CH714514A2 - Method of manufacturing a pendulum for a timepiece - Google Patents
Method of manufacturing a pendulum for a timepiece Download PDFInfo
- Publication number
- CH714514A2 CH714514A2 CH01617/17A CH16172017A CH714514A2 CH 714514 A2 CH714514 A2 CH 714514A2 CH 01617/17 A CH01617/17 A CH 01617/17A CH 16172017 A CH16172017 A CH 16172017A CH 714514 A2 CH714514 A2 CH 714514A2
- Authority
- CH
- Switzerland
- Prior art keywords
- metal alloy
- serge
- balance
- ppm
- mold
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/063—Balance construction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/16—Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C16/00—Alloys based on zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/003—Amorphous alloys with one or more of the noble metals as major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/10—Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/32—Component parts or constructional details, e.g. collet, stud, virole or piton
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B45/00—Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
- G04B45/0007—Light-, colour-, line-, or spot-effects caused by parts or pictures moved by the clockwork
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Forging (AREA)
- Micromachines (AREA)
Abstract
L’invention concerne un procédé de fabrication d’un balancier en alliage métallique par moulage, ledit procédé comprenant les étapes suivantes: a) réaliser un moule ayant la forme négative du balancier (1) b) se munir d’un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation c) introduire dans le moule l’alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et pour former un balancier d) refroidir ledit alliage métallique pour obtenir un balancier (1) dans ledit alliaqe métallique e) libérer le balancier (1) obtenu à l’étape d) de son mouleThe invention relates to a method for manufacturing a metal alloy balance by molding, said method comprising the following steps: a) producing a mold having the negative shape of the balance (1) b) to be provided with a metal alloy having a coefficient of thermal expansion less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature c) introducing into the mold metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be hot formed and to form a balance d) cooling said metal alloy to obtain a balance (1) in said alliaqe metal e) release the balance (1) obtained in step d) of its mold
Description
DescriptionDescription
Domaine de l’invention [0001] L’invention concerne un procédé de fabrication d’un balancier pour pièce d’horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge.FIELD OF THE INVENTION [0001] The invention relates to a method of manufacturing a balance for a timepiece comprising a serge, a hub and at least one arm connecting the hub to said serge.
Arrière-plan de l’invention [0002] L’oscillateur ou résonateur d’une montre mécanique est constitué d’un ressort spiral et d’un volant d’inertie appelé balancier. Les variations thermiques font varier la rigidité du spiral, ainsi que les géométries du spiral et du balancier, ce qui modifie la constante de ressort et l’inertie, et donc la fréquence d’oscillation. Les horlogers ont beaucoup travaillé pour avoir des oscillateurs stables en température et plusieurs voies ont été explorées/exploitées dont une qui a valu un Prix Nobel à Charles-Edouard Guillaume pour le développement de l’alliage Elinvar dont le module d’élasticité augmente avec la température et compense l’augmentation d’inertie du balancier. Par la suite, le développement du silicium oxydé, donc compensé thermiquement, a surpassé les performances de l’Elinvar et a pour avantage d’être moins sensible aux champs magnétiques. De même le spiral en quartz monocristallin permet une compensation thermique du changement d’inertie du balancier. Mais contrairement au silicium oxydé dont l’épaisseur d’oxyde peut être variée suivant le matériau de balancier utilisé, le quartz est limité aux matériaux ayant un coefficient de dilatation thermique de l’ordre de 10 ppm/°C, ce qui correspond par exemple au titane et au platine. Le problème principal de ces matériaux est l’usinabilité et la maîtrise de structure fine et/ou d’une finition parfaite (poli miroir par exemple). Dans le cas du titane, sa relativement faible densité limite son utilisation pour des grands balanciers et dans le cas du platine son prix élevé limite son utilisation à des produits de prestige et de luxe. Résumé de l’invention [0003] La présente invention a pour but de remédier à ces inconvénients en proposant un procédé de fabrication d’un balancier réalisé dans de nouveaux matériaux permettant une fabrication plus simple et plus précise, de manière à réduire par exemple la dispersion d’inertie et/ou de balourd au sein d’un même lot de production.BACKGROUND OF THE INVENTION [0002] The oscillator or resonator of a mechanical watch consists of a spiral spring and an inertia flywheel called a balance wheel. The thermal variations vary the stiffness of the hairspring, as well as the geometries of the hairspring and the balance, which modifies the spring constant and the inertia, and therefore the frequency of oscillation. Watchmakers have worked hard to have temperature-stable oscillators and several tracks have been explored / exploited, including one that won a Charles-Edouard Guillaume Nobel Prize for the development of the Elinvar alloy whose elastic modulus increases with the temperature and compensates for the increase of inertia of the pendulum. Subsequently, the development of oxidized silicon, thus thermally compensated, has surpassed the performance of Elinvar and has the advantage of being less sensitive to magnetic fields. Similarly, the monocrystalline quartz spiral allows a thermal compensation of the change of inertia of the balance. But unlike oxidized silicon whose oxide thickness can be varied according to the rocker material used, the quartz is limited to materials having a coefficient of thermal expansion of the order of 10 ppm / ° C, which corresponds for example titanium and platinum. The main problem of these materials is the machinability and control of fine structure and / or a perfect finish (mirror polish for example). In the case of titanium, its relatively low density limits its use for large pendulums and in the case of platinum its high price limits its use to prestige and luxury products. SUMMARY OF THE INVENTION The object of the present invention is to remedy these drawbacks by proposing a method for manufacturing a rocker made of new materials allowing a simpler and more precise manufacture, so as to reduce, for example, the dispersion of inertia and / or unbalance within the same batch of production.
[0004] A cet effet, l’invention se rapporte tout d’abord à un procédé de fabrication d’un balancier pour pièce d’horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, la serge, le moyeu et les bras étant réalisés dans un alliage métallique, ledit procédé comprenant les étapes suivantes: a) réaliser un moule ayant la forme négative du balancier b) se munir d’un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation c) introduire dans le moule l’alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier d) refroidir ledit alliage métallique pour obtenir un balancier dans ledit alliage métallique e) libérer le balancier obtenu à l’étape d) de son moule.For this purpose, the invention relates first of all to a method of manufacturing a pendulum for a timepiece comprising a serge, a hub and at least one arm connecting the hub to said serge, the serge. , the hub and the arms being made of a metal alloy, said method comprising the following steps: a) producing a mold having the negative shape of the balance wheel b) providing a metal alloy having a coefficient of thermal expansion of less than 25 ppm / ° C and capable of being in at least partially amorphous form when it is heated to a temperature between its glass transition temperature and its crystallization temperature c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be hot formed and form a pendulum d) cool the said metal alloy to obtain a balance in said metal alloy e) release the beam obtained in step d) of its mold.
[0005] La présente invention concerne également un procédé de fabrication d’un balancier pour pièce d’horlogerie comprenant une serge, un moyeu et au moins un bras reliant le moyeu à ladite serge, le moyeu et le bras étant réalisés dans un alliage métallique, et la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu et le bras sont réalisés, ledit procédé comprenant les étapes suivantes: a) réaliser un moule ayant la forme négative du balancier a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique b) se munir d’un alliage métallique présentant un coefficient de dilatation thermique inférieur à 25 ppm/°C et capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation c) introduire dans le moule l’alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts d) refroidir ledit alliage métallique pour obtenir un balancier avec inserts e) libérer le balancier obtenu à l’étape d) de son moule.The present invention also relates to a method of manufacturing a pendulum for a timepiece comprising a serge, a hub and at least one arm connecting the hub to said serge, the hub and the arm being made of a metal alloy. , and the serge being made of a material having a density greater than the density of said metal alloy in which the hub and the arm are made, said method comprising the following steps: a) producing a mold having the negative shape of the balance a ') inserting into the mold a serge or serge elements made of a material having a density greater than the density of said metal alloy; b) providing itself with a metal alloy having a coefficient of thermal expansion of less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed hot and overmold the serge or the serge elements to form a rocker with inserts d) cool said metal alloy to obtain a rocker with inserts e) release the beam obtained in step d) of its mold.
[0006] Grâce aux propriétés des métaux amorphes, un balancier en alliage métallique peut être réalisé en utilisant un procédé de fabrication simplifié tel qu’un procédé de coulée ou un procédé de formage à chaud. En outre, l’alliage métallique sous sa forme au moins partiellement amorphe a pour propriété d’avoir une plage élastique bien plus grande que son équivalent cristallin, grâce à l’absence de dislocation. Cette propriété permet de surmouler ou d’intégrer au balancier des éléments permettant d’améliorer le centrage ainsi que de régler l’inertie et/ou le balourd.With the properties of amorphous metals, a metal alloy balance can be achieved using a simplified manufacturing process such as a casting process or a hot forming process. In addition, the metal alloy in its at least partially amorphous form has the property of having a much larger elastic range than its crystalline equivalent, thanks to the absence of dislocation. This property makes it possible to overmould or integrate the balance wheel elements to improve the centering and to adjust the inertia and / or unbalance.
Description sommaire des dessins [0007] D’autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels: la fig. 1 est une vue en perspective d’un balancier fabriqué selon l’invention; la fig. 2 est une vue de dessus partielle d’une variante de balancier réalisé selon l’invention; la fig. 3 est une vue de dessus partielle d’une autre variante de balancier réalisé selon l’invention; la fig. 4 est une vue en coupe selon l’axe A-A de la fig. 3; et les fig. 5 à 10 sont des vues de dessus partielles d’autres variantes de balancier réalisé selon l’invention.BRIEF DESCRIPTION OF THE DRAWINGS [0007] Other features and advantages will become apparent from the description which is given below, by way of indication and in no way limitative, with reference to the accompanying drawings, in which: FIG. 1 is a perspective view of a rocker manufactured according to the invention; fig. 2 is a partial top view of a pendulum variant made according to the invention; fig. 3 is a partial top view of another embodiment of the balance made according to the invention; fig. 4 is a sectional view along the axis A-A of FIG. 3; and figs. 5 to 10 are partial top views of other variants of the balance made according to the invention.
Description détaillée des modes de réalisation préférés [0008] En référence à la fig. 1, il est représenté un balancier 1 pour pièce d’horlogerie. Un tel balancier 1 comprend d’une manière traditionnelle une serge 2, continue ou non, définissant le diamètre extérieur du balancier 1, un moyeu 4, formant sa partie centrale et muni d’un trou 6 destiné à recevoir un arbre (non représenté) définissant l’axe de pivotement du balancier 1. Le moyeu 4 est relié solidairement à la serge 2 par des bras 8. Les bras 8 sont ici au nombre de quatre et sont disposés à 90°. On trouve aussi usuellement des balanciers avec deux ou trois bras, disposés respectivement à 180° ou 120°.Detailed Description of the Preferred Embodiments [0008] Referring to FIG. 1, there is shown a pendulum 1 for a timepiece. Such a rocker 1 comprises in a traditional way a serge 2, continuous or not, defining the outer diameter of the rocker 1, a hub 4, forming its central portion and provided with a hole 6 for receiving a shaft (not shown) defining the pivot axis of the balance 1. The hub 4 is integrally connected to the serge 2 by arms 8. The arms 8 are here four in number and are arranged at 90 °. We also usually find rockers with two or three arms, arranged respectively at 180 ° or 120 °.
[0009] Selon un premier mode de réalisation, la serge 2, le moyeu 4 et les bras 8 sont réalisés dans un même alliage métallique. D’une manière avantageuse, le balancier 1 est monobloc, c’est-à-dire réalisé d’une seule pièce.According to a first embodiment, the serge 2, the hub 4 and the arms 8 are made of a same metal alloy. Advantageously, the rocker 1 is monobloc, that is to say, made in one piece.
[0010] Le balancier 1 peut par exemple être réalisé entièrement dans un alliage à base de platine ou de palladium qui sera décrit en détail ci-après. Le platine notamment présentant une grande masse volumique (21 000 kg/m3), l’alliage en platine utilisé dans l’invention présente également une masse volumique élevée (15.5 g/cm3), de sorte que l’ajout d’éléments en matériau dense pour augmenter l’inertie du balancier ne sera pas forcément nécessaire.The rocker 1 may for example be made entirely of a platinum or palladium-based alloy which will be described in detail below. Platinum in particular having a high density (21,000 kg / m3), the platinum alloy used in the invention also has a high density (15.5 g / cm3), so that the addition of elements of material dense to increase the inertia of the pendulum will not necessarily be necessary.
[0011] A cet effet, conformément à un premier mode de réalisation de l’invention, le procédé de fabrication d’un balancier 1, dans lequel la serge 2, le moyeu 4 et le bras 8 sont réalisés dans un même alliage métallique, comprend les étapes suivantes: a) réaliser un moule ayant la forme négative du balancier 1, y compris d’éventuelles structures décoratives de surface b) se munir d’un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/ °C et capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation c) introduire dans le moule l’alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et former un balancier d) refroidir ledit alliage métallique pour obtenir un balancier 1 dans ledit alliage métallique e) libérer le balancier 1 obtenu à l’étape d) de son moule.For this purpose, according to a first embodiment of the invention, the method of manufacturing a rocker 1, wherein the serge 2, the hub 4 and the arm 8 are made of the same metal alloy, comprises the following steps: a) making a mold having the negative shape of the balance 1, including any decorative surface structures b) providing a metal alloy having a coefficient of thermal expansion typically less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated to a temperature between its glass transition temperature and its crystallization temperature; c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature of temperature between its glass transition temperature and its crystallization temperature to be formed hot and form a balance d) cool said metallic lliage to obtain a balance 1 in said metal alloy e) release the balance 1 obtained in step d) of its mold.
[0012] L’étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.The cooling step d) can be carried out at a chosen cooling rate to obtain a crystalline alloy, partially amorphous or totally amorphous.
[0013] Le balancier 1 peut également être réalisé entièrement par exemple dans un alliage à base de titane ou de zirconium qui sera décrit en détails ci-après. Le zirconium par exemple présentant une masse volumique plus faible, l’alliage en zirconium utilisé dans l’invention présente également une masse volumique plus faible (6.5 g/cm3), de sorte que l’ajout d’éléments en matériau plus dense pour augmenter l’inertie du balancier est recommandé, notamment si l’on souhaite réaliser un balancier de petite taille pour de petits mouvements. Ces éléments permettent d’augmenter l’inertie du balancier tout en gardant une géométrie de serge esthétique et avec de bonnes propriétés aérodynamiques.The rocker 1 can also be made entirely for example in an alloy based on titanium or zirconium which will be described in detail below. Since zirconium, for example, has a lower density, the zirconium alloy used in the invention also has a lower density (6.5 g / cm3), so that the addition of elements of denser material to increase the inertia of the balance is recommended, especially if you want to make a small balance for small movements. These elements make it possible to increase the inertia of the balance while keeping an aesthetic serge geometry and with good aerodynamic properties.
[0014] Ainsi, selon une première variante représentée sur la fig. 2, la serge 2 peut comprendre des premiers éléments de réglage de l’inertie 10 surmoulés, lesdits premiers éléments de réglage de l’inertie 10 étant réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique de l’alliage métallique. Ces premiers éléments de réglage de l’inertie 10 peuvent par exemple être en tungstène ou carbure de tungstène, et sont obtenus par surmoulage.Thus, according to a first variant shown in FIG. 2, the serge 2 may comprise overmolded first inertia adjusting elements 10, said first inertia adjusting elements 10 being made of a material having a density greater than the density of the metal alloy. These first adjustment elements of the inertia 10 may for example be tungsten or tungsten carbide, and are obtained by overmolding.
[0015] A cet effet, le procédé selon l’invention comprend une étape de surmoulage desdits premiers éléments de réglage de l’inertie 10 dans la serge 2, au moyen d’inserts placés dans le moule avant l’introduction de l’alliage métallique, et surmoulés, lesdits premiers éléments de réglage de l’inertie 10 étant réalisés dans un premier matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique.For this purpose, the method according to the invention comprises a step of overmolding said first inertia adjusting elements 10 in the serge 2, by means of inserts placed in the mold before the introduction of the alloy. and overmolded, said first inertia adjusting members being made of a first material having a density greater than the density of said metal alloy.
[0016] Selon un second mode de réalisation, les bras et le moyeu du balancier sont réalisés dans un alliage métallique, la serge étant réalisée dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique utilisé pour les bras et le moyeu. Ce matériau peut être lui-même l’alliage métallique à base de platine ou de palladium tel que défini ci-dessous ou un autre matériau. Par exemple, les bras et le moyeu du balancier sont réalisés dans l’alliage métallique amorphe à base de zirconium tel que défini ci-dessous pour permettre d’appairer le balancier avec un spiral de préférence en quartz monocristallin, et la serge est réalisée dans un autre matériau présentant une masse volumique supérieure à la masse volumique de l’alliage métallique à base de zirconium utilisé pour les bras et le moyeu afin d’améliorer l’inertie du balancier.According to a second embodiment, the arms and the hub of the balance are made of a metal alloy, the serge being made of a material having a density greater than the density of said metal alloy used for the arms and the hub. . This material may itself be the platinum or palladium-based metal alloy as defined below or another material. For example, the arms and the hub of the balance are made of the zirconium-based amorphous metal alloy as defined below to make it possible to couple the balance with a spiral, preferably in monocrystalline quartz, and the serge is made in another material having a density higher than the density of the zirconium metal alloy used for the arms and the hub to improve the inertia of the balance.
[0017] A cet effet, conformément à un second mode de réalisation de l’invention, le procédé de fabrication d’un balancier pour pièce d’horlogerie dans lequel le moyeu 4 et les bras 8 sont réalisés dans un alliage métallique, et la serge 2 est réalisée dans un second matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique dans lequel le moyeu 4 et les bras 8 sont réalisés, comprend les étapes suivantes: a) réaliser un moule ayant la forme négative du balancier, y compris d’éventuelles structures décoratives de surface a') insérer dans le moule une serge ou des éléments de serge réalisés dans un matériau présentant une masse volumique supérieure à la masse volumique dudit alliage métallique b) se munir d’un alliage métallique présentant un coefficient de dilatation thermique typiquement inférieur à 25 ppm/ °C et capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation c) introduire dans le moule l’alliage métallique, ledit alliage métallique étant chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être formé à chaud et surmouler la serge ou les éléments de serge pour former un balancier avec inserts d) refroidir ledit alliage métallique pour obtenir un balancier avec ses inserts e) libérer le balancier obtenu à l’étape d) de son moule.For this purpose, according to a second embodiment of the invention, the method of manufacturing a pendulum for a timepiece in which the hub 4 and the arms 8 are made of a metal alloy, and the serge 2 is made of a second material having a density greater than the density of said metal alloy in which the hub 4 and the arms 8 are made, comprises the following steps: a) producing a mold having the negative shape of the balance, including including any decorative surface structures a ') inserting into the mold a serge or serge elements made of a material having a density greater than the density of said metal alloy b) providing itself with a metal alloy having a coefficient thermal expansion typically less than 25 ppm / ° C and capable of being in at least partially amorphous form when heated at a temperature between its glass transition temperature and its crystallization temperature c) introducing into the mold the metal alloy, said metal alloy being heated to a temperature between its glass transition temperature and its crystallization temperature to be formed at hot and overmould the serge or the serge elements to form a balance with inserts d) cool said metal alloy to obtain a balance with its inserts e) release the balance obtained in step d) of its mold.
[0018] L’étape d) de refroidissement peut se faire à une vitesse de refroidissement choisie pour obtenir un alliage cristallin, partiellement amorphe ou totalement amorphe.Cooling step d) can be carried out at a chosen cooling rate to obtain a crystalline alloy, partially amorphous or totally amorphous.
[0019] Les procédés de l’invention selon le premier ou deuxième modes de réalisation utilisent de manière avantageuse les propriétés d’un alliage métallique capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé pour le mettre facilement en forme afin de réaliser un balancier en alliage métallique.The methods of the invention according to the first or second embodiments advantageously use the properties of a metal alloy capable of being in at least partially amorphous form when it is heated to easily put it into shape. to achieve a metal alloy balance.
[0020] En effet, un alliage métallique capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé permet une grande facilité dans la mise en forme permettant la fabrication de pièces aux formes compliquées avec une plus grande précision. Cela est dû aux caractéristiques particulières des «métaux amorphes» qui peuvent se ramollir tout en restant amorphes durant un certain temps dans un intervalle de température [Tg-Tx] donné propre à chaque alliage (par exemple pour l’alliage à base de Zr: Tg = 440 °C et Tx = 520 °C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l’utilisation d’un procédé simplifié tel que le formage à chaud. L’utilisation d’un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l’alliage diminue fortement en fonction de la température dans l’intervalle de température [Tg-Tx] et l’alliage épouse ainsi tous les détails du négatif. Par exemple, pour un matériau à base de platine tel que défini ci-dessous, la mise en forme se fait aux alentours de 300 °C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1 MPa, au lieu d’une viscosité de 1012 Pa.s à la température Tg. L’utilisation de matrices a pour avantage la création de pièces en trois dimensions de grande précision, ce que le découpage ou l’étampage ne permettent pas d’obtenir.Indeed, a metal alloy capable of being in a form at least partially amorphous when heated allows great ease in shaping allowing the manufacture of complicated shapes with greater precision. This is due to the particular characteristics of "amorphous metals" which can soften while remaining amorphous for a certain time in a given temperature range [Tg-Tx] specific to each alloy (for example for the Zr-based alloy: Tg = 440 ° C and Tx = 520 ° C). It is thus possible to shape them under a relatively low stress and at a low temperature then allowing the use of a simplified process such as hot forming. The use of such a material also makes it possible to reproduce very precisely fine geometries because the viscosity of the alloy decreases sharply as a function of the temperature in the temperature range [Tg-Tx] and the alloy thus allies the details of the negative. For example, for a platinum-based material as defined below, the shaping is done around 300 ° C for a viscosity up to 103 Pa.s for a stress of 1 MPa, instead of a viscosity from 1012 Pa.s at the temperature Tg. The use of dies has the advantage of the creation of parts in three dimensions of great precision, which the cutting or stamping does not make it possible to obtain.
[0021] Un procédé utilisé avantageusement est le formage à chaud d’une préforme amorphe. Cette préforme est obtenue par fusion dans un four des éléments métalliques destinés à constituer l’alliage métallique. Cette fusion est faite sous atmosphère contrôlée avec pour but d’obtenir une contamination de l’alliage en oxygène aussi faible que possible. Une fois ces éléments fondus, ils sont coulés sous forme de produit semi-fini, puis refroidis rapidement afin de conserver l’état partiellement ou totalement amorphe. Une fois la préforme réalisée, le formage à chaud est effectué dans le but d’obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de température comprise entre la température de transition vitreuse Tg et la température de cristallisation Tx de l’alliage métallique durant un temps déterminé pour conserver une structure au moins partiellement amorphe. Ceci est fait dans le but de conserver les propriétés élastiques caractéristiques des métaux amorphes.A method advantageously used is the hot forming of an amorphous preform. This preform is obtained by melting in a furnace metal elements intended to form the metal alloy. This fusion is made under a controlled atmosphere with the aim of obtaining as low a contamination of the oxygen alloy as possible. Once these elements are melted, they are cast as a semi-finished product, then cooled rapidly to maintain the partially or totally amorphous state. Once the preform is made, the hot forming is performed in order to obtain a final piece. This hot forming is carried out by pressing in a temperature range between the glass transition temperature Tg and the crystallization temperature Tx of the metal alloy for a predetermined time to maintain an at least partially amorphous structure. This is done in order to maintain the characteristic elastic properties of the amorphous metals.
[0022] Typiquement pour l’alliage à base de Zr et pour une température de 440 °C, le temps de pressage ne devra pas dépasser 120 secondes environ. Ainsi, le formage à chaud permet de conserver l’état amorphe initial de la préforme. Les différentes étapes de mise en forme définitive du balancier monobloc selon l’invention sont alors: 1) chauffage des matrices ayant la forme négative du balancier jusqu’à une température choisie 2) introduction de la préforme en métal amorphe entre les matrices chaudes, 3) application d’une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe, 4) attente durant un temps maximal choisi, 5) ouverture des matrices, 6) refroidissement du balancier, et 7) sortie du balancier des matrices.Typically for the alloy based on Zr and for a temperature of 440 ° C, the pressing time should not exceed about 120 seconds. Thus, the hot forming makes it possible to maintain the initial amorphous state of the preform. The various stages of definitive shaping of the monoblock balance according to the invention are then: 1) heating of the dies having the negative shape of the balance to a chosen temperature 2) introduction of the amorphous metal preform between the hot dies, 3 ) application of a closing force on the matrices in order to replicate the geometry of the latter on the amorphous metal preform, 4) waiting for a chosen maximum time, 5) opening of the dies, 6) cooling of the balance, and 7) output of the pendulum of the matrices.
[0023] Bien entendu, le balancier peut être aussi réalisé par coulée ou par injection. Ce procédé consiste à couler ou injecter l’alliage métallique chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe dans un moule possédant la forme de la pièce définitive.Of course, the pendulum can also be made by casting or injection. This method comprises casting or injecting the heated metal alloy at a temperature between its glass transition temperature and its crystallization temperature to be at least partially amorphous in a mold having the shape of the final piece.
[0024] Le moule peut être réutilisé ou dissout pour libérer les pièces. Le procédé par moulage présente l’avantage de répliquer parfaitement la géométrie du balancier, y compris d’éventuels décors ou structuration de surface. On obtient une moins grande dispersion d’inertie et un meilleur centrage sur un lot de production de balanciers. Le procédé par moulage permet d’obtenir un balancier à la géométrie esthétique, avec des angles intérieurs vifs, un profil de serge et/ou de bras bombé, et une finition parfaite. Il est également possible de prévoir une serge non continue. Pour une qualité maximale, le moule sera réalisé dans du silicium par un procédé DRIE. Il est bien évident que le moule peut également être réalisé par usinage par fraisage, laser, électroérosion ou tout autre type d’usinage.The mold can be reused or dissolved to release the parts. The molding process has the advantage of perfectly replicating the geometry of the balance, including any decorations or surface patterning. Less dispersion of inertia and better centering on a rocker production batch are obtained. The molding process provides a balance with aesthetic geometry, with sharp interior angles, a serge profile and / or curved arm, and a perfect finish. It is also possible to provide a non-continuous serge. For maximum quality, the mold will be made of silicon by a DRIE process. It is obvious that the mold can also be produced by machining by milling, laser, spark erosion or any other type of machining.
[0025] Les propriétés élastiques caractéristiques des métaux amorphes sont utilisées pour surmouler ou intégrer des éléments fonctionnels et/ou décoratifs dans la serge et/ou au niveau des bras et/ou au niveau du moyeu par exemple au moyen d’inserts correspondants placés dans le moule avant l’introduction de l’alliage métallique chauffé entre sa température de transition vitreuse et sa température de cristallisation pour être au moins partiellement amorphe.The characteristic elastic properties of the amorphous metals are used to overmold or integrate functional and / or decorative elements in the serge and / or at the arms and / or at the hub for example by means of corresponding inserts placed in the mold before the introduction of the metal alloy heated between its glass transition temperature and its crystallization temperature to be at least partially amorphous.
[0026] Indépendamment du premier ou second modes de réalisation des procédés de l’invention, la serge 2 peut comprendre des logements 12 destinés à recevoir des deuxièmes éléments de réglage de l’inertie et/ou de balourd 14, 15 comme représenté sur la fig. 3. Ces logements 12 peuvent avantageusement être prévus lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l’invention. Les deuxièmes éléments de réglage de l’inertie et/ou de balourd 14, 15 peuvent être par exemple des masselottes, des masselottes fendues, des goupilles 14, des goupilles fendues, ou des goupilles avec balourd 15, qui font office de masselottes. Ces éléments sont chassés ou clippés dans les logements correspondants 12. Sur la fig. 3 sont représentées une goupille 14 insérée dans son logement 12, ainsi qu’une goupille avec balourd 15 insérée dans son logement 12. La fig. 4 montre une vue en coupe selon la ligne A-A de la fig. 3 représentant la goupille avec balourd 15 insérée dans le logement 12 prévu dans la serge 2.Regardless of the first or second embodiments of the methods of the invention, the serge 2 may comprise housings 12 for receiving second inertia and / or unbalance adjusting elements 14, 15 as shown in FIG. fig. 3. These housings 12 may advantageously be provided during the manufacture of the balance 1 by molding, in accordance with the methods of the invention. The second adjustment elements of the inertia and / or unbalance 14, 15 may be for example flyweights, slit weights, pins 14, cotter pins, or pins with unbalance 15, which act as flyweights. These elements are driven out or clipped into the corresponding housing 12. In FIG. 3 are shown a pin 14 inserted in its housing 12, and a pin with unbalance 15 inserted into its housing 12. FIG. 4 shows a sectional view along the line A-A of FIG. 3 representing the pin with unbalance 15 inserted in the housing 12 provided in the serge 2.
[0027] Il est bien évident que ces éléments pour augmenter l’inertie du balancier sont utilisés préférentiellement avec une serge réalisée dans un matériau de faible densité, tel que le titane ou le zirconium mais peuvent être aussi utilisés avec une serge dans un autre matériau.It is obvious that these elements to increase the inertia of the balance are preferably used with a serge made of a low density material, such as titanium or zirconium but can also be used with a serge in another material .
[0028] Pour augmenter l’inertie du balancier, il est également possible de prévoir une serge plus épaisse ou plus large, notamment dans le cas de balanciers plus grands.To increase the inertia of the balance, it is also possible to provide a thicker or wider serge, especially in the case of larger balances.
[0029] Les logements 12 représentés sur la fig. 3 peuvent également constituer des logements destinés à recevoir des éléments esthétiques et/ ou luminescents, tels que des tubes de tritium (non représentés), ou des capsules de matériaux phosphorescents (du type Superluminova, par exemple) ou fluorescents.The housings 12 shown in FIG. 3 may also constitute housings intended to receive aesthetic and / or luminescent elements, such as tritium tubes (not shown), or capsules of phosphorescent materials (Superluminova, for example) or fluorescent.
[0030] Selon une autre variante de l’invention, l’un ou l’autre des procédés comprend une étape de surmoulage d’éléments de centrage flexibles 16, 17 sur le moyeu 4, sur son pourtour intérieur ou à sa surface. Ainsi, le moyeu 4 peut comprendre des éléments de centrage flexibles intégrés, qui permettent un auto-centrage du balancier lors de son montage sur un axe grâce à la déformation élastique desdits éléments de centrage flexibles.According to another variant of the invention, one or the other of the methods comprises a step of overmolding flexible centering elements 16, 17 on the hub 4, on its inner periphery or on its surface. Thus, the hub 4 may include integrated flexible centering elements, which allow self-centering of the balance when mounted on an axis by the elastic deformation of said flexible centering elements.
[0031] Selon la fig. 5, lesdits éléments de centrage flexibles intégrés 16 sont des lames élastiques prévues sur le pourtour intérieur du moyeu 4 de manière à être positionnées dans le trou 6. Selon la fig. 6, lesdits éléments de centrage flexibles intégrés 17 sont prévus sur la surface du moyeu 4 et sont répartis autour du trou 6. Les éléments de centrage flexibles 16 et 17 peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l’invention.According to FIG. 5, said integrated flexible centering elements 16 are elastic blades provided on the inner periphery of the hub 4 so as to be positioned in the hole 6. According to FIG. 6, said integrated flexible centering elements 17 are provided on the surface of the hub 4 and are distributed around the hole 6. The flexible centering elements 16 and 17 can advantageously be put in place during the manufacture of the balance 1 by molding, in accordance with FIG. to the methods of the invention.
[0032] Selon une autre variante de l’invention, l’un ou l’autre des procédés comprend une étape de surmoulage de troisièmes éléments de réglage de l’inertie 19, 20, 22a, 22b flexibles dans le bras 8. Ainsi, au moins l’un des bras 8 porte des troisièmes éléments de réglage de l’inertie flexibles intégrés.According to another variant of the invention, one or the other of the methods comprises a step of overmoulding third inertia adjusting elements 19, 20, 22a, 22b flexible in the arm 8. Thus, at least one of the arms 8 carries third integrated flexible inertia adjustment elements.
[0033] Selon la fig. 7, l’extrémité du bras 8 du côté de la serge 2 se termine en deux branches 8a, 8b formant entre elles un logement 18 dans lequel est intégré un troisième élément de réglage de l’inertie 19 flexible bistable en «V» pour le réglage de la fréquence.According to FIG. 7, the end of the arm 8 on the side of the serge 2 ends in two branches 8a, 8b forming between them a housing 18 in which is incorporated a third element of adjustment of the inertia 19 flexible bistable "V" for the frequency adjustment.
[0034] Selon la fig. 8, il est prévu dans le logement 18 un troisième élément de réglage de l’inertie 20 flexible en flambage pour le réglage de la fréquence. A cet effet, le troisième élément de réglage de l’inertie 20 est réalisé dans un matériau présentant des propriétés de dilatation différentes de l’alliage métallique du balancier de l’invention, tel que le silicium ou l’oxyde de silicium.According to FIG. 8, there is provided in the housing 18 a third flexible buckling inertia adjusting member 20 for adjusting the frequency. For this purpose, the third adjustment element of the inertia 20 is made of a material having different expansion properties of the metal alloy of the balance of the invention, such as silicon or silicon oxide.
[0035] Selon la fig. 9, l’extrémité du bras 8 du côté de la serge 2 se termine en trois branches 8a, 8b, 8c formant entre elles deux logements 18a, 18b dans lesquels sont intégrés des troisièmes éléments de réglage de l’inertie 22a, 22b flexibles multi-stables à cliquet pour le réglage de la fréquence.According to FIG. 9, the end of the arm 8 on the side of the serge 2 ends in three branches 8a, 8b, 8c forming between them two housings 18a, 18b in which are incorporated third inertia adjusting elements 22a, 22b multi flexible -stable ratchet for frequency adjustment.
[0036] Ces troisièmes éléments de réglage de l’inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent avantageusement être mis en place lors de la fabrication du balancier 1 par moulage, conformément aux procédés de l’invention.These third flexible inertia adjusting elements 19, 20, 22a, 22b for adjusting the frequency can advantageously be implemented during the manufacture of the balance 1 by molding, in accordance with the methods of the invention.
[0037] Ces troisièmes éléments de réglage de l’inertie flexibles 19, 20, 22a, 22b pour le réglage de la fréquence peuvent être aussi bien utilisés lorsque l’ensemble du balancier est dans un même alliage métallique que lorsque les bras sont en alliage métallique, le reste du balancier, et notamment la serge, étant dans un autre matériau.These third flexible inertia adjusting elements 19, 20, 22a, 22b for adjusting the frequency can be used as well when the entire balance is in the same metal alloy as when the arms are alloy metal, the rest of the balance, including the serge, being in another material.
[0038] Selon une autre variante de l’invention, on utilise dans l’un ou l’autre des procédés de l’invention un moule présentant des microstructures formant un décor ou un réseau photonique. Ainsi, l’un du bras 8, de la serge 2 et du moyeu 4 présente un état de surface structuré. Seul l’un des éléments peut présenter un état de surface structuré ou tous les éléments du balancier peuvent présenter un état de surface structuré, cet état de surface structuré pouvant être identique ou différent. La fig. 10 représente un balancier de l’invention pour lequel la serge 2 présente un état de surface structuré différent de l’état de surface structuré présenté par le bras 8. Cet état de surface structuré peut être un état poli, satiné, sablé, perlé, ensoleillé, etc. Il est possible de prévoir également dans le moule pour la fabrication du balancier des microstructures formant un réseau photonique afin de répliquer ces microstructures à la surface du balancier. Ces microstructures peuvent permettre de créer un cristal photonique donnant à la pièce une certaine couleur, un hologramme, ou un réseau de diffraction pouvant constituer un élément anti-contrefaçon. Les structures sont directement introduites dans le moule, et sont répliquées lors de la fabrication des balanciers par formage à chaud, ce qui ne nécessite plus d’opérations de terminaison. Il est également possible d’ajouter un logo au moule.According to another variant of the invention, it is used in one or other of the methods of the invention a mold having microstructures forming a decor or a photonic network. Thus, one of the arm 8, the serge 2 and the hub 4 has a structured surface state. Only one of the elements may have a structured surface condition or all the elements of the balance may have a structured surface state, this structured surface state may be the same or different. Fig. 10 represents a pendulum of the invention for which the serge 2 has a structured surface state different from the structured surface state presented by the arm 8. This structured surface state can be a polished, satin, sandblasted, pearled state, sunny, etc. It is also possible to provide in the mold for the manufacture of the balance microstructures forming a photonic network in order to replicate these microstructures on the surface of the balance. These microstructures can make it possible to create a photonic crystal giving the piece a certain color, a hologram, or a diffraction grating that can constitute an anti-counterfeiting element. The structures are directly introduced into the mold, and are replicated during the manufacture of the balances by hot forming, which no longer requires termination operations. It is also possible to add a logo to the mold.
[0039] L’alliage métallique utilisé dans les procédés de l’invention présente un coefficient de dilatation thermique typiquement inférieur à 25 ppm/°C et supérieur à 7 ppm/°C, et est capable d’être sous une forme au moins partiellement amorphe lorsqu’il est chauffé à une température comprise entre sa température de transition vitreuse et sa température de cristallisation.The metal alloy used in the methods of the invention has a coefficient of thermal expansion typically less than 25 ppm / ° C and greater than 7 ppm / ° C, and is capable of being in at least partially form. amorphous when heated to a temperature between its glass transition temperature and its crystallization temperature.
[0040] De préférence, l’alliage métallique utilisé dans les procédés de l’invention est à base d’un élément choisi parmi le groupe constitué du platine, du zirconium, du titane, du palladium, du nickel, de l’aluminium et du fer.Preferably, the metal alloy used in the processes of the invention is based on an element selected from the group consisting of platinum, zirconium, titanium, palladium, nickel, aluminum and iron.
[0041] Dans la présente description, l’expression «à base d’un élément» signifie que ledit alliage métallique contient au moins 50% en poids dudit élément.In the present description, the term "element-based" means that said metal alloy contains at least 50% by weight of said element.
[0042] Ledit alliage métallique utilisé dans la présente invention peut être à base de platine et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 12 ppm/°C.Said metal alloy used in the present invention may be platinum-based and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 12 ppm / ° C.
[0043] Un tel alliage métallique à base de platine peut être constitué, en valeurs en % atomique, de - une base de platine dont la teneur constitue la balance, - 13 à 17% de cuivre - 3 à 7% de nickel - 20 à 25% de phosphore.Such a platinum-based metal alloy may consist, in atomic% values, of a platinum base whose content constitutes the balance, 13 to 17% of copper and 3 to 7% of nickel. at 25% phosphorus.
[0044] L’alliage métallique utilisé dans la présente invention peut aussi être à base de zirconium et présente un coefficient de dilatation thermique inférieur 12 ppm/°C, de préférence compris entre 8 ppm/°C et 11 ppm/°C.The metal alloy used in the present invention may also be based on zirconium and has a coefficient of thermal expansion of less than 12 ppm / ° C, preferably between 8 ppm / ° C and 11 ppm / ° C.
[0045] Un tel alliage métallique à base de zirconium peut être constitué, en valeurs en % atomique, de - une base de zirconium dont la teneur constitue la balance, - 14 à 20% de cuivre - 12 à 13% de nickel - 9 à 11% d’aluminium - 2 à 4 % de niobium.Such a zirconium metal alloy may consist, in atomic%, of - a zirconium base whose content constitutes the balance, - 14 to 20% of copper - 12 to 13% of nickel - 9 at 11% aluminum - 2 to 4% niobium.
[0046] L’alliage métallique utilisé dans la présente invention peut aussi être à base de palladium et présente un coefficient de dilatation thermique inférieur à 20 ppm/°C, de préférence compris entre 13 ppm/°C et 18 ppm/°C.The metal alloy used in the present invention may also be based on palladium and has a coefficient of thermal expansion less than 20 ppm / ° C, preferably between 13 ppm / ° C and 18 ppm / ° C.
[0047] Un tel alliage métallique à base de palladium peut être constitué, en valeurs en % atomique, de - une base de palladium, dont la teneur constitue la balance, - 25 à 30% de cuivre - 8 à 12% de nickel - 18 à 22% de phosphore.Such a palladium-based metal alloy may consist, in atomic% values, of a palladium base, the content of which constitutes the balance, 25 to 30% of copper and 8 to 12% of nickel. 18 to 22% of phosphorus.
[0048] Idéalement, les alliages utilisés dans l’invention ne contiennent aucune impureté. Toutefois, ils peuvent comprendre des traces d’impuretés qui peuvent résulter, de manière souvent inévitable, de l’élaboration desdits alliages.[0048] Ideally, the alloys used in the invention contain no impurities. However, they may include traces of impurities that can result, often unavoidably, the development of said alloys.
[0049] Lorsque les alliages utilisés dans la présente invention présentent un coefficient de dilatation thermique inférieur à 12 ppm/°C et supérieur à 8 ppm/°C, ils peuvent être utilisés pour réaliser au moins une partie d’un balancier qui sera appairé à un spiral de préférence en quartz monocristallin. Les alliages utilisés dans la présente invention présentant un coefficient de dilatation thermique inférieur à 20 ppm/°C et supérieur à 13 ppm/°C peuvent être utilisés pour réaliser au moins une partie d’un balancier qui sera appairé à un spiral en métal ou en silicium.When the alloys used in the present invention have a coefficient of thermal expansion less than 12 ppm / ° C and greater than 8 ppm / ° C, they can be used to achieve at least a portion of a pendulum which will be paired to a spiral preferably of monocrystalline quartz. The alloys used in the present invention having a coefficient of thermal expansion of less than 20 ppm / ° C and greater than 13 ppm / ° C can be used to make at least a portion of a pendulum that will be paired with a metal hairspring or in silicon.
[0050] Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de platine est constitué, en valeurs en % atomique, de:More preferentially, said metal alloy used in the present invention based on platinum is constituted, in values in atomic%, of:
57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P57.5% Pt, 14.7% Cu, 5.3% Ni, 22.5% P
[0051] Un tel alliage présente un coefficient de dilatation thermique compris entre 11 et 12 ppm/°C.Such an alloy has a coefficient of thermal expansion of between 11 and 12 ppm / ° C.
[0052] Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de zirconium est constitué, en valeurs en % atomique, de: 58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb [0053] Un tel alliage présente un coefficient de dilatation thermique compris entre 10.5 et 11 ppm/°C.More preferably, said metal alloy used in the present invention based on zirconium is constituted, in values in atomic%, of: 58.5% Zr, 15.6% Cu, 12.8% Ni, 10.3% Al, 2.8% Nb [0053] Such an alloy has a coefficient of thermal expansion of between 10.5 and 11 ppm / ° C.
[0054] Plus préférentiellement, ledit alliage métallique utilisé dans la présente invention à base de palladium est constitué, en valeurs en % atomique, de:More preferentially, said metal alloy used in the present invention based on palladium is constituted, in values in atomic%, of:
43% Pd, 27% Cu, 10% Ni, 20% P43% Pd, 27% Cu, 10% Ni, 20% P
[0055] Un tel alliage présente un coefficient de dilatation thermique compris entre 15 et 16 ppm/°C.Such an alloy has a coefficient of thermal expansion of between 15 and 16 ppm / ° C.
[0056] Ainsi, le balancier selon l’invention est réalisé dans un matériau permettant d’utiliser un procédé de fabrication simple tout en présentant un coefficient de dilatation thermique permettant de l’appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, de préférence en quartz monocristallin. Le balancier selon l’invention permet également d’avoir au moins des bras présentant un coefficient de dilatation thermique permettant de l’appairer à un spiral en quartz monocristallin, et/ou en métal ou en silicium, tout en ayant une grande inertie en gardant une géométrie de serge compacte et esthétique, de petit volume, à l’aide d’une serge adéquate, soit comprenant des éléments réalisés dans un matériau de plus grande densité, soit étant elle-même réalisée dans un matériau de plus grande densité.Thus, the rocker according to the invention is made of a material for using a simple manufacturing process while having a coefficient of thermal expansion to match a spiral monocrystalline quartz, and / or metal or silicon, preferably monocrystalline quartz. The balance according to the invention also makes it possible to have at least arms having a coefficient of thermal expansion enabling it to be paired with a spiral of monocrystalline quartz, and / or of metal or silicon, while having great inertia while keeping a compact and aesthetic serge geometry, of small volume, using a suitable serge, or comprising elements made of a material of greater density, or being itself made of a material of greater density.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01617/17A CH714514B1 (en) | 2017-12-22 | 2017-12-22 | Process for manufacturing a balance wheel for a timepiece. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01617/17A CH714514B1 (en) | 2017-12-22 | 2017-12-22 | Process for manufacturing a balance wheel for a timepiece. |
Publications (2)
Publication Number | Publication Date |
---|---|
CH714514A2 true CH714514A2 (en) | 2019-06-28 |
CH714514B1 CH714514B1 (en) | 2023-02-28 |
Family
ID=66998535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH01617/17A CH714514B1 (en) | 2017-12-22 | 2017-12-22 | Process for manufacturing a balance wheel for a timepiece. |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH714514B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3129953A1 (en) * | 2021-12-07 | 2023-06-09 | Vulkam | Ni-Nb-Cu alloy metal glasses |
-
2017
- 2017-12-22 CH CH01617/17A patent/CH714514B1/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3129953A1 (en) * | 2021-12-07 | 2023-06-09 | Vulkam | Ni-Nb-Cu alloy metal glasses |
WO2023104780A1 (en) * | 2021-12-07 | 2023-06-15 | Vulkam | Metallic glasses made of ni-nb-cu alloy |
Also Published As
Publication number | Publication date |
---|---|
CH714514B1 (en) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3502787B1 (en) | Method for manufacturing a balance for a timepiece | |
EP2257855B1 (en) | Process of manufacturing of a composite balance | |
EP2585876B1 (en) | Escapement system for a timepiece | |
EP2400353A1 (en) | Hand for a timepiece | |
EP3377247B1 (en) | Method for manufacturing a part from amorphous metal | |
EP3182212B1 (en) | Composite part with resilient means under stress | |
WO2009115470A1 (en) | Integral hairspring made of a silicon-based material and method for making same | |
WO2017016950A1 (en) | Assembly of parts made of fragile material | |
CH714514A2 (en) | Method of manufacturing a pendulum for a timepiece | |
WO2019120959A1 (en) | Balance for timepiece and method for manufacturing such a balance | |
CH714512A2 (en) | Pendulum for a timepiece and method of manufacturing such a pendulum. | |
EP2400355A1 (en) | Shockproof system for a timepiece | |
CH705420B1 (en) | Assembly of piece made of fragile material. | |
CH703343B1 (en) | Needle of timepiece. | |
CH719106A1 (en) | Multi-metallic monolithic watchmaker or jeweler component made by sintering. | |
CH711923B1 (en) | Process for manufacturing a composite part with elastic means under stress, composite part and watch assortment. | |
EP4426161A1 (en) | Contrasting watch component made by multi-metal printing | |
CH703344A2 (en) | Shock absorbing bearing for balance staff of mobile of mechanical watch, has spring that is arranged to exert axial force on pivot system and is made of partially or totally amorphous material with metal element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PK | Correction |
Free format text: RECTIFICATIONS |