WO2015068845A1 - ポリカーボネート樹脂成形材料 - Google Patents

ポリカーボネート樹脂成形材料 Download PDF

Info

Publication number
WO2015068845A1
WO2015068845A1 PCT/JP2014/079765 JP2014079765W WO2015068845A1 WO 2015068845 A1 WO2015068845 A1 WO 2015068845A1 JP 2014079765 W JP2014079765 W JP 2014079765W WO 2015068845 A1 WO2015068845 A1 WO 2015068845A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
molding material
resin molding
group
mass
Prior art date
Application number
PCT/JP2014/079765
Other languages
English (en)
French (fr)
Inventor
正己 瀧本
孝洋 鳥居
中江 貢
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53041617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015068845(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US15/035,364 priority Critical patent/US9732185B2/en
Priority to KR1020217023215A priority patent/KR102416063B1/ko
Priority to CN201480060673.4A priority patent/CN105705581B/zh
Priority to EP14859994.7A priority patent/EP3070125B1/en
Priority to KR1020227021962A priority patent/KR102514157B1/ko
Priority to KR1020167011973A priority patent/KR20160085765A/ko
Publication of WO2015068845A1 publication Critical patent/WO2015068845A1/ja
Priority to US15/643,083 priority patent/US10221279B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent

Definitions

  • the present invention relates to a polycarbonate resin molding material. Specifically, the present invention relates to a polycarbonate resin molding material useful for the production of optical molded products such as a light guide plate that contains an aromatic polycarbonate resin, has little yellowing, and is excellent in light transmittance.
  • Polycarbonate resins are excellent in transparency, mechanical properties, thermal properties, electrical properties, weather resistance, and the like, and are used in optical molded products such as light guide plates, lenses, and optical fibers, taking advantage of these properties.
  • the light transmittance which is one of the indices indicating the transparency, is lower than that of polymethyl methacrylate (PMMA) or the like. Therefore, when a surface light source body is composed of a light guide plate made of polycarbonate and a light source, there is a problem that luminance is low. Therefore, conventionally, methods for increasing the luminance and light transmittance in a polycarbonate light guide plate have been proposed.
  • Patent Document 1 discloses an aromatic polycarbonate resin composition and a light guide plate made of a thermoplastic resin having a refractive index difference of 0.001 or more from an aromatic polycarbonate resin and an aromatic polycarbonate resin, and having specific optical characteristics.
  • Patent Document 2 discloses an aromatic polycarbonate resin composition for a light guide plate, which contains a specific amount of a polyalkylene glycol having a specific structure or a fatty acid ester thereof and has good transmittance and hue with respect to an aromatic polycarbonate resin. .
  • Patent Document 3 discloses a resin that is excellent in light transmittance and luminance and that can withstand molding at high temperatures by blending a specific amount of polyoxytetramethylene polyoxyethylene glycol having a specific structure with an aromatic polycarbonate resin. A composition and an optical molded article using the composition are disclosed.
  • Patent Document 4 discloses that an aromatic polycarbonate resin contains a diphosphite compound having a specific structure and an alicyclic epoxy compound, so that it has excellent thermal stability, light transmittance and luminance in high temperature molding, and high temperature and high humidity. It is disclosed that a molded product that does not cause discoloration or cracking even when exposed to an environment for a long time is disclosed.
  • an aromatic polycarbonate resin composition when used for a light guide plate, from the viewpoint of obtaining a thin and large light guide plate, in order to increase the fluidity of the resin composition, the temperature greatly exceeds 300 ° C. Molding is performed under high temperature conditions. A molded body obtained by molding under such a high temperature condition tends to cause yellowing and a decrease in light transmittance.
  • the present invention has little occurrence of yellowing and lowering of light transmittance even when molded under a high temperature condition greatly exceeding 300 ° C., can be molded in a wide temperature range, has a thin-walled portion, and has no yellowing.
  • An object of the present invention is to provide a polycarbonate resin molding material that can provide an aromatic polycarbonate resin molding that is small and excellent in light transmittance.
  • the present inventors have made a polycarbonate resin molding material in which the content of a specific component measured by a predetermined method is a predetermined amount or less in a resin molding material containing an aromatic polycarbonate resin.
  • the present invention provides the following polycarbonate resin molding material.
  • Method (1) Using a polycarbonate resin molding material, a molded body of 50 mm ⁇ 80 mm ⁇ thickness 0.3 mm is produced by an injection molding method at a cylinder temperature of 360 ° C., a mold temperature of 80 ° C., and a cycle time of 20 seconds. .
  • Method (2) Using a polycarbonate resin molding material, a molded body of 50 mm ⁇ 90 mm ⁇ thickness 5 mm is produced by an injection molding method with a cylinder temperature setting of 360 ° C., a mold temperature of 80 ° C., and a cycle time of 50 seconds. Using a spectrophotometer, the YI value of the compact is measured under the conditions of a C light source and a two-degree field of view.
  • Method (3) Using a polycarbonate resin molding material, a molded body of 50 mm ⁇ 90 mm ⁇ thickness 5 mm is produced by an injection molding method at a cylinder temperature of 360 ° C., a mold temperature of 80 ° C., and a cycle time of 20 seconds. Using a spectrophotometer, the L value of the compact is measured under the conditions of a D65 light source and a 10-degree field of view.
  • ⁇ 3> The polycarbonate resin molding material according to ⁇ 1> or ⁇ 2>, wherein the nitrogen atom content is 15 ppm or less.
  • ⁇ 4> The polycarbonate resin molding material according to any one of ⁇ 1> to ⁇ 3>, which does not have an absorption maximum in a wavelength range of 500 to 600 nm.
  • Region of chemical shift of 6.3 ppm to 6.7 ppm when the total signal intensity observed in the region of chemical shift of 1.5 ppm to 1.9 ppm when the proton NMR spectrum is measured is 100
  • the polycarbonate resin molding material according to any one of the above ⁇ 1> to ⁇ 4> wherein the ratio of the total signal intensity observed in 1 is 0.15 or less.
  • ⁇ 6> The polycarbonate resin molding material according to any one of ⁇ 1> to ⁇ 5>, which comprises a polyether compound (b1) having a polyoxyalkylene structure.
  • ⁇ 7> The polycarbonate resin molding material according to any one of the above ⁇ 1> to ⁇ 6>, comprising an acid generating compound (b2).
  • the acid generating compound (b2) is at least one selected from a boronic acid anhydride and a sulfonic acid ester.
  • the content of the polyether compound (b1) is 0.01 to 5 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A), and any one of the above ⁇ 6> to ⁇ 8> The polycarbonate resin molding material as described.
  • the polycarbonate resin molding material which can obtain the aromatic polycarbonate resin molding which has a part, has little yellowing, and is excellent in light transmittance can be provided.
  • the polycarbonate resin molding material is particularly useful for the production of optical molded products such as a light guide plate.
  • the polycarbonate resin molding material of the present invention is a polycarbonate resin molding material containing an aromatic polycarbonate resin (A), and the content of o-hydroxyacetophenone measured by the following method (1) is 1 mass ppm or less.
  • the YI value measured by the following method (2) is 1.21 or less.
  • Method (1) Using a polycarbonate resin molding material, a molded body of 50 mm ⁇ 80 mm ⁇ thickness 0.3 mm is produced by an injection molding method at a cylinder temperature of 360 ° C., a mold temperature of 80 ° C., and a cycle time of 20 seconds. .
  • Method (2) Using a polycarbonate resin molding material, a molded body of 50 mm ⁇ 90 mm ⁇ thickness 5 mm is produced by an injection molding method with a cylinder temperature setting of 360 ° C., a mold temperature of 80 ° C., and a cycle time of 50 seconds. Using a spectrophotometer, the YI value of the compact is measured under the conditions of a C light source and a two-degree field of view.
  • the present inventors mold a resin molding material containing an aromatic polycarbonate resin at a high temperature greatly exceeding 300 ° C. in order to produce a molded body having a thin portion having a thickness of 0.5 mm or less, the yellowing is particularly caused. It was found that the cause of this yellowing was due to o-hydroxyacetophenone.
  • o-Hydroxyacetophenone is a compound generated by thermal decomposition of an aromatic polycarbonate resin.
  • the content of o-hydroxyacetophenone in the polycarbonate resin molding material of the present invention measured by the method (1) exceeds 1 ppm by mass, the molded product obtained by molding at a high temperature greatly exceeding 300 ° C. is remarkable.
  • the content of o-hydroxyacetophenone measured by the method (1) is preferably 0.5 mass ppm or less, more preferably 0.4 mass ppm or less. More preferably, it is 0.3 mass ppm or less, and most preferably 0.2 mass ppm or less.
  • the content of the o-hydroxyacetophenone can be measured by a high performance liquid chromatography (HPLC) method, specifically by the method described in the examples.
  • the polycarbonate resin molding material of the present invention includes at least one selected from a polyether compound (b1) having a polyoxyalkylene structure and an acid generator compound (b2). Examples thereof include a method of adding a compound. The compound will be described later.
  • the polycarbonate resin molding material of the present invention has a YI value measured by the method (2) of 1.21 or less from the viewpoint of obtaining an aromatic polycarbonate resin molded body with little yellowing and excellent light transmittance. .19 or less is preferable, 1.17 or less is more preferable, 1.13 or less is more preferable, and 1.10 is most preferable. More specifically, the YI value can be measured by the method described in Examples.
  • the polycarbonate resin molding material of the present invention has an L value (brightness) measured by the following method (3) of 95.94 from the viewpoint of obtaining an aromatic polycarbonate resin molded body with little yellowing and excellent light transmittance.
  • it is preferably 95.95 or more, more preferably 95.97 or more, and most preferably 96.00 or more.
  • Method (3) Using a polycarbonate resin molding material, a molded body of 50 mm ⁇ 90 mm ⁇ thickness 5 mm is produced by an injection molding method at a cylinder temperature of 360 ° C., a mold temperature of 80 ° C., and a cycle time of 20 seconds.
  • the L value of the compact is measured under the conditions of a D65 light source and a 10-degree field of view. More specifically, the L value can be measured by the method described in Examples.
  • the polycarbonate resin molding material of the present invention when a large amount of a basic compound is present in the polycarbonate resin molding material of the present invention, it tends to act on the aforementioned o-hydroxyacetophenone to promote yellowing, and the polycarbonate resin molding material of the present invention can be used. In the case of manufacturing an optical plate, it also causes a decrease in light guiding performance.
  • basic compounds amine compounds are presumed to form imines by reaction with o-hydroxyacetophenone, which promotes yellowing. From the above viewpoint, the content of nitrogen atoms in the polycarbonate resin molding material is preferably 15 ppm or less, more preferably 10 ppm or less, still more preferably 8 ppm or less, and particularly preferably 5 ppm or less.
  • the basic compound in the polycarbonate resin molding material of the present invention can be obtained by increasing the number of times the polycarbonate resin is washed or the stirring power at the time of washing.
  • the content of can be reduced.
  • the content of nitrogen atoms in the polycarbonate resin molding material can be measured by a chemiluminescence method, specifically by the method described in the examples.
  • the polycarbonate resin molding material of the present invention preferably has no absorption maximum in the wavelength range of 500 to 600 nm. It is known that a polycarbonate resin molding material is blended with a colorant (bluing agent) having an absorption maximum in a wavelength range of 500 to 600 nm in order to offset yellow coloring. However, in this method, when a polycarbonate resin molding material is molded under a high temperature condition greatly exceeding 300 ° C. for thin-wall molding, the resulting molded product is yellowed due to deterioration or volatilization of the colorant. . In the present invention, a molded product with little yellowing and excellent light transmittance can be obtained without blending such a colorant or the like.
  • “having no absorption maximum in the wavelength range of 500 to 600 nm” means that 6 g of an aromatic polycarbonate resin molding obtained by molding the polycarbonate resin molding material of the present invention is dissolved in 50 mL of methylene chloride, and the optical path
  • an absorption spectrum is measured by a transmission method using an ultraviolet-visible spectrophotometer using a quartz cell having a length of 5 cm, it means that there is no absorption maximum in the wavelength range of 500 to 600 nm.
  • the presence or absence of the absorption maximum in the wavelength range of 500 to 600 nm of the polycarbonate resin molding material can be specifically evaluated by the method described in the examples.
  • the polycarbonate resin molding material of the present invention has a chemical shift of 6.3 ppm when the total signal intensity observed in the region of the chemical shift of 1.5 ppm or more and 1.9 ppm or less is 100 when the proton NMR spectrum is measured.
  • the ratio of the total signal intensity observed in the region of 6.7 ppm or less is preferably 0.15 or less, and more preferably 0.10 or less. When the signal intensity ratio is 0.15 or less, an aromatic polycarbonate resin molded body with less yellowing and more excellent light transmittance can be obtained.
  • the signal observed in the region where the chemical shift is 1.5 ppm or more and 1.9 ppm or less is mainly derived from the proton of the isopropylidene group of bisphenol A, which is the main structure of the aromatic polycarbonate resin.
  • the signal intensity ratio is determined by measuring a proton NMR spectrum. Specifically, the proton NMR spectrum can be measured by the method described in Examples.
  • the polycarbonate resin molding material of the present invention contains an aromatic polycarbonate resin (A).
  • an aromatic polycarbonate resin (A) there is no restriction
  • a dihydric phenol and a carbonate precursor produced by a solution method (interfacial polycondensation method) or a melting method (transesterification method), that is, a dihydric phenol and phosgene are reacted in the presence of a terminal terminator.
  • a dihydric phenol and a carbonate precursor produced by a solution method (interfacial polycondensation method) or a melting method (transesterification method), that is, a dihydric phenol and phosgene are reacted in the presence of a terminal terminator.
  • dihydric phenols can be mentioned, and in particular, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis (4 -Hydroxyphenyl) ethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkane, bis (4-hydroxyphenyl) Examples thereof include oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone.
  • hydroquinone, resorcin, catechol and the like can also be mentioned. These may be used alone or in combination of two or more. Among them, bis (hydroxyphenyl) alkanes are preferable, and bisphenol A is particularly preferable. By using bisphenol A as the dihydric phenol, a polycarbonate resin having a bisphenol A structure can be obtained.
  • the carbonate precursor examples include carbonyl halide, carbonyl ester, or haloformate, and specifically include phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, and diethyl carbonate.
  • the component (A) may have a branched structure.
  • the branching agent include 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′- Tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, phloroglysin, trimellitic acid and 1,3-bis (o-cresol).
  • monovalent carboxylic acid and derivatives thereof, and monovalent phenol can be used.
  • the aromatic polycarbonate resin (A) is preferably a polycarbonate resin whose main chain has a repeating unit represented by the following general formula (I).
  • R A1 and R A2 each independently represents an alkyl group or alkoxy group having 1 to 6 carbon atoms, X is a single bond, an alkylene group having 1 to 8 carbon atoms, or an alkylidene group having 2 to 8 carbon atoms) , A cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, —S—, —SO—, —SO 2 —, —O— or —CO—, wherein a and b are each Independently represents an integer of 0 to 4.
  • Examples of the alkyl group represented by R A1 and R A2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups (“various” includes linear and all branched ones) And the same applies hereinafter), various pentyl groups, and various hexyl groups.
  • Examples of the alkoxy group represented by R A1 and R A2 include a case where the alkyl group moiety is the alkyl group.
  • Each of R A1 and R A2 is preferably an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • Examples of the alkylene group represented by X include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and the like, and an alkylene group having 1 to 5 carbon atoms is preferable.
  • Examples of the alkylidene group represented by X include an ethylidene group and an isopropylidene group.
  • Examples of the cycloalkylene group represented by X include a cyclopentanediyl group, a cyclohexanediyl group, a cyclooctanediyl group, and the like, and a cycloalkylene group having 5 to 10 carbon atoms is preferable.
  • Examples of the cycloalkylidene group represented by X include a cyclohexylidene group, a 3,5,5-trimethylcyclohexylidene group, a 2-adamantylidene group, and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is exemplified.
  • a cycloalkylidene group having 5 to 8 carbon atoms is more preferable.
  • a and b each independently represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1.
  • the aromatic polycarbonate resin (A) preferably contains a polycarbonate resin having a bisphenol A structure from the viewpoint of the transparency, mechanical properties, thermal properties, and the like of the obtained molded body.
  • Specific examples of the polycarbonate resin having a bisphenol A structure include those in which X is an isopropylidene group in the general formula (I).
  • the content of the polycarbonate resin having a bisphenol A structure in the aromatic polycarbonate resin (A) is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the viscosity average molecular weight (Mv) of the aromatic polycarbonate resin (A) is usually about 10,000 to 50,000, preferably 13,000 to 35,000, more preferably 14,000 to 20,000. It is.
  • the polycarbonate resin molding material of the present invention preferably contains at least one compound selected from a polyether compound (b1) having a polyoxyalkylene structure and an acid generating compound (b2).
  • the polyether compound (b1) having a polyoxyalkylene structure used in the present invention has a polyoxyalkylene structure represented by (R b1 O) m and a polyoxyalkylene structure represented by (R b2 O) n. Is preferred.
  • R b1 and R b2 each independently represent an alkylene group having 1 or more carbon atoms.
  • m + n is 5 or more and less than 300, preferably 10 to 200, more preferably 20 to 100.
  • Examples of the alkylene group represented by R b1 and R b2 include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a hexamethylene group, and the like, and an alkylene group having 1 to 5 carbon atoms is preferable.
  • the plurality of R b1 may be the same alkylene group or different alkylene groups having different carbon numbers. That is, the polyoxyalkylene group represented by (R b1 O) m is not limited to those having a single oxyalkylene unit such as a polyoxyethylene group or a polyoxypropylene group as a repeating unit.
  • R b2 is the same as R b1 , and in the n R b2 O groups, the plurality of R b2 may be the same alkylene group or different alkylene groups.
  • the polyether compound (b1) includes a compound (b1-1) represented by the following general formula (II), an alkylene oxide adduct of polyhydric alcohol and its ester (b1-2), and a cyclic polyether compound ( It is preferably at least one selected from b1-3).
  • R b3 O— (R b1 O) m —A— (R b2 O) n —R b4 (II) (Wherein R b1 and R b2 each independently represent an alkylene group having 1 or more carbon atoms.
  • M + n is from 5 to less than 300.
  • R b3 and R b4 are each independently a hydrogen atom, 1 to 30 represents a hydrocarbon group, an alkanoyl group having 1 to 30 carbon atoms, an alkenoyl group having 2 to 30 carbon atoms, or a glycidyl group, and A represents a single bond or a divalent organic group.
  • the alkylene group represented by R b1 and R b2 is as described above.
  • the polyoxyalkylene structure represented by (R b1 O) m and the polyoxyalkylene structure represented by (R b2 O) n are also as described above.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms represented by R b3 and R b4 include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or 7 carbon atoms. -30 aralkyl groups and the like.
  • the alkyl group and alkenyl group may be linear, branched or cyclic, for example, methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups, various hexyl groups.
  • octyl groups cyclopentyl groups, cyclohexyl groups, allyl groups, propenyl groups, various butenyl groups, various hexenyl groups, various octenyl groups, cyclopentenyl groups, and cyclohexenyl groups.
  • the aryl group include a phenyl group, a tolyl group, and a xylyl group.
  • the aralkyl group include a benzyl group, a phenethyl group, and a methylbenzyl group.
  • the alkanoyl group having 1 to 30 carbon atoms represented by R b3 and R b4 may be linear or branched, for example, methanoyl group, ethanoyl group, n-propanoyl group, isopropanoyl group, n-butanoyl group , T-butanoyl group, n-hexanoyl group, n-octanoyl group, n-decanoyl group, n-dodecanoyl group, benzoyl group and the like.
  • an alkanoyl group having 1 to 20 carbon atoms is preferable from the viewpoints of compatibility, thermal stability, and ease of production.
  • the alkenoyl group having 2 to 30 carbon atoms represented by R b3 and R b4 may be linear or branched.
  • ethenoyl group, n-propenoyl group, isopropenoyl group, n-butenoyl group, t-butenoyl group N-hexenoyl group, n-octenoyl group, n-decenoyl group, n-dodecenoyl group and the like may be linear or branched.
  • ethenoyl group, n-propenoyl group, isopropenoyl group, n-butenoyl group, t-butenoyl group N-hexenoyl group, n-octenoyl group, n-decenoyl group, n-dodecenoyl group and the like Among these, an alkenoyl group having 2 to 10 carbon atoms is
  • Examples of the divalent organic group represented by A include a group represented by the following formula (a).
  • Specific examples of the compound (b1-1) represented by the general formula (II) include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxytetramethylene polyoxyethylene glycol, polyoxyethylene monomethyl ether, polyoxy Ethylene dimethyl ether, polyoxyethylene-bisphenol A ether, polyoxypropylene-bisphenol A ether, polyoxyethylene-polyoxypropylene-bisphenol A ether, polyethylene glycol-allyl ether, polyethylene glycol-diallyl ether, polypropylene glycol-allyl ether, polypropylene Glycol-diallyl ether, polyethylene glycol-polypropylene glycol-allylate , Polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polypropylene glycol distearate, and the like.
  • polyhydric alcohol in the alkylene oxide adduct of polyhydric alcohol and its ester examples include glycerin, diglyceryl ether, sorbitol and the like.
  • cyclic polyether compound (b1-3) examples include 18 crown 6, dibenzo 18 crown 6 and the like.
  • the number average molecular weight of the polyether compound (b1) is not particularly limited, but is preferably 200 to 10,000, more preferably 500 to 8,000, and still more preferably 1,000 to 5,000.
  • the said polyether compound (b1) can be used individually by 1 type or in combination of 2 or more types.
  • the content of the polyether compound (b1) in the polycarbonate resin molding material of the present invention suppresses the formation of o-hydroxyacetophenone and causes little yellowing even when molded under a high temperature condition greatly exceeding 300 ° C.
  • it is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 2 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). More preferably, it is 0.03 to 1 part by mass.
  • acid generating compound (b2) examples include anhydrides of acidic compounds such as carboxylic acids, sulfonic acids, and boronic acids, and esters of the acidic compounds. From the viewpoint of obtaining an aromatic polycarbonate resin molded article that suppresses the formation of o-hydroxyacetophenone and is less yellowed even when molded under a high temperature condition greatly exceeding 300 ° C., and has excellent light transmittance.
  • (B2) is preferably at least one selected from boronic acid anhydrides and sulfonic acid esters, and preferably at least one selected from boronic acid anhydrides having an aromatic ring and sulfonic acid esters having an aromatic ring. More preferred.
  • the boronic acid anhydride is preferably an aryl boronic acid anhydride which may have a substituent on the aromatic ring, such as phenyl boronic acid anhydride, 4-methylphenyl boronic acid anhydride, 4-methoxyphenyl Examples thereof include boronic acid anhydride, 4-tert-butoxyphenyl boronic acid anhydride, 4-fluorophenyl boronic acid anhydride and the like. From the viewpoint of thermal stability, at least one selected from phenylboronic anhydride and 4-methoxyphenylboronic anhydride is more preferable.
  • the sulfonic acid ester is preferably an alkyl ester of p-toluenesulfonic acid.
  • the alkyl ester preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and examples thereof include butyl p-toluenesulfonate, octyl p-toluenesulfonate, and dodecyl p-toluenesulfonate. . From the viewpoint of the ease of acid generation and the ease of volatilization of the decomposition product, at least one selected from butyl p-toluenesulfonate and octyl p-toluenesulfonate is more preferable.
  • the acid generating compound (b2) can be used alone or in combination of two or more.
  • the content of the acid generating compound (b2) in the polycarbonate resin molding material suppresses the formation of o-hydroxyacetophenone, and even when molded under a high temperature condition greatly exceeding 300 ° C., there is little yellowing and light transmission.
  • the amount is preferably 0.0001 to 0.5 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the acid generating compound (b2) is a boronic acid anhydride
  • the content is more preferably 0.01 with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the acid generating compound (b2) is a sulfonic acid ester
  • the content thereof is more preferably 0.0001 to 0.1 parts by mass, and more preferably 100 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the amount is preferably 0.0001 to 0.01 parts by mass.
  • the polyether compound (b1) and the acid generating compound (b2) may be used in combination.
  • the preferable content of each of the polyether compound (b1) and the acid generating compound (b2) in this case is the same as described above.
  • the polycarbonate resin molding material of the present invention preferably further contains an antioxidant (C).
  • an antioxidant C
  • antioxidant (C) examples include phosphorus antioxidants and hindered phenol antioxidants. From the viewpoint of suppressing oxidative degradation during the high temperature molding of the polycarbonate resin molding material, it is preferable to use a phosphorus-based antioxidant, and more preferably a phosphorus-based antioxidant having an aryl group. Furthermore, the phosphorus-based antioxidant having the aryl group has little thermal decomposition even in molding under high temperature conditions, can suppress oxidative deterioration of the polycarbonate resin molding material, and can cause yellowing and light transmittance. From the viewpoint of obtaining a molded article with little decrease, the amount of the compound having a phenol structure that is decomposed and generated after 1,500 hours when left under conditions of 40 ° C.
  • the compound and 90% humidity is preferably 5% by mass or less. More preferably, the compound is 3% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. That is, the phosphorus-based antioxidant having an aryl group that is preferably used in the present invention is excellent in hydrolysis resistance and produces a small amount of a compound having a phenol structure. The amount of the compound having a phenol structure is quantified with a gas chromatograph.
  • the antioxidant (C) used in the present invention is preferably a phosphorus antioxidant having an aryl group and a phosphite structure, more preferably a pentaerythritol diphosphite compound represented by the following general formula (III). is there.
  • Y 1 to Y 4 each independently represent a hydrocarbon group having 6 or more carbon atoms, preferably each independently a substituted or unsubstituted cumyl group, phenyl group, naphthyl group or biphenyl group.
  • the antioxidant (C) used in the present invention is more preferably a pentaerythritol diphosphite compound represented by the following general formula (III-1).
  • R C1 to R C8 each independently represents an alkyl group or an alkenyl group.
  • R C1 and R C2 , R C3 and R C4 , R C5 and R C6 , R C7 and R C8 are bonded to each other.
  • R C9 to R C12 each independently represents a hydrogen atom or an alkyl group
  • m1 to m4 each independently represents an integer of 0 to 5.
  • Z 1 to Z 4 are Each independently represents a single bond or a carbon atom. When Z 1 to Z 4 represent a single bond, R C1 to R C8 are excluded from formula (III-1).)
  • the pentaerythritol diphosphite compound represented by the general formula (III) or (III-1) is obtained by adding a chlorine solvent to phosphorus trichloride and pentaerythritol to obtain pentaerythritol dichlorophosphite, It can be obtained by heating and mixing in the presence of a solvent and an organic nitrogen-containing base compound (see, for example, JP-A-2004-018406).
  • pentaerythritol diphosphite compounds represented by the above general formula (III) or (III-1) heat resistance and hydrolysis resistance can be favorably imparted to polycarbonate resin molding materials, and they are also available. Since it is easy, bis (2,4-dicumylphenyl) pentaerythritol diphosphite represented by the following formula (III-2) is particularly preferable. This compound is available as a commercial product. For example, “Doverphos (registered trademark) S-9228PC” manufactured by Dover Chemical may be used.
  • the said antioxidant (C) can be used individually by 1 type or in combination of 2 or more types.
  • the content of the antioxidant (C) in the polycarbonate resin molding material of the present invention is preferably 0.005 to 1 mass with respect to 100 mass parts of the aromatic polycarbonate resin (A) from the viewpoint of suppressing oxidative degradation. Part, more preferably 0.01 to 0.8 part by weight, still more preferably 0.03 to 0.25 part by weight.
  • polyorganosiloxane and the like can be appropriately added to the polycarbonate resin molding material of the present invention.
  • the polyorganosiloxane is preferably a compound having at least one functional group such as an alkoxy group, aryloxy group, polyoxyalkylene group, carboxyl group, silanol group, amino group, mercapto group, epoxy group and vinyl group.
  • the amount of polyorganosiloxane added is preferably 0.01 to 0.15 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). More preferred is 0.02 to 0.15 parts by mass, and still more preferred is 0.05 to 0.1 parts by mass.
  • the viscosity of the polyorganosiloxane is preferably 10 mm 2 / s or more at 25 ° C. from the viewpoint of the slippery effect as releasability, and preferably 200 mm 2 / s or less from the viewpoint of dispersibility in the polycarbonate resin. It is.
  • the viscosity of the polyorganosiloxane is more preferably in the range of 20 to 150 mm 2 / s, and still more preferably in the range of 40 to 120 mm 2 / s.
  • the refractive index of the polyorganosiloxane is preferably as small as possible so that the difference in refractive index with the polycarbonate resin is not reduced so as not to lower the transparency when added to the polycarbonate resin molding material. Since the refractive index of the aromatic polycarbonate resin (A) is 1.58, the refractive index of the polyorganosiloxane is preferably 1.45 or more, more preferably 1.50 or more, and further preferably 1.52 or more. is there.
  • the method for producing the polycarbonate resin molding material of the present invention is not particularly limited.
  • the above-described aromatic polycarbonate resin (A) and, if necessary, the compounds (b1) and (b2), the antioxidant (C), and various additives are mixed and melt-kneaded.
  • Melt-kneading is performed by a commonly used method, for example, a method using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder, or the like. be able to.
  • the heating temperature at the time of melt kneading is usually appropriately selected in the range of about 220 to 300 ° C.
  • the aromatic polycarbonate resin molding is obtained by molding the polycarbonate resin molding material.
  • a known kneading method such as a hollow molding method, an injection molding method, an injection compression molding method, an extrusion molding method, a vacuum, using the melt-kneaded product of the above polycarbonate resin molding material or the obtained resin pellet as a raw material.
  • a molding method such as a molding method, a blow molding method, a press molding method, a pressure molding method, a foam molding method, a heat bending molding method, a compression molding method, a calendar molding method, and a rotational molding method can be applied.
  • the polycarbonate resin molding material of the present invention for example, from the viewpoint of obtaining a molded body having a thin portion having a thickness of 0.5 mm or less, it is preferable to use a molding method such as an injection molding method that requires high fluidity of the molding material. .
  • a molding method such as an injection molding method that requires high fluidity of the molding material.
  • mold at 300 degreeC or more from a viewpoint of obtaining the molded object which has a thin part. Thereby, the optical distortion of the obtained molded object can be reduced, and transfer of fine processed parts such as prism parts is also improved.
  • the molding temperature is more preferably 310 to 360 ° C.
  • the polycarbonate resin molding material of the present invention By molding the polycarbonate resin molding material of the present invention, it preferably has a thin portion having a thickness of 0.5 mm or less, more preferably 0.45 mm or less, still more preferably 0.4 mm or less, and particularly preferably 0.35 mm or less.
  • An aromatic polycarbonate resin molded body (hereinafter also simply referred to as “molded body”) can be produced.
  • “having a thin portion having a thickness of 0.5 mm or less” means that a part or all of the molded body has a thickness of 0.5 mm or less.
  • the thinner the thinnest portion of the aromatic polycarbonate resin molded body the more effective the present invention can be.
  • the lower limit of the thinnest portion is 0.1 mm or more and 0.15 mm. It can also be set to the above or 0.2 mm or more.
  • the shape of the molded product obtained by molding the polycarbonate resin molding material of the present invention is not particularly limited, but from the viewpoint of application to a light guide plate or the like, a plate such as a flat plate, a curved plate having a lens effect, a prism transfer plate, etc. A shaped molded body is preferable.
  • the molded body applied to the light guide plate or the like preferably has a length in the longitudinal direction of 60 mm or more, and a thickness of a region occupying at least 80% is preferably 0.7 mm or less.
  • the thickness of the region that is 65 mm or more and occupies at least 80% is 0.5 mm or less
  • the length in the longitudinal direction is 70 mm or more
  • the thickness of the region that occupies at least 80% is 0. .45 mm or less
  • the length in the longitudinal direction is 70 mm or more
  • the thickness of the region occupying at least 80% is further preferably 0.4 mm or less.
  • the upper limit of the length in the longitudinal direction is not particularly limited, but may be, for example, 300 mm or less.
  • the thickness of the region occupying at least 80% of the molded body there is no particular lower limit of the thickness of the region occupying at least 80% of the molded body, but it may be, for example, 0.1 mm or more, 0.15 mm or more, or 0.2 mm or more.
  • “the thickness of the region occupying at least 80% is 0.7 mm or less” means that, for example, when the molded body is plate-shaped, at least 80% of the entire area of the plate-shaped molded body. Means that the thickness is 0.7 mm or less.
  • the above-mentioned aromatic polycarbonate resin molding is useful for optical moldings, particularly for light guide plate applications.
  • a light-guide plate which consists of the said molded object Although a flat plate may be sufficient and a curved surface board and prism transfer board which have a lens effect may be sufficient, it is preferable to have a thin part 0.5 mm or less in thickness.
  • the preferable size and thickness of the light guide plate are the same as those of the above-described molded body.
  • the method for forming the light guide plate is not particularly limited, and the shape and the forming method may be appropriately selected according to the purpose and application.
  • the preferable method for manufacturing the light guide plate is also the same as the method for manufacturing the molded body described above.
  • Production Example 1 (Production of bisphenol A polycarbonate resin (PC-1)) 4 kg of “Taflon FN 1500” (made by Idemitsu Kosan Co., Ltd., bisphenol A polycarbonate resin, viscosity average molecular weight: 14,500) was dissolved in 25 L of methylene chloride, and 0.03 mol / L in a washing machine equipped with baffle plates and stirring blades. The mixture was vigorously stirred and mixed in the order of 5 L of sodium hydroxide aqueous solution, 5 L of 0.2 mol / L hydrochloric acid, and 5 L of pure water, and then allowed to stand and separate.
  • PC-1 bisphenol A polycarbonate resin
  • This sodium hydroxide aqueous solution 40 L / hr of bisphenol A, methylene chloride 15 L / hr, and phosgene 4.0 kg / hr were continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and bisphenol A sodium hydroxide aqueous solution 2.8 L / hr, 25 mass.
  • the reaction was carried out by adding 0.64 L / hr of 0.07 L / hr of% sodium hydroxide aqueous solution, 17 L / hr of water and 1 mass% triethylamine aqueous solution.
  • the reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer obtained had a concentration of 325 g / L and a chloroformate group concentration of 0.77 mol / L.
  • (2) Polycarbonate polymerization step After the temperature of the cooling solvent in a 50 L tank reactor equipped with baffle plates, paddle type stirring blades and a cooling jacket became 20 ° C.
  • oligomer solution 15 L methylene chloride 8.9 L, 119 g of p-tert-butylphenol, 0.7 mL of triethylamine, BPA aqueous solution of sodium hydroxide (dissolving 1185 g of BPA in an aqueous solution of 647 g of NaOH and 2000 mass ppm of sodium dithionite dissolved in 9.5 L of BPA) And the polymerization reaction was carried out for 30 minutes. Thereafter, 0.8 mL of triethylamine was added and the mixture was further stirred for 30 minutes.
  • the organic phase was separated by separating it into an organic phase containing polycarbonate resin and an aqueous phase containing excess BPA and NaOH.
  • the obtained methylene chloride solution of polycarbonate resin was washed successively with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and then the electric conductivity in the aqueous phase after washing. was repeatedly washed with pure water until 0.05 ⁇ S / m or less.
  • the dichloromethane solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain bisphenol A polycarbonate resin (PC-2).
  • Production Example 3 (Production of bisphenol A polycarbonate resin (PC-3)) In the polycarbonate polymerization process of Production Example 2, instead of adding triethylamine in portions after the temperature of the cooling solvent became 30 ° C. or lower, 1.5 mL of triethylamine was added all at once and the polymerization reaction was performed for 60 minutes. The bisphenol A polycarbonate resin (PC-3) was obtained.
  • Measuring device “ECA500” (manufactured by JEOL RESONANCE) Measuring solvent: CDCl 3 Flip angle: 45 ° Repetition time: 9 seconds Integration count: 256 Observation range: 20 ppm Observation center: 5ppm
  • a spectrophotometer “U-4100” (Hitachi High-Technologies Corporation) is used for the above-mentioned flat molded body of 50 mm ⁇ 90 mm ⁇ thickness 5 mm produced at a cylinder temperature of 360 ° C. and a mold temperature of 80 ° C. and a cycle time of 50 seconds.
  • the L value was measured under the conditions of a D65 light source and a 10 degree visual field.
  • ⁇ Polyether compound having a polyoxyalkylene structure (b1)> (B1-1): “Polyserine DC1100” (manufactured by NOF Corporation, polyoxytetramethylene glycol-polyoxyethylene glycol) (B1-2): “Polyserine DC3000E” (manufactured by NOF Corporation, polyoxytetramethylene glycol-polyoxyethylene glycol) (B1-3): “Uniox GT-20IS” (manufactured by NOF Corporation, polyoxyethylene-triisostearic acid) (B1-4): “Unilube 50DB-22” (manufactured by NOF Corporation, polyoxyethylene-polyoxypropylene-bisphenol A ether) (B1-5): “Epiol E-1000” (manufactured by NOF Corporation, polyethylene glycol diglycidyl ether)
  • B2-1 Phenylboronic acid anhydride (made by Hokuko Chemical Co., Ltd.)
  • B2-2 4-methoxyphenylboronic anhydride (manufactured by Hokuko Chemical Co., Ltd.)
  • B2-3) butyl p-toluenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • B2-4 Octyl p-toluenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • C1 “Doverphos S-9228PC” (manufactured by Dover Chemical Co., Ltd., bis (2,4-dicumylphenyl) pentaerythritol diphosphite, yield of dicumylphenol after hydrolysis test: 0.15% by mass)
  • C2 “ADEKA STAB 2112” (manufactured by ADEKA Corporation, tris 2,4-di-tert-butylphenyl phosphite, amount of 2,4-di-tert-butylphenol produced after hydrolysis test: 6 mass) %)
  • the polycarbonate resin molding material which can obtain the aromatic polycarbonate resin molding which has a part, has little yellowing, and is excellent in light transmittance can be provided.
  • the polycarbonate resin molding material is particularly useful for the production of optical molded products such as a light guide plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 芳香族ポリカーボネート樹脂(A)を含有するポリカーボネート樹脂成形材料であって、所定の方法(1)で測定されるo-ヒドロキシアセトフェノンの含有量が1質量ppm以下であり、所定の方法(2)で測定されるYI値が1.21以下であるポリカーボネート樹脂成形材料である。

Description

ポリカーボネート樹脂成形材料
 本発明は、ポリカーボネート樹脂成形材料に関する。詳しくは、芳香族ポリカーボネート樹脂を含有し、黄変が少なく、光透過性に優れる導光板等の光学成形品の製造に有用なポリカーボネート樹脂成形材料に関するものである。
 ポリカーボネート樹脂は、透明性、機械的性質、熱的性質、電気的性質及び耐候性等に優れ、その特性を活かして導光板、レンズ、光ファイバー等の光学成形品に使用されている。しかしながら、その透明性を示す指標の1つである光線透過率はポリメチルメタクリレート(PMMA)等に比べ低い。従って、ポリカーボネート製の導光板と光源とから面光源体を構成した場合、輝度が低いという問題があった。
 そのため、従来から、ポリカーボネート製の導光板における輝度や光線透過率を高める方法が提案されている。例えば特許文献1には、芳香族ポリカーボネート樹脂および芳香族ポリカーボネート樹脂との屈折率の差が0.001以上である熱可塑性樹脂からなり、特定の光学特性を有する芳香族ポリカーボネート樹脂組成物及び導光板が開示されている。特許文献2には、芳香族ポリカーボネート樹脂に対し、特定構造のポリアルキレングリコール又はその脂肪酸エステルを特定量含有した、透過率及び色相が良好な導光板用芳香族ポリカーボネート樹脂組成物が開示されている。
 特許文献3には、芳香族ポリカーボネート樹脂に対して、特定構造のポリオキシテトラメチレンポリオキシエチレングリコールを特定量配合してなる、光線透過率及び輝度に優れ、高温での成形にも耐えうる樹脂組成物及びそれを用いた光学成形品が開示されている。
 導光板等の製造に用いられるポリカーボネート樹脂組成物は、成形品の薄肉化に伴い幅広い温度域で成形されるようになり、高温条件下での黄変や光線透過率の低下等が発生せず高い熱安定性を有することや、製品使用時の耐久性が求められている。
 特許文献4には、芳香族ポリカーボネート樹脂に特定構造のジフォスファイト化合物と脂環式エポキシ化合物とを含有させることで、高温成形での熱安定性、光線透過率及び輝度に優れ、高温高湿環境下に長時間さらされたとしても変色やクラックが発生しない成形品が得られることが開示されている。
特開2002-60609号公報 特許第4069364号公報 国際公開第2011/083635号 国際公開第2013/088796号
 しかしながら、例えば芳香族ポリカーボネート樹脂組成物を導光板用途に用いる場合には、薄肉でかつ大型の導光板を得る観点から、当該樹脂組成物を高流動化するために、300℃を大きく超えるような高温条件下での成形が行われる。このような高温条件下で成形して得られる成形体は、黄変の発生や光線透過率の低下が起こりやすい。
 本発明は、300℃を大きく超えるような高温条件下で成形しても黄変の発生や光線透過率の低下が少なく、幅広い温度域で成形可能であり、薄肉部を有し、黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得ることができるポリカーボネート樹脂成形材料を提供することを目的とする。
 本発明者らは、鋭意検討を進めた結果、芳香族ポリカーボネート樹脂を含有する樹脂成形材料において、所定の方法で測定される特定成分の含有量が所定量以下であるポリカーボネート樹脂成形材料とすることにより、上記目的を達成し得ることを見出し、本発明を完成した。
 すなわち、本発明は、下記のポリカーボネート樹脂成形材料を提供するものである。
<1> 芳香族ポリカーボネート樹脂(A)を含有するポリカーボネート樹脂成形材料であって、下記方法(1)で測定されるo-ヒドロキシアセトフェノンの含有量が1質量ppm以下であり、下記方法(2)で測定されるYI値が1.21以下であるポリカーボネート樹脂成形材料。
 方法(1):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×80mm×厚さ0.3mmの成形体を作製する。該成形体を粉砕してクロロホルムに溶解させ、溶液中に含まれるo-ヒドロキシアセトフェノンを高速液体クロマトグラフィーにより定量する。
 方法(2):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度設定360℃、金型温度80℃、サイクル時間50秒にて50mm×90mm×厚さ5mmの成形体を作製する。分光光度計を用いて、C光源、2度視野の条件で該成形体のYI値を測定する。
<2> 下記方法(3)で測定されるL値が95.94以上である、上記<1>に記載のポリカーボネート樹脂成形材料。
 方法(3):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×90mm×厚さ5mmの成形体を作製する。分光光度計を用いて、D65光源、10度視野の条件で該成形体のL値を測定する。
<3> 窒素原子の含有量が15ppm以下である、上記<1>又は<2>に記載のポリカーボネート樹脂成形材料。
<4> 波長500~600nmの範囲に吸収極大を有さない、上記<1>~<3>のいずれかに記載のポリカーボネート樹脂成形材料。
<5> プロトンNMRスペクトルを測定した際に、化学シフト1.5ppm以上1.9ppm以下の領域に観測される全シグナル強度を100とした時の、化学シフト6.3ppm以上6.7ppm以下の領域に観測される全シグナル強度の比が0.15以下である、上記<1>~<4>のいずれかに記載のポリカーボネート樹脂成形材料。
<6> ポリオキシアルキレン構造を有するポリエーテル化合物(b1)を含有する、上記<1>~<5>のいずれかに記載のポリカーボネート樹脂成形材料。
<7> 酸発生化合物(b2)を含有する、上記<1>~<6>のいずれかに記載のポリカーボネート樹脂成形材料。
<8> 前記酸発生化合物(b2)がボロン酸無水物及びスルホン酸エステルから選ばれる少なくとも1種である、上記<7>に記載のポリカーボネート樹脂成形材料。
<9> 前記ポリエーテル化合物(b1)の含有量が、前記芳香族ポリカーボネート樹脂(A)100質量部に対し0.01~5質量部である、上記<6>~<8>のいずれかに記載のポリカーボネート樹脂成形材料。
<10> 前記酸発生化合物(b2)の含有量が、前記芳香族ポリカーボネート樹脂(A)100質量部に対し0.0001~0.5質量部である、上記<7>~<9>のいずれかに記載の芳香族ポリカーボネート樹脂成形材料。
<11> 前記芳香族ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000~50,000である、上記<1>~<10>のいずれかに記載の芳香族ポリカーボネート樹脂成形材料。
<12> 上記<1>~<11>のいずれかに記載の芳香族ポリカーボネート樹脂成形材料を成形してなる成形体。
<13> 上記<12>に記載の成形体からなる導光板。
 本発明によれば、薄肉成形のために300℃を大きく超えるような高温条件下で成形した場合にも黄変の発生や光線透過率の低下が少なく、幅広い温度域で成形可能であり、薄肉部を有し、黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得ることができるポリカーボネート樹脂成形材料を提供することができる。当該ポリカーボネート樹脂成形材料は、特に導光板等の光学成形品の製造に有用である。
〔ポリカーボネート樹脂成形材料〕
 本発明のポリカーボネート樹脂成形材料は、芳香族ポリカーボネート樹脂(A)を含有するポリカーボネート樹脂成形材料であって、下記方法(1)で測定されるo-ヒドロキシアセトフェノンの含有量が1質量ppm以下であり、下記方法(2)で測定されるYI値が1.21以下であることを特徴とする。
 方法(1):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×80mm×厚さ0.3mmの成形体を作製する。該成形体を粉砕してクロロホルムに溶解させ、溶液中に含まれるo-ヒドロキシアセトフェノンを高速液体クロマトグラフィーにより定量する。
 方法(2):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度設定360℃、金型温度80℃、サイクル時間50秒にて50mm×90mm×厚さ5mmの成形体を作製する。分光光度計を用いて、C光源、2度視野の条件で該成形体のYI値を測定する。
 本発明者らは、例えば、厚さ0.5mm以下の薄肉部を有する成形体を製造するために、300℃を大きく超える高温で芳香族ポリカーボネート樹脂を含有する樹脂成形材料を成形すると特に黄変が発生しやすく、この黄変の原因がo-ヒドロキシアセトフェノンによるものであることを見出した。
 o-ヒドロキシアセトフェノンは芳香族ポリカーボネート樹脂の熱分解等により発生する化合物である。前記方法(1)で測定される本発明のポリカーボネート樹脂成形材料中のo-ヒドロキシアセトフェノンの含有量が1質量ppmを超えると、300℃を大きく超える高温で成形して得られる成形体には顕著な黄変が発生し、成形体の外観、性能を損ねる原因となる。黄変を少なくする観点から、前記方法(1)で測定されるo-ヒドロキシアセトフェノンの含有量は、0.5質量ppm以下であることが好ましく、0.4質量ppm以下であることがより好ましく、0.3質量ppm以下であることが更に好ましく、0.2質量ppm以下であることが最も好ましい。
 上記o-ヒドロキシアセトフェノンの含有量は高速液体クロマトグラフィー(HPLC)法により測定することができ、具体的には実施例に記載の方法により測定できる。
 上記o-ヒドロキシアセトフェノンの含有量を低減する方法としては、本発明のポリカーボネート樹脂成形材料に、ポリオキシアルキレン構造を有するポリエーテル化合物(b1)及び酸発生化合物(b2)から選ばれる少なくとも1種の化合物を添加する方法等が挙げられる。該化合物については後述する。
 本発明のポリカーボネート樹脂成形材料は、黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得る観点から、前記方法(2)で測定されるYI値が1.21以下であり、1.19以下が好ましく、1.17以下がより好ましく、1.13以下が更に好ましく、1.10が最も好ましい。YI値は、より具体的には実施例に記載の方法により測定できる。
 また本発明のポリカーボネート樹脂成形材料は、黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得る観点から、下記方法(3)で測定されるL値(明度)が、95.94以上であることが好ましく、95.95以上がより好ましく、95.97以上が更に好ましく、96.00以上が最も好ましい。
 方法(3):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×90mm×厚さ5mmの成形体を作製する。分光光度計を用いて、D65光源、10度視野の条件で該成形体のL値を測定する。
 L値は、より具体的には実施例に記載の方法により測定できる。
 また、本発明のポリカーボネート樹脂成形材料中に塩基性化合物が多量に存在すると、前述のo-ヒドロキシアセトフェノンと作用して黄変を促進させる傾向があり、本発明のポリカーボネート樹脂成形材料を用いて導光板を製造する場合には、導光性能を低下させる原因にもなる。塩基性化合物の中でもアミン化合物は、o-ヒドロキシアセトフェノンとの反応によりイミンを形成し、これが黄変を促進していると推測される。上記観点から、ポリカーボネート樹脂成形材料中の窒素原子の含有量は、好ましくは15ppm以下であり、より好ましくは10ppm以下、更に好ましくは8ppm以下、特に好ましくは5ppm以下である。
 前記アミン化合物等の塩基性化合物がポリカーボネート樹脂に含まれている場合には、該ポリカーボネート樹脂の洗浄回数あるいは洗浄時の撹拌動力を増やすこと等により、本発明のポリカーボネート樹脂成形材料中の塩基性化合物の含有量を低減することができる。
 ポリカーボネート樹脂成形材料中の窒素原子の含有量は、化学発光法により測定することができ、具体的には実施例に記載の方法により測定できる。
 また本発明のポリカーボネート樹脂成形材料は、波長500~600nmの範囲に吸収極大を有さないものであることが好ましい。ポリカーボネート樹脂成形材料には、黄色の着色を相殺するために波長500~600nmの範囲に吸収極大を有する着色剤(ブルーイング剤)等を配合することが知られている。しかしながらこの方法では、薄肉成形のために300℃を大きく超えるような高温条件下でポリカーボネート樹脂成形材料を成形する場合には、着色剤の劣化や揮発により、得られる成形体が黄変してしまう。本発明ではこのような着色剤等を配合しなくても、黄変が少なく、光透過性に優れる成形体を得ることができる。
 本発明において「波長500~600nmの範囲に吸収極大を有さない」とは、本発明のポリカーボネート樹脂成形材料を成形して得られる芳香族ポリカーボネート樹脂成形体6gを塩化メチレン50mLに溶解し、光路長5cmの石英セルを用いて紫外-可視分光光度計にて透過法で吸収スペクトルを測定した場合に、波長500~600nmの範囲において吸収極大が存在しないことをいう。本発明においては、波長500~600nmの範囲において芳香族ポリカーボネート樹脂に由来する吸収以外の吸収が存在しないことが好ましい。ポリカーボネート樹脂成形材料の波長500~600nmの範囲における吸収極大の有無は、具体的には実施例に記載の方法により評価することができる。
 さらに本発明のポリカーボネート樹脂成形材料は、プロトンNMRスペクトルを測定した際に、化学シフト1.5ppm以上1.9ppm以下の領域に観測される全シグナル強度を100とした時の、化学シフト6.3ppm以上6.7ppm以下の領域に観測される全シグナル強度の比が0.15以下であることが好ましく、0.10以下であることがより好ましい。上記シグナル強度比が0.15以下であると、より黄変が少なく、より光透過性に優れる芳香族ポリカーボネート樹脂成形体を得ることができる。なお、化学シフト1.5ppm以上1.9ppm以下の領域に観測されるシグナルは、主として芳香族ポリカーボネート樹脂の主構造であるビスフェノールAのイソプロピリデン基のプロトンに由来するものである。
 上記シグナル強度比は、プロトンNMRスペクトルを測定することにより求められる。プロトンNMRスペクトルは、具体的には実施例に記載の方法により測定できる。
(芳香族ポリカーボネート樹脂(A))
 本発明のポリカーボネート樹脂成形材料は、芳香族ポリカーボネート樹脂(A)を含有する。芳香族ポリカーボネート樹脂(A)としては、特に制限なく、公知の方法により製造されたものを用いることができる。
 例えば、二価フェノールとカーボネート前駆体とを溶液法(界面重縮合法)又は溶融法(エステル交換法)により製造したもの、すなわち、末端停止剤の存在下に、二価フェノールとホスゲンを反応させる界面重縮合法、又は末端停止剤の存在下に、二価フェノールとジフェニルカーボネート等とのエステル交換法等により反応させて製造されたものを用いることができる。
 二価フェノールとしては、様々なものを挙げることができるが、特に2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド及びビス(4-ヒドロキシフェニル)ケトン等を挙げることができる。この他、ハイドロキノン、レゾルシン及びカテコール等を挙げることもできる。これらは、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよいが、これらの中で、ビス(ヒドロキシフェニル)アルカン系のものが好ましく、特にビスフェノールAが好適である。二価フェノールとしてビスフェノールAを用いることで、ビスフェノールA構造を有するポリカーボネート樹脂が得られる。
 カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、又はハロホルメート等であり、具体的にはホスゲン、二価フェノールのジハロホルメート、ジフェニルカーボネート、ジメチルカーボネート及びジエチルカーボネート等である。
 なお、本発明において成分(A)は、分岐構造を有していてもよく、分岐剤としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α’’-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログリシン、トリメリット酸及び1,3-ビス(o-クレゾール)等がある。
 末端停止剤としては、一価のカルボン酸とその誘導体や、一価のフェノールを用いることができる。例えば、p-tert-ブチル-フェノール、p-フェニルフェノール、p-クミルフェノール、p-パーフルオロノニルフェノール、p-(パーフルオロノニルフェニル)フェノール、p-(パーフルオロキシルフェニル)フェノール、p-tert-パーフルオロブチルフェノール、1-(p-ヒドロキシベンジル)パーフルオロデカン、p-〔2-(1H,1H-パーフルオロトリドデシルオキシ)-1,1,1,3,3,3-ヘキサフルオロプロピル〕フェノール、3,5-ビス(パーフルオロヘキシルオキシカルボニル)フェノール、p-ヒドロキシ安息香酸パーフルオロドデシル、p-(1H,1H-パーフルオロオクチルオキシ)フェノール、2H,2H,9H-パーフルオロノナン酸、1,1,1,3,3,3-テトラフロロ-2-プロパノール等を挙げることができる。
 芳香族ポリカーボネート樹脂(A)としては、主鎖が下記一般式(I)で表される繰り返し単位を有するポリカーボネート樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 
(式中、RA1及びRA2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基を示し、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示し、a及びbは、それぞれ独立に0~4の整数を示す。)
 RA1及びRA2で示されるアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、各種ヘキシル基が挙げられる。RA1及びRA2で示されるアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。
 RA1及びRA2としては、いずれも、好ましくは炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。
 Xで示されるアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1~5のアルキレン基が好ましい。Xで示されるアルキリデン基としては、エチリデン基、イソプロピリデン基等が挙げられる。Xで示されるシクロアルキレン基としては、シクロペンタンジイル基やシクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5~10のシクロアルキレン基が好ましい。Xで示されるシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5-トリメチルシクロヘキシリデン基、2-アダマンチリデン基等が挙げられ、炭素数5~10のシクロアルキリデン基が好ましく、炭素数5~8のシクロアルキリデン基がより好ましい。
 a及びbは、それぞれ独立に0~4の整数を示し、好ましくは0~2、より好ましくは0又は1である。
 本発明において、芳香族ポリカーボネート樹脂(A)は、得られる成形体の透明性、機械的特性、及び熱的特性等の観点から、ビスフェノールA構造を有するポリカーボネート樹脂を含むことが好ましい。ビスフェノールA構造を有するポリカーボネート樹脂としては、具体的には前記一般式(I)において、Xがイソプロピリデン基のものが挙げられる。芳香族ポリカーボネート樹脂(A)中のビスフェノールA構造を有するポリカーボネート樹脂の含有量は、好ましくは50~100質量%、より好ましくは75~100質量%、更に好ましくは85~100質量%である。
 本発明において、芳香族ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、通常10,000~50,000程度、好ましくは13,000~35,000、より好ましくは14,000~20,000である。
 本発明において、この粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
  [η]=1.23×10-5Mv0.83
 本発明のポリカーボネート樹脂成形材料は、ポリオキシアルキレン構造を有するポリエーテル化合物(b1)及び酸発生化合物(b2)から選ばれる少なくとも1種の化合物を含有することが好ましい。これにより、300℃を大きく超えるような高温条件下で成形した場合にも黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得ることができる。上記効果が得られる理由については定かではないが、該化合物が前述のo-ヒドロキシアセトフェノンの生成を抑制していると推測される。
(ポリオキシアルキレン構造を有するポリエーテル化合物(b1))
 本発明に用いるポリオキシアルキレン構造を有するポリエーテル化合物(b1)は、(Rb1O)で表されるポリオキシアルキレン構造及び(Rb2O)で表されるポリオキシアルキレン構造を有することが好ましい。ここで、Rb1及びRb2は、それぞれ独立に炭素数1以上のアルキレン基を示す。m+nは5以上300未満であり、好ましくは10~200、より好ましくは20~100である。
 Rb1及びRb2で示されるアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1~5のアルキレン基が好ましい。
 m個のRb1O基において、複数のRb1は互いに同一のアルキレン基でもよく、炭素数の異なるアルキレン基であってもよい。すなわち、(Rb1O)で表されるポリオキシアルキレン基は、ポリオキシエチレン基やポリオキシプロピレン基等の単一のオキシアルキレン単位を繰り返し単位として有するものに限定されず、オキシエチレン単位及びオキシプロピレン単位など炭素数の異なる複数のオキシアルキレン単位を繰り返し単位として有するものであってもよい。
 また、Rb2もRb1と同様であり、n個のRb2O基において、複数のRb2は互いに同一のアルキレン基でもよく、炭素数の異なるアルキレン基であってもよい。
 また、ポリエーテル化合物(b1)は、下記一般式(II)で表される化合物(b1-1)、多価アルコールのアルキレンオキサイド付加物及びそのエステル(b1-2)、並びに環状ポリエーテル化合物(b1-3)から選ばれる少なくとも1種であることが好ましい。
   Rb3O-(Rb1O)-A-(Rb2O)-Rb4     (II)
(式中、Rb1及びRb2は、それぞれ独立に炭素数1以上のアルキレン基を示す。m+nは5以上300未満である。Rb3及びRb4は、それぞれ独立に水素原子、炭素数1~30の炭化水素基、炭素数1~30のアルカノイル基、炭素数2~30のアルケノイル基、又はグリシジル基を示す。Aは、単結合又は2価の有機基を示す。)
 Rb1及びRb2で示されるアルキレン基については上述のとおりである。また、(Rb1O)で表されるポリオキシアルキレン構造及び(Rb2O)で表されるポリオキシアルキレン構造についても上述のとおりである。
 Rb3及びRb4で示される炭素数1~30の炭化水素基としては、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基等が挙げられる。
 アルキル基及びアルケニル基は、直鎖状、分岐状、環状のいずれであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、シクロペンチル基、シクロヘキシル基、アリル基、プロペニル基、各種ブテニル基、各種ヘキセニル基、各種オクテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。アリール基としては、例えばフェニル基、トリル基、キシリル基等が挙げられる。アラルキル基としては、例えばベンジル基、フェネチル基、メチルベンジル基等が挙げられる。
 Rb3及びRb4で示される炭素数1~30のアルカノイル基としては、直鎖状でも分岐鎖状でもよく、例えばメタノイル基、エタノイル基、n-プロパノイル基、イソプロパノイル基、n-ブタノイル基、t-ブタノイル基、n-ヘキサノイル基、n-オクタノイル基、n-デカノイル基、n-ドデカノイル基、ベンゾイル基等が挙げられる。これらの中でも、相溶性、熱安定性及び製造容易性の観点から、炭素数1~20のアルカノイル基が好ましい。
 Rb3及びRb4で示される炭素数2~30のアルケノイル基としては、直鎖状でも分岐鎖状でもよく、例えばエテノイル基、n-プロペノイル基、イソプロペノイル基、n-ブテノイル基、t-ブテノイル基、n-ヘキセノイル基、n-オクテノイル基、n-デセノイル基、n-ドデセノイル基等が挙げられる。これらの中でも、低分子量とする観点、相溶性や溶解性の観点及び製造容易性の観点から、炭素数2~10のアルケノイル基が好ましく、炭素数2~6のアルケノイル基がより好ましい。
 Aで示される2価の有機基としては、例えば下式(a)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 
 前記一般式(II)で表される化合物(b1-1)の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリオキシテトラメチレンポリオキシエチレングリコール、ポリオキシエチレンモノメチルエーテル、ポリオキシエチレンジメチルエーテル、ポリオキシエチレン-ビスフェノールAエーテル、ポリオキシプロピレン-ビスフェノールAエーテル、ポリオキシエチレン-ポリオキシプロピレン-ビスフェノールAエーテル、ポリエチレングリコール-アリルエーテル、ポリエチレングリコール-ジアリルエーテル、ポリプロピレングリコール-アリルエーテル、ポリプロピレングリコール-ジアリルエーテル、ポリエチレングリコール-ポリプロピレングリコール-アリルエーテル、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールジステアレート等が挙げられる。これらは市販品として入手可能であり、例えば日油(株)製の「ユニオックス(登録商標)」、「ユニオール(登録商標)」、「ユニルーブ(登録商標)」、「ユニセーフ(登録商標)」、「ポリセリン(登録商標)」、「エピオール(登録商標)」等を使用することができる。
 多価アルコールのアルキレンオキサイド付加物及びそのエステル(b1-2)における多価アルコールとしては、グリセリン、ジグリセリルエーテル、ソルビトール等が挙げられる。
 環状ポリエーテル化合物(b1-3)の具体例としては、18クラウン6、ジベンゾ18クラウン6等が挙げられる。
 ポリエーテル化合物(b1)の数平均分子量としては、特に限定されないが、好ましくは200~10,000、より好ましくは500~8,000、更に好ましくは1,000~5,000である。
 上記ポリエーテル化合物(b1)は、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明のポリカーボネート樹脂成形材料中のポリエーテル化合物(b1)の含有量は、o-ヒドロキシアセトフェノンの生成を抑制し、300℃を大きく超えるような高温条件下で成形した場合にも黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得る観点から、芳香族ポリカーボネート樹脂(A)100質量部に対し、好ましくは0.01~5質量部、より好ましくは0.02~2質量部、更に好ましくは0.03~1質量部である。
(酸発生化合物(b2))
 本発明に用いる酸発生化合物(b2)としては、カルボン酸、スルホン酸、ボロン酸等の酸性化合物の無水物、及び、該酸性化合物のエステル等が挙げられる。o-ヒドロキシアセトフェノンの生成を抑制し、300℃を大きく超えるような高温条件下で成形した場合にも黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得る観点から、酸発生化合物(b2)はボロン酸無水物及びスルホン酸エステルから選ばれる少なくとも1種であることが好ましく、芳香環を有するボロン酸無水物及び芳香環を有するスルホン酸エステルから選ばれる少なくとも1種であることがより好ましい。
 上記ボロン酸無水物としては、芳香環上に置換基を有していてもよいアリールボロン酸無水物が好ましく、例えば、フェニルボロン酸無水物、4-メチルフェニルボロン酸無水物、4-メトキシフェニルボロン酸無水物、4-tert-ブトキシフェニルボロン酸無水物、4-フルオロフェニルボロン酸無水物等が挙げられる。熱安定性の観点からは、フェニルボロン酸無水物及び4-メトキシフェニルボロン酸無水物から選ばれる少なくとも1種がより好ましい。
 上記スルホン酸エステルとしては、p-トルエンスルホン酸のアルキルエステルが好ましい。該アルキルエステルは、好ましくは炭素数1~20、より好ましくは炭素数1~12であり、例えば、p-トルエンスルホン酸ブチル、p-トルエンスルホン酸オクチル、p-トルエンスルホン酸ドデシル等が挙げられる。酸発生のし易さ及び分解物の揮発し易さの観点からは、p-トルエンスルホン酸ブチル及びp-トルエンスルホン酸オクチルから選ばれる少なくとも1種がより好ましい。
 上記酸発生化合物(b2)は、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 ポリカーボネート樹脂成形材料中の酸発生化合物(b2)の含有量は、o-ヒドロキシアセトフェノンの生成を抑制し、300℃を大きく超えるような高温条件下で成形した場合にも黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得る観点から、芳香族ポリカーボネート樹脂(A)100質量部に対し、好ましくは0.0001~0.5質量部である。
 また、上記と同様の観点から、酸発生化合物(b2)がボロン酸無水物である場合には、その含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、より好ましくは0.01~0.5質量部、更に好ましくは0.02~0.5質量部である。一方、酸発生化合物(b2)がスルホン酸エステルである場合には、その含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、より好ましくは0.0001~0.1質量部、更に好ましくは0.0001~0.01質量部である。
 なお、本発明のポリカーボネート樹脂成形材料において、ポリエーテル化合物(b1)と酸発生化合物(b2)とを併用してもよい。この場合のポリエーテル化合物(b1)と酸発生化合物(b2)のそれぞれの好ましい含有量は、前記と同様である。
(酸化防止剤(C))
 本発明のポリカーボネート樹脂成形材料は、更に酸化防止剤(C)を含有することが好ましい。酸化防止剤(C)を含有することにより、高温条件下での成形においても酸化劣化を防止し、黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得ることができる。
 酸化防止剤(C)としては、例えばリン系酸化防止剤やヒンダードフェノール系酸化防止剤が挙げられる。ポリカーボネート樹脂成形材料の高温成形時の酸化劣化を抑制する観点からは、リン系酸化防止剤を用いることが好ましく、アリール基を有するリン系酸化防止剤であることがより好ましい。
 更に、当該アリール基を有するリン系酸化防止剤は、高温条件下での成形においても熱分解が少なく、ポリカーボネート樹脂成形材料の酸化劣化を抑制することができ、黄変の発生や光線透過率の低下の少ない成形体を得る観点から、40℃、湿度90%の条件下で放置したときに1,500時間後に分解して発生するフェノール構造を有する化合物の量が、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下、特に好ましくは0.5質量%以下となる化合物であることが好ましい。すなわち、本発明で好ましく用いられる、アリール基を有するリン系酸化防止剤は、耐加水分解性に優れ、フェノール構造を有する化合物の生成量が少ないものである。なお、上記のフェノール構造を有する化合物の量は、ガスクロマトグラフにて定量される。
 本発明に用いる酸化防止剤(C)は、好ましくはアリール基及びフォスファイト構造を有するリン系酸化防止剤であり、より好ましくは下記一般式(III)で表されるペンタエリスリトールジフォスファイト化合物である。
Figure JPOXMLDOC01-appb-C000003
 
 
 式中、Y~Yは、それぞれ独立に炭素数6以上の炭化水素基を示し、好ましくはそれぞれ独立に置換又は無置換のクミル基、フェニル基、ナフチル基又はビフェニル基である。
 本発明に用いる酸化防止剤(C)は、更に好ましくは下記一般式(III-1)で表されるペンタエリスリトールジフォスファイト化合物である。
Figure JPOXMLDOC01-appb-C000004
 
(式中、RC1~RC8は、それぞれ独立にアルキル基又はアルケニル基を示す。RC1とRC2、RC3とRC4、RC5とRC6、RC7とRC8は、互いに結合して環を形成してもよい。RC9~RC12は、それぞれ独立に水素原子又はアルキル基を示す。m1~m4は、それぞれ独立に0~5の整数である。Z~Zは、それぞれ独立に単結合又は炭素原子を示す。Z~Zが単結合を示す場合、RC1~RC8は一般式(III-1)から除外される。)
 上記一般式(III)又は(III-1)で表されるペンタエリスリトールジフォスファイト化合物は、三塩化リン及びペンタエリスリトールに塩素系溶剤を加えてペンタエリスリトールジクロロフォスファイトを得た後、芳香族系溶剤及び有機窒素含有塩基化合物の存在下で加熱混合することで得ることができる(例えば特開2004-018406号公報を参照)。
 上記一般式(III)又は(III-1)で表されるペンタエリスリトールジフォスファイト化合物の中でも、ポリカーボネート樹脂成形材料に対して耐熱性及び耐加水分解性を良好に付与することができ、また入手容易であることから、下記式(III-2)で表されるビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイトが特に好適である。この化合物は市販品として入手可能であり、例えばDover Chemical社製の「Doverphos(登録商標) S-9228PC」を使用することができる。
Figure JPOXMLDOC01-appb-C000005
 
 上記酸化防止剤(C)は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 本発明のポリカーボネート樹脂成形材料中の酸化防止剤(C)の含有量は、酸化劣化を抑制する観点から、芳香族ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.005~1質量部、より好ましくは0.01~0.8質量部、更に好ましくは0.03~0.25質量部である。
(添加剤)
 本発明のポリカーボネート樹脂成形材料には、上述の成分の他に、ポリオルガノシロキサン等を適宜添加することができる。

 ポリオルガノシロキサンとしては、アルコキシ基、アリールオキシ基、ポリオキシアルキレン基、カルボキシル基、シラノール基、アミノ基、メルカプト基、エポキシ基及びビニル基等の官能基を1種以上有する化合物であることが好ましい。
 ポリオルガノシロキサンの添加量は、芳香族ポリカーボネート樹脂(A)100質量部に対して、0.01~0.15質量部であることが好ましい。より好ましくは0.02~0.15質量部、更に好ましくは0.05~0.1質量部である。0.01~0.15質量部の範囲であれば、他の成分と協奏して、離型性を向上させることができ、さらに300℃を大きく超えるような高温の成形条件、特に連続成形条件であっても、シルバーの発生や、金型付着物を大幅に低減することができる。
 ポリオルガノシロキサンの粘度は、離型性としての滑性効果の観点から、25℃において、好ましくは10mm/s以上であり、ポリカーボネート樹脂への分散性の観点から、好ましくは200mm/s以下である。上記観点から、ポリオルガノシロキサンの粘度は、より好ましくは20~150mm/s、更に好ましくは40~120mm/sの範囲である。
 ポリオルガノシロキサンの屈折率は、ポリカーボネート樹脂成形材料に添加した際に透明性を低下させないために、ポリカーボネート樹脂との屈折率の差をできるだけ小さくすることが好ましい。芳香族ポリカーボネート樹脂(A)の屈折率は1.58であることから、ポリオルガノシロキサンの屈折率は、好ましくは1.45以上、より好ましくは1.50以上、更に好ましくは1.52以上である。   
〔ポリカーボネート樹脂成形材料の製造方法〕
 本発明のポリカーボネート樹脂成形材料の製造方法は特に限定されない。
 例えば前述の芳香族ポリカーボネート樹脂(A)、及び必要に応じ前記化合物(b1)、(b2)、酸化防止剤(C)、並びに各種添加剤を混合し、溶融混練を行う。溶融混練は、通常用いられている方法、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法により行うことができる。溶融混練に際しての加熱温度は、通常220~300℃程度の範囲で適宜選定される。
(芳香族ポリカーボネート樹脂成形体の製造方法)
 芳香族ポリカーボネート樹脂成形体は、上記ポリカーボネート樹脂成形材料を成形して得られる。具体的には、上記ポリカーボネート樹脂成形材料の溶融混練物、あるいは、得られた樹脂ペレットを原料として、公知の成形方法、例えば中空成形法、射出成形法、射出圧縮成形法、押出成形法、真空成形法、ブロー成形法、プレス成形法、圧空成形法、発泡成形法、熱曲げ成形法、圧縮成形法、カレンダー成形法及び回転成形法等の成形法を適用することができる。
 本発明のポリカーボネート樹脂成形材料は、例えば厚さ0.5mm以下の薄肉部を有する成形体を得る観点から、射出成形法など、成形材料に高い流動性が要求される成形法を用いることが好ましい。成形条件については特に制限はないが、薄肉部を有する成形体を得る観点から300℃以上で成形することが好ましい。これにより、得られる成形体の光学的な歪みを低減することができ、また、プリズム部等の微細な加工部分の転写も良好となる。成形温度としては310~360℃がより好ましい。
[成形体]
 本発明のポリカーボネート樹脂成形材料を成形することにより、好ましくは厚さ0.5mm以下、より好ましくは0.45mm以下、更に好ましくは0.4mm以下、特に好ましくは0.35mm以下の薄肉部を有する芳香族ポリカーボネート樹脂成形体(以下、単に「成形体」ともいう)を製造することができる。本発明において「厚さ0.5mm以下の薄肉部を有する」とは、成形体の一部又は全部が厚さ0.5mm以下であるものをいう。
 ここで、芳香族ポリカーボネート樹脂成形体の最も薄い部分の厚さが薄いほど本発明の効果を発揮することができるが、例えば、最も薄い部分の厚さの下限を0.1mm以上、0.15mm以上、又は0.2mm以上とすることもできる。
 本発明のポリカーボネート樹脂成形材料を成形して得られる成形体の形状には特に制限はないが、導光板等に適用する観点からは、平板、レンズ効果を有する曲面板、プリズム転写板等の板状の成形体が好ましい。導光板等に適用される当該成形体は、長手方向の長さが60mm以上であり、かつ少なくとも80%を占める領域の厚さが0.7mm以下であることが好ましく、長手方向の長さが65mm以上であり、かつ少なくとも80%を占める領域の厚さが0.5mm以下であることがより好ましく、長手方向の長さが70mm以上であり、かつ少なくとも80%を占める領域の厚さが0.45mm以下であることが更に好ましく、長手方向の長さが70mm以上であり、かつ少なくとも80%を占める領域の厚さが0.4mm以下であることが更に好ましい。
 なお、長手方向の長さの上限は特にないが、例えば、300mm以下とすることもできる。
 また、当該成形体の少なくとも80%を占める領域の厚さの下限は特にないが、例えば、0.1mm以上、0.15mm以上、又は0.2mm以上とすることもできる。なお本発明において「少なくとも80%を占める領域の厚さが0.7mm以下」とは、例えば成形体が板状である場合には、該板状成形体の全体の面積のうち、少なくとも80%を占める領域において厚さが0.7mm以下であることをいう。
[導光板]
 上記芳香族ポリカーボネート樹脂成形体は、光学成形品、特に、導光板用途に有用である。
 上記成形体からなる導光板としては、特に制限はなく、平板でもよく、レンズ効果を有する曲面板やプリズム転写板でもよいが、厚さ0.5mm以下の薄肉部を有することが好ましい。導光板の好ましい大きさ及び厚みは、前述の成形体と同じである。導光板の成形法も特に限定されず、目的、用途に応じて適宜、形状や成形法を選定すればよい。導光板の好ましい製造方法についても、前述の成形体の製造方法と同じである。
 実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
以下に、実施例及び比較例で用いたビスフェノールAポリカーボネート樹脂(PC-1)~(PC-3)の製造例を示す。
製造例1(ビスフェノールAポリカーボネート樹脂(PC-1)の製造)
 「タフロンFN1500」(出光興産株式会社製、ビスフェノールAポリカーボネート樹脂、粘度平均分子量:14,500)4kgを塩化メチレン25Lに溶解し、邪魔板及び撹拌翼付の洗浄機中で、0.03mol/Lの水酸化ナトリウム水溶液5L、0.2mol/Lの塩酸5L、純水5Lの順で激しく攪拌混合したのち静置分離した。水相の電気伝導度が0.05μS/m以下になったことを確認後、さらに純水を加えて1回撹拌混合を行った。洗浄により得られたポリカーボネート樹脂のジクロロメタン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥して、ビスフェノールAポリカーボネート樹脂(PC-1)を得た。
製造例2(ビスフェノールAポリカーボネート樹脂(PC-2)の製造)
(1)ポリカーボネートオリゴマー合成工程
 5.6質量%水酸化ナトリウム水溶液に、後に溶解するビスフェノールA(以下、BPAと略記することがある)に対して2000質量ppmの亜二チオン酸ナトリウムを加え、これにビスフェノールA濃度が13.5質量%になるようにビスフェノールAを溶解し、ビスフェノールAの水酸化ナトリウム水溶液を調製した。このビスフェノールAの水酸化ナトリウム水溶液40L/hrと塩化メチレン15L/hrおよびホスゲン4.0kg/hrを、内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入し、これに更にビスフェノールAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hr及び1質量%トリエチルアミン水溶液を0.64L/hrを添加して反応を行った。
 槽型反応器から溢れる反応液を連続的に抜出し、静置することで水相を分離除去し、塩化メチレン相を採取した。得られたポリカーボネートオリゴマーは濃度325g/L、クロロホーメート基濃度は0.77mol/Lであった。
(2)ポリカーボネートの重合工程
 邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器の冷却溶媒の温度が20℃以下になった後、オリゴマー溶液15L、塩化メチレン8.9L、p-tert-ブチルフェノール119g、トリエチルアミン0.7mL、BPAの水酸化ナトリウム水溶液(NaOH647gと後に溶解するBPAに対して2000質量ppmの亜二チオン酸ナトリウムを水9.5Lに溶解した水溶液にBPA1185gを溶解させたもの)を添加し、30分間重合反応を実施した。その後0.8mLのトリエチルアミンを加えさらに30分撹拌した。
 希釈のため塩化メチレン15Lを加えた後、ポリカーボネート樹脂を含む有機相と過剰のBPA及びNaOHを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂の塩化メチレン溶液を、その溶液に対し順次15容量%の0.03mol/L・NaOH水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂のジクロロメタン溶液を濃縮、粉砕し、得られたフレークを減圧下、100℃で乾燥し、ビスフェノールAポリカーボネート樹脂(PC-2)を得た。
製造例3(ビスフェノールAポリカーボネート樹脂(PC-3)の製造)
 製造例2のポリカーボネート重合工程において、冷却溶媒の温度が30℃以下となった後にトリエチルアミンを分割して添加する代わりに、トリエチルアミン1.5mLを一括添加し、60分間重合反応を行った他は同様にして実施し、ビスフェノールAポリカーボネート樹脂(PC-3)を得た。
実施例1~11及び比較例1~5
 表1に示す割合で各成分を混合した後、スクリュー径40mmのベント付単軸押出機(田辺プラスチックス機械(株)製「VS-40」)により、シリンダー温度250℃で溶融混練し、押し出して樹脂ペレット(ポリカーボネート樹脂成形材料)を得た。この樹脂ペレットを110℃で5時間乾燥した後、射出成形機「日精ES1000」(日精樹脂工業(株)製、型締め力80トン)を用いて、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×80mm×厚さ0.3mmの平板状成形体を作製した。o-ヒドロキシアセトフェノンの含有量及びプロトンNMRによるシグナルの解析はこの成形体を用いて行った。
 なお、実施例及び比較例で用いた成分及び実施例及び比較例で得られた芳香族ポリカーボネート樹脂成形体は、以下に示す方法で各種評価を行った。
[粘度平均分子量(Mv)の測定]
 ウベローデ型粘度計にて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求めた後、次式にて算出した。
  [η]=1.23×10-5Mv0.83
[リン系酸化防止剤の耐加水分解試験]
 リン系酸化防止剤を40℃、湿度90%の条件下で1,500時間放置した。その後、該リン系酸化防止剤が分解して発生する、フェノール構造を有する化合物の質量を、(株)島津製作所製のガスクロマトグラフ装置「GC-2014」を用いて定量し、リン系酸化防止剤に対する割合を測定した。
[吸収スペクトルの測定]
 実施例及び比較例で得られた成形体6gを塩化メチレン50mLに溶解し、光路長5cmの石英セルを用いて、紫外-可視分光光度計「UV-2450」((株)島津製作所製)にて、波長350~780nmの吸収スペクトルを測定した。レファレンス側には、それぞれの実施例及び比較例で用いた芳香族ポリカーボネート樹脂6gを同様に塩化メチレンに溶解したものを用い、分光の差スペクトルを測定し、波長500~600nmの範囲における吸収極大の有無を確認した。
 なお、実施例1~11、比較例1~3及び5においては、波長500~600nmの範囲における吸収は観測されなかった。
[o-ヒドロキシアセトフェノンの含有量の測定]
 実施例及び比較例で得られた成形体を粉砕してクロロホルムに溶解させたのち、アセトンを加え、沈殿した樹脂分を除去した。樹脂分を除去した後の溶液中に含まれるo-ヒドロキシアセトフェノンを高速液体クロマトグラフィーにより定量した。
[窒素原子含有量の測定]
 実施例及び比較例で得られた成形体を粉砕して、微量分析装置「TS-100」((株)三菱化学アナリテック製、窒素分析用検出器:ND-100を装備)を用い、化学発光法により、試料量:1~20mg、燃焼温度:1000℃の条件にて窒素原子含有量を測定した。
[プロトンNMRスペクトルの測定]
 実施例及び比較例で得られた成形体を用いて、以下の条件にてプロトンNMRスペクトルを測定し、化学シフト1.5ppm以上1.9ppm以下の領域に観測される全シグナル強度を100とした時の、化学シフト6.3ppm以上6.7ppm以下の領域に観測される全シグナル強度の比を求めた。化学シフト値は、芳香族ポリカーボネート樹脂中のビスフェノールAのイソプロピリデン基のプロトンのシグナルを基準(1.67ppm)とした。
 測定装置:「ECA500」(株式会社JEOL RESONANCE製)
 測定溶媒:CDCl
 フリップ角:45°
 繰り返し時間:9秒
 積算回数:256回
 観測範囲:20ppm
 観測中心:5ppm
[YI値の測定]
 樹脂ペレットを110℃で5時間乾燥した後、射出成形機「日精ES1000」(日精樹脂工業(株)製、型締め力80トン)を用いて、280℃及び360℃のシリンダー温度設定で、金型温度80℃、サイクル時間50秒にて50mm×90mm×厚さ5mmの平板状成形体を作製した。
 得られた成形体について、分光光度計「U-4100」(日立ハイテクノロジーズ(株)製)を用い、C光源、2度視野の条件でYI値を測定した。なお、合格基準は、360℃成形で得られた成形体のYI値が1.21以下である。
[L値の測定]
 360℃のシリンダー温度設定で、金型温度80℃、サイクル時間50秒にて作製した上記の50mm×90mm×厚さ5mmの平板状成形体について、分光光度計「U-4100」(日立ハイテクノロジーズ(株)製)を用い、D65光源、10度視野の条件でL値を測定した。
[成分組成]
 実施例及び比較例で使用した各成分は以下のとおりである。
<芳香族ポリカーボネート樹脂(A)>
(A1):「タフロンFN1500」(出光興産(株)製、ビスフェノールAポリカーボネート樹脂、粘度平均分子量:14,500)
(A2):タフロンFN1200(出光興産(株)製、ビスフェノールAポリカーボネート樹脂、粘度平均分子量:11,500)
(A3):製造例1で得られたビスフェノールAポリカーボネート樹脂(PC-1)(粘度平均分子量:14,300)
(A4):製造例2で得られたビスフェノールAポリカーボネート樹脂(PC-2)(粘度平均分子量:14,200)
(A5):製造例3で得られたビスフェノールAポリカーボネート樹脂(PC-3)(粘度平均分子量:14,600)
<ポリオキシアルキレン構造を有するポリエーテル化合物(b1)>
(b1-1):「ポリセリンDC1100」(日油(株)製、ポリオキシテトラメチレングリコール-ポリオキシエチレングリコール)
(b1-2):「ポリセリンDC3000E」(日油(株)製、ポリオキシテトラメチレングリコール-ポリオキシエチレングリコール)
(b1-3):「ユニオックスGT-20IS」(日油(株)製、ポリオキシエチレン-トリイソステアリン酸)
(b1-4):「ユニルーブ 50DB-22」(日油(株)製、ポリオキシエチレン-ポリオキシプロピレン-ビスフェノールAエーテル)
(b1-5):「エピオールE-1000」(日油(株)製、ポリエチレングリコールジグリシジルエーテル)
<酸発生化合物(b2)>
(b2-1):フェニルボロン酸無水物(北興化学工業(株)製)
(b2-2):4-メトキシフェニルボロン酸無水物(北興化学工業(株)製)
(b2-3):p-トルエンスルホン酸ブチル(和光純薬工業(株)製)
(b2-4):p-トルエンスルホン酸オクチル(和光純薬工業(株)製)
<酸化防止剤(C)>
(C1):「Doverphos S-9228PC」(ドーバーケミカル社製、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイト、耐加水分解試験後のジクミルフェノールの生成量:0.15質量%)
(C2):「アデカスタブ2112」((株)ADEKA製、トリス2,4-ジ-tert-ブチルフェニルフォスファイト、耐加水分解試験後の2,4-ジ-tert-ブチルフェノールの生成量:6質量%)
<その他の成分>
・「マクロレックスバイオレット3R」(ランクセス社製、波長558nmに吸収極大を有するブルーイング剤)
・「PSJ-ポリスチレン GPPS 679」(PSジャパン(株)製、ポリスチレン)
Figure JPOXMLDOC01-appb-T000006
 
 表1より、本発明のポリカーボネート樹脂成形材料を成形して得られる芳香族ポリカーボネート樹脂成形体は黄変が少なく、光透過性に優れることがわかる。これに対し、比較例のポリカーボネート樹脂成形材料を成形して得られる芳香族ポリカーボネート樹脂成形体は黄変が顕著である。
 本発明によれば、薄肉成形のために300℃を大きく超えるような高温条件下で成形した場合にも黄変の発生や光線透過率の低下が少なく、幅広い温度域で成形可能であり、薄肉部を有し、黄変が少なく、光透過性に優れる芳香族ポリカーボネート樹脂成形体を得ることができるポリカーボネート樹脂成形材料を提供することができる。当該ポリカーボネート樹脂成形材料は、特に導光板等の光学成形品の製造に有用である。

Claims (13)

  1.  芳香族ポリカーボネート樹脂(A)を含有するポリカーボネート樹脂成形材料であって、
     下記方法(1)で測定されるo-ヒドロキシアセトフェノンの含有量が1質量ppm以下であり、
     下記方法(2)で測定されるYI値が1.21以下であるポリカーボネート樹脂成形材料。
     方法(1):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×80mm×厚さ0.3mmの成形体を作製する。該成形体を粉砕してクロロホルムに溶解させ、溶液中に含まれるo-ヒドロキシアセトフェノンを高速液体クロマトグラフィーにより定量する。
     方法(2):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度設定360℃、金型温度80℃、サイクル時間50秒にて50mm×90mm×厚さ5mmの成形体を作製する。分光光度計を用いて、C光源、2度視野の条件で該成形体のYI値を測定する。
  2.  下記方法(3)で測定されるL値が95.94以上である、請求項1に記載のポリカーボネート樹脂成形材料。
     方法(3):ポリカーボネート樹脂成形材料を用いて、射出成形法により、シリンダー温度360℃、金型温度80℃、サイクル時間20秒にて50mm×90mm×厚さ5mmの成形体を作製する。分光光度計を用いて、D65光源、10度視野の条件で該成形体のL値を測定する。
  3.  窒素原子の含有量が15ppm以下である、請求項1又は2に記載のポリカーボネート樹脂成形材料。
  4.  波長500~600nmの範囲に吸収極大を有さない、請求項1~3のいずれかに記載のポリカーボネート樹脂成形材料。
  5.  プロトンNMRスペクトルを測定した際に、化学シフト1.5ppm以上1.9ppm以下の領域に観測される全シグナル強度を100とした時の、化学シフト6.3ppm以上6.7ppm以下の領域に観測される全シグナル強度の比が0.15以下である、請求項1~4のいずれかに記載のポリカーボネート樹脂成形材料。
  6.  ポリオキシアルキレン構造を有するポリエーテル化合物(b1)を含有する、請求項1~5のいずれかに記載のポリカーボネート樹脂成形材料。
  7.  酸発生化合物(b2)を含有する、請求項1~6のいずれかに記載のポリカーボネート樹脂成形材料。
  8.  前記酸発生化合物(b2)がボロン酸無水物及びスルホン酸エステルから選ばれる少なくとも1種である、請求項7に記載のポリカーボネート樹脂成形材料。
  9.  前記ポリエーテル化合物(b1)の含有量が、前記芳香族ポリカーボネート樹脂(A)100質量部に対し0.01~5質量部である、請求項6~8のいずれかに記載のポリカーボネート樹脂成形材料。
  10.  前記酸発生化合物(b2)の含有量が、前記芳香族ポリカーボネート樹脂(A)100質量部に対し0.0001~0.5質量部である、請求項7~9のいずれかに記載の芳香族ポリカーボネート樹脂成形材料。
  11.  前記芳香族ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000~50,000である、請求項1~10のいずれかに記載の芳香族ポリカーボネート樹脂成形材料。
  12.  請求項1~11のいずれかに記載の芳香族ポリカーボネート樹脂成形材料を成形してなる成形体。
  13.  請求項12に記載の成形体からなる導光板。
     
PCT/JP2014/079765 2013-11-11 2014-11-10 ポリカーボネート樹脂成形材料 WO2015068845A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/035,364 US9732185B2 (en) 2013-11-11 2014-11-10 Polycarbonate resin molding material
KR1020217023215A KR102416063B1 (ko) 2013-11-11 2014-11-10 폴리카보네이트 수지 성형 재료
CN201480060673.4A CN105705581B (zh) 2013-11-11 2014-11-10 聚碳酸酯树脂成形材料
EP14859994.7A EP3070125B1 (en) 2013-11-11 2014-11-10 Polycarbonate resin molding material
KR1020227021962A KR102514157B1 (ko) 2013-11-11 2014-11-10 폴리카보네이트 수지 성형 재료
KR1020167011973A KR20160085765A (ko) 2013-11-11 2014-11-10 폴리카보네이트 수지 성형 재료
US15/643,083 US10221279B2 (en) 2013-11-11 2017-07-06 Polycarbonate resin molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013233430A JP6828954B2 (ja) 2013-11-11 2013-11-11 ポリカーボネート樹脂成形材料
JP2013-233430 2013-11-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/035,364 A-371-Of-International US9732185B2 (en) 2013-11-11 2014-11-10 Polycarbonate resin molding material
US15/643,083 Continuation US10221279B2 (en) 2013-11-11 2017-07-06 Polycarbonate resin molding material

Publications (1)

Publication Number Publication Date
WO2015068845A1 true WO2015068845A1 (ja) 2015-05-14

Family

ID=53041617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079765 WO2015068845A1 (ja) 2013-11-11 2014-11-10 ポリカーボネート樹脂成形材料

Country Status (7)

Country Link
US (2) US9732185B2 (ja)
EP (1) EP3070125B1 (ja)
JP (1) JP6828954B2 (ja)
KR (3) KR102514157B1 (ja)
CN (2) CN105705581B (ja)
TW (1) TWI638004B (ja)
WO (1) WO2015068845A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6770434B2 (ja) * 2014-10-17 2020-10-14 出光興産株式会社 ポリカーボネート樹脂組成物
KR101981561B1 (ko) * 2015-03-26 2019-05-23 스미카 폴리카르보네이트 가부시키가이샤 폴리카르보네이트 수지 조성물 및 광학용 성형품
KR101956832B1 (ko) 2015-06-12 2019-03-12 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이로 이루어진 광학 성형품
US20190203043A1 (en) 2016-05-27 2019-07-04 Sabic Global Technologies B.V. Copolycarbonate lenses, methods of manufacture, and applications thereof
US10723877B2 (en) 2016-05-27 2020-07-28 Sabic Global Technologies B.V. Copolycarbonate lenses, methods of manufacture, and applications thereof
CN109415534B (zh) 2016-07-25 2020-11-10 沙特基础工业全球技术有限公司 具有增强的光学性质的聚碳酸酯组合物、由其形成的制品和制造方法
JP6501099B2 (ja) * 2017-02-01 2019-04-17 出光興産株式会社 ポリカーボネート樹脂組成物
KR102642651B1 (ko) * 2017-04-18 2024-02-29 미쓰비시 엔지니어링-플라스틱스 코포레이션 광학 부품용 폴리카보네이트 수지 조성물 및 광학 부품
JP7252727B2 (ja) * 2018-09-14 2023-04-05 出光興産株式会社 ポリカーボネート系樹脂組成物
JP7152914B2 (ja) 2018-09-14 2022-10-13 出光興産株式会社 ポリカーボネート系樹脂組成物
JP2021084939A (ja) * 2019-11-26 2021-06-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びその成形品

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469364B2 (ja) 1984-06-07 1992-11-06 Takashi Mori
JP2002060609A (ja) 2000-08-18 2002-02-26 Idemitsu Petrochem Co Ltd 芳香族ポリカーボネート樹脂組成物および成形品
JP2004018406A (ja) 2002-06-13 2004-01-22 Teijin Chem Ltd ペンタエリスリトールジホスファイトの製造方法
JP2004051700A (ja) * 2002-07-17 2004-02-19 Mitsubishi Engineering Plastics Corp 導光板用芳香族ポリカーボネート樹脂組成物および面光源体
JP2006169451A (ja) * 2004-12-20 2006-06-29 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び光反射用途の成形品
JP2007204737A (ja) * 2006-01-06 2007-08-16 Mitsubishi Engineering Plastics Corp 導光板用芳香族ポリカーボネート樹脂組成物および導光板
JP2008163070A (ja) * 2006-12-27 2008-07-17 Sumitomo Dow Ltd 導光板用ポリカーボネート樹脂組成物及びそれからなる導光板
WO2011083635A1 (ja) 2010-01-07 2011-07-14 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及びそれを用いた光学成形品
WO2013088796A1 (ja) 2011-12-13 2013-06-20 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
JP2013139097A (ja) * 2011-12-28 2013-07-18 Idemitsu Kosan Co Ltd ポリカーボネート樹脂組成物ペレット及びその製造方法
JP2013231899A (ja) * 2012-05-01 2013-11-14 Mitsubishi Engineering Plastics Corp 導光板用ポリカーボネート樹脂組成物および導光板

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116386B2 (ja) * 1991-02-21 2000-12-11 三菱化学株式会社 熱安定性に優れた芳香族ポリカーボネート樹脂
DE4132629A1 (de) 1991-10-01 1993-04-08 Bayer Ag Verwendung von kern-aromatischen sulfonsaeureestern zur stabilisierung von thermoplastischen polycarbonaten gegen einwirkung von gammastrahlen
ES2185644T3 (es) 1993-08-26 2003-05-01 Teijin Ltd Procedimiento de produccion de policarbonato estabilizado.
JP3263230B2 (ja) 1994-03-11 2002-03-04 三井化学株式会社 芳香族ポリカーボネートの製造方法
JP3218150B2 (ja) * 1994-07-15 2001-10-15 ダイセル化学工業株式会社 非着色性ポリカーボネート樹脂
DE69628613T2 (de) 1995-07-12 2004-04-29 Mitsubishi Engineering-Plastics Corp. Polycarbonatharzzusammensetzung
JPH09165442A (ja) 1995-10-11 1997-06-24 Mitsubishi Gas Chem Co Inc 光記録媒体用ポリカーボネート
CN1266443A (zh) * 1998-04-27 2000-09-13 帝人株式会社 碳酸二酯、芳香族聚碳酸酯、制造装置及制造方法
US6727294B2 (en) * 1998-07-28 2004-04-27 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition containing a naphthalene dicarboxylic acid moiety and an aliphatic diol moiety
US6136945A (en) 1999-05-17 2000-10-24 General Electric Company Method for quenching of polycarbonate and compositions prepared thereby
WO2001051875A2 (en) 2000-01-13 2001-07-19 Beamhit, Llc Firearm laser training system and method employing modified blank cartridges for simulating operation of a firearm
JP2001279085A (ja) 2000-01-25 2001-10-10 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物、熱可塑性樹脂成型品および医療用部品
JP4050575B2 (ja) * 2002-08-29 2008-02-20 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形品
JP2004109162A (ja) * 2002-09-13 2004-04-08 Mitsubishi Engineering Plastics Corp 導光板および面光源体
DE10300598A1 (de) 2003-01-10 2004-07-22 Bayer Ag Verfahren zur Herstellung von Polycarbonaten
EP1512723B1 (en) * 2003-09-02 2007-11-14 Mitsubishi Engineering-Plastics Corporation Aromatic polycarbonate resin pellets for light guide plate, light guide plate, method for producing light guide plate and surface light source unit using the same
EP1609818B1 (de) 2004-06-24 2010-03-10 Bayer MaterialScience AG Thermostabilisierte Polycarbonat-Zusammensetzungen
JP4799126B2 (ja) 2004-11-05 2011-10-26 帝人化成株式会社 眼鏡レンズおよび眼鏡レンズ用ポリカーボネート樹脂成形材料
US7786195B2 (en) 2004-11-05 2010-08-31 Teijin Chemicals Ltd. Spectacle lens and polycarbonate resin molding material for optical moldings
TWM278909U (en) 2005-05-23 2005-10-21 Innolux Display Corp Light guide plate and backlight module using the same
KR101479113B1 (ko) 2006-01-06 2015-01-07 미쓰비시 엔지니어링-플라스틱스 코포레이션 도광판용 방향족 폴리카보네이트 수지 조성물 및 도광판
JP5064720B2 (ja) * 2006-05-11 2012-10-31 出光興産株式会社 ポリカーボネート系樹脂組成物、それを用いた光学成形体及び照明ユニット
JP5219490B2 (ja) 2007-06-06 2013-06-26 住化スタイロンポリカーボネート株式会社 光学用ポリカーボネート樹脂組成物及びそれからなる光学用成形品
JP5112980B2 (ja) 2008-08-01 2013-01-09 帝人化成株式会社 光学情報記録媒体用芳香族ポリカーボネート樹脂組成物および光学情報記録媒体
JP2010037380A (ja) * 2008-08-01 2010-02-18 Teijin Chem Ltd 導光板用芳香族ポリカーボネート樹脂組成物及び導光板
JP5593040B2 (ja) * 2009-05-29 2014-09-17 出光興産株式会社 ポリカーボネート樹脂組成物、および前記樹脂組成物からなる成形品
JP2011112834A (ja) 2009-11-26 2011-06-09 Mitsubishi Rayon Co Ltd シート状成形物、およびそれを用いた面光源装置用導光体
JP2012177096A (ja) 2011-02-04 2012-09-13 Nitto Denko Corp 表面保護用粘着テープ
CN102604068B (zh) * 2012-02-24 2013-06-26 青岛科技大学 一种聚碳酸酯胶液的洗涤净化方法
US9701835B2 (en) * 2013-07-26 2017-07-11 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition for thin optical component, and thin optical component
JP5699188B2 (ja) * 2013-07-26 2015-04-08 三菱エンジニアリングプラスチックス株式会社 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469364B2 (ja) 1984-06-07 1992-11-06 Takashi Mori
JP2002060609A (ja) 2000-08-18 2002-02-26 Idemitsu Petrochem Co Ltd 芳香族ポリカーボネート樹脂組成物および成形品
JP2004018406A (ja) 2002-06-13 2004-01-22 Teijin Chem Ltd ペンタエリスリトールジホスファイトの製造方法
JP2004051700A (ja) * 2002-07-17 2004-02-19 Mitsubishi Engineering Plastics Corp 導光板用芳香族ポリカーボネート樹脂組成物および面光源体
JP2006169451A (ja) * 2004-12-20 2006-06-29 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び光反射用途の成形品
JP2007204737A (ja) * 2006-01-06 2007-08-16 Mitsubishi Engineering Plastics Corp 導光板用芳香族ポリカーボネート樹脂組成物および導光板
JP2008163070A (ja) * 2006-12-27 2008-07-17 Sumitomo Dow Ltd 導光板用ポリカーボネート樹脂組成物及びそれからなる導光板
WO2011083635A1 (ja) 2010-01-07 2011-07-14 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及びそれを用いた光学成形品
WO2013088796A1 (ja) 2011-12-13 2013-06-20 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
JP2013139097A (ja) * 2011-12-28 2013-07-18 Idemitsu Kosan Co Ltd ポリカーボネート樹脂組成物ペレット及びその製造方法
JP2013231899A (ja) * 2012-05-01 2013-11-14 Mitsubishi Engineering Plastics Corp 導光板用ポリカーボネート樹脂組成物および導光板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070125A4

Also Published As

Publication number Publication date
EP3070125B1 (en) 2018-07-04
CN105705581B (zh) 2018-03-23
EP3070125A1 (en) 2016-09-21
KR20210094160A (ko) 2021-07-28
TW201522496A (zh) 2015-06-16
KR20160085765A (ko) 2016-07-18
KR20220100985A (ko) 2022-07-18
US20160297924A1 (en) 2016-10-13
US9732185B2 (en) 2017-08-15
CN108219431B (zh) 2021-12-24
CN105705581A (zh) 2016-06-22
CN108219431A (zh) 2018-06-29
TWI638004B (zh) 2018-10-11
JP2015093913A (ja) 2015-05-18
EP3070125A4 (en) 2017-06-28
JP6828954B2 (ja) 2021-02-10
KR102514157B1 (ko) 2023-03-24
US20170298176A1 (en) 2017-10-19
US10221279B2 (en) 2019-03-05
KR102416063B1 (ko) 2022-07-01

Similar Documents

Publication Publication Date Title
JP7106809B2 (ja) 芳香族ポリカーボネート樹脂成形体
JP6828954B2 (ja) ポリカーボネート樹脂成形材料
JP6408760B2 (ja) ポリカーボネート樹脂組成物
CN106795364B (zh) 聚碳酸酯树脂组合物
JP7271860B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP6501099B2 (ja) ポリカーボネート樹脂組成物
JP6642295B2 (ja) ポリカーボネート樹脂成形材料
JP7033051B2 (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859994

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014859994

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859994

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167011973

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE