WO2015093454A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2015093454A1
WO2015093454A1 PCT/JP2014/083186 JP2014083186W WO2015093454A1 WO 2015093454 A1 WO2015093454 A1 WO 2015093454A1 JP 2014083186 W JP2014083186 W JP 2014083186W WO 2015093454 A1 WO2015093454 A1 WO 2015093454A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
torque
mechanisms
planetary gear
motor mot
Prior art date
Application number
PCT/JP2014/083186
Other languages
English (en)
French (fr)
Inventor
中山 茂
本多 健司
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480068417.XA priority Critical patent/CN105829765B/zh
Priority to US15/104,901 priority patent/US10100910B2/en
Priority to JP2015553540A priority patent/JP6564706B2/ja
Priority to CN201910850184.3A priority patent/CN110657218B/zh
Priority to CA2933843A priority patent/CA2933843A1/en
Priority to KR1020167015472A priority patent/KR102127253B1/ko
Priority to EP14870895.1A priority patent/EP3085993B1/en
Publication of WO2015093454A1 publication Critical patent/WO2015093454A1/ja
Priority to US16/134,104 priority patent/US10514087B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/73Planetary gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/80Differentials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/82Four wheel drive systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • F16H2048/104Differential gearings with gears having orbital motion with orbital spur gears characterised by two ring gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • F16H2048/106Differential gearings with gears having orbital motion with orbital spur gears characterised by two sun gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears
    • Y10S903/911Orbital, e.g. planetary gears with two or more gear sets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/916Specific drive or transmission adapted for hev with plurality of drive axles

Definitions

  • this coupling device when a transmission system consisting of two gears is selected by the switching means, the torque of the electric motor is transmitted to the left and right wheels in the same direction in the same magnitude, so forward or backward start assistance is provided.
  • a transmission system consisting of three gears When a transmission system consisting of three gears is selected, the torque of the electric motor is transmitted to the left and right wheels in the opposite direction with the same magnitude, so turning assistance that generates a yaw moment in the turning direction is performed Can do.
  • one drive source can be controlled by switching between the control for giving the driving force sum to the left driving unit and the right driving unit and the control for giving the driving force difference one by one.
  • a driving device capable of separately and independently setting the magnitudes of the absolute values of the driving force sum and the driving force difference applied thereto is provided.
  • the present invention provides the following aspects.
  • the first aspect is A left drive unit (for example, a left rear wheel LWr in an embodiment to be described later) disposed on the left side with respect to the traveling direction of a transport device (for example, a vehicle V in the embodiment described later), and a right drive with respect to the traveling direction.
  • a right drive unit for example, a right rear wheel RWr in an embodiment described later
  • a drive source for example, an electric motor MOT in an embodiment described later
  • First and second differential mechanisms each having a first rotation element, a second rotation element, and a third rotation element (for example, first and second planetary gear mechanisms PL1 and PL2 in embodiments described later) are included.
  • the first switching mechanism and the second switching mechanism are switched between the fastening state and the releasing state by the same operating device (for example, an actuator according to an embodiment described later).
  • the first rotation elements of the first and second differential mechanisms are disposed on the rotation axis.
  • the first switching mechanism and the first rotating element of the first and second differential mechanisms are disposed on the rotation axis.
  • the drive source is disposed on one side or the other side in the axial direction with respect to the first and second differential mechanisms.
  • the drive device is connected to an energy transfer device that performs at least one of supply of energy to the drive source and recovery of energy from the drive source;
  • the energy transfer device includes a first energy transfer device (for example, a generator GEN and a capacitor CAP in an embodiment described later) and a second energy transfer device (for example, a battery BATT in an embodiment described later),
  • the drive source is switchably connected to the first energy transfer device and the second energy transfer device,
  • the first energy transfer device is connected to recover energy from another drive source different from the drive source (for example, an engine ENG in an embodiment described later),
  • the second energy transfer device includes an energy storage device (for example, a battery BATT according to an embodiment described later).
  • the driving source When the driving source is less than the predetermined speed, the driving source is connected to the first energy transfer device, When the speed is equal to or higher than the predetermined speed, the second energy transfer device is connected.
  • the thirteenth aspect is The third rotating elements of the first and second differential mechanisms are connected to each other through an odd number of engagements.
  • the driving force in the same direction can be applied to the two driving units with one driving source, or the driving force in the opposite direction can be applied.
  • the left and right wheels when mounted on a transport device, the left and right wheels
  • the driving force sum control and the driving force difference control can be switched and output one by one.
  • the magnitudes of the absolute values of the sum of the driving forces applied to the same power of the driving source and the driving force difference can be set independently.
  • the power transmission path between the driving source and the third rotating element is interrupted, and when connecting the driving source and the third rotating element, the driving is performed. Since the power transmission path between the power source and the first rotating element is interrupted, the power can be reliably transmitted to either one.
  • the two switching mechanisms can be controlled by the same operating device, it is possible to easily avoid both the first switching mechanism and the second switching mechanism from being in the fastening state, and with the two operating devices. Compared with the case where it comprises, a number of parts can be reduced and manufacturing cost can be suppressed.
  • the fourth aspect it is possible to arrange the first switching mechanism and the second switching mechanism while suppressing expansion of the radial dimension.
  • the first switching mechanism and the second switching mechanism are arranged in the same straight line as the first rotating elements of the first and second differential mechanisms, for example, the first and second differences
  • the first switching mechanism and the second switching mechanism can be arranged by utilizing the space between the moving mechanisms.
  • the first switching mechanism is arranged in the same straight line as the first rotating elements of the first and second differential mechanisms, for example, the space between the first and second differential mechanisms.
  • the first switching mechanism can be arranged using the above.
  • the seventh aspect it is possible to arrange the first switching mechanism and the second switching mechanism while suppressing the expansion of the axial dimension.
  • the connection portion between the left and right drive portions and the second rotation element is moved inward in the vehicle width direction. Therefore, the angle from the connecting portion to the wheel or the wheel side member can be suppressed.
  • the radial dimension can also be reduced.
  • the two drive units can be driven in the same direction when the transport device is less than the predetermined speed, and the two drive units can be driven in the opposite direction when the transport device is equal to or higher than the predetermined speed.
  • the required driving force in the front-rear direction is large, such as during low-speed traveling, and torque vectoring that improves operability are possible.
  • FIG. 3A It is a schematic block diagram of the vehicle of one Embodiment which can mount the drive device of this invention. It is a skeleton figure of the rear-wheel drive device of a 1st embodiment. It is a figure which shows the power transmission path
  • FIG. 3B It is a skeleton figure which shows the rotation element at the time of front-wheel drive (FWD) turning in the rear-wheel drive device shown to FIG. 3B. It is a figure which shows the power transmission path
  • the engine ENG is connected to the generator GEN via the clutch CL, and the engine ENG gives propulsive force to the vehicle V as a main drive source.
  • the rear-wheel drive device 20 supplements the front-wheel drive device 10 and performs switching between front-rear direction travel assistance and left-right direction turn assist, which will be described later, as necessary.
  • the electric motor MOT of the rear wheel drive device 20 is selectively connected to the generator GEN and the battery BATT of the front wheel drive device 10 via the switching mechanism SW. That is, the switching mechanism SW allows selection between a state where the motor MOT and the generator GEN are electrically connected and a state where the motor MOT and the battery BATT are electrically connected.
  • the rear wheel drive device 20 includes an electric motor MOT and a power transmission mechanism TM2, and the power transmission mechanism TM2 includes first and second clutches CL1 and CL2 provided on an output shaft 21 of the electric motor MOT.
  • the first and second planetary gear mechanisms PL1 and PL2 are configured to include two planetary gear mechanisms.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the first and second planetary gear mechanisms PL1, PL2 have the same gear ratio and are arranged close to each other.
  • the motor MOT is offset on the left side in the axial direction with respect to the first and second planetary gear mechanisms PL1 and PL2.
  • the electric motor MOT overlaps the first and second planetary gear mechanisms PL1 and PL2 in the radial direction.
  • the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2 mesh with the external teeth R1b of the ring gear R1 and the first output gear 25, mesh with the first output gear 25 and the idle gear 27,
  • the 1 input gear 29 and the external gear R2b of the ring gear R2 are connected via three meshing engagements.
  • Reference numeral 31 denotes an idle shaft having an idle gear 27 attached to one end and a first input gear 29 attached to the other end.
  • the first input gear 29 Since the idle gear 27 and the first input gear 29 rotate together via the idle shaft 31, the first input gear 29 also rotates in one direction, and further, the first input gear 29 and the external teeth R2b of the ring gear R2 Accordingly, the rotation of the first input gear 29 in one direction acts to rotate the ring gear R2 in the other direction.
  • the gear ratio due to the engagement between the external teeth R1b of the ring gear R1 and the first output gear 25, the engagement between the first output gear 25 and the idle gear 27, and the engagement between the first input gear 29 and the external teeth R2b of the ring gear R2. Is set so that the absolute values are equal. Therefore, the torque of the electric motor MOT transmitted to the first output gear 25 is always transmitted as torque in the opposite direction having the same absolute value to the ring gears R1 and R2.
  • the second output gear 35 and the first output gear 25 provided on the output shaft 21 of the electric motor MOT are disposed so as to be relatively rotatable and face each other in the axial direction, and are respectively formed by the first and second clutches CL1 and CL2.
  • the output shaft 21 rotates integrally or relatively. That is, the first clutch CL1 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the second output gear 35 by engagement or disengagement.
  • the second clutch CL2 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the first output gear 25 by fastening or releasing.
  • the first and second clutches CL1 and CL2 are both released, the first state where the first clutch CL1 is engaged and the second clutch CL2 is released, and the first clutch CL1 is released and the second clutch CL2. And the second state in which is fastened.
  • the output shaft 21 of the electric motor MOT is selected with respect to the first and second planetary gear mechanisms PL1, PL2 sun gears S1, S2 and the first and second planetary gear mechanisms PL1, PL2 ring gears R1, R2. Are connected in a switchable manner.
  • the sun gear S1, the carrier C1, and the ring gear R1 transmit power to each other.
  • the rotation speeds thereof are collinear with each other, and the sun gear S2, the carrier C2, and the ring gear R2 can also transmit power between each other, and the rotation speeds thereof are collinear with each other.
  • the collinear relationship is a relationship in which the respective rotational speeds are arranged on a single straight line in the collinear diagram.
  • the rotational speeds of the two ring gears R1 and R2 are regulated by the relationship of rotation.
  • the intersection of the virtual line L1 serving as a fulcrum and the zero rotation line L2 indicating zero rotation has the same gear ratio in the first and second planetary gear mechanisms PL1 and PL2. Although it is located at the center of L2, if the gear ratios of the first and second planetary gear mechanisms PL1 and PL2 are different, the point deviates from the center of the zero rotation line L2.
  • FIG. 3A shows the virtual line L1 coincides with the zero rotational line L2, and the rotational speeds of the ring gears R1 and R2 are all zero.
  • FIG. 3B shows the imaginary line L1 rotates around the fulcrum O on the alignment chart, and the ring gears R1 and R2 have the same rotational speed. Rotate in the opposite direction.
  • FIG. 3C shows the rotation elements of the power transmission mechanism TM2 in a straight line (FIG. 3A) during front wheel drive (FWD) straight travel (FIG. 3A) in which the left and right rear wheels LWr, RWr have no rotational speed difference.
  • FIG. 3D shows the rotation elements of the power transmission mechanism TM2 at the time of front wheel drive (FWD) turning (FIG. 3B) in which there is a difference in rotational speed between the left and right rear wheels LWr, RWr by solid lines.
  • the forward direction means a direction in which the vehicle V is moved forward
  • the rotation direction of the electric motor MOT for moving the vehicle V forward may vary depending on the arrangement of gears and the number of gears.
  • first and second clutches CL1 and CL2 are controlled to the first state (first clutch CL1: engaged / second clutch CL2: released), and torque is changed while changing the rotational direction of the motor MOT according to forward and backward travel.
  • first clutch CL1 engaged / second clutch CL2: released
  • torque is changed while changing the rotational direction of the motor MOT according to forward and backward travel.
  • By performing the control it is possible to generate the desired front-rear driving force on the left and right rear wheels LWr, RWr, and to perform front-rear driving assistance. It may be used as a start assist when starting, or may be shifted from front wheel drive (FWD) to four wheel drive (4WD) during travel.
  • the arrows on the nomographs indicate the torque acting on each element, and the arrows from the motor MOT to the nomographs indicate the power transmission path of the motor MOT (the same applies to FIG. 12A).
  • the rotation element of the power transmission mechanism TM2 at the time of torque vectoring drive (TV) is indicated by a solid line.
  • FIG. 6 is a diagram showing the power flow of four-wheel drive (4WD) and torque vectoring drive (TV).
  • 4WD four-wheel drive
  • the left and right front wheels LWf and RWf are connected via the power transmission mechanism TM1 with the torque of the engine ENG. It drives and generates electric power with the generator GEN using the torque of the engine ENG.
  • the motor MOT and the generator GEN are connected via the switching mechanism SW, and the motor MOT is driven by the electric power generated by the generator GEN.
  • the driving performance can be improved by driving the motor MOT with the electric power generated by the generator GEN that can be connected to the engine ENG.
  • the clutch CL is released (OFF) and the engine ENG and the generator GEN are disconnected, and the engine ENG uses the power transmission mechanism TM1 to drive the left and right front wheels LWf, RWf.
  • the motor MOT and the battery BATT are connected via the switching mechanism SW, and the motor MOT is driven by the electric power from the battery BATT.
  • the engine ENG runs while using torque vectoring drive that does not require much torque with the power of the battery BATT, so that the energy characteristics can be improved.
  • the power flow at the time of torque vectoring driving and 4WD driving is not limited to the mode of FIG. 6 and can be appropriately selected based on the efficiency, the SOC of the battery BATT, and the like.
  • the front wheel drive (FWD), four wheel drive (4WD), and torque vectoring drive (TV) can be switched according to the speed of the vehicle V (hereinafter also referred to as vehicle speed).
  • vehicle speed the speed of the vehicle V
  • the motor MOT is connected to the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2, and the motor MOT is used when the vehicle speed is equal to or higher than the predetermined speed.
  • the torque vector ring drive (TV) to which the ring gears R1, R2 of the first and second planetary gear mechanisms PL1, PL2 are connected.
  • four-wheel drive (4WD) traveling may be performed at the start, and front wheel drive (FWD) or torque vectoring drive (TV) may be performed according to vehicle speed and yaw moment requirements.
  • the output shaft 21 of the electric motor MOT includes the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2, the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2, Is connected to the left and right rear wheels LWr and RWr with one electric motor MOT, or the left rear wheel LWr without outputting the front and rear direction torque.
  • the right rear wheel RWr can output torque in the opposite direction. Furthermore, when outputting the front-rear torque in the same direction to the left and right rear wheels LWr, RWr, and when outputting the torque in the opposite direction between the left rear wheel LWr and the right rear wheel RWr without outputting the front-rear torque.
  • the torque input elements of the motor MOT in the first and second planetary gear mechanisms PL1, PL2 are different, the gear ratios of the sun gears S1, S2, the ring gears R1, R2, and the carriers C1, C2 are changed. It is possible to make a difference between the size of the assist in the front-rear direction and the assist in the turning direction. Further, since the power transmission mechanism TM2 is constituted by the two first and second planetary gear mechanisms PL1 and PL2, the dimension in the axial direction can be reduced.
  • the power transmission mechanism TM2 includes first and second clutches CL1 and CL2, and is configured to be selectively switchable between the first state and the second state. Therefore, the first and second planetary gear mechanisms PL1, Power can be reliably transmitted to one of the sun gears S1 and S2 of the PL2 and the ring gears R1 and R2.
  • the electric motor MOT is disposed on the left side which is one side in the axial direction with respect to the first and second planetary gear mechanisms PL1 and PL2, the electric motor MOT is sandwiched between the first and second planetary gear mechanisms PL1 and PL2.
  • the joints J1 and J2 which are the connection portions of the left and right rear wheels LWr and RWr and the carriers C1 and C2 can be moved inward in the vehicle width direction, so that the left and right rear sides from the joints J1 and J2 The angle to the wheels LWr and RWr can be suppressed.
  • the electric motor MOT may be arranged on the right side which is the other side in the axial direction with respect to the first and second planetary gear mechanisms PL1 and PL2.
  • the motor MOT overlaps the first and second planetary gear mechanisms PL1 and PL2 in the radial direction, the radial dimension can be reduced.
  • the degree of freedom of the mounting position with respect to the vehicle V in the front-rear direction can be improved.
  • the first and second clutches CL1 and CL2 are switching mechanisms composed of a synchromesh mechanism that can be switched by a common actuator, and are on the same rotational axis, that is, on the same rotational axis as the output shaft 21 of the electric motor MOT. Since it is possible to switch, both the first and second clutches CL1 and CL2 can be easily avoided from being engaged, and the number of parts can be reduced as compared with the case where they are operated by separate actuators. Cost can be suppressed. Furthermore, since the output shaft 21 of the electric motor MOT is also coaxially arranged, the switching mechanism can be arranged while suppressing an increase in radial dimension.
  • the power transmission mechanism TM2 includes the first and second clutches CL1 and CL2, and the first and second planetary gear mechanisms PL1 and PL2, and the two planetary gear mechanisms of the first embodiment.
  • the power transmission mechanism TM2 is common and will be described below with a focus on the differences.
  • the ring gear R1 of the first planetary gear mechanism PL1 meshes with the first input gear 42 provided so that the external teeth R1b rotate integrally with the idle shaft 41
  • the ring gear R2 of the second planetary gear mechanism PL2 R2b meshes with a second input gear 44 that meshes with an idle gear 43 provided so as to rotate integrally with the first input gear 42 coaxially. That is, the ring gears R1, R2 of the first and second planetary gear mechanisms PL1, PL2 mesh with the external teeth R1b of the ring gear R1 and the first input gear 42, mesh with the idle gear 43 and the second input gear 44, The two input gears 44 and the external teeth R2b of the ring gear R2 are connected via three engagements.
  • the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of engagements so that the two ring gears R1 and R2 rotate in opposite directions. . That is, the rotation of the ring gear R1 in one direction causes the first input gear 42 to rotate in the other direction by the meshing of the external teeth R1b of the ring gear R1 with the first input gear 42. Since the first input gear 42 and the idle gear 43 rotate together via the idle shaft 41, the idle gear 43 also rotates in the other direction, and the meshing between the idle gear 43 and the second input gear 44 causes the first input gear 42 and the idle gear 43 to rotate. The two-input gear 44 rotates in one direction. Further, due to the meshing of the second input gear 44 and the external teeth R2b of the ring gear R2, the rotation of the second input gear 44 in one direction acts to rotate the ring gear R2 in the other direction.
  • the gear ratio due to the engagement between the external teeth R1b of the ring gear R1 and the first input gear 42, the engagement between the idle gear 43 and the second input gear 44, and the engagement between the second input gear 44 and the external teeth R2b of the ring gear R2. Is set so that the absolute values are equal. Therefore, the torque of the motor MOT is always transmitted to the ring gears R1 and R2 as torque in the opposite direction having the same absolute value.
  • the second clutch CL ⁇ b> 2 connects or disconnects power transmission between the third input gear 46 and the first intermediate gear 47 by fastening or releasing.
  • the first and second clutches CL1 and CL2 are composed of a synchromesh mechanism that can be switched by a common actuator, and can be switched on the same rotational axis, that is, on the same rotational axis as the sun gears S1 and S2.
  • the first intermediate gear 47 meshes with a second intermediate gear 48 provided to rotate integrally with the idle shaft 41.
  • the first and second clutches CL1 and CL2 are both released, the first state where the first clutch CL1 is engaged and the second clutch CL2 is released, and the first clutch CL1 is released and the second clutch CL2. And the second state in which is fastened.
  • the third input gear 46 is connected to the first intermediate gear 47, and the output shaft 21 of the motor MOT and the first and second planetary gear mechanisms.
  • the power transmission path between the ring gears R1 and R2 of PL1 and PL2 is the output gear 45, the third input gear 46, the first intermediate gear 47, the second intermediate gear 48, the first input gear 42, the idle gear 43, and the second input gear.
  • the connection state is established through the terminal 44.
  • the torque of the motor MOT is transmitted to the ring gears R1 and R2 via the output gear 45 and the third input gear 46 during torque vectoring driving (TV). Ratio can be ensured. Further, as compared with the first embodiment, the number of members that rotate integrally with the sun gears S1 and S2 when the torque vectoring drive (TV) goes straight decreases, so that the inertia force during the rotation of the sun gears S1 and S2 is reduced. , Can reduce the scraping loss of lubricating oil.
  • a rear wheel drive device 20 of a second modification of the first embodiment will be described with reference to FIG.
  • a first modification is provided except that a third intermediate gear 50 is provided on the idle shaft 41 so as to rotate relative to the idle shaft 41. Since the power transmission mechanism TM2 has the same configuration, the same components are denoted by the same reference numerals, description thereof will be omitted, and only differences will be described.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2 are connected to each other so as to rotate integrally through the connecting shaft 23, and the carriers C1 and C2 are connected to the left and right via the joints J1 and J2, respectively. It is connected to the rear wheels LWr and RWr.
  • the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of engagements so that the two ring gears R1 and R2 rotate in opposite directions. . That is, the rotation of the ring gear R1 in one direction causes the first input gear 53 to rotate in the other direction by the meshing of the external teeth R1b of the ring gear R1 with the first input gear 53. Since the first input gear 53 and the idle gear 55 rotate together via the idle shaft 51, the idle gear 55 also rotates in the other direction, and the first gear 55 and the first output gear 57 mesh with each other. The one output gear 57 rotates in one direction. Further, due to the meshing of the first output gear 57 and the external teeth R2b of the ring gear R2, the rotation of the first output gear 57 in one direction acts to rotate the ring gear R2 in the other direction.
  • the direction motor torque M is the forward and left rear wheel torques T1 obtained by multiplying the motor torques M1 and M2 by the gear ratios of the first and second planetary gear mechanisms PL1 and PL2 with respect to the carriers C1 and C2 as the operating points. , T2.
  • the left and right rear wheel torques T1 and T2 are torques in the same direction with the same absolute value, thereby the sum of the left and right rear wheel torques T1 and T2 (T1 + T2) Accordingly, a sum of left and right driving forces is generated, and the driving force in the forward direction is stably applied to the vehicle V.
  • the difference between the left and right rear wheel torques T1 and T2 (T1 ⁇ T2) is zero, and when the first and second clutches CL1 and CL2 are in the first state, the left and right rear wheel drive devices 20 are moved left and right by the generation of torque of the motor MOT. No driving force difference occurs and no yaw moment is applied to the vehicle.
  • torque control may be performed so that the motor MOT generates torque in the opposite direction to that during forward movement.
  • the ring gear R1 is in the same direction as the torque of the motor MOT due to the meshing of the first output gear 57 and the idle gear 55 and the meshing of the first input gear 53 and the external gear R1b of the ring gear R1.
  • the first motor torque M1 in the reverse direction acts.
  • the first motor torque M1 and the second motor torque M2 are torques in opposite directions having the same absolute value
  • the first motor torque distribution force M1 ′ in the reverse direction acting on the sun gears S1 and S2 is the second in the opposite direction.
  • the sun gears S1 and S2 become fulcrums
  • the first motor torque M1 in the reverse direction inputted to the ring gear R1 as the power point is multiplied by the gear ratio of the first planetary gear mechanism PL1 with the carrier C1 as the action point.
  • first and second clutches CL1 and CL2 are controlled to the second state (first clutch CL1: released / second clutch CL2: engaged), and the rotation direction of the motor MOT is changed according to the turning direction or the lateral acceleration.
  • first clutch CL1 released / second clutch CL2: engaged
  • the rotation direction of the motor MOT is changed according to the turning direction or the lateral acceleration.
  • a rear wheel drive device 20 of a fifth modification of the first embodiment will be described with reference to FIG.
  • the electric motor MOT is incorporated in the power transmission mechanism TM2
  • the power transmission mechanism TM2 includes the electric motor MOT, the first and second clutches CL1 and CL2, and the first and second planetary gear mechanisms PL1 and PL2.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • the third input gear 65 is connected to the coupling shaft 23, and the output shaft 21 of the motor MOT and the first and second planetary gear mechanisms PL1,
  • the power transmission path between the PL2 sun gears S1 and S2 is connected via the second output gear 61, the fourth input gear 69, the second output gear 67, and the third input gear 65.
  • Torque vectoring driving (TV) is possible, in which the difference between the left and right driving forces is generated and the left and right driving force sum is not generated.
  • the front wheel drive (FWD), four wheel drive (4WD), and torque vectoring drive (TV) are the same as in the third modified example, and the details are omitted.
  • the power transmission mechanism TM2 is configured to include first and second clutches CL1 and CL2, and two planetary gear mechanisms of first and second planetary gear mechanisms PL1 and PL2.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the rotation speeds of the ring gear R1 and the ring gear R2 are equal to each other.
  • the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of meshes so that the two sun gears S1 and S2 rotate in the opposite directions at the same rotational speed. Act on. This will be explained with reference to the collinear diagram of FIG. 15B.
  • the two sun gears have such a relationship that the imaginary line L1 connecting the two sun gears S1 and S2 rotates around the intersection point where the zero rotation line L2 indicating zero rotation rotates as a fulcrum O. This means that the rotational speeds of S1 and S2 are regulated.
  • FIG. 15B (a) is a collinear diagram when the rear wheel drive device 20 of the second embodiment is traveling straight forward (FWD).
  • FIG. 15B (b) is a collinear diagram of the rear wheel drive device 20 according to the second embodiment when the four-wheel drive (4WD) goes straight, and arrows on the nomograph indicate torques acting on each element.
  • FIG. 15B (c) is a collinear diagram when the rear wheel drive device 20 of the second embodiment is running straight in the torque vectoring drive (TV), and the arrows on the nomograph indicate the torque acting on each element. Yes.
  • the illustration is omitted when the left and right rear wheels LWr, RWr have a rotational speed difference.
  • the direction motor torque M is the forward and left rear wheel torques T1 obtained by multiplying the motor torques M1 and M2 by the gear ratios of the first and second planetary gear mechanisms PL1 and PL2 with respect to the carriers C1 and C2 as the operating points. , T2.
  • the left and right rear wheel torques T1 and T2 are torques in the same direction with the same absolute value, thereby the sum of the left and right rear wheel torques T1 and T2 (T1 + T2) Accordingly, a sum of left and right driving forces is generated, and the driving force in the forward direction is stably applied to the vehicle V.
  • the difference between the left and right rear wheel torques T1 and T2 (T1 ⁇ T2) is zero, and when the first and second clutches CL1 and CL2 are in the first state, the left and right rear wheel drive devices 20 are moved left and right by the generation of torque of the motor MOT. A driving force difference does not occur and no yaw moment is applied to the vehicle V.
  • the carrier C1 and C2 since the motor torque distribution forces cancel each other (cancellation), the carrier C1 and C2 generate the left and right rear wheel torques T1 and T2 in the opposite directions having the same absolute value, and the left and right rear wheel torques T1 and T2 A difference in left and right driving force according to the difference (T1-T2) occurs, and the counterclockwise yaw moment Y is stably applied to the vehicle V.
  • the sum (T1 + T2) of the left and right rear wheel torques T1 and T2 is zero, and when the first and second clutches CL1 and CL2 are in the second state, the left and right driving force is generated from the rear wheel drive device 20 by the generation of torque of the electric motor MOT. A sum is not generated, and no longitudinal torque is applied to the vehicle V.
  • the output shaft 21 of the motor MOT has the sun gears S1, S2 of the first and second planetary gear mechanisms PL1, PL2, and the first and second planetary gear mechanisms PL1, PL2. Since the ring gears R1 and R2 are selectively connected to the ring gears R1 and R2, a single electric motor MOT outputs front and rear direction torque in the same direction to the left and right rear wheels LWr and RWr, or outputs front and rear direction torque. Instead, the torque can be output in the opposite direction between the left rear wheel LWr and the right rear wheel RWr.
  • the power transmission mechanism TM2 is configured to include first and second clutches CL1 and CL2, and two planetary gear mechanisms of first and second planetary gear mechanisms PL1 and PL2.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the sun gears S1 and S2 are connected to the left and right rear wheels LWr and RWr via joints J1 and J2, respectively.
  • the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2 mesh with the external teeth R1b of the ring gear R1 and the first output gear 25, mesh with the first output gear 25 and the idle gear 27,
  • the 1 input gear 29 and the external gear R2b of the ring gear R2 are connected via three meshing engagements.
  • the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of engagements so that the two ring gears R1 and R2 rotate in opposite directions. .
  • the gear ratio due to the engagement between the external teeth R1b of the ring gear R1 and the first output gear 25, the engagement between the first output gear 25 and the idle gear 27, and the engagement between the first input gear 29 and the external teeth R2b of the ring gear R2. Is set so that the absolute values are equal. Therefore, the torque of the motor MOT is always transmitted to the ring gears R1 and R2 as torque in the opposite direction having the same absolute value.
  • the second output gear 35 and the first output gear 25 provided on the output shaft 21 of the electric motor MOT are disposed so as to be relatively rotatable and face each other in the axial direction, and are respectively formed by the first and second clutches CL1 and CL2.
  • the output shaft 21 rotates integrally or relatively. That is, the first clutch CL1 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the second output gear 35 by engagement or disengagement.
  • the second clutch CL2 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the first output gear 25 by fastening or releasing.
  • the second output gear 35 is connected to the output shaft 21, and the output shaft 21 of the motor MOT and the first and second planetary gear mechanisms PL1,
  • the power transmission path with the carriers C1 and C2 of PL2 is connected.
  • the first and second clutches CL1 and CL2 are in the first state, the same magnitude of torque is transmitted from the motor MOT to the left and right rear wheels LWr and RWr in the same direction in the front-rear direction.
  • Four-wheel drive (4WD) is possible in which the right and left driving force sum of the period is generated and no left and right driving force difference is generated.
  • the first output gear 25 is connected to the output shaft 21, and the output shaft 21 of the motor MOT and the first and second planetary gear mechanisms PL1,
  • the power transmission path with the ring gears R1 and R2 of PL2 is connected through the first output gear 25, the idle gear 27, and the first input gear 29.
  • the motor MOT transmits torque of the same magnitude in the opposite direction in the front-rear direction to the left and right rear wheels LWr and RWr.
  • Torque vectoring driving (TV) is possible, in which the difference between the left and right driving forces is generated and the left and right driving force sum is not generated.
  • the sun gear S1, the carrier C1, and the ring gear R1 transmit power to each other.
  • the rotation speeds thereof are collinear with each other, and the sun gear S2, the carrier C2, and the ring gear R2 can also transmit power between each other, and the rotation speeds thereof are collinear with each other.
  • the left and right rear wheel torques T1 and T2 are torques in the same direction with the same absolute value, thereby the sum of the left and right rear wheel torques T1 and T2 (T1 + T2) Accordingly, a sum of left and right driving forces is generated, and the driving force in the forward direction is stably applied to the vehicle V.
  • the difference between the left and right rear wheel torques T1 and T2 (T1 ⁇ T2) is zero, and when the first and second clutches CL1 and CL2 are in the first state, the left and right rear wheel drive devices 20 are moved left and right by the generation of torque of the motor MOT. No driving force difference occurs and no yaw moment is applied to the vehicle.
  • a difference in left and right driving force according to the difference (T1-T2) occurs, and the counterclockwise yaw moment Y is stably applied to the vehicle V.
  • the sum (T1 + T2) of the left and right rear wheel torques T1 and T2 is zero, and when the first and second clutches CL1 and CL2 are in the second state, the left and right driving force is generated from the rear wheel drive device 20 by the generation of torque of the electric motor MOT. A sum is not generated, and no longitudinal torque is applied to the vehicle V.
  • the output shaft 21 of the electric motor MOT includes the carriers C1, C2 of the first and second planetary gear mechanisms PL1, PL2, and the first and second planetary gear mechanisms PL1, PL2. Since the ring gears R1 and R2 are selectively connected to each other, a single electric motor MOT outputs front and rear torque in the same direction to the left and right rear wheels LWr and RWr, and outputs front and rear torque. Without this, torque can be output in the opposite direction between the left rear wheel LWr and the right rear wheel RWr.
  • the power transmission mechanism TM2 is configured to include first and second clutches CL1 and CL2, and two planetary gear mechanisms of first and second planetary gear mechanisms PL1 and PL2.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 constitute first rotating elements of the first and second differential mechanisms, and the first and second planetary gear mechanisms PL1.
  • PL2 ring gears R1, R2 constitute the second rotating element of the first and second differential mechanisms
  • the first and second planetary gear mechanisms PL1, PL2 have sun gears S1, S2 as the first and second differential mechanisms.
  • the third rotation element is configured.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 are connected to each other so as to rotate integrally, and have a common second input gear 89.
  • the second input gear 89 is an output shaft of the motor MOT.
  • the second output gear 35 is provided to be rotatable relative to the output shaft 21 of the electric motor MOT, and is rotated integrally with or relative to the output shaft 21 by switching by the first clutch CL1.
  • the ring gears R2 and R1 are connected to the left and right rear wheels LWr and RWr through joints J1 and J2, respectively.
  • the sun gear S1 of the first planetary gear mechanism PL1 has a hollow shape in which a large-diameter external tooth S1b integrally formed with a small-diameter external tooth S1a formed on an outer peripheral surface meshing with the pinion P1 surrounds the outer periphery of the output shaft 21 of the electric motor MOT.
  • the sun gear S2 of the second planetary gear mechanism PL2 meshes with the idle gear 83 that meshes with the first output gear 25, and the large-diameter external tooth S2b integrally formed with the small-diameter external tooth S2a formed on the outer peripheral surface that meshes with the pinion P2. Is meshed with the first output gear 25.
  • the first output gear 25 is provided so as to be rotatable relative to the output shaft 21 of the electric motor MOT, and is rotated integrally with or relative to the output shaft 21 by switching by the second clutch CL2.
  • the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2 are meshed between the large-diameter outer teeth S1b and the idle gear 83, meshed between the idle gear 83 and the first output gear 25, and the first output gear. 25 and the large-diameter external tooth S2b of the sun gear S2 are connected via three engagements. In this way, the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of engagements so that the two sun gears S1 and S2 rotate in opposite directions. .
  • the gear ratio by engagement between the large-diameter external tooth S1b of the sun gear S1 and the idle gear 83 and the engagement between the idle gear 83 and the first output gear 25, and the large-diameter external tooth S2b and the first output gear 25 of the sun gear S2. Is set so that the absolute values are equal to each other. Therefore, the torque of the motor MOT is always transmitted to the sun gears S1 and S2 as torque in the opposite direction having the same absolute value.
  • the second output gear 35 and the first output gear 25 provided on the output shaft 21 of the electric motor MOT are disposed so as to be relatively rotatable and face each other in the axial direction, and are respectively formed by the first and second clutches CL1 and CL2.
  • the output shaft 21 rotates integrally or relatively. That is, the first clutch CL1 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the second output gear 35 by engagement or disengagement.
  • the second clutch CL2 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the first output gear 25 by fastening or releasing.
  • the first and second clutches CL ⁇ b> 1 and CL ⁇ b> 2 are configured by a synchromesh mechanism that can be switched by a common actuator, and can be switched on the same rotational axis, that is, on the same rotational axis as the output shaft 21.
  • the first and second clutches CL1 and CL2 are both released, the first state where the first clutch CL1 is engaged and the second clutch CL2 is released, and the first clutch CL1 is released and the second clutch CL2. And the second state in which is fastened.
  • the second output gear 35 is connected to the output shaft 21, and the output shaft 21 of the motor MOT and the first and second planetary gear mechanisms PL1,
  • the power transmission path with the carriers C1 and C2 of PL2 is connected.
  • the first and second clutches CL1 and CL2 are in the first state, the same magnitude of torque is transmitted from the motor MOT to the left and right rear wheels LWr and RWr in the same direction in the front-rear direction.
  • Four-wheel drive (4WD) is possible in which the right and left driving force sum of the period is generated and no left and right driving force difference is generated.
  • the first output gear 25 is connected to the output shaft 21, and the output shaft 21 of the motor MOT and the first and second planetary gear mechanisms PL1,
  • the power transmission path with the sun gears S 1 and S 2 of PL 2 is connected via the first output gear 25 and the idle gear 83.
  • the motor MOT transmits torque of the same magnitude in the opposite direction in the front-rear direction to the left and right rear wheels LWr and RWr.
  • Torque vectoring driving (TV) is possible, in which the difference between the left and right driving forces is generated and the left and right driving force sum is not generated.
  • the alignment chart in the rear wheel drive device 20 of the present embodiment is represented by rewriting the ring gears R1 and R2 to the sun gears S2 and S1 and the sun gears S1 and S2 to the ring gears R2 and R1, respectively, in FIG. 16B.
  • Other operations and effects are the same as those of the rear wheel drive device 20 of the third embodiment.
  • the output shaft 21 of the electric motor MOT includes the carriers C1, C2 of the first and second planetary gear mechanisms PL1, PL2, and the first and second planetary gear mechanisms PL1, PL2.
  • the sun gears S1 and S2 are connected to the sun gears S1 and S2 so as to be selectively switchable, so that one electric motor MOT outputs front and rear direction torque in the same direction to the left and right rear wheels LWr and RWr, and outputs front and rear direction torque. Without this, torque can be output in the opposite direction between the left rear wheel LWr and the right rear wheel RWr.
  • the power transmission mechanism TM2 is configured to include first and second clutches CL1 and CL2, and two planetary gear mechanisms of first and second planetary gear mechanisms PL1 and PL2.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the ring gears R1, R2 of the first and second planetary gear mechanisms PL1, PL2 constitute the first rotating elements of the first and second differential mechanisms, and the first and second planetary gear mechanisms PL1.
  • PL2 sun gears S1, S2 constitute the second rotating element of the first and second differential mechanisms
  • the first and second planetary gear mechanisms PL1, PL2 carriers C1, C2 are the first and second differential mechanisms.
  • the third rotation element is configured.
  • the ring gears R1 and R2 of the first and second planetary gear mechanisms PL1 and PL2 are connected to each other so as to rotate integrally and have a common external tooth R1b (R2b).
  • the external tooth R1b (R2b) is connected to the motor MOT.
  • the third output gear 87 is provided to be rotatable relative to the output shaft 21 of the electric motor MOT, and is rotated integrally with or relative to the output shaft 21 by switching by the first clutch CL1.
  • Sun gears S1 and S2 are connected to left and right rear wheels LWr and RWr via joints J1 and J2, respectively.
  • the carrier C1 of the first planetary gear mechanism PL1 meshes with an idle gear 83 that meshes with a first output gear 81 provided so that the integrally formed first input gear 91 rotates integrally with the output shaft 21,
  • the integrally formed second input gear 93 meshes with a hollow second output gear 85 surrounding the outer periphery of the output shaft 21 of the electric motor MOT.
  • the second output gear 85 is provided so as to be rotatable relative to the output shaft 21 of the electric motor MOT, and is rotated integrally with or relative to the output shaft 21 by switching by the second clutch CL2.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 mesh with the first input gear 91 and the idle gear 83, mesh with the idle gear 83 and the first output gear 81, and the second output gear. 85 and the second input gear 93 are connected via three engagements.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of engagements so that the two carriers C1 and C2 rotate in opposite directions. .
  • the gear ratio between the engagement of the first input gear 91 and the idle gear 83 of the carrier C1 and the engagement of the idle gear 83 and the first output gear 81, and the second input gear 93 and the second output gear 85 of the carrier C2. Is set so that the absolute values are equal to each other. Therefore, the torque of the motor MOT is always transmitted to the carriers C1 and C2 as torque in the opposite direction having the same absolute value.
  • a third output gear 87 and a second output gear 85 provided on the output shaft 21 of the electric motor MOT are disposed so as to be relatively rotatable and face each other in the axial direction, and are respectively formed by the first and second clutches CL1 and CL2.
  • the output shaft 21 rotates integrally or relatively. That is, the first clutch CL1 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the third output gear 87 by engagement or disengagement.
  • the second clutch CL2 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the second output gear 85 by engagement or disengagement.
  • the first and second clutches CL ⁇ b> 1 and CL ⁇ b> 2 are configured by a synchromesh mechanism that can be switched by a common actuator, and can be switched on the same rotational axis, that is, on the same rotational axis as the output shaft 21.
  • the first and second clutches CL1 and CL2 are both released, the first state where the first clutch CL1 is engaged and the second clutch CL2 is released, and the first clutch CL1 is released and the second clutch CL2. And the second state in which is fastened.
  • the second output gear 85 is connected to the output shaft 21 of the electric motor MOT, and the output shaft 21 and the first and second planetary gear mechanisms PL1, The power transmission path with the carriers C1 and C2 of PL2 is connected.
  • the motor MOT transmits torque of the same magnitude in the opposite direction in the front-rear direction to the left and right rear wheels LWr and RWr.
  • Torque vectoring driving (TV) is possible, in which the difference between the left and right driving forces is generated and the left and right driving force sum is not generated.
  • the sun gear S1, the carrier C1, and the ring gear R1 transmit power to each other.
  • the rotation speeds thereof are collinear with each other, and the sun gear S2, the carrier C2, and the ring gear R2 can also transmit power between each other, and the rotation speeds thereof are collinear with each other.
  • the rotation speeds of the ring gear R1 and the ring gear R2 are equal to each other.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of meshes so that the two carriers C1 and C2 rotate in the opposite directions at the same rotational speed. Act on. This will be explained with reference to the collinear diagram of FIG. 18B.
  • the two carriers are in such a relationship that the imaginary line L1 connecting the two carriers C1 and C2 rotates with the intersection point where the zero rotation line L2 indicating zero rotation is rotated as a fulcrum O. This means that the rotational speeds of C1 and C2 are restricted.
  • FIG. 18B (a) is a collinear diagram of the rear wheel drive device 20 according to the fifth embodiment when the front wheel drive (FWD) goes straight.
  • FIG. 18B (b) is a collinear diagram at the time of four-wheel drive (4WD) straight traveling of the rear wheel drive device 20 of the fifth embodiment, and arrows on the nomograph indicate torques acting on each element.
  • FIG. 18B (c) is a collinear diagram when the rear wheel drive device 20 of the fifth embodiment is running straight in the torque vectoring drive (TV), and the arrows on the nomograph indicate the torque acting on each element. Yes.
  • the carriers C1 and C2 are restricted to rotate only in the opposite direction at the same rotational speed, so that the carriers C1 and C2 serve as fulcrums, and the reverse input to the ring gears R1 and R2 that are the power points.
  • the motor torque M in the direction is the left and right rear wheel torque T1 in the forward direction obtained by multiplying the sun gears S1 and S2 as the operating points by the motor torques M1 and M2 and the gear ratios of the first and second planetary gear mechanisms PL1 and PL2. , T2.
  • the left and right rear wheel torques T1 and T2 are torques in the same direction with the same absolute value, thereby the sum of the left and right rear wheel torques T1 and T2 (T1 + T2) Accordingly, a sum of left and right driving forces is generated, and the driving force in the forward direction is stably applied to the vehicle V.
  • the difference between the left and right rear wheel torques T1 and T2 (T1 ⁇ T2) is zero, and when the first and second clutches CL1 and CL2 are in the first state, the left and right rear wheel drive device 20 generates the left and right No driving force difference occurs and no yaw moment is applied to the vehicle.
  • a difference in left and right driving force according to the difference (T1-T2) occurs, and the counterclockwise yaw moment Y is stably applied to the vehicle V.
  • the sum (T1 + T2) of the left and right rear wheel torques T1 and T2 is zero, and when the first and second clutches CL1 and CL2 are in the second state, the left and right driving force is generated from the rear wheel drive device 20 by the generation of torque of the electric motor MOT. A sum is not generated, and no longitudinal torque is applied to the vehicle V.
  • the output shaft 21 of the electric motor MOT includes the ring gears R1, R2 of the first and second planetary gear mechanisms PL1, PL2, and the first and second planetary gear mechanisms PL1, PL2. Since it is selectively connected to the carriers C1 and C2, the front and rear direction torque in the same direction is output to the left and right rear wheels LWr and RWr or the front and rear direction torque is output by one electric motor MOT. Without this, torque can be output in the opposite direction between the left rear wheel LWr and the right rear wheel RWr.
  • the power transmission mechanism TM2 is configured to include first and second clutches CL1 and CL2, and two planetary gear mechanisms of first and second planetary gear mechanisms PL1 and PL2.
  • the first and second planetary gear mechanisms PL1 and PL2 respectively support the sun gears S1 and S2, the ring gears R1 and R2, and the pinions P1 and P2 meshing with the sun gears S1 and S2 and the ring gears R1 and R2 so as to freely rotate and revolve.
  • a so-called single pinion type planetary gear mechanism composed of carriers C1 and C2.
  • the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2 constitute the first rotating element of the first and second differential mechanisms, and the first and second planetary gear mechanisms PL1.
  • PL2 ring gears R1, R2 constitute the second rotating element of the first and second differential mechanisms
  • the first and second planetary gear mechanisms PL1, PL2 carriers C1, C2 are the first and second differential mechanisms.
  • the third rotation element is configured.
  • the sun gears S1, S2 of the first and second planetary gear mechanisms PL1, PL2 are connected to each other so as to rotate integrally through the connecting shaft 23, and the ring gears R1, R2 are respectively connected to the left and right rear wheels via joints J1, J2. Connected to LWr and RWr.
  • a second input gear 33 is provided at an equal distance from the sun gears S1 and S2 on the connecting shaft 23 that connects the sun gears S1 and S2 of the first and second planetary gear mechanisms PL1 and PL2 so as to rotate integrally with the sun gears S1 and S2.
  • the second input gear 33 meshes with a hollow third output gear 87 that surrounds the outer periphery of the output shaft 21 of the electric motor MOT.
  • the third output gear 87 is provided to be rotatable relative to the output shaft 21 of the electric motor MOT, and is rotated integrally with or relative to the output shaft 21 by switching by the first clutch CL1.
  • the carrier C1 of the first planetary gear mechanism PL1 meshes with an idle gear 83 that meshes with a first output gear 81 provided so that the integrally formed first input gear 91 rotates integrally with the output shaft 21,
  • the integrally formed second input gear 93 meshes with a hollow second output gear 85 surrounding the outer periphery of the output shaft 21 of the electric motor MOT.
  • the second output gear 85 is provided so as to be rotatable relative to the output shaft 21 of the electric motor MOT, and is rotated integrally with or relative to the output shaft 21 by switching by the second clutch CL2.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 mesh with the first input gear 91 and the idle gear 83, mesh with the idle gear 83 and the first output gear 81, and the second output gear. 85 and the second input gear 93 are connected via three engagements.
  • the carriers C1 and C2 of the first and second planetary gear mechanisms PL1 and PL2 are connected through an odd number of engagements so that the two carriers C1 and C2 rotate in opposite directions. .
  • the gear ratio between the engagement of the first input gear 91 and the idle gear 83 of the carrier C1 and the engagement of the idle gear 83 and the first output gear 81, and the second input gear 93 and the second output gear 85 of the carrier C2. Is set so that the absolute values are equal to each other. Therefore, the torque of the motor MOT is always transmitted to the carriers C1 and C2 as torque in the opposite direction having the same absolute value.
  • a third output gear 87 and a second output gear 85 provided on the outer periphery of the output shaft 21 of the electric motor MOT are disposed so as to be relatively rotatable and face each other in the axial direction.
  • the output shaft 21 is rotated integrally or relative to the output shaft 21 by switching with CL2. That is, the first clutch CL1 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the third output gear 87 by engagement or disengagement.
  • the second clutch CL2 connects or disconnects power transmission between the output shaft 21 of the electric motor MOT and the second output gear 85 by engagement or disengagement.
  • the first and second clutches CL ⁇ b> 1 and CL ⁇ b> 2 are configured by a synchromesh mechanism that can be switched by a common actuator, and can be switched on the same rotational axis, that is, on the same rotational axis as the output shaft 21.
  • the first and second clutches CL1 and CL2 are both released, the first state where the first clutch CL1 is engaged and the second clutch CL2 is released, and the first clutch CL1 is released and the second clutch CL2. And the second state in which is fastened.
  • the second output gear 85 is connected to the output shaft 21 of the electric motor MOT, and the output shaft 21 and the first and second planetary gear mechanisms PL1,
  • the power transmission path with the carriers C1 and C2 of PL2 is connected via the second output gear 85, the first output gear 81, and the idle gear 83.
  • the motor MOT transmits torque of the same magnitude in the opposite direction in the front-rear direction to the left and right rear wheels LWr and RWr.
  • Torque vectoring driving (TV) is possible, in which the difference between the left and right driving forces is generated and the left and right driving force sum is not generated.
  • the alignment chart of the present embodiment is represented by rewriting sun gears S1 and S2 to ring gears R1 and R2, respectively, and ring gears R1 and R2 to sun gears S1 and S2 in FIG. 18B.
  • Other operations and effects are the same as those of the rear wheel drive device 20 of the fifth embodiment.
  • the output shaft 21 of the motor MOT includes the sun gears S1, S2 of the first and second planetary gear mechanisms PL1, PL2, and the first and second planetary gear mechanisms PL1, PL2. Since it is selectively connected to the carriers C1 and C2, the front and rear direction torque in the same direction is output to the left and right rear wheels LWr and RWr or the front and rear direction torque is output by one electric motor MOT. Without this, torque can be output in the opposite direction between the left rear wheel LWr and the right rear wheel RWr.
  • this invention is not limited to each embodiment mentioned above and its modification, A deformation
  • a capacitor CAP is arranged on the power path between the switching mechanism SW and the generator GEN, and the capacitor CAP is connected to the battery via the DC / DC converter. Connected to BATT.
  • the capacitor CAP is provided on the power path between the switching mechanism SW and the generator GEN, when the amount of power generated by the generator GEN is insufficient, such as when the engine ENG is running at low speed, the power from the capacitor CAP We can make up for the shortage.
  • the traveling assist in the front-rear direction may be performed with the energy of the capacitor CAP at the time of starting, and then switched to the generator GEN.
  • another battery may be used instead of the capacitor CAP.
  • first and second clutches CL1 and CL2 can adopt various configurations such as a friction clutch, a synchro clutch, and a dog clutch.
  • the drive device of the present invention can be mounted on propulsion members of transportation equipment such as wheels of various vehicles such as hybrid vehicles, plug-in hybrid vehicles, range extenders, aircraft propellers, and ship screws.
  • the planetary gear mechanism is shown as an example of the differential mechanism.
  • the differential mechanism includes other planetary mechanisms that do not use a gear such as a cyclo reducer and other differential mechanisms such as a differential mechanism. Also good.
  • Rear wheel drive device 21 Output shaft V Vehicle (transport equipment) ENG engine (other drive source) MOT motor (drive source) TM1, TM2 Power transmission mechanisms PL1, PL2 First and second planetary gear mechanisms (first and second differential mechanisms) S1, S2 Sun gear (first rotating element, second rotating element, third rotating element) C1, C2 carrier (first rotating element, second rotating element, third rotating element) R1, R2 ring gear (first rotating element, second rotating element, third rotating element) LWr Left rear wheel (Left drive unit) RWr Right rear wheel (right drive unit) CL1 first clutch (first switching mechanism, switching device) CL2 second clutch (second switching mechanism, switching device) GEN generator (first energy transfer device) CAP capacitor (first energy transfer device) BATT battery (second energy transfer device)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Transmission Devices (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

 駆動装置は、左駆動部と右駆動部とを駆動する駆動源と、それぞれ第1回転要素と、第2回転要素と、第3回転要素とを有する第1及び第2差動機構を有する動力伝達機構と、切替装置と、を備える。第1及び第2差動機構の第1回転要素は互いに同一方向に一体回転するよう接続され、第1及び第2差動機構の前記第2回転要素はそれぞれ左駆動部及び右駆動部に接続され、第1及び第2差動機構の第3回転要素は互いに反対方向に回転するよう接続される。

Description

駆動装置
 この発明は、駆動装置、特に駆動源と2つの差動機構とを備える駆動装置に関するものである。
 従来より、駆動源と2つの遊星歯車機構とを備える動力伝達機構が知られている。例えば、特許文献1に記載の駆動力配分装置100は、図21に示すように、それぞれがリングギヤR、プラネタリギヤP、プラネタリキャリヤCおよびサンギヤSから構成される2組の遊星歯車機構PLと、2組の遊星歯車機構PLのサンギヤS間を接続するシャフト101に駆動力を与える駆動用モータ102と、左右輪間に駆動力差を生じさせるための制御用モータ103と、の2つの動力源を備えており、駆動用モータ102を駆動することで車両の前後方向の運動(挙動)に影響を及ぼす左右輪の駆動力和を与え、駆動用モータ102の駆動力で走行中に必要に応じて制御用モータ103を駆動することで車両の旋回方向の運動(挙動)に影響を及ぼす左右輪の駆動力差を与えるように制御できることが記載されている。
 即ち、特許文献1に記載の駆動力配分装置100では、2つの動力源(駆動用モータ102、制御用モータ103)を備え、主として車両の前後方向の運動(挙動)に影響を及ぼす左右輪の駆動力和と、主として車両の旋回方向の運動(挙動)に影響を及ぼす左右輪の駆動力差と、の両方を同時に制御可能であった。
 また、特許文献2には、電動モータに接続された傘歯車式差動装置の一方に、2つのギヤからなる伝動系を設け、他方に切替手段を介して2つのギヤからなる伝動系及び3つのギヤからなる伝動系を設けた左右輪の連結装置が開示されている。また、傘歯車式差動装置の他方の2つのギヤからなる伝動系においては、傘歯車式差動装置の一方の2つのギヤからなる伝動系と同一のギヤ比に設定し、傘歯車式差動装置の他方の3つのギヤからなる伝動系においては、傘歯車式差動装置の一方の2つのギヤからなる伝動系と方向が反対で絶対値の等しい同一のギヤ比に設定している。この連結装置によれば、切替手段により、2つのギヤからなる伝動系を選択した場合に、電動モータのトルクが同一方向に同じ大きさで左右輪に伝達されるので前進又は後進の発進アシストを行うことができ、3つのギヤからなる伝動系を選択した場合に、電動モータのトルクが反対方向に同じ大きさで左右輪に伝達されるので旋回方向にヨーモーメントを発生させる旋回アシストを行うことができる。
日本国特開2010-144762号 日本国特許第3599847号
 しかしながら、特許文献1の駆動力配分装置100は、2つの動力源が必要であり、製造コストが嵩むとともに、装置の大型化が避けられず改善の余地があった。また、特許文献2の連結装置では、発進アシスト時であっても旋回アシスト時であっても、ギヤ比の絶対値は同じであり、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができず改善の余地があった。
 本発明は、1つの駆動源で、左駆動部及び右駆動部に駆動力和を付与する制御と、駆動力差を付与する制御と、を片方ずつ切り替えて制御可能で、駆動源の同一動力に対し付与される駆動力和と駆動力差との絶対値の大きさを別個独立に設定可能な駆動装置を提供する。
 本発明は以下の態様を提供するものである。
 第1態様は、
 輸送機器(例えば、後述の実施形態の車両V)の進行方向に対し左側に配置される左駆動部(例えば、後述の実施形態の左後輪LWr)と、前記進行方向に対し右側に配置される右駆動部(例えば、後述の実施形態の右後輪RWr)と、を駆動する駆動源(例えば、後述の実施形態の電動機MOT)と、
 それぞれ第1回転要素と、第2回転要素と、第3回転要素とを有する第1及び第2差動機構(例えば、後述の実施形態の第1及び第2遊星歯車機構PL1、PL2)を有する動力伝達機構(例えば、後述の実施形態の動力伝達機構TM2)と、を備えた駆動装置(例えば、後述の実施形態の後輪駆動装置20)であって、
 前記第1及び第2差動機構の前記第1回転要素は、互いに同一方向に一体回転するよう接続され、
 前記第1及び第2差動機構の前記第2回転要素は、それぞれ前記左駆動部及び前記右駆動部に接続され、
 前記第1及び第2差動機構の前記第3回転要素は、互いに反対方向に回転するよう接続され、
 前記動力伝達機構は、前記駆動源と前記第1及び第2差動機構の前記第1回転要素とを接続する第1接続状態と、前記駆動源と前記第1及び第2差動機構の前記第3回転要素とを接続する第2接続状態と、を選択的に切り替える切替装置(例えば、後述の実施形態の第1及び第2クラッチCL1、CL2)を備える。
 第2態様は、第1態様の構成に加えて、
 前記動力伝達機構は、前記駆動源と前記第1及び第2差動機構の前記第1回転要素との動力伝達経路を接続する締結状態と、前記駆動源と前記第1及び第2差動機構の前記第1回転要素との動力伝達経路を遮断する解放状態と、を切替可能な第1切替機構(例えば、後述の実施形態の第1クラッチCL1)と、
 前記駆動源と前記第1及び第2差動機構の前記第3回転要素との動力伝達経路を接続する締結状態と、前記駆動源と前記第1及び第2差動機構の前記第3回転要素との動力伝達経路を遮断する解放状態と、を切替可能な第2切替機構(例えば、後述の実施形態の第2クラッチCL2)と、を備え、
 前記第1切替機構が締結状態となり、且つ、前記第2切替機構が解放状態となる第1状態と、前記第1切替機構が解放状態となり、且つ、前記第2切替機構が締結状態となる第2状態と、を切替可能に構成される。
 第3態様は、第2態様の構成に加えて、
 前記第1切替機構と前記第2切替機構とは、同一の作動装置(例えば、後述の実施形態のアクチュエータ)によって前記締結状態と前記解放状態とが切り替えられる。
 第4態様は、第3態様の構成に加えて、
 前記第1切替機構と前記第2切替機構とは、同一の回転軸線上に配置される。
 第5態様は、第4態様の構成に加えて、
 前記第1及び第2差動機構の前記第1回転要素は、前記回転軸線上に配置される。
 第6態様は、第2又は第3態様の構成に加えて、
 前記第1切替機構と前記第1及び第2差動機構の前記第1回転要素とは、前記回転軸線上に配置される。
 第7態様は、第6態様の構成に加えて、
 前記第1切替機構と前記第2切替機構とは、径方向でオフセットした位置に配置され、且つ、軸線方向でオーバーラップした位置に配置される。
 第8態様は、第1~7態様のいずれかの構成に加えて、
 前記駆動源は、前記第1及び第2差動機構に対し、軸線方向一方側又は他方側に配置される。
 第9態様は、第8態様の構成に加えて、
 前記駆動源は、前記第1差動機構に対し軸線方向で反第2差動機構側に、又は、前記第2差動機構に対し軸線方向で反第1差動機構側に、前記第1及び第2差動機構に対し軸線方向でオフセットした位置に配置される。
 第10態様は、第1~9態様のいずれかの構成に加えて、
 前記輸送機器の速度が所定速度未満のとき、前記切替装置は、前記第1接続状態に切り替え、
 前記輸送機器の速度が前記所定速度以上のとき、前記切替装置は、前記第2接続状態に切り替える。
 第11態様は、第10態様の構成に加えて、
 前記駆動装置は、前記駆動源へのエネルギの供給と前記駆動源からのエネルギの回収との少なくとも一方を行うエネルギ授受装置に接続され、
 前記エネルギ授受装置は、第1エネルギ授受装置(例えば、後述の実施形態の発電機GEN、キャパシタCAP)と第2エネルギ授受装置(例えば、後述の実施形態のバッテリBATT)とを含み、
 前記駆動源は、前記第1エネルギ授受装置と前記第2エネルギ授受装置とに対して切替可能に接続され、
 前記第1エネルギ授受装置は、前記駆動源とは異なる他の駆動源(例えば、後述の実施形態のエンジンENG)からエネルギの回収を行うよう接続され、
 前記第2エネルギ授受装置はエネルギ蓄積装置(例えば、後述の実施形態のバッテリBATT)を含む。
 第12態様は、第11態様の構成に加えて、
 前記駆動源は、前記所定速度未満のとき、前記第1エネルギ授受装置に接続され、
 前記所定速度以上のとき、前記第2エネルギ授受装置に接続される。
 第13態様は、
 前記第1及び第2差動機構の前記第3回転要素は、互いの間に奇数回の噛み合いを介して接続される。
 第1態様によれば、1つの駆動源で2つの駆動部に同一方向の駆動力を作用させたり、反対方向の駆動力を作用させたりでき、例えば輸送機器に搭載した場合には、左右輪に駆動力和の制御と、駆動力差の制御とを、片方ずつ切り替えて出力させることができる。また、駆動源の同一動力に対し付与される駆動力和と駆動力差との絶対値の大きさを別個独立に設定できる。
 第2態様によれば、駆動源と第1回転要素とを接続するときは駆動源と第3回転要素との動力伝達経路を遮断し、駆動源と第3回転要素とを接続するときは駆動源と第1回転要素との動力伝達経路を遮断するので、どちらか一方に確実に動力を伝達することができる。
 第3態様によれば、同一の作動装置によって2つの切替機構を制御できるので、第1切替機構と第2切替機構の両方が締結状態となることを容易に回避できるとともに、2つの作動装置で構成する場合に比べて、部品点数を削減でき、製造コストを抑制することができる。
 第4態様によれば、径方向寸法の拡大を抑えながら第1切替機構と第2切替機構を配置することができる。
 第5態様によれば、第1切替機構と第2切替機構とが、第1及び第2差動機構の第1回転要素と同一直線状に配置されるので、例えば、第1及び第2差動機構の間のスペースを活用して第1切替機構と第2切替機構とを配置することができる。
 第6態様によれば、第1切替機構が、第1及び第2差動機構の第1回転要素と同一直線状に配置されるので、例えば、第1及び第2差動機構の間のスペースを活用して第1切替機構を配置することができる。
 第7態様によれば、軸方向寸法の拡大を抑えながら第1切替機構と第2切替機構とを配置することができる。
 第8態様によれば、第1及び第2差動機構に挟まれるように駆動源を配置する場合に比べて、左右駆動部と第2回転要素との接続部を車幅方向で内側に寄せることができるため、接続部から車輪又は車輪側部材への角度を押さえることができる。
 第9態様によれば、径方向寸法も小さくすることができる。
 第10態様によれば、輸送機器が所定速度未満の時には2つの駆動部を同一方向に駆動可能でき、輸送機器が所定速度以上の時には2つの駆動部を反対方向に駆動できるので、発進時及び低速走行時等の前後方向の要求駆動力が大きい場合のアシストと、操作性を向上させるトルクベクタリングとが可能となる。
 第11態様によれば、駆動源は、他の駆動源と接続可能な第1エネルギ授受装置と、蓄電装置とに切替可能に接続されるので、状況に応じて接続先を選択できる。
 第12態様によれば、輸送機器の発進時又は低速走行時は大きな駆動力を必要とするため、他の駆動源と接続可能な第1エネルギ授受装置で発電した電力で駆動源を駆動し、所定速度以上の車速でトルクベクタリングをする際は発進時又は低速走行時に比べて少ない電力しか必要としないため、蓄電装置の電力で駆動できる。
 第13態様によれば、容易に第1及び第2差動機構の第3回転要素が互いに反対方向に回転するよう接続できる。
本発明の駆動装置を搭載可能な一実施形態の車両の概略構成図である。 第1実施形態の後輪駆動装置のスケルトン図である。 第1実施形態の後輪駆動装置における前輪駆動(FWD)直進時の動力伝達経路と共線図を示す図である。 第1実施形態の後輪駆動装置における前輪駆動(FWD)旋回時の動力伝達経路と共線図を示す図である。 図3Aに示す後輪駆動装置における前輪駆動(FWD)直進時の回転要素を示すスケルトン図である。 図3Bに示す後輪駆動装置における前輪駆動(FWD)旋回時の回転要素を示すスケルトン図である。 第1実施形態の後輪駆動装置における四輪駆動(4WD)直進時の動力伝達経路と共線図を示す図である。 第1実施形態の後輪駆動装置における四輪駆動(4WD)旋回時の動力伝達経路と共線図を示す図である。 図4Aに示す後輪駆動装置における四輪駆動(4WD)直進時の回転要素を示すスケルトン図である。 図4Bに示す後輪駆動装置における四輪駆動(4WD)旋回時の回転要素を示すスケルトン図である。 第1実施形態の後輪駆動装置におけるトルクベクタリング駆動(TV)直進時の動力伝達経路と共線図を示す図である。 第1実施形態の後輪駆動装置におけるトルクベクタリング駆動(TV)旋回時の動力伝達経路と共線図を示す図である。 図5Aに示す後輪駆動装置におけるトルクベクタリング駆動(TV)直進時の回転要素を示すスケルトン図である。 図5Bに示す後輪駆動装置におけるトルクベクタリング駆動(TV)旋回時の回転要素を示すスケルトン図である。 4WD駆動及びトルクベクタリング駆動の電力フローを示す図である。 第1実施形態の第1変形例の後輪駆動装置のスケルトン図である。 第1実施形態の第2変形例の後輪駆動装置のスケルトン図である。 第1実施形態の第3変形例の後輪駆動装置のスケルトン図である。 第1実施形態の第3変形例の後輪駆動装置における前輪駆動(FWD)時の動力伝達経路と共線図を示す図である。 第1実施形態の第3変形例の後輪駆動装置における前輪駆動(FWD)直進時の回転要素を示すスケルトン図である。 第1実施形態の第3変形例の後輪駆動装置における四輪駆動(4WD)時の動力伝達経路と共線図を示す図である。 第1実施形態の第3変形例の後輪駆動装置における四輪駆動(4WD)直進時の回転要素を示すスケルトン図である。 第1実施形態の第3変形例の後輪駆動装置におけるトルクベクタリング駆動(TV)時の動力伝達経路と共線図を示す図である。 第1実施形態の第3変形例の後輪駆動装置におけるトルクベクタリング駆動(TV)直進時の回転要素を示すスケルトン図である。 第1実施形態の第4変形例の後輪駆動装置のスケルトン図である。 第1実施形態の第5変形例の後輪駆動装置のスケルトン図である。 第2実施形態の後輪駆動装置のスケルトン図である。 第2実施形態の後輪駆動装置における共線図である。 第3実施形態の後輪駆動装置のスケルトン図である。 第3実施形態の後輪駆動装置における共線図である。 第4実施形態の後輪駆動装置のスケルトン図である。 第5実施形態の後輪駆動装置のスケルトン図である。 第5実施形態の後輪駆動装置における共線図である。 第6実施形態の後輪駆動装置のスケルトン図である。 本発明の動力伝達装置を搭載可能な他の実施形態の車両の概略構成図である。 従来の特許文献1に記載の駆動力配分装置の概略構成図である。
 先ず、本発明の駆動装置を搭載可能な一実施形態の車両について図1を参照しながら説明する。
 図1に示すように、車両Vは、エンジンENGにより動力伝達機構TM1を介して左右前輪LWf、RWfを駆動する前輪駆動装置10と、電動機MOTにより動力伝達機構TM2を介して左右後輪LWr、RWrを駆動する後輪駆動装置20と、を備える四輪駆動車両である。
 前輪駆動装置10では、エンジンENGがクラッチCLを介して発電機GENに接続されており、エンジンENGが主駆動源として車両Vに推進力を与える。後輪駆動装置20は、前輪駆動装置10を補うものであり、必要に応じて後述する前後方向の走行アシスト及び左右方向の旋回アシストを切り替えて行うものである。後輪駆動装置20の電動機MOTは、スイッチング機構SWを介して前輪駆動装置10の発電機GENとバッテリBATTとに選択的に接続される。即ち、スイッチング機構SWにより、電動機MOTと発電機GENとを電気的に接続した状態と、電動機MOTとバッテリBATTとを電気的に接続した状態と、を選択可能になっている。
 以下、本発明の特徴である駆動装置としての後輪駆動装置20の各実施形態について詳細に説明する。なお、本発明の特徴である駆動装置は、車両Vの前輪駆動装置10に用いてもよいが、ここでは、後輪駆動装置20に用いた場合を例に説明する。
<第1実施形態>
 後輪駆動装置20は、図2に示すように、電動機MOTと動力伝達機構TM2とを備え、動力伝達機構TM2が、電動機MOTの出力軸21に設けられる第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。第1実施形態及び後述する第1実施形態の変形例では、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が第1及び第2差動機構の第1回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が第1及び第2差動機構の第2回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が第1及び第2差動機構の第3回転要素を構成する。そして、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2は連結軸23を介して一体回転するように互いに接続されるとともに、キャリアC1、C2がそれぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1及び第2遊星歯車機構PL1、PL2は、等しい変速比を有しており、互いに近接配置されている。電動機MOTは、この第1及び第2遊星歯車機構PL1、PL2に対し軸線方向で左側にオフセット配置されている。また、電動機MOTは、この第1及び第2遊星歯車機構PL1、PL2に径方向でオーバーラップしている。
 第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2を接続する連結軸23には、サンギヤS1、S2と一体回転するように第2入力ギヤ33がサンギヤS1、S2から等距離に設けられ、この第2入力ギヤ33が、電動機MOTの出力軸21に設けられた第2出力ギヤ35と噛み合っている。
 第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、ピニオンP1、P2と噛み合う内周面に形成された内歯R1a、R2aの他に外周面に形成された外歯R1b、R2bも有し、第1遊星歯車機構PL1のリングギヤR1は、外歯R1bが電動機MOTの出力軸21に設けられた第1出力ギヤ25と噛み合っており、第2遊星歯車機構PL2のリングギヤR2は、外歯R2bが第1出力ギヤ25と噛み合うアイドルギヤ27と同軸上に一体回転するように設けられた第1入力ギヤ29と噛み合っている。即ち、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、リングギヤR1の外歯R1bと第1出力ギヤ25との噛み合い、第1出力ギヤ25とアイドルギヤ27との噛み合い、第1入力ギヤ29とリングギヤR2の外歯R2bとの噛み合いの3回の噛み合いを介して接続されている。なお、符号31は、一端にアイドルギヤ27が取り付けられ、他端に第1入力ギヤ29が取り付けられたアイドル軸である。
 このように第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は互いに反対方向に回転するように作用する。即ち、リングギヤR1の一方向の回転は、リングギヤR1の外歯R1bと第1出力ギヤ25との噛み合いにより、第1出力ギヤ25を他方向に回転させる。また、第1出力ギヤ25とアイドルギヤ27との噛み合いにより、アイドルギヤ27を一方向に回転させる。アイドルギヤ27と第1入力ギヤ29とはアイドル軸31を介して一体に回転するため、第1入力ギヤ29も一方向に回転し、さらに、第1入力ギヤ29とリングギヤR2の外歯R2bとの噛み合いにより、第1入力ギヤ29の一方向の回転は、リングギヤR2を他方向に回転させるように作用することとなる。
 また、リングギヤR1の外歯R1bと第1出力ギヤ25との噛み合いによるギヤ比と、第1出力ギヤ25とアイドルギヤ27との噛み合い及び第1入力ギヤ29とリングギヤR2の外歯R2bとの噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、第1出力ギヤ25に伝達された電動機MOTのトルクは、リングギヤR1、R2に対し常に絶対値の等しい反対方向のトルクとして伝達される。
 電動機MOTの出力軸21に設けられた第2出力ギヤ35と第1出力ギヤ25は、相対回転可能に、且つ、軸方向に対向配置されており、それぞれ第1及び第2クラッチCL1、CL2による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により電動機MOTの出力軸21と第2出力ギヤ35との動力伝達を接続又は遮断する。第2クラッチCL2は、締結又は解放により電動機MOTの出力軸21と第1出力ギヤ25との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、電動機MOTの出力軸21と同じ回転軸線上で切替可能になっている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、電動機MOTの出力軸21が第1出力ギヤ25と第2出力ギヤ35のいずれのギヤにも接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、後述する前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、電動機MOTの出力軸21が第2出力ギヤ35に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2入力ギヤ33を介して接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、後述する四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、電動機MOTの出力軸21が第1出力ギヤ25に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、後述するトルクベクタリング駆動(TV)が可能となる。
 即ち、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、に対して選択的に切替可能に接続されている。
 以上の構成の後輪駆動装置20では、第1及び第2遊星歯車機構PL1、PL2が前述したように構成されているため、サンギヤS1、キャリアC1及びリングギヤR1は、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にあるとともに、サンギヤS2、キャリアC2及びリングギヤR2も、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にある。ここで、共線関係とは、共線図において、それぞれの回転数が単一の直線上に並ぶ関係のことである。
 また、サンギヤS1とサンギヤS2は連結軸23を介して一体回転するように接続されるので、サンギヤS1とサンギヤS2の回転数は互いに等しくなっている。さらに、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は同じ回転数で互いに反対方向に回転するように作用する。これは、回転数を表す共線図(例えば、図3A及び図3B)で説明すると、2つのリングギヤR1、R2を結ぶ仮想線L1が零回転を示す零回転線L2と交わる交点を支点Oとして回転するような関係性で2つのリングギヤR1、R2の回転数が規制されることを意味する。なお、支点となる仮想線L1と零回転を示す零回転線L2との交点は、本実施形態では、第1及び第2遊星歯車機構PL1、PL2の変速比が同一であるため、零回転線L2の中央に位置しているが、第1及び第2遊星歯車機構PL1、PL2の変速比が異なれば零回転線L2の中央からずれた点となる。
 したがって、左右後輪LWr、RWrに回転数差がない直進時には、左右後輪LWr、RWrに接続されたキャリアC1、C2の回転数が等しくなり、2つのリングギヤR1、R2を結ぶ仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、左右後輪LWr、RWrに接続されたキャリアC1、C2には回転数差が生じ、2つのリングギヤR1、R2を結ぶ仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。
 以下、前輪駆動(FWD)、四輪駆動(4WD)及びトルクベクタリング駆動(TV)についてより詳細に説明する。
-前輪駆動(FWD)-
 第1及び第2クラッチCL1、CL2がいずれも解放された状態(第1クラッチCL1:解放/第2クラッチCL2:解放)のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態となり、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない。左右後輪LWr、RWrに回転数差がない直進時には、図3Aに示すように、仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、図3B示すように、共線図上において仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。なお、図3Cは、左右後輪LWr、RWrに回転数差がない前輪駆動(FWD)直進時(図3A)における動力伝達機構TM2の回転要素を実線で示している。また、図3Dは、左右後輪LWr、RWrに回転数差がある前輪駆動(FWD)旋回時(図3B)における動力伝達機構TM2の回転要素を実線で示している。
-四輪駆動(4WD)-
 第1及び第2クラッチCL1、CL2が第1状態(第1クラッチCL1:締結/第2クラッチCL2:解放)のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2出力ギヤ35及び第2入力ギヤ33を介して接続状態になり、サンギヤS1、S2には、電動機MOTから順方向のモータトルクMが入力される。通常の第1及び第2遊星歯車機構PL1、PL2においては、サンギヤS1、S2に順方向のトルクが入力された場合、キャリアC1、C2及びリングギヤR1、R2に対し回転数を上昇させるトルクが伝達されるが、上述のようにリングギヤR1、R2は互いに同じ回転数で反対方向にしか回転しないよう規制されるので、リングギヤR1、R2が支点となり、力点であるサンギヤS1、S2に入力された順方向のモータトルクMは、作用点であるキャリアC1、C2に対し、モータトルクM1、M2に第1及び第2遊星歯車機構PL1、PL2の変速比を掛け合わせた順方向の左右後輪トルクT1、T2として伝達される。第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい同一方向のトルクとなり、これにより左右後輪トルクT1、T2の和(T1+T2)に応じた左右駆動力和が発生し、前進方向の駆動力が車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の差(T1-T2)は零となり、第1及び第2クラッチCL1、CL2が第1状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力差が発生することはなく、車両Vにヨーモーメントを付与しない。本明細書において、順方向とは車両Vを前進させる方向を意味するものとし、車両Vを前進させるための電動機MOTの回転方向はギヤの配置、ギヤの個数によって変わり得る。車両Vに後進方向のトルクを付与する場合、即ち後進時には、電動機MOTを前進時とは反対方向のトルクが発生するようにトルク制御を行えばよい。
 図4A、図4Bでは、共線図上の矢印が各要素に作用するトルクを示し、電動機MOTから共線図に至る矢印が電動機MOTの動力伝達経路を示している(図11Aにおいても同様。)。また、図4C、図4Dでは、四輪駆動(4WD)時における動力伝達機構TM2の回転要素を実線で示している。
 左右後輪LWr、RWrに回転数差がない直進時には、図4Aに示すように、仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、図4B示すように、共線図上において仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。なお、図4Cは、左右後輪LWr、RWrに回転数差がない四輪駆動(4WD)直進時(図4A)における動力伝達機構TM2の回転要素を実線で示し、図4Dは、左右後輪LWr、RWrに回転数差がある四輪駆動(4WD)旋回時(図4B)における動力伝達機構TM2の回転要素を実線で示している。
 このように、第1及び第2クラッチCL1、CL2を第1状態(第1クラッチCL1:締結/第2クラッチCL2:解放)に制御し、前後進に応じて電動機MOTの回転方向を変えながらトルク制御を行うことで、左右後輪LWr、RWrに所期の前後方向駆動力を発生させることができ、前後方向の走行アシストを行うことができる。発進時に発進アシストとして用いてもよく、走行時に前輪駆動(FWD)から四輪駆動(4WD)に移行してもよい。走行時の前輪駆動(FWD)から四輪駆動(4WD)への切替は、図3Cの第1及び第2クラッチCL1、CL2をともに解放した状態で電動機MOTの回転数を第2出力ギヤ35と同じ回転数まで上昇させた後に、第1クラッチCL1を締結することで切替時のショックを抑えながら移行させることができる。
-トルクベクタリング駆動(TV)-
 第1及び第2クラッチCL1、CL2が第2状態(第1クラッチCL1:解放/第2クラッチCL2:締結)のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が接続状態になり、リングギヤR1、R2には、電動機MOTから絶対値の等しい反対方向のモータトルクが入力される。
 即ち、電動機MOTのトルクによって、リングギヤR1の外歯R1bと第1出力ギヤ25との噛み合いによりリングギヤR1に、電動機MOTのトルクと反対方向である逆方向の第1モータトルクM1が作用する。このとき、キャリアC1には左後輪LWrから前進走行しようとする順方向のトルク(図示せず)が作用しているので、第1遊星歯車機構PL1においては、キャリアC1が支点となり、力点であるリングギヤR1に逆方向の第1モータトルクM1が作用したことで、作用点であるサンギヤS1、S2に順方向の第1モータトルク分配力M1′が作用する。
 また、電動機MOTのトルクによって、第1出力ギヤ25とアイドルギヤ27との噛み合い及び第1入力ギヤ29とリングギヤR2の外歯R2bとの噛み合いによりリングギヤR2に、電動機MOTのトルクと同一方向である順方向の第2モータトルクM2が作用する。このとき、キャリアC2には右後輪RWrから前進走行しようとする順方向のトルク(図示せず)が作用しているので、第2遊星歯車機構PL2においては、キャリアC2が支点となり、力点であるリングギヤR2に順方向の第2モータトルクM2が作用したことで、作用点であるサンギヤS1、S2に逆方向の第2モータトルク分配力M2′が作用する。
 ここで、第1モータトルクM1と第2モータトルクM2は、絶対値の等しい反対方向のトルクなので、サンギヤS1、S2に作用する順方向の第1モータトルク分配力M1′と逆方向の第2モータトルク分配力M2′は互いに打ち消しあう(相殺)。この相殺によってサンギヤS1、S2が支点となり、力点であるリングギヤR1に入力された逆方向の第1モータトルクM1は作用点であるキャリアC1に対し第1遊星歯車機構PL1の変速比を掛け合わせた逆方向の左後輪トルクT1として伝達され、力点であるリングギヤR2に入力された順方向の第2モータトルクM2は作用点であるキャリアC2に対し第2遊星歯車機構PL2の変速比を掛け合わせた順方向の右後輪トルクT2として伝達される。
 第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい反対方向のトルクとなり、これにより左右後輪トルクT1、T2の差(T1-T2)に応じた左右駆動力差が発生し、反時計回りのヨーモーメントYが車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の和(T1+T2)は零となり、第1及び第2クラッチCL1、CL2が第2状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力和が発生することはなく、車両Vに前後方向のトルクを付与しない。車両Vに時計回りのヨーモーメントを付与する場合、電動機MOTに上記と反対方向のトルクが発生するようにトルク制御を行えばよい。
 図5A、図5Bでは、共線図上の矢印が各要素に作用するトルクを示し、電動機MOTから共線図に至る矢印が電動機MOTの動力伝達経路を示している(図12Aにおいても同様。)。また、図5C、図5Dでは、トルクベクタリング駆動(TV)時における動力伝達機構TM2の回転要素を実線で示している。
 左右後輪LWr、RWrに回転数差がない直進時には、図5Aに示すように、仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、図5B示すように、共線図上において仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。なお、図5Cは、左右後輪LWr、RWrに回転数差がないトルクベクタリング駆動(TV)直進時(図5A)における動力伝達機構TM2の回転要素を実線で示し、図5Dは、左右後輪LWr、RWrに回転数差があるトルクベクタリング駆動(TV)旋回時(図5B)における動力伝達機構TM2の回転要素を実線で示している。
 このように、第1及び第2クラッチCL1、CL2を第2状態(第1クラッチCL1:解放/第2クラッチCL2:締結)に制御し、旋回方向又は横加速度に応じて電動機MOTの回転方向を変えながらトルク制御を行うことで、所期のヨーモーメントを発生させることができ、旋回アシストを行うことができる。また、旋回方向と反対方向のヨーモーメントを発生させることで、旋回制限を行うこともできる。
 なお、図3B、図4B及び図5Bでは、左後輪LWrの回転数に対し右後輪RWrの回転数が高い左旋回時を例示したが、右後輪RWrの回転数に対し左後輪LWrの回転数が高い右旋回時も同様である(図10A、図11A、図12Aにおいても同様。)。
 図6は四輪駆動(4WD)及びトルクベクタリング駆動(TV)の電力フローを示す図である。
 四輪駆動(4WD)時には、一例として、クラッチCLを締結(ON)してエンジンENGと発電機GENを接続した状態で、エンジンENGのトルクで動力伝達機構TM1を介して左右前輪LWf、RWfを駆動するとともにエンジンENGのトルクを利用して発電機GENで発電する。また、スイッチング機構SWを介して電動機MOTと発電機GENを接続して、発電機GENで発電した電力で電動機MOTを駆動する。このように、車両Vの発進時等は大きなトルクを必要とするため、エンジンENGと接続可能な発電機GENで発電した電力で電動機MOTを駆動することで走行性能を向上させることができる。
 一方、トルクベクタリング駆動(TV)時には、一例として、クラッチCLを解放(OFF)してエンジンENGと発電機GENを切り離した状態で、エンジンENGで動力伝達機構TM1を介して左右前輪LWf、RWfを駆動するとともに、スイッチング機構SWを介して電動機MOTとバッテリBATTを接続して、バッテリBATTからの電力で電動機MOTを駆動する。例えば、エンジン走行に効率のよい高速クルーズ中にはエンジンENGのトルクで走行するとともに、それほどトルクの必要のないトルクベクタリング駆動をバッテリBATTの電力で行うことで、エネルギ特性を向上させることができる。なお、トルクベクタリング駆動時及び4WD駆動時の電力フローは図6の態様に限らず、効率やバッテリBATTのSOC等に基づいて適宜選択することができる。
 前輪駆動(FWD)、四輪駆動(4WD)及びトルクベクタリング駆動(TV)の切替については、車両Vの速度(以下、車速とも呼ぶ。)に応じて切り替えることができる。車速が所定速度未満のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2とが接続される四輪駆動(4WD)とし、車速が所定速度以上のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2とが接続されるトルクベクタリング駆動(TV)としてもよい。また、例えば、発進時に四輪駆動(4WD)走行を行い、車速やヨーモーメント要求に応じて前輪駆動(FWD)又はトルクベクタリング駆動(TV)を行うようにしてもよい。
 以上説明したように、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
 また、動力伝達機構TM2を2つの第1及び第2遊星歯車機構PL1、PL2で構成するため、軸方向寸法を小さくすることができる。
 また、動力伝達機構TM2は、第1及び第2クラッチCL1、CL2を備え、第1状態と第2状態とを選択的に切替可能に構成されるので、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2とリングギヤR1、R2のどちらか一方に確実に動力を伝達することができる。
 また、電動機MOTは、第1及び第2遊星歯車機構PL1、PL2に対し軸方向一方側である左側に配置されているので、第1及び第2遊星歯車機構PL1、PL2に挟まれるように電動機MOTを配置する場合に比べて、左右後輪LWr、RWrとキャリアC1、C2との接続部であるジョイントJ1、J2を車幅方向で内側に寄せることができるため、ジョイントJ1、J2から左右後輪LWr、RWrへの角度を押さえることができる。これによって、後輪駆動装置20を車両Vに搭載するときに左右方向の配置の自由度を向上させることができる。なお、電動機MOTを、第1及び第2遊星歯車機構PL1、PL2に対し軸方向他方側である右側に配置してもよい。
 また、電動機MOTは、この第1及び第2遊星歯車機構PL1、PL2に径方向でオーバーラップしているので、径方向寸法も小さくすることができる。これによって,後輪駆動装置20を車両Vに搭載するときに前後方向の車両Vに対する搭載位置の自由度を向上させることができる。
 第1及び第2クラッチCL1、CL2は、共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成される切替機構であって、同一の回転軸線、即ち、電動機MOTの出力軸21と同じ回転軸線上で切替可能になっているので、第1及び第2クラッチCL1、CL2の両方が締結状態となることを容易に回避できるとともに、別々のアクチュエータで作動する場合に比べて、部品点数を削減でき、製造コストを抑制することができる。さらに、電動機MOTの出力軸21も同軸上に配置されるので、径方向寸法の拡大を抑えながら切替機構を配置することができる。
<第1変形例>
 続いて、第1実施形態の第1変形例の後輪駆動装置20について図7を参照しながら説明する。
 本変形例では、動力伝達機構TM2が、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備える点で第1実施形態の動力伝達機構TM2と共通しており以下、相違点を中心に説明する。
 第1遊星歯車機構PL1のリングギヤR1は、外歯R1bがアイドル軸41と一体回転するように設けられた第1入力ギヤ42と噛み合っており、第2遊星歯車機構PL2のリングギヤR2は、外歯R2bが第1入力ギヤ42と同軸上に一体回転するように設けられたアイドルギヤ43と噛み合う第2入力ギヤ44と噛み合っている。即ち、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、リングギヤR1の外歯R1bと第1入力ギヤ42との噛み合い、アイドルギヤ43と第2入力ギヤ44との噛み合い、第2入力ギヤ44とリングギヤR2の外歯R2bとの噛み合いの3回の噛み合いを介して接続されている。
 このように第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は互いに反対方向に回転するように作用する。即ち、リングギヤR1の一方向の回転は、リングギヤR1の外歯R1bと第1入力ギヤ42との噛み合いにより、第1入力ギヤ42を他方向に回転させる。第1入力ギヤ42とアイドルギヤ43とはアイドル軸41を介して一体に回転するため、アイドルギヤ43も他方向に回転し、また、アイドルギヤ43と第2入力ギヤ44との噛み合いにより、第2入力ギヤ44は一方向に回転する。さらに、第2入力ギヤ44とリングギヤR2の外歯R2bとの噛み合いにより、第2入力ギヤ44の一方向の回転は、リングギヤR2を他方向に回転させるように作用することとなる。
 また、リングギヤR1の外歯R1bと第1入力ギヤ42との噛み合いによるギヤ比と、アイドルギヤ43と第2入力ギヤ44との噛み合い及び第2入力ギヤ44とリングギヤR2の外歯R2bとの噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、リングギヤR1、R2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 サンギヤS1、S2を接続する連結軸23には、連結軸23の外周を囲うように中空状の第3入力ギヤ46が設けられており、第1クラッチCL1による切替によって連結軸23と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により第3入力ギヤ46と連結軸23との動力伝達を接続又は遮断する。また、第3入力ギヤ46の外周側に中空状の第1中間ギヤ47が設けられており、第2クラッチCL2による切替によって第1中間ギヤ47が第3入力ギヤ46と一体回転又は相対回転するようになっている。即ち、第2クラッチCL2は、締結又は解放により第3入力ギヤ46と第1中間ギヤ47との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、サンギヤS1、S2と同じ回転軸線上で切替可能になっている。第1中間ギヤ47は、アイドル軸41と一体回転するように設けられた第2中間ギヤ48と噛み合っている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、第3入力ギヤ46が連結軸23と第1中間ギヤ47のいずれにも接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前述の前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第3入力ギヤ46が連結軸23に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が出力ギヤ45、第3入力ギヤ46を介して接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、前述の四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第3入力ギヤ46が第1中間ギヤ47に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が出力ギヤ45、第3入力ギヤ46、第1中間ギヤ47、第2中間ギヤ48、第1入力ギヤ42、アイドルギヤ43、第2入力ギヤ44を介して接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、前述のトルクベクタリング駆動(TV)が可能となる。なお、前輪駆動(FWD)、四輪駆動(4WD)及びトルクベクタリング駆動(TV)については第1実施形態と同様であり、詳細は省略する。
 本変形例によれば、第1及び第2クラッチCL1、CL2は、共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、サンギヤS1、S2と同じ回転軸線上で切替可能になっているので、別々のアクチュエータで作動する場合に比べて、部品点数を削減でき、製造コストを抑制することができる。さらに、遊星歯車機構のデッドスペースを活用して第1及び第2クラッチCL1、CL2を配置することができる。
 さらに、第1実施形態の効果に加えて、トルクベクタリング駆動(TV)時にも電動機MOTのトルクが出力ギヤ45及び第3入力ギヤ46を介してリングギヤR1、R2に伝達されるので、大きなギヤ比を確保することができる。また、第1実施形態に比べて、トルクベクタリング駆動(TV)直進時にサンギヤS1、S2と一体で回転する部材が少なくなっているので、サンギヤS1、S2の回転中の慣性力が小さくなるとともに、潤滑油の掻き揚げ損失を減らすことができる。
<第2変形例>
 続いて、第1実施形態の第2変形例の後輪駆動装置20について図8を参照しながら説明する。
 本変形例では、第1実施形態の第1変形例の動力伝達機構TM2において、アイドル軸41にアイドル軸41と相対回転するように第3中間ギヤ50が設けられた点以外、第1変形例の動力伝達機構TM2と同一の構成を有するので、同一の構成部分については同一符号を付して説明を省略し、相違点のみ説明する。
 第3中間ギヤ50は、常時、出力ギヤ45及び第3入力ギヤ46と噛み合っている。そのため、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第3入力ギヤ46が連結軸23に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が出力ギヤ45、第3中間ギヤ50、第3入力ギヤ46を介して接続状態になる。一方、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第3入力ギヤ46が第1中間ギヤ47に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が出力ギヤ45、第3中間ギヤ50、第3入力ギヤ46、第1中間ギヤ47、第2中間ギヤ48、第1入力ギヤ42、アイドルギヤ43、第2入力ギヤ44を介して接続状態になる。
 したがって、本変形例によれば、第1実施形態の第1変形例の効果に加えて、四輪駆動(4WD)時であってもトルクベクタリング駆動(TV)時であっても電動機MOTのトルクが第3中間ギヤ50を介して伝達されるので、第3中間ギヤ50の分だけ大きなギヤ比を確保することができる。なお、第1変形例とはキャリアC1、C2の回転方向が反対方向となる。
<第3変形例>
 次に、第1実施形態の第3変形例の後輪駆動装置20について図9を参照しながら説明する。
 後輪駆動装置20は、図9に示すように、電動機MOTと動力伝達機構TM2とを備え、動力伝達機構TM2が、別軸に設けられる第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。そして、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2は連結軸23を介して一体回転するように互いに接続されるとともに、キャリアC1、C2がそれぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1及び第2遊星歯車機構PL1、PL2は、等しい変速比を有しており、互いに近接配置されている。電動機MOTは、この第1及び第2遊星歯車機構PL1、PL2に対し軸線方向で左側にオフセット配置されている。また、電動機MOTは、この第1及び第2遊星歯車機構PL1、PL2に径方向でオーバーラップしている。
 第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、ピニオンP1、P2と噛み合う内周面に形成された内歯R1a、R2aの他に外周面に形成された外歯R1b、R2bも有し、第1遊星歯車機構PL1のリングギヤR1は、外歯R1bがアイドル軸51と一体回転するように設けられた第1入力ギヤ53と噛み合っており、第2遊星歯車機構PL2のリングギヤR2は、外歯R2bが第1入力ギヤ53と同軸上に一体回転するように設けられたアイドルギヤ55と噛み合う第1出力ギヤ57と噛み合っている。即ち、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、リングギヤR1の外歯R1bと第1入力ギヤ53との噛み合い、アイドルギヤ55と第1出力ギヤ57との噛み合い、第1出力ギヤ57とリングギヤR2の外歯R2bとの噛み合いの3回の噛み合いを介して接続されている。
 このように第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は互いに反対方向に回転するように作用する。即ち、リングギヤR1の一方向の回転は、リングギヤR1の外歯R1bと第1入力ギヤ53との噛み合いにより、第1入力ギヤ53を他方向に回転させる。第1入力ギヤ53とアイドルギヤ55とはアイドル軸51を介して一体に回転するため、アイドルギヤ55も他方向に回転し、また、アイドルギヤ55と第1出力ギヤ57との噛み合いにより、第1出力ギヤ57は一方向に回転する。さらに、第1出力ギヤ57とリングギヤR2の外歯R2bとの噛み合いにより、第1出力ギヤ57の一方向の回転は、リングギヤR2を他方向に回転させるように作用することとなる。
 また、リングギヤR1の外歯R1bと第1入力ギヤ53との噛み合い及びアイドルギヤ55と第1出力ギヤ57との噛み合いによるギヤ比と、第1出力ギヤ57とリングギヤR2の外歯R2bとの噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、リングギヤR1、R2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 サンギヤS1、S2を接続する連結軸23には、連結軸23の外周を囲うように中空状の第2入力ギヤ59が設けられ、第1クラッチCL1による切替によって連結軸23と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により第2入力ギヤ59と連結軸23との動力伝達を接続又は遮断する。この第2入力ギヤ59が、電動機MOTの出力軸21と一体回転するように設けられた第2出力ギヤ61と噛み合っている。
 また、電動機MOTの出力軸21には、第1クラッチCL1と軸方向にオーバーラップする位置に、第2クラッチCL2が設けられており、第1出力ギヤ57が第2クラッチCL2による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第2クラッチCL2は、締結又は解放することにより電動機MOTの出力軸21と第1出力ギヤ57との動力伝達を接続又は遮断する。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、電動機MOTの出力軸21が第1出力ギヤ57に接続されず、且つ、第2入力ギヤ59も連結軸23に接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、後述する前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第2入力ギヤ59が連結軸23に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2出力ギヤ61、第2入力ギヤ59を介して接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、後述する四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、電動機MOTの出力軸21が第1出力ギヤ57に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第1出力ギヤ57、アイドルギヤ55、第1入力ギヤ53を介して接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、後述するトルクベクタリング駆動(TV)が可能となる。
 即ち、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、に対して選択的に切替可能に接続されている。以上の構成の後輪駆動装置20でも、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されるので、共線図上で2つのリングギヤR1、R2を結ぶ仮想線L1が零回転を示す零回転線L2と交わる交点を支点Oとして回転するような関係性で2つのリングギヤR1、R2の回転数が規制される。
 したがって、左右後輪LWr、RWrに回転数差がない直進時には、左右後輪LWr、RWrに接続されたキャリアC1、C2の回転数が等しくなり、2つのリングギヤR1、R2を結ぶ仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、左右後輪LWr、RWrに接続されたキャリアC1、C2には回転数差が生じ、2つのリングギヤR1、R2を結ぶ仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。
 以下、前輪駆動(FWD)、四輪駆動(4WD)及びトルクベクタリング駆動(TV)についてより詳細に説明する。
-前輪駆動(FWD)-
 第1及び第2クラッチCL1、CL2がいずれも解放された状態(第1クラッチCL1:解放/第2クラッチCL2:解放)のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態となり、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない。左右後輪LWr、RWrに回転数差がない直進時には、図10Aに実線で示すように、仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、図10Aに破線で示すように、共線図上において仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。なお、図10Bは、左右後輪LWr、RWrに回転数差がない前輪駆動(FWD)直進時における動力伝達機構TM2の回転要素を実線で示している。第1実施形態の前輪駆動(FWD)直進時(図3C)と比べると、第2入力ギヤ59が切り離されるため、第3変形例の動力伝達機構TM2では前輪駆動(FWD)時における慣性力を小さくすることができる。
-四輪駆動(4WD)-
 第1及び第2クラッチCL1、CL2が第1状態(第1クラッチCL1:締結/第2クラッチCL2:解放)のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2出力ギヤ61、第2入力ギヤ59を介して接続状態になり、サンギヤS1、S2には、電動機MOTから順方向のモータトルクMが入力される。通常の第1及び第2遊星歯車機構PL1、PL2においては、サンギヤS1、S2に順方向のトルクが入力された場合、キャリアC1、C2及びリングギヤR1、R2に対し回転数を上昇させるトルクが伝達されるが、上述のようにリングギヤR1、R2は互いに同じ回転数で反対方向にしか回転しないよう規制されるので、リングギヤR1、R2が支点となり、力点であるサンギヤS1、S2に入力された順方向のモータトルクMは、作用点であるキャリアC1、C2に対し、モータトルクM1、M2に第1及び第2遊星歯車機構PL1、PL2の変速比を掛け合わせた順方向の左右後輪トルクT1、T2として伝達される。第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい同一方向のトルクとなり、これにより左右後輪トルクT1、T2の和(T1+T2)に応じた左右駆動力和が発生し、前進方向の駆動力が車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の差(T1-T2)は零となり、第1及び第2クラッチCL1、CL2が第1状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力差が発生することはなく、車両にヨーモーメントを付与しない。車両Vに後進方向のトルクを付与する場合、即ち後進時には、電動機MOTを前進時とは反対方向のトルクが発生するようにトルク制御を行えばよい。
 左右後輪LWr、RWrに回転数差がない直進時には、図11Aに実線で示すように、仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、図11Aに破線で示すように、共線図上において仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。なお、図11Bは、左右後輪LWr、RWrに回転数差がない四輪駆動(4WD)直進時の左右後輪LWr、RWrに回転数差がない場合における動力伝達機構TM2の回転要素を実線で示している。
 このように、第1及び第2クラッチCL1、CL2を第1状態(第1クラッチCL1:締結/第2クラッチCL2:解放)に制御し、前後方向に応じて電動機MOTの回転方向を変えながらトルク制御を行うことで、左右後輪LWr、RWrに所期の前後方向駆動力を発生させることができ、前後方向の走行アシストを行うことができる。発進時に発進アシストとして用いてもよく、走行時に前輪駆動(FWD)から四輪駆動(4WD)に移行してもよい。走行時の前輪駆動(FWD)から四輪駆動(4WD)への切替は、図10Bの第1及び第2クラッチCL1、CL2をともに解放した状態で電動機MOTの回転数を第2入力ギヤ59の回転数が連結軸23と同じ回転数となる回転数まで上昇させた後に、第1クラッチCL1を締結することで切替時のショックを抑えながら移行させることができる。
-トルクベクタリング駆動(TV)-
 図12Aに示すように、第1及び第2クラッチCL1、CL2が第2状態(第1クラッチCL1:解放/第2クラッチCL2:締結)のとき、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第1出力ギヤ57、アイドルギヤ55、第1入力ギヤ53を介して接続状態になり、リングギヤR1、R2には、電動機MOTから絶対値の等しい反対方向のモータトルクが入力される。
 即ち、電動機MOTのトルクによって、第1出力ギヤ57とアイドルギヤ55との噛み合い及び第1入力ギヤ53とリングギヤR1の外歯R1bとの噛み合いによりリングギヤR1に、電動機MOTのトルクと同一方向である逆方向の第1モータトルクM1が作用する。このとき、キャリアC1には左後輪LWrから前進走行しようとする順方向のトルク(図示せず)が作用しているので、第1遊星歯車機構PL1においては、キャリアC1が支点となり、力点であるリングギヤR1に逆方向の第1モータトルクM1が作用したことで、作用点であるサンギヤS1、S2に順方向の第1モータトルク分配力M1′が作用する。
 また、電動機MOTのトルクによって、第1出力ギヤ57とリングギヤR2の外歯R2bとの噛み合いによりリングギヤR2に、電動機MOTのトルクと同一方向である順方向の第2モータトルクM2が作用する。このとき、キャリアC2には右後輪RWrから前進走行しようとする順方向のトルク(図示せず)が作用しているので、第2遊星歯車機構PL2においては、キャリアC2が支点となり、力点であるリングギヤR2に順方向の第2モータトルクM2が作用したことで、作用点であるサンギヤS1、S2に逆方向の第2モータトルク分配力M2′が作用する。
 ここで、第1モータトルクM1と第2モータトルクM2は、絶対値の等しい反対方向のトルクなので、サンギヤS1、S2に作用する順方向の第1モータトルク分配力M1′と逆方向の第2モータトルク分配力M2′は互いに打ち消しあう(相殺)。この相殺によってサンギヤS1、S2が支点となり、力点であるリングギヤR1に入力された逆方向の第1モータトルクM1は作用点であるキャリアC1に対し第1遊星歯車機構PL1の変速比を掛け合わせた逆方向の左後輪トルクT1として伝達され、力点であるリングギヤR2に入力された順方向の第2モータトルクM2は作用点であるキャリアC2に対し第2遊星歯車機構PL2の変速比を掛け合わせた順方向の右後輪トルクT2として伝達される。
 第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい反対方向のトルクとなり、これにより左右後輪トルクT1、T2の差(T1-T2)に応じた左右駆動力差が発生し、反時計回りのヨーモーメントYが車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の和(T1+T2)は零となり、第1及び第2クラッチCL1、CL2が第2状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力和が発生することはなく、車両Vに前後方向のトルクを付与しない。車両Vに時計回りのヨーモーメントを付与する場合、電動機MOTに上記と反対方向のトルクが発生するようにトルク制御を行えばよい。
 左右後輪LWr、RWrに回転数差がない直進時には、図12Aに実線で示すように、仮想線L1が零回転線L2に一致し、リングギヤR1、R2の回転数はいずれも零回転となる。一方、左右後輪LWr、RWrに回転数差がある旋回時には、図12Aに破線で示すように、共線図上において仮想線L1が支点Oを中心に回転し、リングギヤR1、R2は互いに同じ回転数で反対方向に回転する。なお、図12Bは、トルクベクタリング駆動(TV)時の左右後輪LWr、RWrに回転数差がないトルクベクタリング駆動(TV)直進時における動力伝達機構TM2の回転要素を実線で示している。
 このように、第1及び第2クラッチCL1、CL2を第2状態(第1クラッチCL1:解放/第2クラッチCL2:締結)に制御し、旋回方向又は横加速度に応じて電動機MOTの回転方向を変えながらトルク制御を行うことで、所期のヨーモーメントを発生させることができ、旋回アシストを行うことができる。また、旋回方向と反対方向のヨーモーメントを発生させることで、旋回制限を行うこともできる。
 四輪駆動(4WD)及びトルクベクタリング駆動(TV)の電力フローについては、第1実施形態と同様であり、ここでは説明を省略する。また、前輪駆動(FWD)、四輪駆動(4WD)及びトルクベクタリング駆動(TV)の切替についても、第1実施形態と同様に、車速に応じて切り替えることができる。
 以上説明したように、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
 また、動力伝達機構TM2を2つの第1及び第2遊星歯車機構PL1、PL2で構成するため、軸方向寸法を小さくすることができる。
 また、動力伝達機構TM2は、第1及び第2クラッチCL1、CL2を備え、第1状態と第2状態とを選択的に切替可能に構成されるので、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2とリングギヤR1、R2のどちらか一方に確実に動力を伝達することができる。
 また、電動機MOTは、第1及び第2遊星歯車機構PL1、PL2に対し軸方向一方側である左側に配置されているので、第1及び第2遊星歯車機構PL1、PL2に挟まれるように電動機MOTを配置する場合に比べて、左右後輪LWr、RWrとキャリアC1、C2との接続部であるジョイントJ1、J2を車幅方向で内側に寄せることができるため、ジョイントJ1、J2から左右後輪LWr、RWrへの角度を押さえることができる。これによって、後輪駆動装置20を車両Vに搭載するときに左右方向の配置の自由度を向上させることができる。なお、電動機MOTを、第1及び第2遊星歯車機構PL1、PL2に対し軸方向他方側である右側に配置してもよい。
 また、電動機MOTは、この第1及び第2遊星歯車機構PL1、PL2に径方向でオーバーラップしているので、径方向寸法も小さくすることができる。これによって、後輪駆動装置20を車両Vに搭載するときに前後方向の車両Vに対する搭載位置の自由度を向上させることができる。
 また、第1クラッチCL1と第2クラッチCL2とは径方向にオフセットした位置に配置され、且つ、軸方向にオーバーラップした位置に配置されるので、動力伝達機構TM2の軸方向寸法の拡大を抑えることができる。さらに、第1及び第2クラッチCL1、CL2の第1状態と第2状態の切り替えを共通のアクチュエータによって行うように構成してもよい。
 また、第1クラッチCL1がサンギヤS1、S2と同じ回転軸線上で切替可能になっているので、遊星歯車機構のデッドスペースを活用して第1及び第2クラッチCL1、CL2を配置することができる。
 また、第1実施形態に比べて、トルクベクタリング駆動(TV)直進時にサンギヤS1、S2と一体で回転する部材が少なくなっているので、サンギヤS1、S2の回転中の慣性力が小さくなるとともに、潤滑油の掻き揚げ損失を減らすことができる。
<第4変形例>
 続いて、第1実施形態の第4変形例の後輪駆動装置20について図13を参照しながら説明する。
 本変形例では、第3変形例の動力伝達機構TM2において、第2アイドル軸73が設けられ、この第2アイドル軸73に中間ギヤ75と第1出力ギヤ57と、第2クラッチCL2が設けられた点以外、第3変形例の動力伝達機構TM2と同一の構成を有するので、同一の構成部分については同一符号を付して説明を省略し、相違点のみ説明する。
 中間ギヤ75は、第2アイドル軸73と一体回転するように設けられており、常時、第2出力ギヤ61及び第2入力ギヤ59と噛み合っている。また、第2アイドル軸73には、第1出力ギヤ57が設けられており、第2クラッチCL2による切替によって第2アイドル軸73と一体回転又は相対回転するようになっている。そのため、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第2入力ギヤ59が連結軸23に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2出力ギヤ61、中間ギヤ75、第2入力ギヤ59を介して接続状態になる。一方、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第1出力ギヤ57が第2アイドル軸73に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第2出力ギヤ61、中間ギヤ75、第1出力ギヤ57、アイドルギヤ55、第1入力ギヤ53を介して接続状態になる。
 したがって、本変形例によれば、第3変形例の効果に加えて、四輪駆動(4WD)時であってもトルクベクタリング駆動(TV)時であっても電動機MOTのトルクが中間ギヤ75を介して伝達されるので、中間ギヤ75の分だけ大きなギヤ比を確保することができる。なお、第3変形例とはキャリアC1、C2の回転方向が反対方向となる。
 さらに、本変形例によれば、第2アイドル軸73を追加したことで、電動機MOTの出力軸21と連結軸23との距離を確保することができるため、電動機MOTの体格を大きくしても車軸との干渉を回避することができる。
<第5変形例>
 続いて、第1実施形態の第5変形例の後輪駆動装置20について図14を参照しながら説明する。
 本変形例では、電動機MOTが動力伝達機構TM2に組み込まれており、動力伝達機構TM2が、電動機MOTと、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2は連結軸23を介して一体回転するように互いに接続されるとともに、キャリアC1、C2がそれぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1及び第2遊星歯車機構PL1、PL2は、等しい変速比を有しており、電動機MOTを挟んで配置されている。
 第1遊星歯車機構PL1のリングギヤR1の外歯R1bは、アイドル軸51と一体回転するように設けられた第1入力ギヤ53と噛み合っており、第2遊星歯車機構PL2のリングギヤR2の外歯R2bは、第1入力ギヤ53と同軸上に一体回転するように設けられたアイドルギヤ55と噛み合う第2入力ギヤ63と噛み合っている。即ち、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、リングギヤR1の外歯R1bと第1入力ギヤ53との噛み合い、アイドルギヤ55と第2入力ギヤ63との噛み合い、第2入力ギヤ63とリングギヤR2の外歯R2bとの噛み合いの3回の噛み合いを介して接続されている。
 このように第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は互いに反対方向に回転するように作用する。即ち、リングギヤR1の一方向の回転は、リングギヤR1の外歯R1bと第1入力ギヤ53との噛み合いにより、第1入力ギヤ53を他方向に回転させる。第1入力ギヤ53とアイドルギヤ55とはアイドル軸51を介して一体に回転するため、アイドルギヤ55も他方向に回転し、また、アイドルギヤ55と第2入力ギヤ63との噛み合いにより、第2入力ギヤ63は一方向に回転する。さらに、第2入力ギヤ63とリングギヤR2の外歯R2bとの噛み合いにより、第2入力ギヤ63の一方向の回転は、リングギヤR2を他方向に回転させるように作用することとなる。
 また、リングギヤR1の外歯R1bと第1入力ギヤ53との噛み合いによるギヤ比と、アイドルギヤ55と第2入力ギヤ63との噛み合い及び第2入力ギヤ63とリングギヤR2の外歯R2bとの噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、リングギヤR1、R2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 サンギヤS1、S2を接続する連結軸23には、連結軸23の外周を囲うように中空状の第3入力ギヤ65が設けられており、第1クラッチCL1による切替によって連結軸23と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により第3入力ギヤ65と連結軸23との動力伝達を接続又は遮断する。
 また、第3入力ギヤ65とサンギヤS1との間には、連結軸23の外周を囲うように電動機MOTが設けられ、中空状の電動機MOTの出力軸21が連結軸23に相対回転するように第3入力ギヤ65側に延設されている。
 電動機MOTの出力軸21には、出力軸21と一体回転するように第2出力ギヤ61が設けられており、第2出力ギヤ61が第2クラッチCL2による切替によってアイドル軸51と一体回転又は相対回転するように設けられた第4入力ギヤ69と噛み合っている。第4入力ギヤ69には、第4入力ギヤ69と一体回転するように第2出力ギヤ67が設けられており、第2出力ギヤ67が、連結軸23に設けられた第3入力ギヤ65と噛み合っている。即ち、第2クラッチCL2は、締結又は解放することによりアイドル軸51と第4入力ギヤ69及び第2出力ギヤ67との動力伝達を接続又は遮断する。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、第4入力ギヤ69及び第2出力ギヤ67がアイドル軸51に接続されず、且つ、第3入力ギヤ65も連結軸23に接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第3入力ギヤ65が連結軸23に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2出力ギヤ61、第4入力ギヤ69、第2出力ギヤ67、第3入力ギヤ65を介して接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第4入力ギヤ69及び第2出力ギヤ67がアイドル軸51に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第2出力ギヤ61、第4入力ギヤ69(第2出力ギヤ67)、第1入力ギヤ53、アイドルギヤ55、第2入力ギヤ63を介して接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、トルクベクタリング駆動(TV)が可能となる。なお、前輪駆動(FWD)、四輪駆動(4WD)及びトルクベクタリング駆動(TV)については第3変形例と同様であり、詳細は省略する。
 本変形例によれば、電動機MOTがサンギヤS1、S2と同じ回転軸線上に配置されているので、径方向寸法を小さくすることができる。
 また、第3変形例の効果に加えて、トルクベクタリング駆動(TV)時にも電動機MOTのトルクが第2出力ギヤ61及び第4入力ギヤ69を介してリングギヤR1、R2に伝達されるので、大きなギヤ比を確保することができる。
<第2実施形態>
 次に、第2実施形態の後輪駆動装置20について図15Aを参照しながら説明する。
 本実施形態では、動力伝達機構TM2が、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。そして、本実施形態では、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が第1及び第2差動機構の第1回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が第1及び第2差動機構の第2回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が第1及び第2差動機構の第3回転要素を構成する。第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は一体回転するように互いに接続されるとともに、キャリアC1、C2がそれぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1遊星歯車機構PL1のサンギヤS1は、ピニオンP1と噛み合う外周面に形成された小径外歯S1aに一体形成された大径外歯S1bが、出力軸21と一体回転するように設けられた第1出力ギヤ81と噛み合うアイドルギヤ83と噛み合っており、第2遊星歯車機構PL2のサンギヤS2は、ピニオンP2と噛み合う外周面に形成された小径外歯S2aに一体形成された大径外歯S2bが、電動機MOTの出力軸21の外周を囲う中空状の第2出力ギヤ85と噛み合っている。第2出力ギヤ85は、電動機MOTの出力軸21に相対回転可能に設けられ、第2クラッチCL2による切替によって出力軸21と一体回転又は相対回転するようになっている。
 即ち、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2は、大径外歯S1bとアイドルギヤ83との噛み合い、アイドルギヤ83と第1出力ギヤ81との噛み合い、第2出力ギヤ85とサンギヤS2の大径外歯S2bとの噛み合いの3回の噛み合いを介して接続されている。このように第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が奇数回の噛み合いを介して接続されることで、2つのサンギヤS1、S2は互いに反対方向に回転するように作用する。
 また、サンギヤS1の大径外歯S1bとアイドルギヤ83との噛み合い及びアイドルギヤ83と第1出力ギヤ81との噛み合いによるギヤ比と、サンギヤS2の大径外歯S2bと第2出力ギヤ85との噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、サンギヤS1、S2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、ピニオンP1、P2と噛み合う内周面に形成された内歯R1a、R2aの他に外周面に形成された共通の外歯R1b(R2b)を有する。
 電動機MOTの出力軸21には、出力軸21の外周を囲うように中空状の第3出力ギヤ87が設けられており、第3出力ギヤ87は第1及び第2遊星歯車機構PL1、PL2の一体に形成されたリングギヤR1、R2の外歯R1b(R2b)に噛み合っている。第3出力ギヤ87は第1クラッチCL1による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により第3出力ギヤ87と出力軸21との動力伝達を接続又は遮断する。また、第2クラッチCL2は、締結又は解放により第2出力ギヤ85と出力軸21との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、出力軸21と同じ回転軸線上で切替可能になっている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、出力軸21が第2出力ギヤ85と第3出力ギヤ87のいずれにも接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、出力軸21が第3出力ギヤ87に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第2出力ギヤ85が電動機MOTの出力軸21に接続され、出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、トルクベクタリング駆動(TV)が可能となる。
 以上の構成の後輪駆動装置20では、第1及び第2遊星歯車機構PL1、PL2が前述したように構成されているため、サンギヤS1、キャリアC1及びリングギヤR1は、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にあるとともに、サンギヤS2、キャリアC2及びリングギヤR2も、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にある。
 また、リングギヤR1とリングギヤR2とが一体回転するように接続されるので、リングギヤR1とリングギヤR2の回転数は互いに等しくなっている。さらに、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が奇数回の噛み合いを介して接続されることで、2つのサンギヤS1、S2は同じ回転数で互いに反対方向に回転するように作用する。これは、図15Bの共線図で説明すると、2つのサンギヤS1、S2を結ぶ仮想線L1が零回転を示す零回転線L2と交わる交点を支点Oとして回転するような関係性で2つのサンギヤS1、S2の回転数が規制されることを意味する。
 図15B(a)は、第2実施形態の後輪駆動装置20の前輪駆動(FWD)直進時における共線図である。図15B(b)は、第2実施形態の後輪駆動装置20の四輪駆動(4WD)直進時における共線図であり、共線図上の矢印が各要素に作用するトルクを示している。図15B(c)は、第2実施形態の後輪駆動装置20のトルクベクタリング駆動(TV)直進時における共線図であり、共線図上の矢印が各要素に作用するトルクを示している。なお、本実施形態及び以降の実施形態においては、左右後輪LWr、RWrに回転数差がある旋回時について図示を省略する。
 図15B(a)に示すように、第1及び第2クラッチCL1、CL2がいずれも解放された前輪駆動(FWD)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態となり、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない。
 図15B(b)に示すように、第1及び第2クラッチCL1、CL2が第1状態となる四輪駆動(4WD)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第3出力ギヤ87を介して接続状態になり、リングギヤR1、R2には、電動機MOTから順方向のモータトルクMが入力される。通常の第1及び第2遊星歯車機構PL1、PL2においては、リングギヤR1、R2に順方向のトルクが入力された場合、サンギヤS1、S2及びキャリアC1、C2に対し回転数を上昇させるトルクが伝達されるが、上述のようにサンギヤS1、S2は互いに同じ回転数で反対方向にしか回転しないよう規制されるので、サンギヤS1、S2が支点となり、力点であるリングギヤR1、R2に入力された順方向のモータトルクMは、作用点であるキャリアC1、C2に対し、モータトルクM1、M2に第1及び第2遊星歯車機構PL1、PL2の変速比を掛け合わせた順方向の左右後輪トルクT1、T2として伝達される。第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい同一方向のトルクとなり、これにより左右後輪トルクT1、T2の和(T1+T2)に応じた左右駆動力和が発生し、前進方向の駆動力が車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の差(T1-T2)は零となり、第1及び第2クラッチCL1、CL2が第1状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力差が発生することはなく、車両Vにヨーモーメントを付与しない。
 図15B(c)に示すように、第1及び第2クラッチCL1、CL2が第2状態となるトルクベクタリング駆動(TV)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が接続状態になり、サンギヤS1、S2には、電動機MOTから絶対値の等しい反対方向のモータトルクM1、M2が入力される。リングギヤR1、R2では、モータトルク分配力同士が打ち消し合う(相殺)ので、キャリアC1、C2には、絶対値の等しい反対方向の左右後輪トルクT1、T2が生じ、左右後輪トルクT1、T2の差(T1-T2)に応じた左右駆動力差が発生し、反時計回りのヨーモーメントYが車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の和(T1+T2)は零となり、第1及び第2クラッチCL1、CL2が第2状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力和が発生することはなく、車両Vに前後方向のトルクを付与しない。
 以上説明したように、本実施形態によっても、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
 <第3実施形態>
 次に、第3実施形態の後輪駆動装置20について図16Aを参照しながら説明する。
 本実施形態では、動力伝達機構TM2が、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。そして、本実施形態では、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が第1及び第2差動機構の第1回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が第1及び第2差動機構の第2回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が第1及び第2差動機構の第3回転要素を構成する。。第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2は一体回転するように互いに接続されて共通の第2入力ギヤ89を有し、この第2入力ギヤ89が、電動機MOTの出力軸21の外周を囲う中空状の第2出力ギヤ35と噛み合っている。第2出力ギヤ35は、電動機MOTの出力軸21に相対回転可能に設けられ、第1クラッチCL1による切替によって出力軸21と一体回転又は相対回転するようになっている。また、サンギヤS1、S2は、それぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1遊星歯車機構PL1のリングギヤR1は、ピニオンP1と噛み合う内周面に形成された内歯R1aに一体形成された外歯R1bが、電動機MOTの出力軸21の外周を囲う中空状の第1出力ギヤ25と噛み合っており、第2遊星歯車機構PL2のリングギヤR2は、ピニオンP2と噛み合う内周面に形成された内歯R2aに一体形成された外歯R2bが、第1出力ギヤ25と噛み合うアイドルギヤ27のアイドル軸31上に一体回転するように設けられた第1入力ギヤ29と噛み合っている。
 即ち、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は、リングギヤR1の外歯R1bと第1出力ギヤ25との噛み合い、第1出力ギヤ25とアイドルギヤ27との噛み合い、第1入力ギヤ29とリングギヤR2の外歯R2bとの噛み合いの3回の噛み合いを介して接続されている。このように第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は互いに反対方向に回転するように作用する。
 また、リングギヤR1の外歯R1bと第1出力ギヤ25との噛み合いによるギヤ比と、第1出力ギヤ25とアイドルギヤ27との噛み合い及び第1入力ギヤ29とリングギヤR2の外歯R2bとの噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、リングギヤR1、R2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 電動機MOTの出力軸21に設けられた第2出力ギヤ35と第1出力ギヤ25は、相対回転可能に、且つ、軸方向に対向配置されており、それぞれ第1及び第2クラッチCL1、CL2による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により電動機MOTの出力軸21と第2出力ギヤ35との動力伝達を接続又は遮断する。第2クラッチCL2は、締結又は解放により電動機MOTの出力軸21と第1出力ギヤ25との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、電動機MOTの出力軸21と同じ回転軸線上で切替可能になっている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、第1出力ギヤ25及び第2出力ギヤ35が出力軸21に接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第2出力ギヤ35が出力軸21に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第1出力ギヤ25が出力軸21に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第1出力ギヤ25、アイドルギヤ27、第1入力ギヤ29を介して接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、トルクベクタリング駆動(TV)が可能となる。
 以上の構成の後輪駆動装置20では、第1及び第2遊星歯車機構PL1、PL2が前述したように構成されているため、サンギヤS1、キャリアC1及びリングギヤR1は、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にあるとともに、サンギヤS2、キャリアC2及びリングギヤR2も、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にある。
 また、キャリアC1とキャリアC2とが一体回転するように接続されるので、キャリアC1とキャリアC2の回転数は互いに等しくなっている。さらに、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が奇数回の噛み合いを介して接続されることで、2つのリングギヤR1、R2は同じ回転数で互いに反対方向に回転するように作用する。これは、図16Bの共線図で説明すると、2つのリングギヤR1、R2を結ぶ仮想線L1が零回転を示す零回転線L2と交わる交点を支点Oとして回転するような関係性で2つのリングギヤR1、R2の回転数が規制されることを意味する。
 図16B(a)は、第3実施形態の後輪駆動装置20の前輪駆動(FWD)直進時における共線図である。図16B(b)は、第3実施形態の後輪駆動装置20の四輪駆動(4WD)直進時における共線図であり、共線図上の矢印が各要素に作用するトルクを示している。図16B(c)は、第3実施形態の後輪駆動装置20のトルクベクタリング駆動(TV)直進時における共線図であり、共線図上の矢印が各要素に作用するトルクを示している。
 図16B(a)に示すように、第1及び第2クラッチCL1、CL2がいずれも解放された前輪駆動(FWD)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態となり、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない。
 図16B(b)に示すように、第1及び第2クラッチCL1、CL2が第1状態となる四輪駆動(4WD)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2との動力伝達経路が第2出力ギヤ35及び第2入力ギヤ89を介して接続状態になり、キャリアC1、C2には、電動機MOTから順方向のモータトルクMが入力される。通常の第1及び第2遊星歯車機構PL1、PL2においては、キャリアC1、C2に順方向のトルクが入力された場合、サンギヤS1、S2及びリングギヤR1、R2に対し回転数を上昇させるトルクが伝達されるが、上述のようにリングギヤR1、R2は互いに同じ回転数で反対方向にしか回転しないよう規制されるので、リングギヤR1、R2が支点となり、力点であるキャリアC1、C2に入力された順方向のモータトルクMは、作用点であるサンギヤS1、S2に対し、モータトルクM1、M2に第1及び第2遊星歯車機構PL1、PL2の変速比を掛け合わせた順方向の左右後輪トルクT1、T2として伝達される。第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい同一方向のトルクとなり、これにより左右後輪トルクT1、T2の和(T1+T2)に応じた左右駆動力和が発生し、前進方向の駆動力が車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の差(T1-T2)は零となり、第1及び第2クラッチCL1、CL2が第1状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力差が発生することはなく、車両にヨーモーメントを付与しない。
 図16B(c)に示すように、第1及び第2クラッチCL1、CL2が第2状態となるトルクベクタリング駆動(TV)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が接続状態になり、リングギヤR1、R2には、電動機MOTから絶対値の等しい反対方向のモータトルクM1,M2が入力される。キャリアC1、C2では、モータトルク分配力同士が打ち消し合う(相殺)ので、サンギヤS1、S2には、絶対値の等しい反対方向の左右後輪トルクT1、T2が生じ、左右後輪トルクT1、T2の差(T1-T2)に応じた左右駆動力差が発生し、反時計回りのヨーモーメントYが車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の和(T1+T2)は零となり、第1及び第2クラッチCL1、CL2が第2状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力和が発生することはなく、車両Vに前後方向のトルクを付与しない。
 以上説明したように、本実施形態によれば、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2と、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
<第4実施形態>
 次に、第4実施形態の後輪駆動装置20について図17を参照しながら説明する。
 本実施形態では、動力伝達機構TM2が、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。そして、本実施形態では、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が第1及び第2差動機構の第1回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が第1及び第2差動機構の第2回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が第1及び第2差動機構の第3回転要素を構成する。第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2は一体回転するように互いに接続されて共通の第2入力ギヤ89を有し、この第2入力ギヤ89が、電動機MOTの出力軸21の外周を囲う中空状の第2出力ギヤ35と噛み合っている。第2出力ギヤ35は、電動機MOTの出力軸21に相対回転可能に設けられ、第1クラッチCL1による切替によって出力軸21と一体回転又は相対回転するようになっている。また、リングギヤR2、R1は、それぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1遊星歯車機構PL1のサンギヤS1は、ピニオンP1と噛み合う外周面に形成された小径外歯S1aに一体形成された大径外歯S1bが、電動機MOTの出力軸21の外周を囲う中空状の第1出力ギヤ25と噛み合うアイドルギヤ83と噛み合っており、第2遊星歯車機構PL2のサンギヤS2は、ピニオンP2と噛み合う外周面に形成された小径外歯S2aに一体形成された大径外歯S2bが、第1出力ギヤ25と噛み合っている。第1出力ギヤ25は、電動機MOTの出力軸21に相対回転可能に設けられ、第2クラッチCL2による切替によって出力軸21と一体回転又は相対回転するようになっている。
 即ち、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2は、大径外歯S1bとアイドルギヤ83との噛み合い、アイドルギヤ83と第1出力ギヤ25との噛み合い、第1出力ギヤ25とサンギヤS2の大径外歯S2bとの噛み合いの3回の噛み合いを介して接続されている。このように第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が奇数回の噛み合いを介して接続されることで、2つのサンギヤS1、S2は互いに反対方向に回転するように作用する。
 また、サンギヤS1の大径外歯S1bとアイドルギヤ83との噛み合い及びアイドルギヤ83と第1出力ギヤ25との噛み合いによるギヤ比と、サンギヤS2の大径外歯S2bと第1出力ギヤ25との噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、サンギヤS1、S2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 電動機MOTの出力軸21に設けられた第2出力ギヤ35と第1出力ギヤ25は、相対回転可能に、且つ、軸方向に対向配置されており、それぞれ第1及び第2クラッチCL1、CL2による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により電動機MOTの出力軸21と第2出力ギヤ35との動力伝達を接続又は遮断する。第2クラッチCL2は、締結又は解放により電動機MOTの出力軸21と第1出力ギヤ25との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、出力軸21と同じ回転軸線上で切替可能になっている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、第1出力ギヤ25及び第2出力ギヤ35が出力軸21に接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、第2出力ギヤ35が出力軸21に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第1出力ギヤ25が出力軸21に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第1出力ギヤ25、アイドルギヤ83を介して接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、トルクベクタリング駆動(TV)が可能となる。
 本実施形態の後輪駆動装置20における共線図は、図16Bにおいて、リングギヤR1、R2をそれぞれサンギヤS2、S1に、また、サンギヤS1、S2をそれぞれリングギヤR2、R1に書き換えることで表わされる。その他の作用及び効果は、第3実施形態の後輪駆動装置20と同様である。
 以上説明したように、本実施形態によれば、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2と、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
<第5実施形態>
 次に、第5実施形態の後輪駆動装置20について図18Aを参照しながら説明する。
 本実施形態では、動力伝達機構TM2が、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。そして、本実施形態では、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が第1及び第2差動機構の第1回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が第1及び第2差動機構の第2回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が第1及び第2差動機構の第3回転要素を構成する。第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2は一体回転するように互いに接続されて共通の外歯R1b(R2b)を有し、この外歯R1b(R2b)が、電動機MOTの出力軸21の外周を囲う中空状の第3出力ギヤ87と噛み合っている。第3出力ギヤ87は、電動機MOTの出力軸21に相対回転可能に設けられ、第1クラッチCL1による切替によって出力軸21と一体回転又は相対回転するようになっている。また、サンギヤS1、S2がそれぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1遊星歯車機構PL1のキャリアC1は、一体形成された第1入力ギヤ91が、出力軸21と一体回転するように設けられた第1出力ギヤ81と噛み合うアイドルギヤ83と噛み合っており、第2遊星歯車機構PL2のキャリアC2は、一体形成された第2入力ギヤ93が、電動機MOTの出力軸21の外周を囲う中空状の第2出力ギヤ85と噛み合っている。第2出力ギヤ85は、電動機MOTの出力軸21に相対回転可能に設けられ、第2クラッチCL2による切替によって出力軸21と一体回転又は相対回転するようになっている。
 即ち、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2は、第1入力ギヤ91とアイドルギヤ83との噛み合い、アイドルギヤ83と第1出力ギヤ81との噛み合い、第2出力ギヤ85と第2入力ギヤ93との噛み合いの3回の噛み合いを介して接続されている。このように第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が奇数回の噛み合いを介して接続されることで、2つのキャリアC1、C2は互いに反対方向に回転するように作用する。
 また、キャリアC1の第1入力ギヤ91とアイドルギヤ83との噛み合い及びアイドルギヤ83と第1出力ギヤ81との噛み合いによるギヤ比と、キャリアC2の第2入力ギヤ93と第2出力ギヤ85との噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、キャリアC1、C2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 電動機MOTの出力軸21に設けられた第3出力ギヤ87と第2出力ギヤ85は、相対回転可能に、且つ、軸方向に対向配置されており、それぞれ第1及び第2クラッチCL1、CL2による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により電動機MOTの出力軸21と第3出力ギヤ87との動力伝達を接続又は遮断する。第2クラッチCL2は、締結又は解放により電動機MOTの出力軸21と第2出力ギヤ85との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、出力軸21と同じ回転軸線上で切替可能になっている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、出力軸21が第2出力ギヤ85と第3出力ギヤ87のいずれにも接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、出力軸21が第3出力ギヤ87に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第2出力ギヤ85が電動機MOTの出力軸21に接続され、出力軸21と第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2との動力伝達経路が接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、トルクベクタリング駆動(TV)が可能となる。
 以上の構成の後輪駆動装置20では、第1及び第2遊星歯車機構PL1、PL2が前述したように構成されているため、サンギヤS1、キャリアC1及びリングギヤR1は、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にあるとともに、サンギヤS2、キャリアC2及びリングギヤR2も、互いの間で動力が伝達可能であり、それらの回転数が互いに共線関係にある。
 また、リングギヤR1とリングギヤR2とが一体回転するように接続されるので、リングギヤR1とリングギヤR2の回転数は互いに等しくなっている。さらに、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が奇数回の噛み合いを介して接続されることで、2つのキャリアC1、C2は同じ回転数で互いに反対方向に回転するように作用する。これは、図18Bの共線図で説明すると、2つのキャリアC1、C2を結ぶ仮想線L1が零回転を示す零回転線L2と交わる交点を支点Oとして回転するような関係性で2つのキャリアC1、C2の回転数が規制されることを意味する。
 図18B(a)は、第5実施形態の後輪駆動装置20の前輪駆動(FWD)直進時における共線図である。図18B(b)は、第5実施形態の後輪駆動装置20の四輪駆動(4WD)直進時における共線図であり、共線図上の矢印が各要素に作用するトルクを示している。図18B(c)は、第5実施形態の後輪駆動装置20のトルクベクタリング駆動(TV)直進時における共線図であり、共線図上の矢印が各要素に作用するトルクを示している。
 図18B(a)に示すように、第1及び第2クラッチCL1、CL2がいずれも解放された前輪駆動(FWD)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態となり、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない。
 図18B(b)に示すように、第1及び第2クラッチCL1、CL2が第1状態となる四輪駆動(4WD)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2との動力伝達経路が第3出力ギヤ87を介して接続状態になり、リングギヤR1、R2には、電動機MOTから逆方向のモータトルクMが入力される。通常の第1及び第2遊星歯車機構PL1、PL2においては、リングギヤR1、R2に逆方向のトルクが入力された場合、サンギヤS1、S2及びキャリアC1、C2に対し回転数を下降させるトルクが伝達されるが、上述のようにキャリアC1、C2は互いに同じ回転数で反対方向にしか回転しないよう規制されるので、キャリアC1、C2が支点となり、力点であるリングギヤR1、R2に入力された逆方向のモータトルクMは、作用点であるサンギヤS1、S2に対し、モータトルクM1、M2に第1及び第2遊星歯車機構PL1、PL2の変速比を掛け合わせた順方向の左右後輪トルクT1、T2として伝達される。第1及び第2遊星歯車機構PL1、PL2の変速比は等しいので、左右後輪トルクT1、T2は絶対値の等しい同一方向のトルクとなり、これにより左右後輪トルクT1、T2の和(T1+T2)に応じた左右駆動力和が発生し、前進方向の駆動力が車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の差(T1-T2)は零となり、第1及び第2クラッチCL1、CL2が第1状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力差が発生することはなく、車両にヨーモーメントを付与しない。
 図18B(c)に示すように、第1及び第2クラッチCL1、CL2が第2状態となるトルクベクタリング駆動(TV)時には、電動機MOTと第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2との動力伝達経路が接続状態になり、キャリアC1、C2には、電動機MOTから絶対値の等しい反対方向のモータトルクM1,M2が入力される。リングギヤR1、R2では、モータトルク分配力同士が打ち消し合う(相殺)ので、サンギヤS1、S2には、絶対値の等しい反対方向の左右後輪トルクT1、T2が生じ、左右後輪トルクT1、T2の差(T1-T2)に応じた左右駆動力差が発生し、反時計回りのヨーモーメントYが車両Vに安定的に付与されることとなる。なお、左右後輪トルクT1、T2の和(T1+T2)は零となり、第1及び第2クラッチCL1、CL2が第2状態のとき、電動機MOTのトルクの発生によって後輪駆動装置20から左右駆動力和が発生することはなく、車両Vに前後方向のトルクを付与しない。
 以上説明したように、本実施形態によれば、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2と、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
<第6実施形態>
 次に、第6実施形態の後輪駆動装置20について図19を参照しながら説明する。
 本実施形態では、動力伝達機構TM2が、第1及び第2クラッチCL1、CL2と、第1及び第2遊星歯車機構PL1、PL2の2つの遊星歯車機構と、を備えて構成される。第1及び第2遊星歯車機構PL1、PL2は、それぞれサンギヤS1、S2と、リングギヤR1、R2と、サンギヤS1、S2とリングギヤR1、R2とに噛み合うピニオンP1、P2を自転及び公転自在に軸支するキャリアC1、C2とからなる所謂シングルピニオン型の遊星歯車機構で構成されている。そして、本実施形態では、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2が第1及び第2差動機構の第1回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のリングギヤR1、R2が第1及び第2差動機構の第2回転要素を構成し、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が第1及び第2差動機構の第3回転要素を構成する。第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2は連結軸23を介して一体回転するように互いに接続されるとともに、リングギヤR1、R2がそれぞれジョイントJ1、J2を介して左右後輪LWr、RWrに接続されている。
 第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2を接続する連結軸23には、サンギヤS1、S2と一体回転するように第2入力ギヤ33がサンギヤS1、S2から等距離に設けられ、この第2入力ギヤ33が、電動機MOTの出力軸21の外周を囲う中空状の第3出力ギヤ87と噛み合っている。第3出力ギヤ87は、電動機MOTの出力軸21に相対回転可能に設けられ、第1クラッチCL1による切替によって出力軸21と一体回転又は相対回転するようになっている。
 第1遊星歯車機構PL1のキャリアC1は、一体形成された第1入力ギヤ91が、出力軸21と一体回転するように設けられた第1出力ギヤ81と噛み合うアイドルギヤ83と噛み合っており、第2遊星歯車機構PL2のキャリアC2は、一体形成された第2入力ギヤ93が、電動機MOTの出力軸21の外周を囲う中空状の第2出力ギヤ85と噛み合っている。第2出力ギヤ85は、電動機MOTの出力軸21に相対回転可能に設けられ、第2クラッチCL2による切替によって出力軸21と一体回転又は相対回転するようになっている。
 即ち、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2は、第1入力ギヤ91とアイドルギヤ83との噛み合い、アイドルギヤ83と第1出力ギヤ81との噛み合い、第2出力ギヤ85と第2入力ギヤ93との噛み合いの3回の噛み合いを介して接続されている。このように第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2が奇数回の噛み合いを介して接続されることで、2つのキャリアC1、C2は互いに反対方向に回転するように作用する。
 また、キャリアC1の第1入力ギヤ91とアイドルギヤ83との噛み合い及びアイドルギヤ83と第1出力ギヤ81との噛み合いによるギヤ比と、キャリアC2の第2入力ギヤ93と第2出力ギヤ85との噛み合いによるギヤ比とは、絶対値が等しくなるように設定されている。したがって、電動機MOTのトルクは、キャリアC1、C2に対し、常に絶対値の等しい反対方向のトルクとして伝達される。
 電動機MOTの出力軸21の外周に設けられた第3出力ギヤ87と第2出力ギヤ85は、相対回転可能に、且つ、軸方向に対向配置されており、それぞれ第1及び第2クラッチCL1、CL2による切替によって出力軸21と一体回転又は相対回転するようになっている。即ち、第1クラッチCL1は、締結又は解放により電動機MOTの出力軸21と第3出力ギヤ87との動力伝達を接続又は遮断する。第2クラッチCL2は、締結又は解放により電動機MOTの出力軸21と第2出力ギヤ85との動力伝達を接続又は遮断する。第1及び第2クラッチCL1、CL2は共通のアクチュエータによって切り替え可能なシンクロメッシュ機構から構成され、同一の回転軸線、即ち、出力軸21と同じ回転軸線上で切替可能になっている。
 第1及び第2クラッチCL1、CL2は、いずれも解放された状態と、第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態と、第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態と、を択一的にとりうる。
 第1及び第2クラッチCL1、CL2がいずれも解放された状態では、出力軸21が第2出力ギヤ85と第3出力ギヤ87のいずれにも接続されず、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2との動力伝達経路が遮断状態になる。第1及び第2クラッチCL1、CL2がいずれも解放された状態をとるとき、電動機MOTからは左右後輪LWr、RWrにトルクが伝達されず後輪駆動装置20からは左右駆動力和及び左右駆動力差のいずれも発生されない、前輪駆動(FWD)が可能となる。
 第1クラッチCL1が締結され第2クラッチCL2が解放された第1状態では、出力軸21が第3出力ギヤ87に接続され、電動機MOTの出力軸21と第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2との動力伝達経路が第2入力ギヤ33を介して接続状態になる。第1及び第2クラッチCL1、CL2が第1状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において同じ方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力和が発生され、左右駆動力差は発生されない、四輪駆動(4WD)が可能となる。
 第1クラッチCL1が解放され第2クラッチCL2が締結された第2状態では、第2出力ギヤ85が電動機MOTの出力軸21に接続され、出力軸21と第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2との動力伝達経路が第2出力ギヤ85、第1出力ギヤ81、アイドルギヤ83を介して接続状態になる。第1及び第2クラッチCL1、CL2が第2状態をとるとき、電動機MOTからは左右後輪LWr、RWrに前後方向において反対方向に同じ大きさのトルクが伝達されて後輪駆動装置20から所期の左右駆動力差が発生され、左右駆動力和は発生されない、トルクベクタリング駆動(TV)が可能となる。
 本実施形態の共線図は、図18Bにおいて、サンギヤS1、S2をそれぞれリングギヤR1、R2に、また、リングギヤR1、R2をそれぞれサンギヤS1、S2に書き換えることで表わされる。その他の作用及び効果は、第5実施形態の後輪駆動装置20と同様である。
 以上説明したように、本実施形態によれば、電動機MOTの出力軸21は、第1及び第2遊星歯車機構PL1、PL2のサンギヤS1、S2と、第1及び第2遊星歯車機構PL1、PL2のキャリアC1、C2と、に対して選択的に切替可能に接続されているので、1つの電動機MOTで左右後輪LWr、RWrに同一方向の前後方向トルクを出力したり、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりすることができる。さらに、左右後輪LWr、RWrに同一方向の前後方向トルクを出力するときと、前後方向トルクを出力させずに左後輪LWrと右後輪RWrとで反対方向にトルクを出力させたりするときとでは、第1及び第2遊星歯車機構PL1、PL2における電動機MOTのトルクの入力要素が異なるので、サンギヤS1、S2と、リングギヤR1、R2と、キャリアC1、C2のギヤ比を変えることで、前後方向のアシストと旋回方向のアシストとの大きさに差異を持たせることができる。
 尚、本発明は、前述した各実施形態及びその変形例に限定されるものではなく、適宜、変形、改良、等が可能である。
 例えば、図1に記載の車両Vに加えて、図20に示すように、スイッチング機構SWと発電機GENとの電力経路上にキャパシタCAPを配置し、キャパシタCAPをDC/DCコンバータを介してバッテリBATTに接続している。このように、スイッチング機構SWと発電機GENとの電力経路上にキャパシタCAPを設けることで、エンジンENGの低回転時等の発電機GENの発電量が足りないような場合に、キャパシタCAPから電力不足を補うことができる。そのような場合に、発進時にはキャパシタCAPのエネルギで前後方向の走行アシストを行い、その後発電機GENに切り替えてもよい。なお、キャパシタCAPの代わりに他のバッテリを用いてもよい。
 また、発電機GENの発電電圧とバッテリBATTの充電電圧を異なるように組み合わせてもよい。
 また、第1及び第2クラッチCL1、CL2は、摩擦クラッチ、シンクロクラッチ、ドグクラッチ等種々の構成を採用することができる。
 さらに、本発明の駆動装置は、ハイブリッド車両、プラグインハイブリッド車両、レンジエクステンダー等の種々の車両の車輪、航空機のプロペラ、船舶のスクリュー等の輸送機器の推進部材にも搭載可能である。
 さらに、上記実施形態では、差動機構として、遊星歯車機構を例に示したが、サイクロ減速機などの歯車を用いない他の遊星機構や、デファレンシャル機構などの他の差動機構から構成されてもよい。
 なお、本出願は、2013年12月16日出願の日本特許出願(特願2013-259429)に基づくものであり、その内容はここに参照として取り込まれる。
20      後輪駆動装置(駆動装置)
21      出力軸
V       車両(輸送機器)
ENG     エンジン(他の駆動源)
MOT     電動機(駆動源)
TM1、TM2 動力伝達機構
PL1、PL2 第1及び第2遊星歯車機構(第1及び第2差動機構)
S1、S2   サンギヤ(第1回転要素、第2回転要素、第3回転要素)
C1、C2   キャリア(第1回転要素、第2回転要素、第3回転要素)
R1、R2   リングギヤ(第1回転要素、第2回転要素、第3回転要素)
LWr     左後輪(左駆動部)
RWr     右後輪(右駆動部)
CL1     第1クラッチ(第1切替機構、切替装置)
CL2     第2クラッチ(第2切替機構、切替装置)
GEN     発電機(第1エネルギ授受装置)
CAP     キャパシタ(第1エネルギ授受装置)
BATT    バッテリ(第2エネルギ授受装置)

Claims (13)

  1.  輸送機器の進行方向に対し左側に配置される左駆動部と、前記進行方向に対し右側に配置される右駆動部と、を駆動する駆動源と、
     それぞれ第1回転要素と、第2回転要素と、第3回転要素とを有する第1及び第2差動機構を有する動力伝達機構と、を備えた駆動装置であって、
     前記第1及び第2差動機構の前記第1回転要素は、互いに同一方向に一体回転するよう接続され、
     前記第1及び第2差動機構の前記第2回転要素は、それぞれ前記左駆動部及び前記右駆動部に接続され、
     前記第1及び第2差動機構の前記第3回転要素は、互いに反対方向に回転するよう接続され、
     前記動力伝達機構は、前記駆動源と前記第1及び第2差動機構の前記第1回転要素とを接続する第1接続状態と、前記駆動源と前記第1及び第2差動機構の前記第3回転要素とを接続する第2接続状態と、を選択的に切り替える切替装置を備えることを特徴とする駆動装置。
  2.  前記動力伝達機構は、前記駆動源と前記第1及び第2差動機構の前記第1回転要素との動力伝達経路を接続する締結状態と、前記駆動源と前記第1及び第2差動機構の前記第1回転要素との動力伝達経路を遮断する解放状態と、を切替可能な第1切替機構と、
     前記駆動源と前記第1及び第2差動機構の前記第3回転要素との動力伝達経路を接続する締結状態と、前記駆動源と前記第1及び第2差動機構の前記第3回転要素との動力伝達経路を遮断する解放状態と、を切替可能な第2切替機構と、を備え、
     前記第1切替機構が締結状態となり、且つ、前記第2切替機構が解放状態となる第1状態と、前記第1切替機構が解放状態となり、且つ、前記第2切替機構が締結状態となる第2状態と、を切替可能に構成されることを特徴とする請求項1に記載の駆動装置。
  3.  前記第1切替機構と前記第2切替機構とは、同一の作動装置によって前記締結状態と前記解放状態とが切り替えられることを特徴とする請求項2に記載の駆動装置。
  4.  前記第1切替機構と前記第2切替機構とは、同一の回転軸線上に配置されることを特徴とする請求項3に記載の駆動装置。
  5.  前記第1及び第2差動機構の前記第1回転要素は、前記回転軸線上に配置されることを特徴とする請求項4に記載の駆動装置。
  6.  前記第1切替機構と前記第1及び第2差動機構の前記第1回転要素とは、同一の回転軸線上に配置されることを特徴とする請求項2又は3に記載の駆動装置。
  7.  前記第1切替機構と前記第2切替機構とは、径方向でオフセットした位置に配置され、且つ、軸線方向でオーバーラップした位置に配置されることを特徴とする請求項6に記載の駆動装置。
  8.  前記駆動源は、前記第1差動機構に対し軸線方向で反第2差動機構側に、又は、前記第2差動機構に対し軸線方向で反第1差動機構側に、前記第1及び第2差動機構に対し軸線方向でオフセットした位置に配置されることを特徴とする請求項1~7のいずれか1項に記載の駆動装置。
  9.  前記駆動源は、前記第1及び第2差動機構と径方向でオーバーラップした位置に配置されることを特徴とする請求項8に記載の駆動装置。
  10.  前記輸送機器の速度が所定速度未満のとき、前記切替装置は、前記第1接続状態に切り替え、
     前記輸送機器の速度が前記所定速度以上のとき、前記切替装置は、前記第2接続状態に切り替えることを特徴とする請求項1~9のいずれか1項に記載の駆動装置。
  11.  前記駆動装置は、前記駆動源へのエネルギの供給と前記駆動源からのエネルギの回収との少なくとも一方を行うエネルギ授受装置に接続され、
     前記エネルギ授受装置は、第1エネルギ授受装置と第2エネルギ授受装置とを含み、
     前記駆動源は、前記第1エネルギ授受装置と前記第2エネルギ授受装置とに対して切替可能に接続され、
     前記第1エネルギ授受装置は、前記駆動源とは異なる他の駆動源からエネルギの回収を行うよう接続され、
     前記第2エネルギ授受装置はエネルギ蓄積装置を含むことを特徴とする請求項10に記載の駆動装置。
  12.  前記駆動源は、前記所定速度未満のとき、前記第1エネルギ授受装置に接続され、
     前記所定速度以上のとき、前記第2エネルギ授受装置に接続されることを特徴とする請求項11に記載の駆動装置。
  13.  前記第1及び第2差動機構の前記第3回転要素は、互いの間に奇数回の噛み合いを介して接続されることを特徴とする請求項1~12のいずれか1項に記載の駆動装置。
PCT/JP2014/083186 2013-12-16 2014-12-16 駆動装置 WO2015093454A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480068417.XA CN105829765B (zh) 2013-12-16 2014-12-16 驱动装置
US15/104,901 US10100910B2 (en) 2013-12-16 2014-12-16 Driving system
JP2015553540A JP6564706B2 (ja) 2013-12-16 2014-12-16 駆動装置
CN201910850184.3A CN110657218B (zh) 2013-12-16 2014-12-16 驱动装置
CA2933843A CA2933843A1 (en) 2013-12-16 2014-12-16 Driving system
KR1020167015472A KR102127253B1 (ko) 2013-12-16 2014-12-16 구동 장치
EP14870895.1A EP3085993B1 (en) 2013-12-16 2014-12-16 Drive apparatus
US16/134,104 US10514087B2 (en) 2013-12-16 2018-09-18 Driving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-259429 2013-12-16
JP2013259429 2013-12-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/104,901 A-371-Of-International US10100910B2 (en) 2013-12-16 2014-12-16 Driving system
US16/134,104 Continuation US10514087B2 (en) 2013-12-16 2018-09-18 Driving system

Publications (1)

Publication Number Publication Date
WO2015093454A1 true WO2015093454A1 (ja) 2015-06-25

Family

ID=53402800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083186 WO2015093454A1 (ja) 2013-12-16 2014-12-16 駆動装置

Country Status (8)

Country Link
US (2) US10100910B2 (ja)
EP (1) EP3085993B1 (ja)
JP (1) JP6564706B2 (ja)
KR (1) KR102127253B1 (ja)
CN (2) CN105829765B (ja)
CA (1) CA2933843A1 (ja)
MY (1) MY177243A (ja)
WO (1) WO2015093454A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107847A1 (zh) * 2015-12-25 2017-06-29 比亚迪股份有限公司 动力驱动系统及具有该动力驱动系统的车辆
JP2017129244A (ja) * 2016-01-22 2017-07-27 トヨタ自動車株式会社 モータ駆動ユニット
JP2018112221A (ja) * 2017-01-10 2018-07-19 本田技研工業株式会社 動力装置
JP2018150986A (ja) * 2017-03-13 2018-09-27 本田技研工業株式会社 動力装置
CN108603579A (zh) * 2016-02-17 2018-09-28 Ntn株式会社 车辆驱动装置
JP2019044866A (ja) * 2017-09-01 2019-03-22 三菱自動車工業株式会社 駆動力調整装置
CN110056628A (zh) * 2018-01-19 2019-07-26 舍弗勒技术股份两合公司 用于机动车的电动车桥
CN110056627A (zh) * 2018-01-19 2019-07-26 舍弗勒技术股份两合公司 用于机动车的电动车桥
US11305748B2 (en) * 2019-11-27 2022-04-19 Ford Global Technologies, Llc System and method for activating a secondary axle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093454A1 (ja) * 2013-12-16 2015-06-25 本田技研工業株式会社 駆動装置
KR101814966B1 (ko) * 2014-06-10 2018-01-04 혼다 기켄 고교 가부시키가이샤 동력 장치
CN106555851B (zh) * 2015-09-25 2019-09-13 比亚迪股份有限公司 差速器、动力传动系统及车辆
CN106555844B (zh) * 2015-09-25 2019-12-20 比亚迪股份有限公司 动力驱动系统及具有其的车辆
DE102016201596A1 (de) 2016-02-03 2017-08-03 Robert Bosch Gmbh Alterungsdetektor für eine elektrische Schaltungskomponente, Verfahren zur Überwachung einer Alterung einer Schaltungskomponente, Bauelement und Steuergerät
KR102625690B1 (ko) 2016-08-01 2024-01-17 삼성전자주식회사 전력 전송 방법 및 이를 지원하는 전자 장치
US10036458B2 (en) * 2016-10-26 2018-07-31 GM Global Technology Operations LLC Multi-axis final drive assembly
CN107379975A (zh) * 2017-07-20 2017-11-24 重庆麦科斯新能源车业有限责任公司 增程式电动车动力系统
DE102018131503B3 (de) 2018-12-10 2019-10-02 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
CN109723767B (zh) * 2019-01-23 2022-03-25 胡捷 动力分流输出且具有差速功能的车用减速器
DE102019209986A1 (de) * 2019-07-08 2021-01-14 Zf Friedrichshafen Ag Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
US11686379B1 (en) 2022-01-27 2023-06-27 Polestar Performance Ab Controllable speed differential

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599847B2 (ja) 1995-09-11 2004-12-08 本田技研工業株式会社 車両の左右輪間の連結装置
JP2007137289A (ja) * 2005-11-18 2007-06-07 Yanmar Co Ltd 作業用車両
JP2008298240A (ja) * 2007-06-01 2008-12-11 Hitachi Ltd 車両制御装置
JP2010001963A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp 車両用差動制限装置の制御装置
JP2010144762A (ja) 2008-12-16 2010-07-01 Honda Motor Co Ltd 駆動力配分装置
JP2010190285A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 差動装置の駆動力配分機構

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599847A (ja) 1982-07-09 1984-01-19 Toshiba Corp 小形メタルハライドランプ
JP3103779B2 (ja) * 1996-11-22 2000-10-30 建治 三村 差動装置
DE10329770B4 (de) * 2003-07-01 2006-04-06 Gkn Driveline International Gmbh Differentialgetriebe zur Regelung der Drehmomentverteilung
JP2007040523A (ja) * 2005-07-08 2007-02-15 Honda Motor Co Ltd 車両用駆動力配分装置
DE102007055881A1 (de) * 2007-12-20 2009-06-25 Forschungsgesellschaft für Zahnräder und Getriebe mbH Getriebevorrichtung
JP2010190286A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 差動装置の駆動力配分機構
JP2010190287A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 差動装置の駆動力配分機構
JP4926209B2 (ja) 2009-06-10 2012-05-09 本田技研工業株式会社 ハイブリッド車両用の自動変速機
JP4866452B2 (ja) * 2009-08-05 2012-02-01 本田技研工業株式会社 四輪駆動車両のトルク配分制御装置
KR101640332B1 (ko) * 2011-11-02 2016-07-15 혼다 기켄 고교 가부시키가이샤 동력 장치
JP5934333B2 (ja) * 2012-02-27 2016-06-15 本田技研工業株式会社 車両用駆動装置
JP5848826B2 (ja) * 2012-08-01 2016-01-27 本田技研工業株式会社 動力装置
WO2015093454A1 (ja) * 2013-12-16 2015-06-25 本田技研工業株式会社 駆動装置
KR101814966B1 (ko) * 2014-06-10 2018-01-04 혼다 기켄 고교 가부시키가이샤 동력 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599847B2 (ja) 1995-09-11 2004-12-08 本田技研工業株式会社 車両の左右輪間の連結装置
JP2007137289A (ja) * 2005-11-18 2007-06-07 Yanmar Co Ltd 作業用車両
JP2008298240A (ja) * 2007-06-01 2008-12-11 Hitachi Ltd 車両制御装置
JP2010001963A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp 車両用差動制限装置の制御装置
JP2010144762A (ja) 2008-12-16 2010-07-01 Honda Motor Co Ltd 駆動力配分装置
JP2010190285A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 差動装置の駆動力配分機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3085993A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107847A1 (zh) * 2015-12-25 2017-06-29 比亚迪股份有限公司 动力驱动系统及具有该动力驱动系统的车辆
JP2017129244A (ja) * 2016-01-22 2017-07-27 トヨタ自動車株式会社 モータ駆動ユニット
US10358051B2 (en) 2016-01-22 2019-07-23 Toyota Jidosha Kabushiki Kaisha Motor drive unit
CN108603579A (zh) * 2016-02-17 2018-09-28 Ntn株式会社 车辆驱动装置
JP2018112221A (ja) * 2017-01-10 2018-07-19 本田技研工業株式会社 動力装置
JP2018150986A (ja) * 2017-03-13 2018-09-27 本田技研工業株式会社 動力装置
JP2019044866A (ja) * 2017-09-01 2019-03-22 三菱自動車工業株式会社 駆動力調整装置
JP7035385B2 (ja) 2017-09-01 2022-03-15 三菱自動車工業株式会社 駆動力調整装置
CN110056628A (zh) * 2018-01-19 2019-07-26 舍弗勒技术股份两合公司 用于机动车的电动车桥
CN110056627A (zh) * 2018-01-19 2019-07-26 舍弗勒技术股份两合公司 用于机动车的电动车桥
US11305748B2 (en) * 2019-11-27 2022-04-19 Ford Global Technologies, Llc System and method for activating a secondary axle

Also Published As

Publication number Publication date
US20160312873A1 (en) 2016-10-27
CN105829765B (zh) 2019-10-15
KR20160098236A (ko) 2016-08-18
EP3085993A1 (en) 2016-10-26
US10514087B2 (en) 2019-12-24
CN110657218A (zh) 2020-01-07
CA2933843A1 (en) 2015-06-25
CN105829765A (zh) 2016-08-03
MY177243A (en) 2020-09-10
EP3085993A4 (en) 2017-08-23
KR102127253B1 (ko) 2020-06-26
CN110657218B (zh) 2023-01-06
JPWO2015093454A1 (ja) 2017-03-16
JP6564706B2 (ja) 2019-08-21
EP3085993B1 (en) 2024-05-01
US10100910B2 (en) 2018-10-16
US20190017584A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6564706B2 (ja) 駆動装置
JP3864950B2 (ja) ハイブリッド変速機
JP5926113B2 (ja) 自動車の駆動系装置
JP6202256B2 (ja) 車両のトランスアクスル装置
JP2006304420A (ja) モータ動力伝達装置
JP2020093664A (ja) 車両用電気駆動装置
JP2007276760A (ja) 駆動力配分装置
JP6468245B2 (ja) ハイブリッド車両用駆動装置
JP2017154736A (ja) 車両のトランスアクスル装置
KR20200068465A (ko) 토크 벡터링 장치
JP5186954B2 (ja) 車両用左右駆動力差生成装置
JP6319611B2 (ja) 車両のトランスアクスル装置
JP3823968B2 (ja) ハイブリッド変速機
JP7190492B2 (ja) 動力伝達装置
JP2021091385A (ja) 車両用駆動装置
JP2022073265A (ja) 車両用駆動装置
JP2011078211A (ja) 動力伝達装置
JP2009001120A (ja) 動力伝達装置
WO2019100133A1 (pt) Conjunto de transmissão de potência para eixos e veículo de transporte de cargas e passageiros
JP6156632B2 (ja) 車両のトランスアクスル装置
JP2009030626A (ja) 駆動力配分装置
JP2006029438A (ja) 車両用駆動装置及びこれを備えた自動車
JP4396603B2 (ja) ハイブリッド変速機
JP2017193195A (ja) ハイブリッド車両
JP2023125179A (ja) 動力伝達装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015472

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015553540

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2933843

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15104901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014870895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870895

Country of ref document: EP