WO2015080240A1 - 化合物又は樹脂の精製方法 - Google Patents

化合物又は樹脂の精製方法 Download PDF

Info

Publication number
WO2015080240A1
WO2015080240A1 PCT/JP2014/081508 JP2014081508W WO2015080240A1 WO 2015080240 A1 WO2015080240 A1 WO 2015080240A1 JP 2014081508 W JP2014081508 W JP 2014081508W WO 2015080240 A1 WO2015080240 A1 WO 2015080240A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
acid
compound represented
above formula
group
Prior art date
Application number
PCT/JP2014/081508
Other languages
English (en)
French (fr)
Inventor
越後 雅敏
牧野嶋 高史
直哉 内山
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP14866294.3A priority Critical patent/EP3075728B1/en
Priority to JP2015551008A priority patent/JP6829936B2/ja
Priority to US15/100,009 priority patent/US9920024B2/en
Priority to CN201480064733.XA priority patent/CN105764892B/zh
Priority to KR1020167014304A priority patent/KR20160091342A/ko
Publication of WO2015080240A1 publication Critical patent/WO2015080240A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/92Naphthopyrans; Hydrogenated naphthopyrans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • C08G85/002Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/02Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions

Definitions

  • the present invention relates to a method for purifying a compound or resin having a specific structure.
  • a compound or resin having a benzoxanthene skeleton is excellent in heat resistance, etching resistance, and solvent solubility, it is used as a coating agent for semiconductors, a resist material, and a semiconductor underlayer film forming material (for example, patent documents) (See 1-2).
  • the metal content is an important performance item for improving the yield. That is, when a compound or resin having a benzoxanthene skeleton with a high metal content is used, the metal remains in the semiconductor, and the electrical characteristics of the semiconductor are deteriorated. Therefore, it is required to reduce the metal content. ing.
  • a method for producing a compound or resin having a benzoxanthene skeleton with a reduced metal content a method of bringing a mixture containing the compound or resin and an organic solvent into contact with an ion exchange resin, a method of filtering with a filter, or the like can be considered.
  • This invention is made
  • a method for purifying a compound represented by the following formula (1) or a resin having a structure represented by the following formula (2) A purification method comprising a step of bringing a solution (A) containing an organic solvent not arbitrarily miscible with water and the compound or the resin into contact with an acidic aqueous solution.
  • each X is independently an oxygen atom or a sulfur atom
  • R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms
  • the hydrocarbon group is , A cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms
  • each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a hydroxyl group, wherein at least one of R 2 is a hydroxyl group, and m is each independently And an integer of 1 to 6, p is independently 0 or 1, and n is an integer of 1 to 4.
  • each X is independently an oxygen atom or a sulfur atom
  • R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms
  • the hydrocarbon group is , A
  • an organic solvent arbitrarily mixed with water is 0.1 to 100 times by mass with respect to the compound represented by the formula (1) or the resin having the structure represented by the formula (2).
  • the purification method according to [5], wherein the organic solvent arbitrarily mixed with water is N-methylpyrrolidone or propylene glycol monomethyl ether.
  • the purification method according to any one of [1] to [6] further comprising a step of performing an extraction treatment by a step of bringing the solution (A) into contact with an acidic aqueous solution and further performing an extraction treatment with water.
  • the content of various metals that can be contained as impurities in a compound or resin having a specific structure can be reduced.
  • the purification method according to the present embodiment is a method for purifying a compound represented by the following formula (1) or a resin having a structure represented by the following formula (2). Furthermore, the purification method in the present embodiment includes a step of bringing an organic solvent that is not miscible with water and the solution (A) containing the compound or the resin into contact with an acidic aqueous solution. Since it is comprised as mentioned above, according to the purification method of this embodiment, content of the various metals which can be contained as an impurity in the compound or resin which has a specific structure can be reduced.
  • the compound or the resin may be dissolved in an organic solvent that is not arbitrarily miscible with water, and the solution may be contacted with an acidic aqueous solution to perform the extraction treatment.
  • the metal component contained in the solution (A) containing the compound represented by the formula (1) or the resin having the structure represented by the formula (2) and the organic solvent is transferred to the aqueous phase, and then the organic phase.
  • the resin having the structure represented by the compound represented by the formula (1) or the formula (2) having a reduced metal content can be purified by separating the aqueous phase from the aqueous phase.
  • the compound used in the present embodiment is a compound represented by the following formula (1).
  • X is respectively independently an oxygen atom or a sulfur atom, and each naphthalene ring has couple
  • R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms, and each naphthalene ring is bonded through R 1 .
  • the 2n-valent hydrocarbon group may have a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
  • R 2 is independently selected from the group consisting of a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms and a hydroxyl group. Is a selected monovalent substituent, and is bonded to the naphthalene ring m in number.
  • at least one of R 2 is a hydroxyl group.
  • M is each independently an integer of 1 to 6
  • p is independently 0 or 1
  • n is an integer of 1 to 4.
  • Examples of the 2n-valent hydrocarbon group include those having a linear, branched, or cyclic structure.
  • the 2n-valent hydrocarbon group may have a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
  • the cyclic hydrocarbon group includes a bridged cyclic hydrocarbon group.
  • the compound represented by the above formula (1) is preferably a compound represented by the following formula (1-1) from the viewpoint of easy availability of raw materials.
  • R 1 , R 2 , m, and n are as defined in the above formula (1).
  • the compound represented by the general formula (1-1) is more preferably a compound represented by the following formula (1-2) from the viewpoint of solubility in an organic solvent.
  • R 1 and n have the same meaning as described in the above formula (1)
  • R 4 has the same meaning as R 2 described in the above formula (1)
  • m 3 Are each independently an integer of 1 to 6
  • m 4 is each independently an integer of 0 to 5
  • m 3 + m 4 is an integer of 1 to 6.
  • the compound represented by the general formula (1-2) is more preferably a compound represented by the following formula (1-3) from the viewpoint of further solubility in an organic solvent.
  • R 1 has the same meaning as described in the above formula (1)
  • R 4 and m 4 have the same meaning as described in the above formula (1-2).
  • the compound represented by the general formula (1-4) is an embodiment in which X ⁇ O (oxygen atom) in the above formula (1-4), that is, a compound represented by the following formula (1-5) It is more preferable that
  • R 1 has the same meaning as described in the above formula (1)
  • R 4 and m 4 have the same meaning as described in the above formula (1-2).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • R 2 , X, and m have the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • X has the same meaning as described in the above formula (1).
  • the compound represented by the formula (1) used in the present embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • the synthesis technique is not particularly limited.
  • it is represented by the above formula (1) by subjecting phenols, thiophenols, naphthols or thionaphthols and a corresponding aldehyde or ketone to a polycondensation reaction under an acid catalyst under normal pressure.
  • a compound can be obtained.
  • it can also carry out under pressure as needed.
  • phenols include, but are not limited to, phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, trimethylhydroquinone, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is preferable to use hydroquinone or trimethylhydroquinone because a xanthene structure can be easily formed.
  • thiophenols examples include, but are not particularly limited to, benzenethiol, methylbenzenethiol, methoxybenzenethiol, benzenedithiol, trimethylbenzenedithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is preferable to use benzenedithiol or trimethylbenzenedithiol because a thioxanthene structure can be easily formed.
  • naphthols examples include, but are not particularly limited to, naphthol, methyl naphthol, methoxy naphthol, naphthalene diol, and the like. These can be used alone or in combination of two or more. Among these, it is preferable to use naphthalenediol because a benzoxanthene structure can be easily formed.
  • thionaphthols examples include, but are not particularly limited to, naphthalene thiol, methyl naphthalene thiol, methoxynaphthalene thiol, naphthalene dithiol, and the like. These can be used alone or in combination of two or more. Among these, it is preferable to use naphthalenedithiol because a thiobenzoxanthene structure can be easily formed.
  • aldehydes include, but are not limited to, for example, formaldehyde, trioxane, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, hexylaldehyde, decylaldehyde, undecylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, furfural, benzaldehyde, hydroxy Benzaldehyde, fluorobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, benzaldehyde, hydroxybenzaldehyde, fluorobenzaldehh,
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, and the like. However, it is not particularly limited to these. These can be used alone or in combination of two or more.
  • cyclopentanone cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone and anthraquinone from the viewpoint of giving high heat resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid,
  • organic acids such as naphthalenedisulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids such as silicotungstic acid, phosphotungstic
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction of aldehydes or ketones to be used with phenols, thiophenols, naphthols, or thionaphthols proceeds, and is appropriately selected from known ones.
  • water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof can be used.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that it is the range of these.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • reaction temperature is preferable, and specifically, a range of 60 to 200 ° C. is preferable.
  • the reaction method can be appropriately selected from known methods and is not particularly limited, but is a method in which phenols, thiophenols, naphthols or thionaphthols, aldehydes or ketones, and a catalyst are charged all at once. And a method of dropping phenols, thiophenols, naphthols, thionaphthols, aldehydes or ketones in the presence of a catalyst. After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • a compound as a raw material can be obtained.
  • reaction conditions 1 mol to excess of phenols, thiophenols, naphthols or thionaphthols and 0.001 to 1 mol of an acid catalyst are used per 1 mol of aldehydes or ketones.
  • the reaction proceeds at a pressure of 50 to 150 ° C. for about 20 minutes to 100 hours.
  • the compound as a raw material can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
  • the compound represented by the above general formula (1) as a raw material can be obtained by separating and purifying from a by-product, distilling off the solvent, filtering and drying.
  • the resin used in this embodiment is a resin having a structure represented by the formula (2).
  • X is respectively independently an oxygen atom or a sulfur atom.
  • R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms, and the hydrocarbon group is a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms. You may have.
  • Each R 2 independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a hydroxyl group, And at least one of R 2 is a hydroxyl group.
  • Each R 3 is independently a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms.
  • m 2 is each independently an integer of 1 to 5, and n is an integer of 1 to 4.
  • Each p is independently 0 or 1.
  • the 2n-valent hydrocarbon group has the same meaning as described in the above formula (1).
  • the resin having the structure represented by the formula (2) used in the present embodiment can be obtained, for example, by reacting the compound represented by the formula (1) with a monomer having a crosslinking reactivity.
  • the crosslinking reactive monomer is not particularly limited as long as it can oligomerize or polymerize the compound represented by the above formula (1), and various known monomers can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds.
  • the resin having the structure represented by the formula (2) are not limited to the following, but the compound represented by the formula (1) may be subjected to a condensation reaction with an aldehyde that is a crosslinking-reactive monomer.
  • a novolak resin can be mentioned.
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • Examples include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbald
  • aldehydes can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (1). is there.
  • a catalyst may be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Examples include organic acids such as naphthalenedisulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride,
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene
  • aldehydes are not necessarily required.
  • a reaction solvent can also be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a reaction solvent can be used individually by 1 type or in combination of 2 or more types. The amount of these reaction solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. The range of parts is preferred.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected from known methods and is not particularly limited.
  • the reaction method may be a method in which the compound represented by the general formula (1), the aldehydes, and the catalyst are charged all together, or the general formula ( There is a method in which the compound or aldehyde represented by 1) is dropped in the presence of a catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • a novolac resin as a raw material can be obtained.
  • the resin having the structure represented by the above formula (2) may be a homopolymer of the compound represented by the above formula (1), but the compound represented by the above formula (1) and It may be a copolymer with other phenols.
  • copolymerizable phenols for example, phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol , Propylphenol, pyrogallol, thymol and the like, but are not limited thereto.
  • the resin having the structure represented by the above formula (2) may be copolymerized with a polymerizable monomer other than the above-described phenols.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the general formula (2) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the general formula (1) and the above-described phenols.
  • It may be a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above general formula (1) and the above-mentioned copolymerization monomer, and the above general formula (1 ),
  • a terpolymer for example, a ternary to quaternary copolymer of the above-described phenols and the above-mentioned copolymerization monomer.
  • the compound represented by the formula (1) or the resin having the structure represented by the formula (2) used in the present embodiment may be used alone or in combination of two or more.
  • the compound represented by the formula (1) or the resin having the structure represented by the formula (2) contains various surfactants, various crosslinking agents, various acid generators, various stabilizers and the like. May be.
  • an organic solvent that is not arbitrarily miscible with water means an organic solvent having a solubility in water of less than 30% at room temperature.
  • the organic solvent that is not arbitrarily miscible with water is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the solubility is preferably less than 20%, more preferably less than 10%.
  • the amount of the organic solvent which is not arbitrarily miscible with water used is not particularly limited, but is usually 1 to 1 with respect to the compound represented by formula (1) or the resin having the structure represented by formula (2). It can be about 100 times the mass, preferably 1 to 10 times the mass, more preferably 1 to 9 times the mass, and even more preferably 2 to 5 times the mass.
  • solvents include, but are not limited to, ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate, and isoamyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and ethyl isobutyl ketone.
  • Ketones such as cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone, glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates, aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, methylene chloride, chlorine Halogenated hydrocarbons such as Holm and the like.
  • glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates
  • aliphatic hydrocarbons such as
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone, propylene glycol monomethyl ether acetate are more preferable, More preferred are methyl isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, etc.
  • the acidic aqueous solution used in the present embodiment is appropriately selected from aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is dissolved in water, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid
  • an organic acid such as citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid or trifluoroacetic acid is dissolved in water.
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid
  • Aqueous solutions of carboxylic acids such as succinic acid, tartaric acid, and citric acid are more preferred
  • aqueous solutions of sulfuric acid, succinic acid, tartaric acid, and citric acid are more preferred
  • the pH of the acidic aqueous solution used in the present embodiment is not particularly limited, the acidity of the aqueous solution is considered in consideration of the influence on the compound represented by the formula (1) or the resin having the structure represented by the formula (2). Is preferably adjusted. Usually, the pH range is about 0 to 5, preferably about pH 0 to 3.
  • the amount of acidic aqueous solution used in the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and from the viewpoint of ensuring operability in consideration of the total amount of liquid, the amount used is It is preferable to adjust. From the above viewpoint, the amount of the aqueous solution used is usually 10 to 200% by mass with respect to the compound represented by the formula (1) or the resin solution having the structure represented by the formula (2) dissolved in an organic solvent. Yes, preferably 20 to 100% by mass.
  • an acidic aqueous solution as described above a solution containing a compound represented by formula (1) or a resin having a structure represented by formula (2), and an organic solvent that is not arbitrarily miscible with water
  • the metal component can be extracted by bringing the metal into contact.
  • the contact mode is not particularly limited, and for example, a known mixing method such as stirring and ultrasonic dispersion can be employed.
  • the solution (A) further contains an organic solvent that is arbitrarily mixed with water.
  • the organic solvent arbitrarily mixed with water means an organic solvent having a solubility in water of 70% or more at room temperature.
  • the solubility of the organic solvent arbitrarily mixed with water is preferably 80% or more, and more preferably 90% or more.
  • any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after bringing a solution containing an organic solvent into contact with water or an acidic aqueous solution may be used.
  • the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of operation and the ease of management of the amount charged.
  • the organic solvent arbitrarily mixed with water used in the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent arbitrarily mixed with the water to be used is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is represented by the compound represented by the formula (1) or the formula (2).
  • the resin having a structure as described above can usually be used in an amount of about 0.1 to 100 times by mass, preferably 0.1 to 10 times by mass, more preferably 0.1 to 2 times by mass, More preferably, it is 0.5 to 2 times by mass, and still more preferably 0.5 to 1.5 times by mass.
  • the solvent arbitrarily mixed with water used in the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane, alcohols such as methanol, ethanol and isopropanol, acetone, Examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), and glycol ethers such as propylene glycol monoethyl ether.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol and isopropanol
  • acetone examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol mono
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • These solvents can be used alone or in combination of two or more.
  • the temperature at the time of contacting the solution (A) with the acidic aqueous solution is usually 20 to 90 ° C., and preferably 30 to 80 ° C.
  • extraction operation is not specifically limited, For example, after mixing well by stirring etc., it is performed by leaving still. Thereby, the metal component contained in the solution represented by the compound represented by the formula (1) or the resin having the structure represented by the formula (2) and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation, and the quality change of the resin which has the structure represented by the compound represented by Formula (1) or Formula (2) can be suppressed.
  • the resulting mixture is separated into a solution phase and an aqueous phase containing a compound represented by formula (1) or a resin having a structure represented by formula (2) and an organic solvent, and an aqueous phase.
  • a solution containing the compound represented by the formula or the resin represented by the formula (2) and an organic solvent is recovered.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the organic solvent and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution containing is further subjected to an extraction treatment with water.
  • the extraction treatment with water is not particularly limited.
  • the extraction treatment with water can be performed by mixing well by stirring and then allowing to stand.
  • the solution obtained after the standing is separated into a solution phase containing a compound represented by the formula (1) or a resin having the structure represented by the formula (2) and an organic solvent, and an aqueous phase.
  • a solution phase containing a compound represented by (1) or a resin having a structure represented by formula (2) and an organic solvent can be recovered.
  • the water used here is a thing with little metal content, for example, ion-exchange water etc. according to the objective of this embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
  • the method for isolating the resin having a structure is not particularly limited, and can be performed by a known method such as removal under reduced pressure, separation by reprecipitation, and a combination thereof. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • the obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 7.2 g of a target resin (RBisN-1) having a structure represented by the following formula.
  • a target resin (RBisN-1) having a structure represented by the following formula.
  • they were Mn: 778, Mw: 1793, Mw / Mn: 2.30.
  • the obtained resin was subjected to NMR measurement under the above measurement conditions, the following peaks were found and confirmed to have a chemical structure of the following formula. ⁇ (ppm) 9.7 (2H, OH), 7.2 to 8.5 (17H, Ph—H), 6.6 (1H, C—H), 4.1 (2H, —CH 2 )
  • Example 2 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), 150 g of a solution using PGMEA (120 g) / propylene glycol monomethyl ether (PGME) (15 g) (BisN-1 concentration: 10 wt%) was used.
  • a BisN-1 PGMEA / PGME solution with reduced metal content was obtained in the same manner as in Example 1 except that it was charged.
  • Example 3 Instead of charging 37.5 g of an aqueous oxalic acid solution (pH 1.3), treatment with BisN-1 having a reduced metal content was conducted in the same manner as in Example 1 except that 130 g of an aqueous citric acid solution (pH 1.8) was charged. A PGMEA solution was obtained.
  • Example 4 instead of charging BisN-1, the PGMEA solution of RBisN-1 was reduced in the metal content by the same treatment as in Example 1 except that RBisN-1 was charged (RBisN-1 concentration: 2.5 wt%) Got.
  • Example 5 Similar to Example 1 except that 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%) was charged instead of a solution using methyl isobutyl ketone (150 g) (BisN-1 concentration: 30 wt%). To obtain a methyl isobutyl ketone solution of BisN-1 with a reduced metal content.
  • Example 6 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), a solution using methyl isobutyl ketone (120 g) / propylene glycol monomethyl ether (PGME) (15 g) as a solvent (BisN-1 concentration: 30 wt%) A BisN-1 methylisobutylketone / PGME solution with reduced metal content was obtained in the same manner as in Example 1 except that was charged.
  • PGMEA solution BisN-1 concentration: 2.5 wt%)
  • PGME propylene glycol monomethyl ether
  • Example 7 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), it was the same as in Example 1 except that a solution using ethyl acetate (150 g) (BisN-1 concentration: 20 wt%) was charged. Treatment gave an ethyl acetate solution of BisN-1 with reduced metal content.
  • Example 8 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), a solution (BisN-1 concentration: 20 wt%) using ethyl acetate (120 g) / propylene glycol monomethyl ether (PGME) (15 g) as a solvent was used.
  • PGME propylene glycol monomethyl ether
  • Example 9 A methyl isobutyl ketone / PGME solution of RBisN-1 having a reduced metal content (RBisN-1 concentration: 30 wt.%) Treated in the same manner as in Example 6 except that RBisN-1 was charged instead of BisN-1. %).
  • Example 10 An RBisN-1 ethyl acetate / PGME solution (RBisN-1 concentration: 20 wt%) treated in the same manner as in Example 8 except that RBisN-1 was used instead of BisN-1. )
  • ⁇ Comparative Example> Production of cyclic compound with reduced metal content by ion exchange resin (Comparative Example 1) After 25 g of ion exchange resin (Mitsubishi Chemical Diaion: SMT100-mix resin) was swollen with cyclohexanone, it was packed in a Teflon (registered trademark) column, and the solvent was replaced by passing 500 mL of 1,3-dioxolane. Next, by passing 500 g of a solution (1.7 wt%) in which BisN-1 was dissolved in 1,3-dioxolane, a dioxolane solution of BisN-1 was obtained.
  • ion exchange resin Mitsubishi Chemical Diaion: SMT100-mix resin
  • a compound represented by the formula (1) with a reduced metal content or a resin having a structure represented by the formula (2) can be industrially advantageously produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)
  • Pyrane Compounds (AREA)

Abstract

本発明に係る精製方法は、下記式(1)で表される化合物又は下記式(2)で表される構造を有する樹脂の精製方法であって、水と任意に混和しない有機溶媒及び前記化合物又は前記樹脂を含む溶液(A)と、酸性の水溶液と、を接触させる工程を含む。(上記式中、Xは酸素原子又は硫黄原子、Rは単結合又は炭化水素基、Rはアルキル基又は水酸基等であり、ここで、Rの少なくとも1つは水酸基であり、Rは単結合又はアルキレン基であり、mは1~6、mは1~5、pは0又は1、nは1~4である。)

Description

化合物又は樹脂の精製方法
 本発明は、特定の構造を有する化合物又は樹脂の精製方法に関する。
 ベンゾキサンテン骨格を有する化合物又は樹脂は、耐熱性、耐エッチング性、溶媒溶解性に優れているため、半導体用のコーティング剤、レジスト用材料、半導体下層膜形成材料として使用される(例えば、特許文献1~2参照)。
国際公開第2013/024778号 国際公開第2013/024779号
 上記用途においては、特に金属含有量が、歩留まり向上のために重要な性能項目となっている。すなわち、金属含有量の多いベンゾキサンテン骨格を有する化合物又は樹脂を用いた場合には、半導体中に金属が残存し、半導体の電気特性を低下させることから、金属含有量を低減することが求められている。
 金属含有量の低減されたベンゾキサンテン骨格を有する化合物又は樹脂の製造方法として、該化合物又は樹脂と有機溶媒を含む混合物を、イオン交換樹脂と接触させる方法、フィルターで濾過する方法等が考えられる。
 しかし、イオン交換樹脂を用いる方法では、種々の金属イオンを含有する場合は、イオン交換樹脂の選択に難があり、金属の種類によっては除去が困難であるという問題、非イオン性の金属の除去が困難であるという問題、さらには、ランニングコストが大きいという問題が有る。
 一方、フィルターで濾過する方法では、イオン性金属の除去が困難であるという問題がある。したがって、金属含有量の低減された環状化合物の工業的に有利な精製方法の確立が望まれている。
 本発明は上述した従来技術が有する課題に鑑みてなされたものであり、本発明の目的は、特定の構造を有する特定の化合物又は樹脂に不純物として含まれうる種々の金属の含有量を低減できる精製方法を提供することにある。
 本発明者らは上記課題を解決するため鋭意検討した結果、特定の構造を有する化合物又は樹脂と特定の有機溶媒を含む溶液を、酸性の水溶液と接触させることにより、種々の金属の含有量が低下することを見出し、本発明に至った。
 すなわち、本発明は次のとおりである。
[1]
 下記式(1)で表される化合物又は下記式(2)で表される構造を有する樹脂の精製方法であって、
 水と任意に混和しない有機溶媒及び前記化合物又は前記樹脂を含む溶液(A)と、酸性の水溶液と、を接触させる工程を含む、精製方法。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、mは、各々独立して、1~6の整数であり、pは各々独立して0又は1であり、nは、1~4の整数である。)
Figure JPOXMLDOC01-appb-C000010
(式(2)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、Rは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは、各々独立して、1~5の整数であり、pは各々独立して0又は1であり、nは、1~4の整数である。)
[2]
 前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である、[1]に記載の精製方法。
[3]
 前記水と任意に混和しない有機溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート又は酢酸エチルである、[1]又は[2]に記載の精製方法。
[4]
 前記水と任意に混和しない有機溶媒が、メチルイソブチルケトン又は酢酸エチルである、[1]又は[2]に記載の精製方法。
[5]
 前記溶液(A)が、水と任意に混和する有機溶媒を前記式(1)で表される化合物又は前記式(2)で表される構造を有する樹脂に対して0.1~100質量倍含む、[1]~[4]のいずれかに記載の精製方法。
[6]
 前記水と任意に混和する有機溶媒が、N-メチルピロリドン又はプロピレングリコールモノメチルエーテルである、[5]に記載の精製方法。
[7]
 前記溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含む、[1]~[6]のいずれかに記載の精製方法。
[8]
 前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、[1]~[7]のいずれかに記載の精製方法。
Figure JPOXMLDOC01-appb-C000011
(上記式(1-1)中、R、R、m、p、nは、上記式(1)で説明したものと同義である。)
[9]
 前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、[8]に記載の精製方法。
Figure JPOXMLDOC01-appb-C000012
(上記式(1-2)中、R、p及びnは、上記式(1)で説明したものと同義であり、Rは、上記式(1)で説明したRと同義であり、mは、各々独立して1~6の整数であり、mは、各々独立して0~5の整数であり、m+mは1~6の整数である。)
[10]
 前記式(1-2)で表される化合物が、下記式(1-3)で表される化合物である、[9]に記載の精製方法。
Figure JPOXMLDOC01-appb-C000013
(上記式(1-3)中、R、p及びnは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。)
[11]
 前記式(1)で表される化合物が、下記式(1-4)で表される化合物である、[1]~[7]のいずれかに記載の精製方法。
Figure JPOXMLDOC01-appb-C000014
(上記式(1-4)中、X、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。)
[12]
 前記式(1-4)で表される化合物が、下記式(1-5)で表される化合物である、[11]に記載の精製方法。
Figure JPOXMLDOC01-appb-C000015
(上記式(1-5)中、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。)
[13]
 前記式(1-5)で表される化合物が、下記式(BisN-1)で表される化合物である、[12]に記載の精製方法。
Figure JPOXMLDOC01-appb-C000016
 本発明の精製方法によれば、特定の構造を有する化合物又は樹脂に不純物として含まれうる種々の金属の含有量を低減することができる。
 以下、本発明の実施の形態について説明する(以下、本実施形態と称する)。なお、本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 本実施形態に係る精製方法は、下記式(1)で表される化合物又は下記式(2)で表される構造を有する樹脂の精製方法である。さらに、本実施形態における精製方法は、水と任意に混和しない有機溶媒及び前記化合物又は前記樹脂を含む溶液(A)と、酸性の水溶液と、を接触させる工程を含む。上記のように構成されているため、本実施形態の精製方法によれば、特定の構造を有する化合物又は樹脂に不純物として含まれうる種々の金属の含有量を低減することができる。
 より詳細には、本実施形態においては、上記化合物又は上記樹脂を水と任意に混和しない有機溶媒に溶解させ、さらにその溶液を酸性水溶液と接触させて抽出処理を行うものとすることができる。これにより、式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相を分離して金属含有量の低減された式(1)で表される化合物又は式(2)で表される構造を有する樹脂を精製することができる。
 本実施形態で使用される化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
 上記式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、このXを介して各々のナフタレン環が結合している。Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、このRを介して各々のナフタレン環が結合している。ここで、2n価の炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよい。Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基及び水酸基からなる群より選択される1価の置換基であり、ナフタレン環に各々m個ずつ結合している。ここで、Rの少なくとも1つは、水酸基である。また、mは、各々独立して、1~6の整数であり、pは各々独立して0又は1であり、nは1~4の整数である。
 なお、前記2n価の炭化水素基とは、n=1のときには、炭素数1~30のアルキレン基、n=2のときには、炭素数1~30のアルカンテトライル基、n=3のときには、炭素数2~30のアルカンヘキサイル基、n=4のときには、炭素数3~30のアルカンオクタイル基のことを示す。前記2n価の炭化水素基としては、例えば、直鎖状、分岐状又は環状構造を有するものが挙げられる。
 また、前記2n価の炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよい。ここで、前記環式炭化水素基については、有橋環式炭化水素基も含まれる。
 ここで、上記式(1)で表される化合物は、原料の入手しやすさの観点から下記式(1-1)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(1-1)中、R、R、m、nは、上記式(1)で説明したものと同義である。
 また、上記一般式(1-1)で示される化合物は、有機溶媒への溶解性の観点から下記式(1-2)で示される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(1-2)中、R及びnは、上記式(1)で説明したものと同義であり、Rは、上記式(1)で説明したRと同義であり、mは、各々独立して1~6の整数であり、mは、各々独立して0~5の整数であり、m+mは1~6の整数である。
 上記一般式(1-2)で表される化合物は、さらなる有機溶媒への溶解性の観点から下記式(1-3)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000020
 上記式(1-3)中、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。
 また、低分子量である観点から、上記式(1)で表される化合物は、上記式(1)においてn=1である態様、すなわち下記式(1-4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 上記式(1-4)中、X、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。
 さらにまた、上記一般式(1-4)で表される化合物は、上記式(1-4)においてX=O(酸素原子)である態様、すなわち下記式(1-5)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(1-5)中、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。
 上記一般式(1)で表される化合物の具体例を、以下に示すが、ここで列挙したものに限定されない。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 上記式中、R、X、mは、上記式(1)で説明したものと同義である。
 上記式(1)で表される化合物の具体例を、さらに以下に例示するが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000050
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000060
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000064
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
 上記式中、Xは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 上記式中、Xは、上記式(1)で説明したものと同義である。
 本実施形態で使用される式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、常圧下、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類と、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによって、上記式(1)で表される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。
 前記フェノール類としては、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ハイドロキノン、トリメチルハイドロキノンを用いることがキサンテン構造を容易に作ることができる点で好ましい。
 前記チオフェノール類としては、例えば、ベンゼンチオール、メチルベンゼンチオール、メトキシベンゼンチオール、ベンゼンジチオール、トリメチルベンゼンジチオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンゼンジチオール、トリメチルベンゼンジチオールを用いることがチオキサンテン構造を容易に作ることができる点で好ましい。
 前記ナフトール類としては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジオールを用いることがベンゾキサンテン構造を容易に作ることができる点で好ましい。
 前記チオナフトール類としては、例えば、ナフタレンチオール、メチルナフタレンチオール、メトキシナフタレンチオール、ナフタレンジチオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジチオールを用いることがチオベンゾキサンテン構造を容易に作ることができる点で好ましい。
 前記アルデヒド類としては、特に限定されないが、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド、デシルアルデヒド、ウンデシルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、フルフラール、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒド、グリオキサール、グルタルアルデヒド、フタルアルデヒド、ナフタレンジカルボキシアルデヒド、ビフェニルジカルボキシアルデヒド、アントラセンジカルボキシアルデヒド、ビス(ジホルミルフェニル)メタン、ビス(ジホルミルフェニル)プロパン、ベンゼントリカルボキシアルデヒドを用いることが、高い耐熱性を与える点で好ましい。
 前記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノンを用いることが、高い耐熱性を与える点で好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、蓚酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類とフェノール類、チオフェノール類、ナフトール類、又はチオナフトール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
 本実施形態の一般式(1)で表される化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類、アルデヒド類或いはケトン類、触媒を一括で仕込む方法や、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類やアルデヒド類又はケトン類を触媒存在下で滴下していく方法が挙げられる。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、原料としての化合物を得ることができる。
 好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることにより進行する。
 反応終了後、公知の方法により原料としての化合物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って、原料としての上記一般式(1)で示される化合物を得ることができる。
 本実施形態で使用される樹脂は、式(2)で表される構造を有する樹脂である。
Figure JPOXMLDOC01-appb-C000071
 上記式(2)中、Xは、各々独立して、酸素原子又は硫黄原子である。Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~30の芳香族基を有していてもよい。Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基である。Rは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基である。mは、各々独立して、1~5の整数であり、nは1~4の整数である。pは各々独立して0又は1である。なお、前記2n価の炭化水素基については、上述した式(1)で説明したものと同義である。
 本実施形態で使用される式(2)で表される構造を有する樹脂は、例えば、上記式(1)で表される化合物を架橋反応性のあるモノマーと反応させることにより得られる。
 架橋反応性のあるモノマーとしては、上記式(1)で表される化合物をオリゴマー化又はポリマー化し得るものである限り特に限定されず、種々公知のものを使用することができる。その具体例としては、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに限定されない。
 式(2)に表される構造を有する樹脂の具体例としては、以下に限定されないが、上記式(1)で表される化合物を架橋反応性のあるモノマーであるアルデヒドとの縮合反応等によってノボラック化した樹脂が挙げられる。
 ここで、上記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに限定されない。これらの中でも、ホルムアルデヒドが好ましい。なお、これらのアルデヒド類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド類の使用量は、特に限定されないが、上記式(1)で表される化合物1モルに対して、0.2~5モルが好ましく、より好ましくは0.5~2モルである。
 上記式(1)で表される化合物とアルデヒドとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、蓚酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネンなどの非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
 上記式(1)で表される化合物とアルデヒドとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、反応溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。また、これらの反応溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記一般式(1)で示される化合物、アルデヒド類、触媒を一括で仕込む方法や、上記一般式(1)で示される化合物やアルデヒド類を触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、原料としてのノボラック化した樹脂を得ることができる。
 ここで、上記式(2)で表される構造を有する樹脂は、上記式(1)で表される化合物の単独重合体であってもよいが、上記式(1)で表される化合物と他のフェノール類との共重合体であってもよい。ここで、共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに限定されない。
 また、上記式(2)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに限定されない。なお、上記一般式(2)で示される構造を有する樹脂は、上記一般式(1)で示される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であってもよく、上記一般式(1)で示される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であってもよく、上記一般式(1)で示される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であってもよい。
 本実施形態で使用する式(1)で表される化合物又は式(2)で表される構造を有する樹脂は単独でもよいが、2種以上混合することもできる。また、式(1)で表される化合物又は式(2)で表される構造を有する樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有したものであってもよい。
 本実施形態において、水と任意に混和しない有機溶媒は、室温下における水への溶解度が30%未満である有機溶媒を意味する。水と任意に混和しない有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。なお、上記溶解度は20%未満であることが好ましく、より好ましくは10%未満である。使用する水と任意に混和しない有機溶媒の量は、特に限定されないが、使用する式(1)で表される化合物又は式(2)で表される構造を有する樹脂に対して、通常1~100質量倍程度とすることができ、好ましくは1質量倍以上10質量倍以下であり、より好ましくは1質量倍以上9質量倍未満であり、さらに好ましくは2~5質量倍である。
 使用される溶媒の具体例としては、以下に限定されないが、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがさらに好ましい。メチルイソブチルケトン、酢酸エチル等は式(1)で表される化合物又は式(2)で表される構造を有する樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、これらを用いると、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷がより低減される傾向にある。
 これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 本実施形態で使用される酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択される。以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等を用いることが好ましい。
 本実施形態で使用する酸性の水溶液のpHは特に限定されないが、式(1)で表される化合物又は式(2)で表される構造を有する樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、pH範囲は0~5程度であり、好ましくはpH0~3程度である。
 本実施形態で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。上記観点から、水溶液の使用量は、通常、有機溶媒に溶解した式(1)で表される化合物又は式(2)で表される構造を有する樹脂の溶液に対して10~200質量%であり、好ましくは20~100質量%である。
 本実施形態においては、上記のような酸性の水溶液と、式(1)で表される化合物又は式(2)で表される構造を有する樹脂及び水と任意に混和しない有機溶媒を含む溶液とを接触させることにより、金属分を抽出することができる。上記接触の態様としては、特に限定されず、例えば、撹拌、超音波分散などの公知の混合方法を採用することができる。
 本実施形態においては、溶液(A)が、さらに水と任意に混和する有機溶媒を含むことが好ましい。本実施形態において、水と任意に混和する有機溶媒は、室温下における水への溶解度が70%以上である有機溶媒を意味する。水と任意に混和する有機溶媒の上記溶解度としては、80%以上であることが好ましく、より好ましくは90%以上である。水と任意に混和する有機溶媒を含む場合、式(1)で表される化合物又は式(2)で表される構造を有する樹脂の仕込み量を増加させることができ、また分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
 本実施形態で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する水と任意に混和する有機溶媒の量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する式(1)で表される化合物又は式(2)で表される構造を有する樹脂に対して、通常0.1~100質量倍程度使用することができ、好ましくは0.1~10質量倍であり、より好ましくは0.1~2質量倍であり、さらに好ましくは0.5~2質量倍であり、よりさらに好ましくは0.5~1.5質量倍である。
 本実施形態において使用される水と任意に混和する溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、N-メチルピロリドン等のケトン類、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。
 これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 本実施形態において、溶液(A)と酸性の水溶液の接触の際、すなわち、抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、特に限定されないが、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液に含まれていた金属分が水相に移行する。また本操作により、溶液の酸性度が低下し、式(1)で表される化合物又は式(2)で表される構造を有する樹脂の変質を抑制することができる。
 得られる混合物は、式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液相と水相に分離するのでデカンテーション等により式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液を回収する。静置する時間は特に限定されないが、有機溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。
 また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 本実施形態において、溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含むものとすることが好ましい。すなわち、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、撹拌等により、よく混合させたあと、静置することにより行うことができる。当該静置後に得られる溶液は、式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液相と水相に分離するのでデカンテーション等により式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液相を回収することができる。
 また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、式(1)で表される化合物又は式(2)で表される構造を有する樹脂の濃度を任意の濃度に調整することができる。
 得られた式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液から、式(1)で表される化合物又は式(2)で表される構造を有する樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
 以下、実施例を挙げて、本実施形態をさらに具体的に説明する。但し、本実施形態は、これらの実施例に限定されない。以下の合成例において、化合物の構造はH-NMR測定で確認した。
(合成例1)BisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に、2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)1.60g(10mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)と、メチルイソブチルケトン30mLとを仕込み、95%の硫酸5mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1)3.05gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。また、2,6-ジヒドロキシナフトールの置換位置が1位であることは、3位と4位のプロトンのシグナルがダブレットであることから確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.7(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
Figure JPOXMLDOC01-appb-C000072
(合成例2)RBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に、BisN-1 10g(21mmol)と、パラホルムアルデヒド0.7g(42mmol)、氷酢酸50mLとPGME50mLとを仕込み、95%の硫酸8mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、メタノール1000mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される構造を有する目的樹脂(RBisN-1)7.2gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:778、Mw:1793、Mw/Mn:2.30であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)9.7(2H,O-H)、7.2~8.5(17H,Ph-H)、6.6(1H,C-H)、4.1(2H,-CH
Figure JPOXMLDOC01-appb-C000073
<実施例> 金属含有量の低減された式(1)で表される化合物又は式(2)で表される構造を有する樹脂のプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液の製造
(実施例1)
 1000mL容量の四つ口フラスコ(底抜き型)に、BisN-1をPGMEAに溶解させた溶液(BisN-1濃度:2.5wt%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返すことにより、金属含有量の低減されたBisN-1のPGMEA溶液を得た。
(実施例2)
 PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、PGMEA(120g)/プロピレングリコールモノメチルエーテル(PGME)(15g)を溶媒とする溶液(BisN-1濃度:10wt%)150gを仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のPGMEA/PGME溶液を得た。
(実施例3)
 蓚酸水溶液(pH1.3)37.5gを仕込む代わりに、クエン酸水溶液(pH1.8)130gを仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のPGMEA溶液を得た。
(実施例4)
 BisN-1を仕込む代わりに、RBisN-1を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたRBisN-1のPGMEA溶液(RBisN-1濃度:2.5wt%)を得た。
(実施例5)
 PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、メチルイソブチルケトン(150g)を溶媒とする溶液(BisN-1濃度:30wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のメチルイソブチルケトン溶液を得た。
(実施例6)
 PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、メチルイソブチルケトン(120g)/プロピレングリコールモノメチルエーテル(PGME)(15g)を溶媒とする溶液(BisN-1濃度:30wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のメチルイソブチルケトン/PGME溶液を得た。
(実施例7)
 PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、酢酸エチル(150g)を溶媒とする溶液(BisN-1濃度:20wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1の酢酸エチル溶液を得た。
(実施例8)
 PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、酢酸エチル(120g)/プロピレングリコールモノメチルエーテル(PGME)(15g)を溶媒とする溶液(BisN-1濃度:20wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1の酢酸エチル/PGME溶液を得た。
(実施例9)
 BisN-1を仕込む代わりに、RBisN-1を仕込んだこと以外は実施例6と同様に処理して金属含有量の低減されたRBisN-1のメチルイソブチルケトン/PGME溶液(RBisN-1濃度:30wt%)を得た。
(実施例10)
 BisN-1を仕込む代わりに、RBisN-1を仕込んだこと以外は実施例8と同様に処理して金属含有量の低減されたRBisN-1の酢酸エチル/PGME溶液(RBisN-1濃度:20wt%)を得た。
(参考例1)
 PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、PGMEA溶液(BisN-1濃度:10wt%)150gを仕込んだこと以外は実施例1と同様に操作を開始した。蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌を行ったところ、BisN-1の一部が析出した。次いで、80℃まで昇温後、さらに5分間攪拌を行い、金属含有量が低減されたBisN-1のPGMEA溶液(BisN-1濃度:10wt%)を得た。
<比較例> イオン交換樹脂による金属含有量の低減された環状化合物の製造
(比較例1)
 イオン交換樹脂(三菱化学ダイヤイオン:SMT100-ミックス樹脂)25gをシクロヘキサノンで膨潤後、テフロン(登録商標)カラムに充填し、1,3-ジオキソランを500mL通液することで溶媒置換した。次いでBisN-1を1,3-ジオキソランに溶解させた溶液(1.7wt%)500gを通液することでBisN-1のジオキソラン溶液を得た。
 処理前のBisN-1の10wt%PGMEA溶液、処理前のRBisN-1の10wt%PGMEA溶液、実施例1~10及び比較例1において得られた式(1)で表される化合物又は式(2)の溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000074
 本出願は、2013年11月29日出願の日本特許出願(特願2013-248012号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、金属含有量の低減された式(1)で表される化合物又は式(2)で表される構造を有する樹脂を工業的に有利に製造することができる。

Claims (13)

  1.  下記式(1)で表される化合物又は下記式(2)で表される構造を有する樹脂の精製方法であって、
     水と任意に混和しない有機溶媒及び前記化合物又は前記樹脂を含む溶液(A)と、酸性の水溶液と、を接触させる工程を含む、精製方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、mは、各々独立して、1~6の整数であり、pは各々独立して0又は1であり、nは、1~4の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Xは、各々独立して、酸素原子又は硫黄原子であり、Rは、単結合又は炭素数1~30の2n価の炭化水素基であり、該炭化水素基は、環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、Rは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは、各々独立して、1~5の整数であり、pは各々独立して0又は1であり、nは、1~4の整数である。)
  2.  前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である、請求項1に記載の精製方法。
  3.  前記水と任意に混和しない有機溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート又は酢酸エチルである、請求項1又は2に記載の精製方法。
  4.  前記水と任意に混和しない有機溶媒が、メチルイソブチルケトン又は酢酸エチルである、請求項1又は2に記載の精製方法。
  5.  前記溶液(A)が、水と任意に混和する有機溶媒を前記式(1)で表される化合物又は前記式(2)で表される構造を有する樹脂に対して0.1~100質量倍含む、請求項1~4のいずれか1項に記載の精製方法。
  6.  前記水と任意に混和する有機溶媒が、N-メチルピロリドン又はプロピレングリコールモノメチルエーテルである、請求項5に記載の精製方法。
  7.  前記溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含む、請求項1~6のいずれか1項に記載の精製方法。
  8.  前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、請求項1~7のいずれか1項に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(1-1)中、R、R、m、p、nは、上記式(1)で説明したものと同義である。)
  9.  前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、請求項8に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(1-2)中、R、p及びnは、上記式(1)で説明したものと同義であり、Rは、上記式(1)で説明したRと同義であり、mは、各々独立して1~6の整数であり、mは、各々独立して0~5の整数であり、m+mは1~6の整数である。)
  10.  前記式(1-2)で表される化合物が、下記式(1-3)で表される化合物である、請求項9に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(1-3)中、R、p及びnは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。)
  11.  前記式(1)で表される化合物が、下記式(1-4)で表される化合物である、請求項1~7のいずれか1項に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000006
    (上記式(1-4)中、X、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。)
  12.  前記式(1-4)で表される化合物が、下記式(1-5)で表される化合物である、請求項11に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000007
    (上記式(1-5)中、Rは上記式(1)で説明したものと同義であり、R、mは、上記式(1-2)で説明したものと同義である。)
  13.  前記式(1-5)で表される化合物が、下記式(BisN-1)で表される化合物である、請求項12に記載の精製方法。
    Figure JPOXMLDOC01-appb-C000008
PCT/JP2014/081508 2013-11-29 2014-11-28 化合物又は樹脂の精製方法 WO2015080240A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14866294.3A EP3075728B1 (en) 2013-11-29 2014-11-28 Purification method for compound or resin
JP2015551008A JP6829936B2 (ja) 2013-11-29 2014-11-28 化合物又は樹脂の精製方法
US15/100,009 US9920024B2 (en) 2013-11-29 2014-11-28 Method for purifying compound or resin
CN201480064733.XA CN105764892B (zh) 2013-11-29 2014-11-28 化合物或树脂的精制方法
KR1020167014304A KR20160091342A (ko) 2013-11-29 2014-11-28 화합물 또는 수지의 정제방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-248012 2013-11-29
JP2013248012 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080240A1 true WO2015080240A1 (ja) 2015-06-04

Family

ID=53199175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081508 WO2015080240A1 (ja) 2013-11-29 2014-11-28 化合物又は樹脂の精製方法

Country Status (7)

Country Link
US (1) US9920024B2 (ja)
EP (1) EP3075728B1 (ja)
JP (1) JP6829936B2 (ja)
KR (1) KR20160091342A (ja)
CN (1) CN105764892B (ja)
TW (1) TWI633096B (ja)
WO (1) WO2015080240A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848983A (zh) * 2015-07-22 2018-03-27 三菱瓦斯化学株式会社 化合物、树脂、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜及抗蚀图案形成方法、电路图案形成方法、及纯化方法
CN107848946A (zh) * 2015-07-23 2018-03-27 三菱瓦斯化学株式会社 新型(甲基)丙烯酰基化合物及其制造方法
WO2018101463A1 (ja) * 2016-12-02 2018-06-07 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018155495A1 (ja) 2017-02-23 2018-08-30 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018181882A1 (ja) 2017-03-31 2018-10-04 学校法人関西大学 レジスト組成物及びそれを用いるパターン形成方法、並びに、化合物及び樹脂
WO2018181872A1 (ja) 2017-03-31 2018-10-04 学校法人関西大学 化合物、化合物を含むレジスト組成物及びそれを用いるパターン形成方法
JP2018154600A (ja) * 2017-03-21 2018-10-04 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018212116A1 (ja) 2017-05-15 2018-11-22 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2019004142A1 (ja) 2017-06-28 2019-01-03 三菱瓦斯化学株式会社 膜形成材料、リソグラフィー用膜形成用組成物、光学部品形成用材料、レジスト組成物、レジストパターン形成方法、レジスト用永久膜、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
WO2019098338A1 (ja) 2017-11-20 2019-05-23 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
WO2019142897A1 (ja) 2018-01-22 2019-07-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2019151400A1 (ja) 2018-01-31 2019-08-08 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
WO2019167359A1 (ja) 2018-02-28 2019-09-06 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
WO2019230639A1 (ja) 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
WO2020004316A1 (ja) 2018-06-26 2020-01-02 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2020039966A1 (ja) 2018-08-20 2020-02-27 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
US10577323B2 (en) * 2015-03-13 2020-03-03 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin
JP2020189985A (ja) * 2015-03-31 2020-11-26 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200053007A (ko) * 2018-11-06 2020-05-18 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519463A (ja) * 1991-07-17 1993-01-29 Sumitomo Chem Co Ltd レジストの金属低減化方法
JP2002182402A (ja) * 2000-12-18 2002-06-26 Shin Etsu Chem Co Ltd レジストのベースポリマーの精製方法
JP2012224793A (ja) * 2011-04-21 2012-11-15 Maruzen Petrochem Co Ltd 金属不純物量の少ない半導体リソグラフィー用共重合体の製造方法及び該共重合体を製造するための重合開始剤の精製方法
WO2013024779A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
WO2013024778A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
JP2013248012A (ja) 2012-05-30 2013-12-12 Daio Paper Corp 吸収性物品用表面材の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3923426A1 (de) * 1989-07-15 1991-01-17 Hoechst Ag Verfahren zur herstellung von novolak-harzen mit geringem metallionengehalt
US5618655A (en) 1995-07-17 1997-04-08 Olin Corporation Process of reducing trace levels of metal impurities from resist components
JP5776580B2 (ja) 2011-02-25 2015-09-09 信越化学工業株式会社 ポジ型レジスト材料及びこれを用いたパターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519463A (ja) * 1991-07-17 1993-01-29 Sumitomo Chem Co Ltd レジストの金属低減化方法
JP2002182402A (ja) * 2000-12-18 2002-06-26 Shin Etsu Chem Co Ltd レジストのベースポリマーの精製方法
JP2012224793A (ja) * 2011-04-21 2012-11-15 Maruzen Petrochem Co Ltd 金属不純物量の少ない半導体リソグラフィー用共重合体の製造方法及び該共重合体を製造するための重合開始剤の精製方法
WO2013024779A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
WO2013024778A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
JP2013248012A (ja) 2012-05-30 2013-12-12 Daio Paper Corp 吸収性物品用表面材の製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10577323B2 (en) * 2015-03-13 2020-03-03 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin
JP2020189985A (ja) * 2015-03-31 2020-11-26 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物
CN107848983A (zh) * 2015-07-22 2018-03-27 三菱瓦斯化学株式会社 化合物、树脂、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜及抗蚀图案形成方法、电路图案形成方法、及纯化方法
EP3327005A4 (en) * 2015-07-22 2019-09-25 Mitsubishi Gas Chemical Company, Inc. COMPOUND, RESIN, LITHOGRAPHY-BASED UNDERLAYER FILM FORMING MATERIAL, COMPOSITION FOR FORMING LITHOGRAPHY-BASED UNDERLAYER FILM, LITHOGRAPHY-BASED FILM FORMING, PHOTOSENSITIVE RESIN PATTERN FORMING METHOD, PATTERN FORMING METHOD CIRCUIT, AND PURIFICATION METHOD
CN107848983B (zh) * 2015-07-22 2021-07-09 三菱瓦斯化学株式会社 化合物、树脂、光刻用下层膜形成材料、抗蚀图案和电路图案形成方法及纯化方法
JPWO2017014191A1 (ja) * 2015-07-22 2018-05-24 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
US10364314B2 (en) 2015-07-22 2019-07-30 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
CN107848946A (zh) * 2015-07-23 2018-03-27 三菱瓦斯化学株式会社 新型(甲基)丙烯酰基化合物及其制造方法
WO2018101463A1 (ja) * 2016-12-02 2018-06-07 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7090843B2 (ja) 2016-12-02 2022-06-27 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
JPWO2018101463A1 (ja) * 2016-12-02 2019-10-24 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018155495A1 (ja) 2017-02-23 2018-08-30 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP2018154600A (ja) * 2017-03-21 2018-10-04 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018181872A1 (ja) 2017-03-31 2018-10-04 学校法人関西大学 化合物、化合物を含むレジスト組成物及びそれを用いるパターン形成方法
WO2018181882A1 (ja) 2017-03-31 2018-10-04 学校法人関西大学 レジスト組成物及びそれを用いるパターン形成方法、並びに、化合物及び樹脂
WO2018212116A1 (ja) 2017-05-15 2018-11-22 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2019004142A1 (ja) 2017-06-28 2019-01-03 三菱瓦斯化学株式会社 膜形成材料、リソグラフィー用膜形成用組成物、光学部品形成用材料、レジスト組成物、レジストパターン形成方法、レジスト用永久膜、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
WO2019098338A1 (ja) 2017-11-20 2019-05-23 三菱瓦斯化学株式会社 リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法
WO2019142897A1 (ja) 2018-01-22 2019-07-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2019151400A1 (ja) 2018-01-31 2019-08-08 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
WO2019167359A1 (ja) 2018-02-28 2019-09-06 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
WO2019230639A1 (ja) 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
WO2020004316A1 (ja) 2018-06-26 2020-01-02 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2020039966A1 (ja) 2018-08-20 2020-02-27 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Also Published As

Publication number Publication date
JP6829936B2 (ja) 2021-02-17
EP3075728B1 (en) 2019-07-24
TWI633096B (zh) 2018-08-21
KR20160091342A (ko) 2016-08-02
EP3075728A4 (en) 2017-05-03
US20170001972A1 (en) 2017-01-05
EP3075728A1 (en) 2016-10-05
CN105764892B (zh) 2018-09-25
CN105764892A (zh) 2016-07-13
JPWO2015080240A1 (ja) 2017-03-16
TW201538491A (zh) 2015-10-16
US9920024B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2015080240A1 (ja) 化合物又は樹脂の精製方法
JP4998271B2 (ja) フェノール樹脂及び樹脂組成物
KR20160023564A (ko) 유기막 형성용 조성물의 제조방법
JP6734645B2 (ja) フルオレン縮合体組成物およびエポキシ化組成物ならびにこれらの製造方法
JP5870918B2 (ja) アルキルナフタレンホルムアルデヒド重合体の精製方法
WO2011118147A1 (ja) 固形レゾール型フェノール樹脂およびその製造方法
JP5446260B2 (ja) フェニレンエーテルオリゴマーの製造方法
WO2020145407A1 (ja) 多環ポリフェノール樹脂、及び多環ポリフェノール樹脂の製造方法
CN110325500A (zh) 化合物或树脂的纯化方法、及组合物的制造方法
JP6349943B2 (ja) 化合物の精製方法、及び高分子化合物の製造方法
JP6090675B2 (ja) ナフタレンホルムアルデヒド樹脂、脱アセタール結合ナフタレンホルムアルデヒド樹脂及び変性ナフタレンホルムアルデヒド樹脂
JP5239196B2 (ja) 低粘度フェノール類変性芳香族炭化水素ホルムアルデヒド樹脂の製造方法
CN114276323B (zh) 一种含碳酸酯基光刻胶树脂单体的制备方法
JP5087232B2 (ja) レゾルシン−メチルエチルケトン−ホルマリン樹脂
JP2010222373A (ja) グリシジルオキシブチルアクリレートの製造方法
JP7113665B2 (ja) 組成物及びその製造方法
EP3309191B1 (en) Dicyclopentadiene compound-modified phenolic resin production method
JP2023121456A (ja) ビスフェノール化合物の製造方法
JP2010013600A (ja) ノボラック樹脂の製造方法
JPH05310624A (ja) テルペンジフェノール樹脂の製造方法
JP2010222372A (ja) グリシジルオキシブチルアクリレートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551008

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014866294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167014304

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15100009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE