
EP3170579A1 (en) * 2015-11-18 2017-05-24 The Swatch Group Research and Development Ltd. Method for manufacturing a part from amorphous metal
DE102015122613B4 (en) * 2015-12-22 2020-07-23 Lange Uhren Gmbh A watch's seconds jump facility
EP3208667A1 (en) * 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Magnetic escapement mobile for timepiece
EP3273303A1 (en) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Part for clock movement
EP3489763B1 (en) * 2017-11-22 2021-06-16 Nivarox-FAR S.A. Pallet for watch movement escapement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146581A (en) * 1961-12-26 1964-09-01 United States Time Corp "d" jewel watch escapement
EP1696153A1 (en) * 2003-09-02 2006-08-30 Namiki Seimitsu Houseki Kabushiki Kaisha Precision gear, its gear mechanism and production method of precision gear
DE102006018738B3 (en) * 2006-04-20 2007-09-06 Kieninger Uhrenfabrik Gmbh Two-leg anchor for pendulum clock, has anchor body and pallets, where entire anchor body with single piece formed pallets has ceramic material, which receives finished end form by consolidating in provisional press form
EP1914605A1 (en) * 2006-10-19 2008-04-23 Patek, Philippe SA Lever escapement

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1246668A4 (en) * 1968-08-19 1972-11-30
US3548586A (en) * 1968-10-01 1970-12-22 Hamilton Watch Co Composite balance wheel construction for electric timekeeping devices
JPS4844138A (en) * 1971-06-15 1973-06-25
CH567293B5 (en) 1972-07-19 1975-09-30 Far Fab Assortiments Reunies Anchor escapement for timepiece
JPS6026825B2 (en) 1978-02-03 1985-06-26 東北大学金属材料研究所長 Nitrogen-containing carbon-based amorphous iron alloy with high strength, high hardness, high crystallization temperature, and high embrittlement resistance
JPS55145138A (en) * 1979-04-26 1980-11-12 Seiko Epson Corp Exterior parts for watch
JPS58126962A (en) 1982-11-29 1983-07-28 Res Inst Iron Steel Tohoku Univ Magnetic amorphous iron alloy containing carbon
EP0942337B1 (en) * 1997-08-28 2006-11-15 Seiko Epson Corporation Timepiece or music box
CN100382939C (en) * 2001-03-07 2008-04-23 液态金属技术公司 Sharp edged cutting tools
US6843496B2 (en) * 2001-03-07 2005-01-18 Liquidmetal Technologies, Inc. Amorphous alloy gliding boards
JP5244282B2 (en) * 2001-06-07 2013-07-24 リキッドメタル テクノロジーズ,インコーポレイティド Improved metal frame for electronics and flat panel displays
AU2003213841A1 (en) * 2002-03-11 2003-09-29 Liquidmetal Technologies Encapsulated ceramic armor
AU2003295809A1 (en) * 2002-11-22 2004-06-18 Liquidmetal Technologies, Inc. Jewelry made of precious amorphous metal and method of making such articles
CH696824A5 (en) 2003-04-01 2007-12-14 Chopard Manufacture Sa Exhaust anchor.
US7090733B2 (en) 2003-06-17 2006-08-15 The Regents Of The University Of California Metallic glasses with crystalline dispersions formed by electric currents
EP1596259A1 (en) 2004-05-10 2005-11-16 Precision Engineering AG Method of manufacture of thin metallic bodies, particularly watch parts
JP5336178B2 (en) 2006-04-28 2013-11-06 日産自動車株式会社 Low friction lubrication assembly
EP1879085B1 (en) 2006-07-14 2015-09-30 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Escapement
JP4450080B2 (en) 2008-02-01 2010-04-14 セイコーエプソン株式会社 Watch gear and watch gear manufacturing method
JP2009186394A (en) * 2008-02-08 2009-08-20 Seiko Epson Corp Bearing structure of rotating body
EP2180385A1 (en) * 2008-10-21 2010-04-28 The Swatch Group Research and Development Ltd. Method for manufacturing a watch plate
EP2189854A1 (en) 2008-11-21 2010-05-26 Nivarox-FAR S.A. Method for manufacturing a micromechanical part
TW200936490A (en) 2008-12-23 2009-09-01 Nivarox Sa Method of fabricating a metallic microstructure and microstructure obtained via the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146581A (en) * 1961-12-26 1964-09-01 United States Time Corp "d" jewel watch escapement
EP1696153A1 (en) * 2003-09-02 2006-08-30 Namiki Seimitsu Houseki Kabushiki Kaisha Precision gear, its gear mechanism and production method of precision gear
DE102006018738B3 (en) * 2006-04-20 2007-09-06 Kieninger Uhrenfabrik Gmbh Two-leg anchor for pendulum clock, has anchor body and pallets, where entire anchor body with single piece formed pallets has ceramic material, which receives finished end form by consolidating in provisional press form
EP1914605A1 (en) * 2006-10-19 2008-04-23 Patek, Philippe SA Lever escapement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941572A (en) * 2013-01-17 2014-07-23 奥米加股份有限公司 Part for clockwork
RU2605828C1 (en) * 2014-05-16 2016-12-27 Ниварокс-Фар С.А. Clock mechanism having contact pair without lubrication
CN106919035A (en) * 2015-12-10 2017-07-04 尼瓦洛克斯-法尔股份有限公司 Contactless Cylinder Escapement
CN106919035B (en) * 2015-12-10 2019-06-07 尼瓦洛克斯-法尔股份有限公司 Contactless cylinder escapement
WO2019123380A1 (en) * 2017-12-20 2019-06-27 Patek Philippe Sa Geneve Pallet assembly for timepiece movement
EP3882712A1 (en) * 2020-03-18 2021-09-22 The Swatch Group Research and Development Ltd Mechanical timepiece movement provided with an escapement including an elastically deformable anchor
US11927917B2 (en) 2020-03-18 2024-03-12 The Swatch Group Research And Development Ltd Mechanical horological movement provided with an escapement comprising an anchor

Also Published As

Publication number Publication date
WO2011161193A1 (en) 2011-12-29
CN105319939A (en) 2016-02-10
EP2585876A1 (en) 2013-05-01
JP2013529779A (en) 2013-07-22
HK1219545A1 (en) 2017-04-07
EP2585876B1 (en) 2021-02-17
CN103026303A (en) 2013-04-03
JP5657107B2 (en) 2015-01-21
CN105319939B (en) 2018-02-13
US20130148480A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
EP2585876B1 (en) Escapement system for a timepiece
EP2400353A1 (en) Hand for a timepiece
EP2400354A1 (en) Dial feet for a timepiece
EP2350746B1 (en) Method of making a bottom plate for a watch
WO2011161139A1 (en) Timepiece anti-shock system
EP2557461B1 (en) Metal anchor with polymer horns
EP2580369B1 (en) Method of manufacturing a coated amorphous metal part
EP2585877B1 (en) Method for producing a watchmaking component comprising at least two parts
WO2011161079A1 (en) Shock-absorbing system for a timepiece
CH703346A2 (en) Escapement system for use in timepiece, has rod including arms for receiving pallets, where part of system and pallet assembly are made of material that is partially amorphous and comprises metallic element
EP3106930A1 (en) Manufacturing method comprising a modified machining step
CH703343A2 (en) Unique hand i.e. chronograph hand, for use in luxury watch, has support whose length is larger than its width, where hand is made of completely amorphous material or partially amorphous material containing precious metal element
WO2019120959A1 (en) Balance for timepiece and method for manufacturing such a balance
CH714512A2 (en) Pendulum for a timepiece and method of manufacturing such a pendulum.
CH714514B1 (en) Process for manufacturing a balance wheel for a timepiece.
CH703360B1 (en) TIMEPIECE DIAL.
CH703344A2 (en) Shock absorbing bearing for balance staff of mobile of mechanical watch, has spring that is arranged to exert axial force on pivot system and is made of partially or totally amorphous material with metal element
CH699783A2 (en) Element e.g. plate, forming method for mechanical watch, involves exerting pressure on preform for preset time to reproduce shapes of dice on faces of preform to form element, cooling element to solidify element, and retrieving element
CH705421B1 (en) Ball-bearing.
CH719106A1 (en) Multi-metallic monolithic watchmaker or jeweler component made by sintering.
CH705357A2 (en) Method for manufacturing anchor for escapement system for timepiece, involves molding polyoxymethylene at end of anchor body to form fork, and adjusting pallets and rod to rotatably mount anchor

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120629