WO2015065098A2 - 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 - Google Patents

양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015065098A2
WO2015065098A2 PCT/KR2014/010355 KR2014010355W WO2015065098A2 WO 2015065098 A2 WO2015065098 A2 WO 2015065098A2 KR 2014010355 W KR2014010355 W KR 2014010355W WO 2015065098 A2 WO2015065098 A2 WO 2015065098A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
transition metal
metal oxide
Prior art date
Application number
PCT/KR2014/010355
Other languages
English (en)
French (fr)
Other versions
WO2015065098A3 (ko
Inventor
곽익순
조승범
채화석
윤여준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480002932.8A priority Critical patent/CN104995769B/zh
Priority to EP14853151.0A priority patent/EP3062373B1/en
Priority to JP2015546411A priority patent/JP6108249B2/ja
Priority to US14/437,085 priority patent/US9960418B2/en
Publication of WO2015065098A2 publication Critical patent/WO2015065098A2/ko
Publication of WO2015065098A3 publication Critical patent/WO2015065098A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
  • Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably, and the demand for lithium secondary battery is increasing day by day as a power source to drive these portable electronic information communication devices. Doing.
  • Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged. In particular, this problem is more serious at high temperatures. This is due to the phenomenon that the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased.
  • LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , and Li (NixCoyMnz) O 2 may be mentioned as positive electrode active materials for lithium secondary batteries that are actively researched and developed.
  • LiNiO 2 is not only difficult to synthesize, because of a problem with thermal stability, it is difficult to commercialize, LiMn but a part commercialized in the case of low-price products 2 O 4, structural modification due to Mn 3+ (Jahn-Teller distortion) Due to the poor lifespan.
  • LiFePO 4 has a low price and excellent safety, many studies have been conducted for hybrid electric vehicles (HEV), but it is difficult to apply it to other fields due to low conductivity.
  • HEV hybrid electric vehicles
  • Li (NixCoyMnz) O 2 is the material that is currently attracting the most attention as an alternative positive electrode active material of LiCoO 2 .
  • This material is cheaper than LiCoO 2 and has the advantage of being able to be used for high capacity and high voltage. capability) and poor service life at high temperatures.
  • Korean Patent Publication No. 10-277796 discloses a technique of coating a metal oxide by coating a metal such as Mg, Al, Co, K, Na or Ca on the surface of the positive electrode active material and heat-treating in an oxidizing atmosphere. have.
  • cathode active material capable of reducing an addition reaction between an electrolyte and an active material during charging and discharging, minimizing capacity reduction or output reduction of a secondary battery, and improving lifetime characteristics.
  • the first technical problem to be solved of the present invention is to provide a positive electrode active material that can improve the lifespan characteristics by not only minimizing capacity reduction or output reduction, but also significantly reducing the crack of the positive electrode active material.
  • the second technical problem to be solved of the present invention is to easily prepare a cathode active material including the composite particles in the outside, inside, or outside and inside of the particles according to the heat treatment temperature and the content of the composite particles (surface modifier). To provide a way.
  • the third technical problem to be solved of the present invention is to provide a positive electrode including the positive electrode active material.
  • the fourth technical problem to be solved of the present invention is to provide a lithium secondary battery including the positive electrode.
  • the present invention is lithium transition metal oxide particles; And composite particles, wherein the composite particles include yttria stabilized zirconia (YSZ ) , gadolinia-doped ceria (GDC), lanthanum strontium gallate magnesite (LSGM), Lanthanum strontium manganite (LSM), Ca doped zirconia, CaO-stabilized zirconia (CSZ), Sc doped zirconia (SSZ), and any one selected from the group consisting of Ni-YSZ, or a mixture of two or more thereof.
  • the particles provide a cathode active material characterized by having a single phase peak when measured by X-Ray Diffraction (XRD) analysis.
  • the present invention includes the step of mixing and heat-treating lithium transition metal oxide particles and composite particles, the composite particles are yttria stabilized zirconia (YSZ ) , gadolinia-doped ceria (GDC), lanthanum strontium gallate magnesite (LSGM), Lanthanum strontium manganite (LSM), Ca doped zirconia, Calca stabilized zirconia (CSZ), Sc doped zirconia (SSZ) and Ni-YSZ, characterized in that it comprises any one or a mixture of two or more thereof. It provides a method for producing a positive electrode active material.
  • the present invention provides a positive electrode including the positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the cathode active material according to the exemplary embodiment of the present invention may include lithium transition metal oxide particles and specific composite particles having a single phase, thereby minimizing capacity reduction or output reduction of the secondary battery.
  • due to the structural characteristics of the composite particles may have a shock absorbing effect during the positive electrode process, in particular the pressing process can minimize the breakage of the positive electrode active material, thereby further improving the life characteristics when applied to the secondary battery.
  • YSZ yttria stabilized zirconia
  • DFT Discrete Fourier transformation
  • YSZ yttria stabilized zirconia
  • DFT Discrete Fourier transformation
  • Example 4 is a graph showing the life characteristics of the lithium secondary battery prepared in Example 5 and Comparative Example 7 of the present invention.
  • Example 5 is a compressive fracture strength graph of the particle strength of the positive electrode active material of Examples 1 and 3 and Comparative Example 1 of the present invention.
  • Example 6 is a graph showing the life characteristics of the lithium secondary battery prepared in Example 8 and Comparative Example 9 of the present invention.
  • FIG 8 is a graph showing the XRD analysis results of the composite particles yttria stabilized zirconia (YSZ) and ZrO 2 included in the cathode active material of the present invention.
  • Example 9 is a graph showing the results of XRD analysis of the positive electrode active material of Example 4 of the present invention.
  • a cathode active material is lithium transition metal oxide particles; And composite particles, wherein the composite particles include yttria stabilized zirconia (YSZ ) , gadolinia-doped ceria (GDC), lanthanum strontium gallate magnesite (LSGM), Lanthanum strontium manganite (LSM), Ca doped zirconia, CaO-stabilized zirconia (CSZ), Sc doped zirconia (SSZ), and any one selected from the group consisting of Ni-YSZ, or a mixture of two or more thereof.
  • the particles are characterized by having a single phase peak when measured by X-Ray Diffraction (XRD) analysis.
  • the cathode active material according to an embodiment of the present invention may include lithium transition metal oxide particles and specific composite particles having a single phase, thereby minimizing capacity reduction or output reduction of the secondary battery.
  • due to the structural characteristics of the composite particles may have a shock absorbing effect during the positive electrode process, in particular the pressing process can minimize the breakage of the positive electrode active material, thereby further improving the life characteristics when applied to the secondary battery.
  • YSZ of the composite particles is yttria stabilized zirconia, and yttria oxide (zirconia) is added to zirconium oxide (zirconia) to make it stable at room temperature.
  • Ceramic material In the YSZ, a portion of Zr 4+ ions may be replaced with Y 3+ by adding yttria to zirconia. This is replaced by three O 2 ions instead of four O 2 ions, resulting in oxygen vacancy. Because of this oxygen deficiency, YSZ has O 2 -ion conductivity, and the higher the temperature, the better the conductivity. This feature can be useful in solid oxide fuel cells (SOFCs) operating at high temperatures.
  • SOFCs solid oxide fuel cells
  • the LSGM of the composite particles has a high ion conductivity as lanthanum-strontium-gallium-magnesium oxide (LaSrGaMg), the operating temperature of the solid oxide fuel cell is increased. It can be lowered.
  • LaSrGaMg lanthanum-strontium-gallium-magnesium oxide
  • GDC in the composite particles is geria doped with gadolinium (Gd), for example, Gd 0.1 Ce 0.9 O 1.95 , and high ions like LSGM Has conductivity
  • the LSM of the composite particles is a manganese-based perovskite (Perovskite) structure, for example LaSrMnO or La (1-x) Sr x MnO 3 (0.01 ⁇ x ⁇ 0.30) It has a perovskite structure, almost no ion conductivity, and excellent electronic conductivity.
  • La 1-x Sr x Mn y O 3- ⁇ (0.05 ⁇ x ⁇ 1) (0.95 ⁇ y ⁇ 1.15) ( ⁇ is defined as a numerical value meaning small deviation from perfect stoichiometry).
  • SSZ in the composite particles is (ZrO 2 ) 1-2x (Sc 2 O 3 ) X , (ZrO 2 ) 1 -2x (Sc 2 O 3 ) xz (Y 2 O 3 ) z or (Zr0 2 ) 1-2x -z (Sc 2 O 3 ) x (CeO 2 ) z (0 ⁇ x ⁇ 0.25) (0 ⁇ z ⁇ 0.l).
  • CSZ of the composite particles may be calcium doped zirconia or calcia stabilized zirconia, and thermal stability of zirconia may be improved by adding calcia. Can be improved.
  • the CSZ is a mixed state of a cubic crystal structure and a tetragonal crystal structure. The tetragonal crystal structure changes to a cubic crystal structure when the temperature rises, and changes to a tetragonal crystal structure when the temperature decreases. In this process, the expansion and contraction of the volume may be repeated.
  • the composite particles YSZ, GDC, LSGM, LSM, CSZ, SSZ and Ni-YSZ are characterized in that they have a single phase.
  • the composite particles may be any one selected from the group consisting of YSZ, CSZ and SSZ, or a mixture of two or more thereof, which are zirconia-based.
  • the YSZ may be Zr (1-x) Y x O 2-x / 2, 0.01 ⁇ x ⁇ 0.30, preferably 0.03 ⁇ x ⁇ 0.20.
  • SSZ is preferably (ZrO 2 ) 1-2x (Sc 2 O 3 ) X , (ZrO 2 ) 1 -2x (Sc 2 O 3 ) xz (Y 2 O 3 ) z or (Zr0 2 ) 1- 2x-z (Sc 2 O 3 ) x (CeO 2 ) z (0.01 ⁇ x ⁇ 0.2) (0.01 ⁇ z ⁇ 0.1).
  • the CSZ preferably has a CaO content of 2 wt% to 17 wt% based on the total weight of the CSZ.
  • the cathode active material according to the first embodiment of the present invention may include lithium transition metal oxide particles and composite particles, and the composite particles may be coated on an outer surface of the lithium transition metal oxide particles to form a coating layer.
  • the composite particle when the composite particle is YSZ and includes YSZ on the outer surface of the lithium transition metal oxide, Y may enter the Zr site to form a single phase first, and the positive electrode active material structure may be superseded.
  • oxygen deficiency may occur inside the structure, thereby creating a large amount of empty space on the surface of the positive electrode active material.
  • FIG. 1 and 2 illustrate lithium in a composite particle YSZ (yttria stabilized zirconia ) optimized by YSZ (yttria stabilized zirconia ) included in a cathode active material according to an embodiment of the present invention through structural optimization of Discrete Fourier transformation (DFT ) .
  • DFT Discrete Fourier transformation
  • lithium ion conductivity may be very high when a path having oxygen deficiency is connected, and when the cathode active material including the composite particle YSZ is applied to a secondary battery due to such oxygen deficiency, capacity reduction or output reduction may be minimized.
  • the YSZ has oxygen vacancy in proportion to the amount of Y elements, and according to an embodiment of the present invention, the YSZ is an outer surface of lithium transition metal oxide particles.
  • the oxygen deficiency amount may range from 0.25 ppm to 4500 ppm with respect to the positive electrode active material as a whole.
  • the positive electrode active material according to an embodiment of the present invention may have a compressive strength of 80 to 500 MPa, preferably 100 to 200 MPa under a pressure of 0.5 to 10 mN.
  • the pressure is, for example, by using a micro compression tester (Electronic Component Research Institute) to apply a pressure to the positive electrode active material with a force of 0.5 to 10 mN to measure the time when the cracks (particles) to the pressure unit (MPa) It can be a converted value
  • the composite particles may be coated in a thickness range of 1 to 5000 nm from the outer surface of the lithium transition metal oxide particles.
  • the cathode active material according to the second exemplary embodiment of the present invention may include lithium transition metal oxide particles and composite particles, and the composite particles may be included in the lithium transition metal oxide particles.
  • the positive electrode active material according to an embodiment of the present invention includes a composite particle inside the lithium transition metal oxide particles to form a composite with the lithium transition metal oxide particles, thereby preventing structural crystallization of the positive electrode active material to prevent structural stability and electrochemical Properties can be improved.
  • the composite particles have a concentration gradient that decreases from the surface of the lithium transition metal oxide particles toward the inside, and may be complexed with the lithium transition metal oxide particles to form a composite. .
  • the composite particles may have a content in the external bulk of the lithium transition metal oxide particles at least 20% higher than the content in the internal bulk, the internal bulk is the lithium As a center of the transition metal oxide particle and a peripheral area thereof, it may mean a region containing 50% of the number of transition metal atoms of the entire particle.
  • the oxygen deficiency amount may be specifically 0.25 to 4500 ppm.
  • the composite particles may be included in the thickness range of 1 to 5000 nm in the inner direction of the lithium transition metal oxide particles.
  • the positive electrode active material according to the third embodiment of the present invention includes lithium transition metal oxide particles and composite particles, the composite particles are coated on the outer surface of the lithium transition metal oxide particles to form a coating layer, the lithium It may be included in the transition metal oxide particles together with the lithium transition metal oxide particles.
  • the composite particles have a concentration gradient that decreases from the surface of the lithium transition metal oxide particles toward the inside thereof, and may be complexed with the lithium transition metal oxide particles to form a composite.
  • YSZ is included in both the inside and the outside of the lithium transition metal oxide particles according to an embodiment of the present invention may be in the range of 50 to 30000ppm for the entire positive electrode active material.
  • the composite particles may be included in an amount of 50ppm to 30000ppm, specifically 100ppm to 20000ppm with respect to the positive electrode active material as a whole.
  • the average particle diameter of the positive electrode active material is preferably 3 ⁇ m to 30 ⁇ m.
  • the cathode active material according to an embodiment of the present invention may further include an oxide including one or more elements of Ca, Nb, W, Mg, Ti, B, Mo, and Zr in the coating layer.
  • An oxide including at least one element of Ca, Nb, W, Mg, Ti, B, Mo, and Zr may be included in an amount of 50 ppm to 30000 ppm in the coating layer.
  • the lithium transition metal oxide particles may include a compound of Formula 1 below:
  • M ' includes any one selected from the group consisting of Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc and Ni, or a mixed element of two or more thereof,
  • M ′′ is one or more elements of Ca, Nb, W, Mg, Ti, B, Mo, Sc and Zr,
  • M ′ represents any one selected from the group consisting of Zr, Y, Ca, Sc, and Ni, or two or more mixed elements thereof.
  • the s and v may have a concentration gradient that decreases toward the inside from the surface of the lithium transition metal oxide particles.
  • the present invention provides a method for producing the positive electrode active material.
  • a method of manufacturing a cathode active material includes mixing and heat treating lithium transition metal oxide particles and composite particles, wherein the composite particles are yttria stabilized zirconia (YSZ ) and gadolinia-doped ceria (GDC). , LSGM (LaSrGaMg), LSM (La (1-x) Sr x MnO 3 ), CSZ, SSZ and Ni-YSZ, any one selected from the group consisting of, or a mixture of two or more thereof.
  • YSZ yttria stabilized zirconia
  • GDC gadolinia-doped ceria
  • the composite particles preferably comprise any one selected from the group consisting of YSZ, CSZ and SSZ, or a mixture of two or more thereof.
  • the heat treatment may be performed for 4 hours to 24 hours in the temperature range of 100 °C to 1200 °C.
  • a coating layer is formed on the surface of the lithium transition metal oxide particles or the composite particles are formed inside the lithium transition metal oxide particles to form a composite with lithium transition metal oxide particles.
  • the present invention for example, when performing a heat treatment in a temperature range of 100 °C to 600 °C, it is possible to form a coating layer on the outer surface of the lithium transition metal oxide particles by the heat treatment.
  • a coating layer is formed on the surface of the lithium transition metal oxide particles, the coating layer is a group consisting of YSZ, GDC, LSGM, LSM, CSZ, SSZ and Ni-YSZ
  • a cathode active material including any one selected from the group or a mixture of two or more thereof, and including the composite particles having a single phase peak in the XRD measurement.
  • a part of the composite particles may be included in the lithium transition metal oxide even in the heat treatment in the temperature range of 100 °C to 600 °C, in this case, the composite particles are lithium transition metal oxide It has a concentration gradient that decreases from the surface of the particles to the inside, it is included in the surface of the lithium transition metal oxide particles and the lithium transition metal oxide particles may be complexed with the lithium transition metal oxide particles to form a composite.
  • the composite particles may be present, for example, up to about 500 nm from the surface of the lithium transition metal oxide particles.
  • the composite particles may include any one selected from the group consisting of YSZ, GDC, LSGM, LSM, CSZ, SSZ, and Ni-YSZ, or a mixture of two or more thereof, as described above.
  • the composite particles may have a concentration gradient that decreases from the surface of the lithium transition metal oxide particles toward the inside thereof, and may be complexed with the lithium transition metal oxide particles to form a composite.
  • the composite particles may be present, for example, up to about 500 nm or more from the surface of the lithium transition metal oxide particles.
  • composite particles may be present on the outer surface of the lithium transition metal oxide even when the heat treatment is performed in the temperature range of 600 ° C to 1200 ° C.
  • the transition metal oxide particles include lithium transition metal composite oxide particles of the formula (1), the following s and v are inside the lithium transition metal oxide particles on the surface You may have a concentration gradient that goes down to:
  • M ', M ", a, b, c, s and v are as described above.
  • the average particle diameter (D 50 ) of the composite particles used as the surface modifier is 5 nm to 500 nm, preferably 20 nm to 200 nm, more preferably Is preferably from 30 nm to 100 nm.
  • the average particle diameter (D 50 ) of the composite particles may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the method for measuring the average particle diameter (D 50 ) of the YSZ after dispersing the YSZ in a solution, it is introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to generate ultrasonic waves of about 28 kHz. after examining the output 60 W, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the surface modifier (composite particles) may be used in an amount of 50 ppm to 30000 ppm.
  • a dry mixing method or a wet mixing method may be used for the mixing.
  • the dry mixing method may be performed using a mixing method using a shaker, a mortar grinder mixing method and a mixing method using a mechanical milling method.
  • a mechanical milling method may be desirable in forming a uniform coating layer.
  • the mixing method by the shaker may be performed by mixing the lithium transition metal oxide particles and the composite particles by shaking several times.
  • the mortar grinder mixing method is a method of uniformly mixing lithium transition metal oxide particles and composite particles using mortar.
  • the mechanical milling method is, for example, roll mill (ball-mill), ball mill (ball-mill), high energy ball mill (high energy ball mill), planetary mill (planetary mill), stirred ball mill (stirred ball mill, Using a vibrating mill or a jet-mill, mixing of lithium transition metal oxide particles and composite particles may be carried out by mechanical friction, for example, by rotating at a rotational speed of 100 rpm to 1000 rpm for mechanical Compressive stress can be applied.
  • the present invention provides a cathode including the cathode active material.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a positive electrode may be prepared by mixing and stirring a solvent, a binder, a conductive agent, and a dispersant in a positive electrode active material, if necessary, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same. have.
  • the current collector of the metallic material is a highly conductive metal, a metal to which the slurry of the positive electrode active material can easily adhere, and any metal may be used as long as it is not reactive in the voltage range of the battery.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the present invention provides a secondary battery including a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder and the conductive agent used in the negative electrode can be used as can be commonly used in the art as the positive electrode.
  • the negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then applying the same to a current collector and compressing the negative electrode.
  • the separator may be a conventional porous polymer film conventionally used as a separator, for example, polyolefin such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 - may be any one
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • the obtained precursor was placed in a 500 cc alumina crucible, and calcined at about 900 ° C. for 6 hours in an air atmosphere.
  • the cake obtained after baking was pulverized and classified using a 400 mesh sieve (Tlyer standard screen scale in the United States) to obtain LiNi 0.6 Mn 0.2 Co 0.2 O 2 .
  • Example 1 In the YSZ (Zr 0.84 Y 0.16 O 1.92 ) 1.6g instead of YSZ (Zr 0.84 Y 0.16 O 1.92 ) , except that the 3.16g insert, to give a positive electrode active material by the same procedure as in Example 1 above.
  • Example 2 LiNi 0.8 Mn 0.1 Co 0.1 O 2 instead of LiNi 0.6 Mn 0.2 Co 0.2 O 2 in Example 1
  • Example 1 In the same manner as in Example 1, except that the heat treatment was carried out at 550 ° C. to the outer surface and the inside of LiNi 0.8 Mn 0.1 Co 0.1 O 2 .
  • a positive electrode active material containing YSZ was obtained.
  • Preparation Example 1 was used as the positive electrode active material.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • Al aluminum
  • a negative electrode active material slurry 96.3% by weight of carbon powder as a negative electrode active material, 1.0% by weight of super-p as a conductive material, and 1.5% by weight and 1.2% by weight of styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) as a binder were added to NMP as a solvent.
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • LiPF 6 was added to a nonaqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 30:70 as an electrolyte to prepare a 1 M LiPF 6 nonaqueous electrolyte.
  • the positive electrode and the negative electrode thus prepared were interposed with a mixed separator of polyethylene and polypropylene, followed by fabrication of a polymer battery in a conventional manner, followed by pouring the prepared non-aqueous electrolyte to complete the production of a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 5, except that the cathode active materials prepared in Examples 2 to 4 were used, respectively.
  • a lithium secondary battery was manufactured in the same manner as in Example 5, except that the cathode active materials prepared in Comparative Examples 1 to 5 were used, respectively.
  • composition of the Examples and Comparative Examples are as follows:
  • Example 1 Cathode Active Materials / Secondary Battery Furtherance Composite particle / oxide
  • Example 3 Example 7)
  • Outer Coating (622 Li / M 1) YSZ (1.6g)
  • the lithium secondary batteries obtained in Examples 5 to 7, and Comparative Examples 6 and 7 were charged at 45 ° C. until the constant current (CC) of 4.35V was reached, followed by charging to a constant voltage (CV) of 4.35V. The first charge was performed until the charge current became 0.05 mAh. After standing for 20 minutes, the battery was discharged to a constant current of 2C until 3.0V (cut-off proceeded to 0.05C). This was repeated for 1 to 29 cycles and 1 to 49 cycles. The results are shown in FIGS. 3 and 4, respectively.
  • Figure 3 shows the life characteristics graph of the lithium secondary battery of Examples 5 to 7 and Comparative Example 6.
  • Example 5 when the amount of YSZ used is doubled, the relative capacity (%) decreases as the number of cycles increases. Specifically, Example 5 and Example 6 showed similar relative capacities up to 10 cycles, but after Example 10, Example 6 was slightly reduced compared to Example 5.
  • the cycle degradation of the secondary battery can be alleviated to exhibit stable cycle characteristics for a long period of time.
  • Figure 4 shows the life characteristics graph results of Example 5 and Comparative Example 7, including YSZ in order to compare the life characteristics according to the lithium amount of the lithium transition metal oxide particles. Charging and discharging was performed in the same manner as in FIG. 3, but was repeated in 1 to 49 cycles.
  • the lithium secondary battery of Example 5 using the positive electrode active material containing YSZ in the positive electrode active material, Li / transition metal (M) is 1, the YSZ, Li / transition metal (M) to 1.2 It can be seen that the lifespan characteristics are remarkably excellent compared to the lithium secondary battery of Comparative Example 7 using a lithium excess positive electrode active material.
  • Example 5 the slopes of Example 5 and Comparative Example 7 were similar until about the tenth cycle, but after the tenth cycle, the life characteristics of the lithium secondary battery of Comparative Example 7 were remarkably deteriorated. It can be seen that the lithium secondary battery of 5 is increased by about 10% or more compared with the lithium secondary battery of Comparative Example 7.
  • the pressure measurement is a pressure of 0.5 to 10mN by using the positive electrode active material samples of Examples 1 and 3, and Comparative Example 1 to measure the time when the crack occurs in the particles converted into pressure units (MPa) It was.
  • the compressive fracture strength (MPa) is about 1.5 to 2 times higher than that of Comparative Example 1, which is a cathode active material not containing YSZ. It can be seen that) rises.
  • the compressive fracture strength (MPa) was 120 MPa in Example 3 including YSZ outside the lithium transition metal oxide particles, and the compressive fracture strength (MPa) in Example 1 including YSZ inside the lithium transition metal oxide particles. was 118 MPa.
  • the positive electrode active material of the present invention includes YSZ, and thus the shock absorbing effect is more excellent due to the presence of oxygen vacancy.
  • Example 8 and Comparative Examples 8 to 10 were charged at 45 ° C. until the constant current (CC) was 4.2V, and then charged at 4.2V constant voltage (CV) to charge the current. The first charge was performed until it became 0.05 mAh. After standing for 20 minutes, the battery was discharged until it became 3.0V with a constant current of 1C (cut-off proceeded to 0.05C). This was repeated for 1 to 200 cycles. The results are shown in FIGS. 6 and 7.
  • ZrO shows a lifespan characteristic of a secondary battery (Example 8) using a cathode active material including YSZ inside and outside the cathode active material.
  • a cathode active material including YSZ inside and outside the cathode active material Compared with the life characteristics of the secondary battery (Comparative Example 9) using the positive electrode active material containing 2, there was a marked difference in relative capacity (%) of 50% or more from the initial one cycle to 200 cycles.
  • Measuring zone and step angle / measuring time Measuring zone and step angle / measuring time:
  • YSZ is a cubic crystal structure
  • ZrO 2 is a monoclinic crystal structure
  • YSZ has a main peak of 2 ⁇ of 29 ⁇ . It can be seen that it has a single phase peak present at 31 degrees, and it can be seen that the YSZ peak is clearly distinguished from the ZrO 2 peak which does not exist as a single phase.
  • the main peak of ZrO 2 is between 27.5 and 28.5 degrees and the secondary peak is between 31.1 and 31.8 degrees. Since the positions of the main peaks are significantly different, YSZ and ZrO 2 are fundamentally different phases, and their crystallinity is also very different.
  • the composite phase of YSZ is present on the outer surface of the positive electrode active material, and present inside the surface in the form of a composite.
  • the secondary phase does not appear, but appears as a single phase possessed by the layered system. That is, it can be seen as a result that the single phase YSZ is present inside and outside of the positive electrode active material in the form of a composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 리튬 전이금속 산화물 입자; 및 복합 입자를 포함하고, 상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며, 상기 양극 활물질은 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크의 복합 입자를 갖는 것을 특징으로 하는 양극 활물질을 제공한다. 본 발명의 일 실시예에 따른 양극 활물질은 이차전지의 용량 감소나 출력 감소를 최소화할 수 있을 뿐만 아니라, 수명 특성을 더욱 향상시킬 수 있다.

Description

양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
본 발명은 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되고 있는 리튬 이차전지용 양극활물질로서 LiNiO2, LiMn2O4, LiFePO4, Li(NixCoyMnz)O2를 들 수 있다. 그러나 LiNiO2의 경우는 합성이 어려울 뿐만 아니라, 열적 안정성에 문제가 있어 상품화가 어려우며, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3+로 인한 구조변형(Jahn-Teller distortion)때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(HEV; hybrid electric vehicle) 용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
따라서, LiCoO2의 대체 양극 활물질로 최근 가장 각광받고 있는 물질이 Li(NixCoyMnz)O2이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율특성(rate capability) 및 고온에서의 수명특성이 안 좋은 단점을 갖고 있다. 이러한 단점을 극복하기 위해 전도성이 좋은 금속을 양극활물질 표면에 코팅(coating)하는 방법, 또는 내부에 Al, Mg, Ti, Zr, Sn, Ca, Ag 및 Zn 등의 물질을 도핑(doping)하는 방법 등으로 연구가 많이 진행되어 왔으며, 코팅의 경우는 습식법을 이용하나 현실적으로 양산에서 가격이 높아지는 큰 문제점을 갖고 있으며, 현재는 상기의 금속을 건식 도핑을 통해서 그 특성을 증가시키는 보고가 증가하고 있는 추세이다.
예를 들어, 대한민국 등록특허공보 제10-277796호에는 양극 활물질의 표면에 Mg, Al, Co, K, Na 또는 Ca 등의 금속을 코팅하여 산화성 분위기에서 열처리하여 금속산화물을 코팅하는 기술이 공지되어 있다.
그러나 아직까지 양극 활물질의 깨짐 현상(crack), 이차전지의 용량 감소나 출력 감소 등의 문제를 해결하기 어려운 실정이다. 따라서, 충방전시 전해액과 활물질의 부가 반응을 감소시키고 이차전지의 용량 감소나 출력 감소를 최소화하고 수명 특성을 향상시킬 수 있는 양극 활물질이 요구되고 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제10-277796호
본 발명의 해결하고자 하는 제1 기술적 과제는 용량 감소나 출력 감소를 최소화할 수 있을 뿐만 아니라, 양극 활물질의 깨짐 현상(crack)을 현저히 감소시킴으로써 수명 특성을 향상시킬 수 있는 양극 활물질을 제공하는 것이다.
본 발명의 해결하고자 하는 제2 기술적 과제는 열처리 온도 및 복합 입자(표면 개질제)의 함량 조절에 따라 복합 입자를 입자의 외부, 내부, 또는 외부 및 내부에 포함하는 양극 활물질을 용이하게 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 해결하고자 하는 제3 기술적 과제는 상기 양극 활물질을 포함하는 양극을 제공하는 것이다.
본 발명의 해결하고자 하는 제4 기술적 과제는 상기 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리튬 전이금속 산화물 입자; 및 복합 입자를 포함하고, 상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia, CaO-stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며, 상기 복합 입자는 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 특징으로 하는 양극 활물질을 제공한다.
또한, 본 발명은 리튬 전이금속 산화물 입자 및 복합 입자를 혼합하고 열처리하는 단계를 포함하고, 상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia, Calca stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 양극 활물질의 제조방법을 제공한다.
아울러, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
나아가, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 및 단일상을 갖는 특정 복합 입자를 포함함으로써 이차전지의 용량 감소나 출력 감소를 최소화할 수 있다. 뿐만 아니라, 상기 복합 입자의 구조적 특징으로 인해 양극 공정, 특히 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있으며, 이로써 이차전지에 적용할 경우 수명 특성을 더욱 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 DFT(Discrete Fourier transformation)의 구조 최적화를 통해 최적화된 복합 입자 YSZ(yttria stabilized zirconia) 에서의 리튬의 이동통로 예상 모델을 나타낸 것이다.
도 2는 DFT(Discrete Fourier transformation)의 구조 최적화를 통해 최적화된 복합 입자 YSZ(yttria stabilized zirconia) 에서의 산소 결핍에 따른 이온전도도를 분석한 그래프이다.
도 3은 본 발명의 실시예 5 내지 7, 및 비교예 6에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 4는 본 발명의 실시예 5 및 비교예 7에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 5는 본 발명의 실시예 1과 3, 및 비교예 1의 양극 활물질의 입자 강도를 측정한 압축파괴강도 그래프이다.
도 6은 본 발명의 실시예 8 및 비교예 9에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 7은 비교예 8 및 10에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 8은 본 발명의 양극 활물질에 포함된 복합 입자 YSZ(yttria stabilized zirconia) 및 ZrO2의 XRD 분석 결과를 나타낸 그래프이다.
도 9는 본 발명의 실시예 4의 양극 활물질의 XRD 분석 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자; 및 복합 입자를 포함하고, 상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia, CaO-stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며, 상기 복합 입자는 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 및 단일상을 갖는 특정 복합 입자를 포함함으로써, 이차전지의 용량 감소나 출력 감소를 최소화할 수 있다. 뿐만 아니라, 상기 복합 입자의 구조적 특징으로 인해 양극 공정, 특히 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있으며, 이로써 이차전지에 적용할 경우 수명 특성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자 중 YSZ는 이트리아 안정화 지르코니아(yttria stabilized zirconia)로서, 산화지르코늄(지르코니아)에 산화이트륨(이트리아)을 첨가하여 상온에서도 안정하도록 만든 세라믹 재료이다. 상기 YSZ는 지르코니아에 이트리아가 첨가됨으로써 Zr4+ 이온 중 일부가 Y3+로 대체될 수 있다. 이에 따라 4개의 O2- 이온 대신 3개의 O2- 이온으로 대체되며 결과적으로 산소 결핍(oxygen vacancy)이 만들어질 수 있다. 이렇게 생성된 산소 결핍 때문에 YSZ는 O2- 이온 전도성를 갖게 되며 온도가 높을수록 전도도가 좋아진다. 이러한 특징은 고온에서 동작하는 고체산화물 연료전지(SOFC)에서 유용하게 쓰일 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자 중 LSGM은 란타늄-스트론듐-갈륨-마그네슘 산화물(LaSrGaMg)로서 높은 이온 전도도를 가지므로, 고체산화물 연료전지의 작동온도를 낮출 수 있는 물질이다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자 중 GDC는 가돌리늄(Gd)이 도핑된 세리아로서, 예를 들어 Gd0.1Ce0.9O1.95 를 들 수 있고, LSGM과 마찬가지로 높은 이온 전도도를 갖는다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자 중 LSM은 망간계 페로브스카이트(Perovskite) 구조로서, 예를 들어 LaSrMnO 또는 La(1-x)SrxMnO3(0.01≤x≤0.30) 페로브스카이트 구조를 가지며, 이온전도성은 거의 없고, 전자전도성은 뛰어나다. La1-xSrxMnyO3-δ (0.05 ≤ x ≤ 1) (0.95 ≤ y ≤ 1.15)(δ는 완전 화학량(perfect stoichiometry)으로부터 작은 편차를 의미하는 수치로써 규정된다)일 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자 중 SSZ는 (ZrO2)1-2x(Sc2O3)X, (ZrO2)1-2x(Sc2O3)x-z(Y2O3)z 또는 (Zr02)1-2x-z(Sc2O3)x (CeO2)z (0<x≤0.25)(0<z≤0.l)일 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자 중 CSZ는 칼슘 도핑된 지르코니아 또는 칼시아 안정화 지르코니아 (CaO- stabilized zirconia)일 수 있으며, 칼시아를 첨가함으로써 지르코니아의 열적 안정성을 향상시킬 수 있다. 상기 CSZ는 큐빅 결정 구조 및 테트라고날(tetragonal) 결정 구조가 혼재된 상태이다. 테트라고날 결정 구조는 온도가 상승하면 큐빅 결정 구조로 바뀌고, 온도가 낮아지면 다시 테트라고날 결정 구조로 변하는데, 이와 같이 결정 구조가 바뀌는 과정에서 부피의 팽창 및 수축이 반복될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자인 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ는 단일상을 갖는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자는 지르코니아 계인, YSZ, CSZ 및 SSZ로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이 바람직할 수 있다.
특히, 상기 YSZ는 Zr(1-x)YxO2-x/2, 0.01≤x≤0.30일 수 있고, 바람직하게는 0.03≤x≤0.20일 수 있다.
또한, SSZ는 바람직하게는 (ZrO2)1-2x(Sc2O3)X, (ZrO2)1-2x(Sc2O3)x-z(Y2O3)z 또는 (Zr02)1-2x-z(Sc2O3)x (CeO2)z (0.01≤x≤0.2)(0.01≤z≤0.l)일 수 있다.
또한, CSZ는 CaO 함량이 CSZ 전체 중량에 대해 2 중량% 내지 17 중량%인 것이 바람직하다.
본 발명의 제1 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자 및 복합 입자를 포함하며, 상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면에 코팅되어 코팅층을 형성할 수 있다.
구체적으로 살펴보면, 예를 들어 상기 복합 입자가 YSZ이고, YSZ를 상기 리튬 전이금속 산화물의 외부 표면에 포함하는 경우, Y이 Zr 사이트에 들어가서 단일상을 먼저 형성할 수 있으며, 양극 활물질 구조가 슈퍼스터럭쳐(superstructure)를 가짐으로써, 구조 내부에 산소 결핍이 발생하여 양극 활물질 표면에 빈 공간이 많이 생길 수 있다.
도 1 및 2는 본 발명의 일 실시예에 따른 양극 활물질에 포함된 YSZ(yttria stabilized zirconia)를 DFT(Discrete Fourier transformation)의 구조 최적화를 통해 최적화된 복합 입자 YSZ(yttria stabilized zirconia) 에서의 리튬의 이동통로 예상 모델링 및 리튬이온의 이온전도도를 비교 분석한 것이다.
도 1을 살펴본 바와 같이, 상기 최적화된 YSZ에서 리튬의 이동통로를 살펴보면, 상기 YSZ의 구조 내부의 산소 결핍으로 인한 빈공간으로 인해 양극 활물질 표면에 Li이 빠져 나갈 수 있는 공간이 많이 생김을 알 수 있다.
또한, 도 2와 같이 DFT를 통해 YSZ에서 리튬 이온이 통과할 수 있는 경로를 찾아서 리튬이온의 이온 전도도를 분석한 결과, 산소 결핍이 있는 도 2의 Path 2-3-4 구간에서 약 1.0eV의 에너지 차이를 보임을 확인할 수 있다.
이를 통해, 산소 결핍이 있는 경로가 연결되면 리튬 이온 전도도가 매우 높을 수 있으며, 이러한 산소 결핍으로 복합 입자 YSZ를 포함하는 양극 활물질을 이차전지에 적용할 경우 용량 감소 또는 출력 감소가 최소화될 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 상기 YSZ는 Y 원소의 양에 비례하여 산소 결핍(oxygen vacancy)이 존재하며, 본 발명의 일 실시예에 따라 상기 YSZ가 리튬 전이금속 산화물 입자의 외부 표면에 코팅되는 경우 산소 결핍양은 양극 활물질 전체에 대해 0.25ppm 내지 4500ppm 범위일 수 있다.
또한, 상기 구조적으로 빈공간 형성으로 인해 양극 공정시, 특히 프레스(press) 공정시, 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있다.
예를 들어, 본 발명의 일 실시예에 따른 양극 활물질은 0.5 내지 10mN 의 압력 하에서 압축 강도가 80 내지 500 MPa, 바람직하게는 100 내지 200 MPa일 수 있다.
상기 압력은 예를 들어 Micro compression tester(전자부품연구원 장비)를 이용하여 양극 활물질을 0.5 내지 10 mN 의 힘으로 압력을 주어 입자가 크랙(crack)이 발생하는 시점을 측정하여 압력단위(MPa)로 환산한 값일 수 있다
본 발명의 제1 실시예에 다른 양극 활물질에 있어서, 상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면으로부터 1 내지 5000 nm의 두께 범위로 코팅될 수 있다.
또한, 본 발명의 제2 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자 및 복합 입자를 포함하며, 상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 내부에 포함될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 내부에 복합 입자가 포함되어 상기 리튬 전이금속 산화물 입자와 함께 복합체를 형성함으로써, 양극 활물질의 구조적 결정 붕괴를 방지하여 구조적 안정성 및 전기 화학적 특성을 개선시킬 수 있다.
구체적으로 살펴보면, 본 발명의 일 실시예에 따르면, 상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성할 수 있다.
예를 들어, 본 발명의 양극 활물질에 있어서, 상기 복합 입자는 리튬 전이금속 산화물 입자의 외부 벌크에서의 함량이 내부 벌크에서의 함량에 비해 적어도 20% 이상 더 높을 수 있으며, 상기 내부 벌크는 상기 리튬 전이금속 산화물 입자의 중심과 그 주변 영역으로서, 입자 전체의 전이금속 원자 수의 50%를 포함하고 있는 영역을 의미할 수 있다.
본 발명의 일 실시예에 따라 상기 YSZ가 리튬 전이금속 산화물 입자의 내부에 코팅되는 경우 산소 결핍양은 구체적으로는 0.25 내지 4500ppm 범위일 수 있다.
상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 내부 방향으로 1 내지 5000 nm의 두께 범위로 포함될 수 있다.
또한, 본 발명의 제3 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자 및 복합 입자를 포함하며, 상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면에 코팅되어 코팅층을 형성하고, 상기 리튬 전이금속 산화물 입자의 내부에 상기 리튬 전이금속 산화물 입자와 함께 포함할 수 있다.
상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성할 수 있다.
또한, 본 발명의 일 실시예에 따라 YSZ가 리튬 전이금속 산화물 입자의 내부 및 외부 모두에 포함되는 경우 양극 활물질 전체에 대해 50 내지 30000ppm 범위일 수 있다.
본 발명의 일 실시예에 따르면, 상기 복합 입자는 양극 활물질 전체에 대해 50ppm 내지 30000ppm의 양, 구체적으로는 100 ppm 내지 20000ppm의 양으로 포함될 수 있다.
상기 양극 활물질의 평균 입경은 3㎛ 내지 30㎛인 것이 좋다.
또한, 본 발명의 일 실시예에 따른 양극 활물질은 상기 코팅층에 Ca, Nb, W, Mg, Ti, B, Mo 및 Zr 중 하나 이상의 원소를 포함하는 산화물을 더 포함할 수 있다.
상기 Ca, Nb, W, Mg, Ti, B, Mo 및 Zr 중 하나 이상의 원소를 포함하는 산화물은 상기 코팅층에 50ppm 내지 30000ppm의 양으로 포함될 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 리튬 전이금속 산화물 입자는 하기 화학식 1의 화합물을 포함할 수 있다:
<화학식 1>
Li(1+a)Ni(1-b-c)Mn(b)Co(c) M'(s)M"(v)O2
상기 식에서, M'는 Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하며,
M"는 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소이고,
0≤a<0.2, 0≤b≤1, 0≤c≤1, 0≤s≤0.2, 0≤v≤0.2 이다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에 있어서, 0≤a<0.2이고, M'는 Zr, Y, Ca, Sc 및 Ni로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하는 것이 바람직하며, 상기 s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1에서 구체적으로는 0≤a≤0.09, 더욱 구체적으로는 a=0일 수 있다.
상기 화학식 1에서 a가 0.09 초과, 특히 a가 0.2 이상인 경우, 리튬 전이금속 입자에 복합 입자(예를 들어 YSZ)를 코팅하는 효과가 다른 산화물(예를 들어 ZrO2) 코팅한 경우에 비해 수명 특성 효과 차이가 약 10% 이내로 현저하지 않을 수 있다. 반면, 상기 화학식 1에서 a가 0.09 이하, 특히 a가 0인 경우, 리튬 전이금속 입자에 상기 복합 입자를 코팅하는 효과는 다른 산화물을 코팅한 경우에 비해 수명 특성 효과가 30% 내지 70%까지의 현저한 차이를 나타낼 수 있다.
한편, 본 발명은 상기 양극 활물질의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은 리튬 전이금속 산화물 입자 및 복합 입자를 혼합하고 열처리하는 단계를 포함하고, 상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(LaSrGaMg), LSM(La(1-x)SrxMnO3), CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 복합 입자는 YSZ, CSZ 및 SSZ로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함하는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 열처리는 100 ℃ 내지 1200 ℃의 온도 범위에서 4 시간 내지 24 시간 동안 수행될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 리튬 전이금속 산화물 입자의 표면에 코팅층 형성 또는 리튬 전이금속 산화물 입자 내부에 상기 복합 입자를 포함하여 리튬 전이금속 산화물 입자와 복합체를 형성하는 것은 양극 활물질과 복합 입자를 혼합한 후 열처리시, 열처리 온도 및 시간에 영향을 미칠 수 있다.
본 발명의 일 실시예에 따라, 예를 들어, 100 ℃ 내지 600 ℃의 온도 범위에서 열처리를 수행하는 경우, 상기 열처리에 의해 리튬 전이금속 산화물 입자의 외부 표면에 코팅층을 형성할 수 있다.
즉, 100 ℃ 내지 600 ℃의 온도 범위에서 열처리를 수행하는 경우, 리튬 전이금속 산화물 입자 표면에 코팅층이 형성되고, 상기 코팅층은 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며, 상기 XRD 측정시 단일상 피크를 갖는 복합입자를 포함하는 양극 활물질을 얻을 수 있다.
본 발명의 일 실시예에 따르면, 상기 100 ℃ 내지 600 ℃의 온도 범위에서의 열처리에서도 복합 입자의 일부가 상기 리튬 전이금속 산화물의 내부에 포함될 수 있으며, 이 경우, 상기 복합입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자의 표면 및 리튬 전이금속 산화물 입자의 내부에 포함되어 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성할 수 있다. 이 경우, 상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 예를 들어 약 500 nm 정도까지 존재할 수 있다.
또한, 본 발명의 일 실시예에 따라, 예를 들어, 600 ℃ 내지 1200 ℃의 온도 범위에서 열처리를 수행하는 경우, 상기 열처리에 의해 리튬 전이금속 산화물 입자의 내부에 복합 입자를 포함하는 양극 활물질을 얻을 수 있고, 이때, 상기 복합 입자는 상술한 바와 같이 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
이때, 상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성 할 수 있다. 이 경우, 상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 예를 들어 약 500 nm 이상까지 존재할 수 있다.
본 발명의 일 실시예에 따르면, 상기 600 ℃ 내지 1200 ℃의 온도 범위에서의 열처리를 수행하는 경우에도 상기 리튬 전이금속 산화물의 외부 표면에 복합 입자가 존재할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 전이금속 산화물 입자는 하기 화학식 1의 리튬 전이금속 복합 산화물 입자를 포함하고, 하기 s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다:
<화학식 1>
Li(1+a)Ni(1-b-c)Mn(b)Co(c) M'(s)M"(v)O2
상기 식에서, M', M", a, b, c, s 및 v는 상술한 바와 같다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 표면 개질제로 사용되는 상기 복합 입자의 평균 입경(D50)은 5 nm 내지 500 nm, 바람직하게는 20 nm 내지 200 nm, 더욱 바람직하게는 30 nm 내지 100 nm인 것이 바람직하다.
본 발명에 있어서, 복합 입자의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
예를 들어, 상기 YSZ의 평균 입경(D50)의 측정 방법은, YSZ를 용액에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
본 발명의 일 실시예에 따르면, 상기 표면 개질제(복합 입자)는 50 ppm 내지 30000 ppm의 양으로 사용될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 혼합을 위해 건식 혼합법 또는 습식 혼합법을 이용할 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 상기 건식 혼합법은 쉐이커에 의한 혼합법, 몰타르 그라인더 혼합(mortar grinder mixing)법 및 기계적 밀링법을 이용한 혼합법을 이용하여 수행할 수 있으며, 바람직하게는 기계적 밀링법을 이용하는 것이 균일한 코팅층 형성에 있어서 바람직할 수 있다.
구체적으로 살펴보면, 상기 쉐이커에 의한 혼합법은 리튬 전이금속 산화물 입자와 복합 입자를 핸드 믹싱하여 수회 흔들어 혼합하여 수행될 수 있다.
또한, 몰타르 그라인더 혼합법은 리튬 전이금속 산화물 입자와 복합 입자를 몰타르를 이용하여 균일하게 혼합하는 방법이다.
또한, 상기 기계적 밀링법은 예를 들어, 롤밀 (roll-mill), 볼밀 (ball-mill), 고에너지 볼밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibrating mill) 또는 제트 밀 (jet-mill)을 이용하여, 리튬 전이금속 산화물 입자와 복합 입자를 기계적 마찰에 의해 혼합을 수행할 수 있으며, 예를 들어 회전수 100rpm 내지 1000rpm으로 회전시켜 기계적으로 압축응력을 가할 수 있다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
상기 금속 재료의 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
또한, 본 발명은 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 이차전지를 제공한다.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
음극에 사용되는 바인더 및 도전제는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-,(SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
<리튬 전이금속 산화물의 제조>
제조예 1
LiOH(H2O) 55.84g, 평균 입경이 12 ㎛인 Ni0.6Mn0.2Co0.2(OH)2 123.61g을 넣고 실험용 믹서의 중심부 rpm이 18000의 속도로, 1분 동안 혼합을 수행하였다.
상기 얻은 전구체를 500 cc 알루미나 도가니에 넣고, 약 900 ℃에서 6시간 동안 대기(Air) 분위기에서 소성을 수행하였다. 소성 후 얻은 케이크(cake)를 분쇄한 후, 400 메쉬 체(sieve) [미국의 타일러(Tlyer) 표준스크린 스케일]를 이용하여 분급을 실시하여 LiNi0.6Mn0.2Co0.2O2 를 얻었다.
<양극 활물질의 제조>
실시예 1
LiNi0.6Mn0.2Co0.2O2 118.4g과 50 nm YSZ(Zr0.84Y0.16O1.92) 1.6g을 건식 혼합기(레디게 믹서, 가부시끼가이샤 마쯔보 제조, FM-130D형)에 넣고, 1분간 혼합한 후, 소성로에서 900 ℃에서 6시간 동안 열처리를 진행한 후, 유발 및 체질하여 LiNi0.6Mn0.2Co0.2O2 내부에 YSZ를 포함하는 양극 활물질을 얻었다.
실시예 2
상기 실시예 1에서 YSZ(Zr0.84Y0.16O1.92) 1.6g 대신 YSZ(Zr0.84Y0.16O1.92) 3.16g을 넣은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질을 얻었다.
실시예 3
상기 열처리를 500 ℃에서 6시간 동안 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 LiNi0.6Mn0.2Co0.2O2의 외부 표면에 YSZ가 코팅된 양극 활물질을 얻었다.
실시예 4
상기 실시예 1에서 LiNi0.6Mn0.2Co0.2O2 대신 LiNi0.8Mn0.1Co0.1O2 사용하고, 열처리를 550 ℃에서 수행한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 LiNi0.8Mn0.1Co0.1O2의 외부 표면 및 내부에 YSZ를 포함하는 양극 활물질을 얻었다.
비교예 1
상기 제조예 1을 양극 활물질로 사용하였다.
비교예 2
LiNi0.6Mn0.2Co0.2O2 (Li/M = 1) 대신 Li1.2Ni0.8Mn0.1Co0.1O2 (Li/M = 1.2)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질을 얻었다.
비교예 3
LiNi0.6Mn0.2Co0.2O2 (Li/M = 1) 대신 Li1.2Ni0.8Mn0.1Co0.1O2 (Li/M = 1.2)을 사용하고, YSZ 대신 ZrO2 1.6g을 사용한 것을 제외하고, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질을 얻었다.
비교예 4
LiNi0.6Mn0.2Co0.2O2 (Li/M = 1) 대신 LiNi0.8Mn0.1Co0.1O2 (Li/M = 1)을 사용하고, YSZ 대신 ZrO2 3.16g을 사용하고, 열처리를 550 ℃에서 수행한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질을 얻었다.
비교예 5
LiNi0.6Mn0.2Co0.2O2 (Li/M = 1) 대신 Li1.2Ni0.8Mn0.1Co0.1O2 (Li/M = 1.2)를 사용한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질을 얻었다.
<리튬 이차전지의 제조>
실시예 5
양극 제조
상기 실시예 1에서 제조된 양극 활물질 94 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 제조
음극 활물질로 탄소 분말 96.3 중량%, 도전재로 super-p 1.0 중량% 및 바인더로 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 1.5 중량%와 1.2 중량%를 혼합하여 용매인 NMP에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
비수성 전해액 제조
한편, 전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다.
리튬 이차전지 제조
이와 같이 제조된 양극과 음극을 폴리에틸렌과 폴리프로필렌의 혼합 세퍼레이터를 개재시킨 후 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 6 내지 8
상기 실시예 2 내지 4에서 제조된 양극 활물질을 각각 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 6 내지 10
상기 비교예 1 내지 5에서 제조된 양극 활물질을 각각 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 리튬 이차전지를 제조하였다.
상기 실시예 및 비교예의 조성을 정리하면 다음과 같다:
표 1
양극활물질/이차전지 조성 복합 입자/산화물
실시예 1(실시예 5) 내부 복합화(622 Li/M=1) YSZ (1.6g)
실시예 2(실시예 6) 내부 복합화(622 Li/M=1) YSZ (3.16g)
실시예 3(실시예 7) 외부 코팅(622 Li/M=1) YSZ (1.6g)
실시예 4(실시예 8) 외부 코팅 및 내부 복합화(811 Li/M=1) YSZ (1.6g)
비교예 1(비교예 6) BARE
비교예 2(비교예7) 내부 복합화(811 Li/M=1.2) YSZ (1.6g)
비교예 3(비교예 8) 외부 코팅 및 내부 복합화 (811 Li/M=1.2) YSZ (1.6g)
비교예 4(비교예 9) 외부 코팅 및 내부 복합화 (811 Li/M=1) ZrO2
비교예 5(비교예 10) 외부 코팅 및 내부 복합화 (811 Li/M=1.2) ZrO2
실험예 1 : 전기화학 실험 1
<사이클 특성 평가 실험>
실시예 5 내지 7, 및 비교예 6과 7에서 얻은 리튬 이차전지에 대하여 사이클 수에 따른 상대 효율을 알아보기 위해 다음과 같이 전기화학 평가 실험을 수행하였다.
구체적으로, 실시예 5 내지 7, 및 비교예 6과 7에서 얻은 리튬 이차전지를 45 ℃에서 1C의 정전류(CC) 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압(CV)으로 충전하여 충전전류가 0.05mAh가 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 2C의 정전류로 3.0V가 될 때까지 방전하였다(cut-off는 0.05C로 진행하였다). 이를 1 내지 29 회 및 1회 내지 49 회의 사이클로 반복 실시하였다. 그 결과를 각각 도 3 및 도 4에 나타내었다.
구체적으로 살펴보면, 도 3은 실시예 5 내지 7 및 비교예 6의 리튬 이차전지의 수명 특성 그래프를 나타낸 것이다.
도 3에서 알 수 있는 바와 같이, 실시예 5 내지 7의 리튬 이차전지의 경우 1 내지 29 회의 사이클까지의 상대 효율에 대한 기울기가 비교예 6에 비해 완만함을 확인할 수 있다. 실시예 또한, 실시예 5와 6과 같이 양극 활물질 제조시 YSZ의 사용량에 따라서도 수명 특성에 영향을 받음을 알 수 있었다.
즉, YSZ의 사용량을 약 2배로 늘린 경우, 사이클 수가 증가함에 따라 상대 용량(%)는 감소함을 확인 할 수 있다. 구체적으로 사이클 수가 10회 까지는 실시예 5와 실시예 6은 유사한 상대 용량을 나타내었으나, 10회 이후 실시예 6은 실시예 5에 비해 약간 더 감소함을 확인하였다.
반면, 실시예 5와 6의 경우, 비교예 6에 비해 수명 특성이 약 3% 이상 향상되었음을 알 수 있다.
한편 열처리 온도를 낮추어 LiNi0.6Mn0.2Co0.2 외부 표면에 YSZ가 코팅된 양극 활물질을 사용한 실시예 7의 리튬 이차전지의 경우, 수명특성이 가장 우수함을 알 수 있다.
이에 반해, YSZ를 내부 또는 외부에 포함하지 않은 비교예 6의 경우, 3 회의 사이클부터 기울기가 급격히 떨어지며, 29회의 사이클에서는 4% 이상 감소함을 확인하였다.
따라서, 본 발명의 실시예에 따라 리튬 전이금속 산화물 입자 및 복합 입자를 포함함으로써, 이차전지의 사이클 퇴화를 완화시켜 장기간 동안 안정한 사이클 특성을 나타낼 수 있음을 알 수 있다.
한편, 도 4는 리튬 전이금속 산화물 입자의 리튬 양에 따른 수명특성을 비교하기 위하여, YSZ를 포함하는 실시예 5 및 비교예 7의 수명 특성 그래프 결과를 나타낸 것이다. 도 3과 동일한 방법으로 충방전을 진행하였으나, 1 내지 49 회의 사이클로 반복 실시하였다.
도 4를 살펴보면, 양극 활물질에 YSZ를 포함하고, Li/전이금속(M)이 1인 양극 활물질을 사용한 실시예 5의 리튬 이차전지는 YSZ를 포함하고, Li/전이금속(M)이 1.2로 리튬 과량인 양극 활물질을 사용한 비교예 7의 리튬 이차전지에 비해 수명 특성이 현저히 우수함을 알 수 있다.
즉, 약 10회째 사이클 까지는 실시예 5와 비교예 7의 기울기가 비슷하였으나, 10회째 사이클 이후, 비교예 7의 리튬 이차전지의 수명 특성이 현저히 떨어짐을 알 수 있으며, 약 49회째 사이클에서는 실시예 5의 리튬 이차전지가 비교예 7의 리튬 이차전지에 비해 약 10% 이상 정도 증가함을 알 수 있다.
실험예 2 : 압축파괴강도 실험
실시예 1과 3, 및 비교예 1의 양극 활물질의 입자의 강도를 측정하기 위하여, Micro compression tester(전자부품연구원 장비)로 평가하였고, 그 결과를 도 5에 나타내었다.
상기 압력 측정은 실시예 1과 3, 및 비교예 1의 양극 활물질 샘플을 이용하여 0.5 내지 10mN 의 힘으로 압력을 주어 입자가 크랙(crack)이 발생하는 시점을 측정하여 압력단위(MPa)로 환산하였다.
도 5를 살펴보면, 리튬 전이금속 산화물 입자 내부 및 외부에 YSZ를 포함한 실시예 1과 3의 경우, YSZ를 포함하지 않은 양극 활물질인 비교예 1에 비해 약 1.5 배 내지 2배 정도 압축 파괴강도(MPa)가 상승함을 알 수 있다.
구체적으로 살펴보면, 리튬 전이금속 산화물 입자 외부에 YSZ를 포함한 실시예 3의 경우 압축파괴강도(MPa)가 120MPa였고, 리튬 전이금속 산화물 입자 내부에 YSZ를 포함한 실시예 1의 경우 압축파괴강도(MPa)가 118MPa였다.
이에 반해, 비교예 1과 같이 YSZ를 포함하지 않은 리튬 전이금속 산화물 입자의 경우 실시예 1과 3의 약 50% 감소한 압축파괴강도(MPa)가 60MPa에 불과하였다.
이는, 본 발명의 양극 활물질이 YSZ를 포함함으로써, 산소결핍(oxygen vacancy)의 존재로 인해 충격 흡수 효과가 더욱 우수한 것임을 예측할 수 있다.
도 5로부터 YSZ를 포함함으로써, 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있음을 알 수 있다.
실험예 3 : 전기화학 실험 2
<리튬양 및 코팅층의 성분에 따른 사이클 특성 평가 실험>
실시예 8, 및 비교예 8 내지 10에서 얻은 리튬 이차전지에 대하여 리튬양 및 코팅층의 성분에 따른 상대 효율을 알아보기 위해 다음과 같이 전기화학 평가 실험을 수행하였다.
구체적으로, 실시예 8, 및 비교예 8 내지 10 에서 얻은 리튬 이차전지를 45 ℃에서 1C의 정전류(CC) 4.2V가 될 때까지 충전하고, 이후 4.2V의 정전압(CV)으로 충전하여 충전전류가 0.05mAh가 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 1C의 정전류로 3.0V가 될 때까지 방전하였다(cut-off는 0.05C로 진행하였다). 이를 1 내지 200 회의 사이클로 반복 실시하였다. 그 결과를 도 6 및 도 7에 나타내었다.
구체적으로 살펴보면, 도 6은 LiNi0.8Mn0.1Co0.1O2 (Li/M = 1)인 경우의 이차전지의 수명 특성을 비교한 것이고, 도 7은 Li1.2Ni0.8Mn0.1Co0.1O2 (Li/M = 1.2)인 경우의 이차전지의 수명 특성(상대 용량%)을 비교한 것이다.
도 6과 같이, LiNi0.8Mn0.1Co0.1O2 (Li/M = 1)인 경우, YSZ를 양극 활물질의 내부 및 외부에 포함하는 양극 활물질을 사용한 이차전지(실시예 8)의 수명특성을 ZrO2을 포함하는 양극 활물질을 사용한 이차전지(비교예 9)의 수명 특성과 비교할 때, 초기 1 회 사이클부터 200회 사이클까지 50% 이상의 현저한 상대 용량(%) 수치 차이를 보였다.
이에 반해, 도 7과 같이 Li1.2Ni0.8Mn0.1Co0.1O2 (Li/M = 1.2)인 경우, YSZ를 양극 활물질의 내부 및 외부에 포함하는 양극 활물질을 사용한 이차전지(비교예 10)의 수명특성을 ZrO2을 포함하는 양극 활물질을 사용한 이차전지(비교예 8)의 수명 특성과 비교할 때, 초기 1 회 사이클부터 200회 사이클까지 유사한 상대 용량(%) 수치를 나타내었다.
상기 결과로부터, 본 발명의 실시예에 따라 YSZ 등의 복합입자를 사용하는 경우 리튬 전이금속 산화물 입자에서 Li/M=1인 경우 리튬 과량인 Li/M = 1.2 경우 에 비해 ZrO2 을 포함하는 이차전지와 비교할 때 현저한 차이를 나타냄으로써, 수명 특성에 더 영향을 미침을 알 수 있다.
실험예 4 : X-레이 회절(X-Ray Diffraction; XRD) 분석 측정
본 발명의 양극 활물질에 포함된 YSZ 및 ZrO2의 XRD 상을 비교분석하기 위하여, YSZ 및 ZrO2에 대하여 Cu(Kα-선)을 이용한 XRD 회절 측정을 하였고, 그 결과를 도 8에 나타내었다.
- 타겟: Cu(Kα-선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 0.5도, 수신 슬릿 = 9.55㎜, 산란 슬릿 = 5.89도
- 측정 구역 및 스텝 각도/측정 시간:
- 10.0 도 < 2θ< 90도, 0.5초, 0.024도, 여기서 2θ는 회절 각도를 나타낸다.
도 8을 살펴보면, YSZ는 입방정계 결정구조(Cubic Crystal structure)인 반면, ZrO2은 단사정계 결정구조(Monoclinic Crystal structure)임을 확인 할 수 있으며, YSZ는 주 피크(main peak)가 2θ가 29~31 도에 존재하는 단일상 피크를 가짐을 알 수 있으며, YSZ 피크는 단일상으로 존재하지 않은 ZrO2 피크와 명확히 구분됨을 확인 할 수 있다. 특히, ZrO2의 주 피크는 27.5~28.5도 사이에 존재하고 2차 피크도 31.1~31.8도 사이에 존재한다. 주 피크의 위치가 현저히 틀리기 때문에 YSZ와 ZrO2는 근본적으로 다른 상이며 결정성이 가지고 있는 특징도 전혀 다른 물질이라고 볼 수 있다.
도 9는 실시예 4의 YSZ를 포함하는 LiNi0.8Mn0.1Co0.1O2 (Li/M = 1)를 상기 동일한 XRD 측정 조건 하에서 분석한 결과 그래프이다.
도 9에서 확인할 수 있는 바와 같이, 실시예 4의 LiNi0.8Mn0.1Co0.1O2 (Li/M = 1)에 도 8에서 관찰된 YSZ 피크가 2 θ가 27.5~28.5 도에서 나타남을 확인할 수 있다.
즉, YSZ의 복합상이 양극 활물질 외부 표면에 존재하고, 복합체 형태로 표면 내부쪽에 존재하는 것을 나타낸다. 상기 양극 활물질에 포함되는 YSZ의 경우는 2차 상이 나타나지 않고 층상계가 가지고 있는 단일상으로 나타난다. 즉, 단일상의 YSZ가 복합체 형태로 양극 활물질의 내부 및 외부에 존재하는 결과로 볼 수 있다.

Claims (37)

  1. 리튬 전이금속 산화물 입자; 및
    복합 입자를 포함하고,
    상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia or Calcia stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며,
    상기 복합 입자는 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 것을 특징으로 하는 양극 활물질.
  2. 제 1 항에 있어서,
    상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면에 코팅되어 코팅층을 형성하는 것을 특징으로 하는 양극 활물질.
  3. 제 1 항에 있어서,
    상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 내부에 포함되는 것을 특징으로 하는 양극 활물질.
  4. 제 3 항에 있어서,
    상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성되는 것을 특징으로 하는 양극 활물질.
  5. 제 4 항에 있어서,
    상기 복합 입자는 리튬 전이금속 산화물 입자의 외부 벌크에서의 함량이 내부 벌크에서의 함량에 비해 적어도 20% 이상 더 높으며,
    상기 내부 벌크는 상기 리튬 전이금속 산화물 입자의 중심과 그 주변 영역으로서, 입자 전체의 전이금속 원자 수의 50%를 포함하고 있는 영역인 것을 특징으로 하는 양극 활물질.
  6. 제 4 항에 있어서,
    상기 복합 입자는 리튬 전이금속 산화물 입자의 표면으로부터 내부 방향으로 1 내지 5000 nm의 두께 범위로 포함되는 것을 특징으로 하는 양극 활물질.
  7. 제 2 항에 있어서,
    상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면으로부터 1 내지 5000 nm의 두께 범위로 코팅되는 것을 특징으로 하는 양극 활물질.
  8. 제 1 항에 있어서,
    상기 복합 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면에 코팅되어 코팅층을 형성하고, 상기 리튬 전이금속 산화물 입자의 내부에 상기 리튬 전이금속 산화물 입자와 함께 포함되는 것을 특징으로 하는 양극 활물질.
  9. 제 8 항에 있어서,
    상기 복합 입자는 양극 활물질 전체에 대해 50ppm 내지 30000ppm의 양으로 포함되는 것을 특징으로 하는 양극 활물질.
  10. 제 8 항에 있어서,
    상기 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성되는 것을 특징으로 하는 양극 활물질.
  11. 제 1 항에 있어서,
    상기 복합 입자는 YSZ, CSZ 및 SSZ로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상을 포함하는 것을 특징으로 하는 양극 활물질.
  12. 제 11 항에 있어서,
    상기 YSZ는 Y 원소의 양에 비례하여 산소 결핍(oxygen vacancy)이 존재하는 것을 특징으로 하는 양극 활물질.
  13. 제 12 항에 있어서,
    상기 YSZ는 Zr(1-x)YxO2-x/2 (0.01≤x≤0.30)인 것을 특징으로 하는 양극 활물질.
  14. 제 12 항에 있어서,
    상기 산소 결핍양은 양극 활물질 전체에 대해 0.25ppm 내지 4500ppm 범위인 것을 특징으로 하는 양극 활물질.
  15. 제 11 항에 있어서,
    상기 SSZ는 (ZrO2)1-2x(Sc2O3)X, (ZrO2)1-2x(Sc2O3)x-z(Y2O3)z 또는 (Zr02)1-2x-z(Sc2O3)x(CeO2)z (0.01≤x≤0.2)(0.01≤z≤0.l)이고, 상기 CSZ는 CaO 함량이 CSZ 전체 중량에 대해 2 중량% 내지 17 중량%인 것을 특징으로 하는 양극 활물질.
  16. 제 13 항에 있어서,
    상기 x는 0.03 내지 0.20인 것을 특징으로 하는 양극 활물질.
  17. 제 2 항에 있어서,
    상기 코팅층은 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소를 포함하는 산화물을 더 포함하는 것을 특징으로 하는 양극 활물질.
  18. 제 1 항에 있어서,
    상기 리튬 전이금속 산화물 입자는 하기 화학식 1의 화합물을 포함하는 것을 특징으로 하는 양극 활물질:
    <화학식 1>
    Li(1+a)Ni(1-b-c)Mn(b)Co(c) M'(s)M"(v)O2
    상기 식에서, M'는 Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하며,
    M"는 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소이고,
    0≤a<0.2, 0≤b≤1, 0≤c≤1, 0≤s≤0.2, 0≤v≤0.2 이다.
  19. 제 18 항에 있어서,
    상기 화학식 1에 있어서, M'는 Y, Zr, Ca, Sc 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하는 것을 특징으로 하는 양극 활물질.
  20. 제 18 항에 있어서,
    상기 s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 갖는 것을 특징으로 하는 양극 활물질.
  21. 제 1 항에 있어서,
    상기 양극 활물질의 평균 입경은 3㎛ 내지 30㎛인 것을 특징으로 하는 양극 활물질.
  22. 제 1 항에 있어서,
    상기 양극 활물질은 0.5 내지 10mN의 압력 하에서 압축 강도가 80 내지 500 MPa인 것을 특징으로 하는 양극 활물질.
  23. 리튬 전이금속 산화물 입자 및 복합 입자를 혼합하고 열처리하는 단계를 포함하고,
    상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia, Calcia stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 양극 활물질의 제조방법.
  24. 제 23 항에 있어서,
    상기 복합 입자는 YSZ, CSZ 및 SSZ로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상을 포함하는 것을 특징으로 하는 양극 활물질의 제조방법.
  25. 제 24 항에 있어서,
    상기 YSZ는 Zr(1-x)YxO2-x/2 (0.01≤x≤0.30)인 것을 특징으로 하는 양극 활물질의 제조방법.
  26. 제 24 항에 있어서,
    상기 SSZ는 (ZrO2)1-2x(Sc2O3)X, (ZrO2)1-2x(Sc2O3)x-z(Y2O3)z 또는 (Zr02)1-2x-z(Sc2O3)x(CeO2)z (0.01≤x≤0.2)(0.01≤z≤0.l)이고, 상기 CSZ는 CaO 함량이 CSZ 전체 중량에 대해 2 중량% 내지 17 중량%인 것을 특징으로 하는 양극 활물질의 제조방법.
  27. 제 23 항에 있어서,
    상기 열처리는 100 ℃ 내지 1200 ℃의 온도 범위에서 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  28. 제 27 항에 있어서,
    상기 열처리는 100 ℃ 내지 600 ℃의 온도 범위에서 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  29. 제 28 항에 있어서,
    상기 열처리에 의해 리튬 전이금속 산화물 입자 표면에 코팅층이 형성되고, 상기 코팅층은 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며,
    상기 양극 활물질은 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크의 복합 입자를 포함하는 것을 특징으로 하는 양극 활물질의 제조방법.
  30. 제 27 항에 있어서,
    상기 열처리는 600 ℃ 내지 1200 ℃의 온도 범위에서 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  31. 제 30 항에 있어서,
    상기 열처리에 의해 리튬 전이금속 산화물 입자의 내부에 복합 입자를 포함하고,
    상기 복합 입자는 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 양극 활물질의 제조방법.
  32. 제 23 항에 있어서,
    상기 리튬 전이금속 산화물 입자는 하기 화학식 1로 표시되고, 하기 화학식 1에서 s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 갖는 것을 특징으로 하는 양극 활물질의 제조방법:
    <화학식 1>
    Li(1+a)Ni(1-b-c)Mn(b)Co(c) M'(s)M"(v)O2
    상기 식에서, M'는 Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하며,
    M"는 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소이고,
    0≤a<0.2, 0≤b≤1, 0≤c≤1, 0≤s≤0.2, 0≤v≤0.2 이다.
  33. 제 23 항에 있어서,
    상기 복합 입자의 평균 입경(D50)은 5 nm 내지 500 nm인 것을 특징으로 하는 양극 활물질의 제조방법.
  34. 제 23 항에 있어서,
    상기 복합 입자는 50ppm 내지 30000ppm의 양으로 사용되는 것을 특징으로 하는 양극 활물질의 제조방법.
  35. 제 23 항에 있어서,
    상기 혼합은 건식 혼합 또는 습식 혼합인 것을 특징으로 하는 양극 활물질의 제조방법.
  36. 제 1 항의 양극 활물질을 포함하는 양극.
  37. 제 36 항의 양극을 포함하는 리튬 이차전지.
PCT/KR2014/010355 2013-10-31 2014-10-31 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 WO2015065098A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002932.8A CN104995769B (zh) 2013-10-31 2014-10-31 正极活性物质及其制备方法以及包含该正极活性物质的锂二次电池
EP14853151.0A EP3062373B1 (en) 2013-10-31 2014-10-31 Cathode active material, method for preparing same, and lithium secondary battery comprising same
JP2015546411A JP6108249B2 (ja) 2013-10-31 2014-10-31 正極活物質、この製造方法、及びこれを含むリチウム二次電池
US14/437,085 US9960418B2 (en) 2013-10-31 2014-10-31 Cathode active material, preparation method thereof, and lithium secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0131636 2013-10-31
KR20130131636 2013-10-31

Publications (2)

Publication Number Publication Date
WO2015065098A2 true WO2015065098A2 (ko) 2015-05-07
WO2015065098A3 WO2015065098A3 (ko) 2015-06-25

Family

ID=53005345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010355 WO2015065098A2 (ko) 2013-10-31 2014-10-31 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Country Status (7)

Country Link
US (1) US9960418B2 (ko)
EP (1) EP3062373B1 (ko)
JP (1) JP6108249B2 (ko)
KR (1) KR101539898B1 (ko)
CN (1) CN104995769B (ko)
TW (1) TWI525889B (ko)
WO (1) WO2015065098A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802993A (zh) * 2021-02-08 2021-05-14 宁德新能源科技有限公司 电池
JP2022539253A (ja) * 2019-07-03 2022-09-07 ユミコア 充電式リチウムイオン電池用の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170009557A (ko) * 2015-07-17 2017-01-25 주식회사 엘지화학 양극 활물질 입자 강도 변경을 통해 안전성이 향상된 원통형 이차전지
KR102004457B1 (ko) 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102580002B1 (ko) * 2016-01-13 2023-09-19 에스케이온 주식회사 리튬 이차 전지
KR20170108310A (ko) * 2016-03-17 2017-09-27 주식회사 엘지화학 양극 활물질 및 이의 제조방법, 이를 포함하는 리튬 이차 전지
WO2018003439A1 (ja) * 2016-06-30 2018-01-04 パナソニックIpマネジメント株式会社 正極活物質及び非水電解質二次電池
KR102026918B1 (ko) * 2016-07-04 2019-09-30 주식회사 엘지화학 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
US11121363B2 (en) * 2016-08-31 2021-09-14 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
CN106299366B (zh) * 2016-11-07 2019-04-26 珠海格力电器股份有限公司 一种改性的磷酸铁锂/碳复合材料及其制备方法
CN108269998A (zh) * 2017-01-01 2018-07-10 北京当升材料科技股份有限公司 一种锂离子电池多元正极材料的制备方法
JP2019140054A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 正極及び非水電解液二次電池
DE102018205176A1 (de) * 2018-04-06 2019-10-10 Robert Bosch Gmbh Lithium-Ionen-Batterie und Verfahren zum Herstellen einer Kathode für eine Lithium-Ionen-Batterie
CN108777296A (zh) * 2018-06-04 2018-11-09 国联汽车动力电池研究院有限责任公司 一种表面改性高镍三元正极材料及其制备和其制成的电池
CN109065858B (zh) * 2018-07-25 2020-08-04 国联汽车动力电池研究院有限责任公司 一种表面改性三元正极材料及其制备方法和其制成的电池
JP7030030B2 (ja) * 2018-08-02 2022-03-04 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
KR102629462B1 (ko) 2018-10-04 2024-01-26 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP7002433B2 (ja) * 2018-10-25 2022-02-04 トヨタ自動車株式会社 正極材料とこれを用いた二次電池
KR102533811B1 (ko) * 2018-12-03 2023-05-19 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 및 리튬 이차전지
KR102195186B1 (ko) * 2019-02-18 2020-12-28 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
JP7257847B2 (ja) * 2019-03-29 2023-04-14 新日本電工株式会社 リチウムイオン二次電池正極材料、リチウムイオン二次電池正極材料添加剤、リチウムイオン二次電池及びリチウムイオン二次電池正極材料の製造方法
TWI778405B (zh) * 2019-08-27 2022-09-21 德商贏創運營有限公司 塗覆有熱解製造的含鋯氧化物之混合鋰過渡金屬氧化物
CN115136354A (zh) * 2020-02-28 2022-09-30 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
CN111668475B (zh) * 2020-05-09 2021-10-22 万华化学集团股份有限公司 五元锂离子电池正极材料、制备方法及用其制成的锂电池
CN112279311A (zh) * 2020-10-28 2021-01-29 厦门厦钨新能源材料股份有限公司 改性氧化锆修饰的锂镍钴锰氧化物、其制备方法及应用
EP4248505A1 (en) * 2020-11-23 2023-09-27 Princeton Nuenergy Inc. Systems and methods for lithium ion battery cathode material recovery, regeneration, and improvement
KR102607568B1 (ko) * 2021-06-09 2023-11-30 재단법인대구경북과학기술원 이차전지용 전극 활물질의 깨짐율 분석방법
CN115244735A (zh) * 2021-10-09 2022-10-25 北京大学深圳研究生院 一种锂离子电池正极材料及其制备方法和应用
CA3234403A1 (en) * 2021-10-12 2023-04-20 Philipp KURZHALS Manufacture of electrode active materials, and electrode active materials
CN114927671A (zh) * 2022-06-17 2022-08-19 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备
CN115036498A (zh) * 2022-07-12 2022-09-09 远景动力技术(江苏)有限公司 掺杂型三元材料及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277796B1 (ko) 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171949A (ja) 1992-12-02 1994-06-21 Shin Etsu Chem Co Ltd ランタンマンガナイト粉末の製造方法
JP3105204B2 (ja) * 1999-02-15 2000-10-30 株式会社東芝 非水電解液二次電池
DE19922522A1 (de) * 1999-05-15 2000-11-16 Merck Patent Gmbh Beschichtete Lithium-Mischoxid-Partikel und deren Verwendung
JP4602254B2 (ja) * 2003-09-18 2010-12-22 パナソニック株式会社 リチウムイオン二次電池
KR20070102113A (ko) * 2006-04-14 2007-10-18 주식회사 이엔켐 리튬이차전지용 양극활 물질 및 이를 포함한 리튬이차전지
CN101308925B (zh) 2008-07-04 2011-02-02 深圳市贝特瑞新能源材料股份有限公司 锂离子电池复合包覆正极材料及其制备方法
CN101567447B (zh) * 2009-06-05 2011-07-13 天津大学 C和金属氧化物包覆LiFePO4锂离子电池正极材料及制备方法
US20110262785A1 (en) * 2010-04-22 2011-10-27 Karl Ashley Johnson Battery module
WO2011161755A1 (ja) 2010-06-21 2011-12-29 トヨタ自動車株式会社 リチウム二次電池
US9249522B2 (en) * 2010-12-05 2016-02-02 Ramot At Tel-Aviv University Ltd. Electrophoretic deposition of thin film batteries
JP2012138197A (ja) * 2010-12-24 2012-07-19 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質、正極、リチウムイオン二次電池、および、リチウムイオン二次電池用正極活物質の製造方法
US20120189920A1 (en) * 2011-01-25 2012-07-26 Novolyte Technologies Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same
EP2672560B1 (en) * 2011-01-31 2019-10-02 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
CN103443975B (zh) 2011-04-06 2016-04-20 尤米科尔公司 用于可再充电电池的玻璃涂覆的阴极粉末
CN103620834A (zh) * 2011-06-24 2014-03-05 旭硝子株式会社 锂离子二次电池用活性物质颗粒的制造方法、电极以及锂离子二次电池
JP5897356B2 (ja) * 2012-03-01 2016-03-30 日本化学工業株式会社 リチウム二次電池用正極活物質の製造方法
JP5621867B2 (ja) * 2012-03-27 2014-11-12 Tdk株式会社 リチウムイオン二次電池
CN103078109A (zh) 2013-01-16 2013-05-01 中南大学 一种梯度包覆镍酸锂材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277796B1 (ko) 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539253A (ja) * 2019-07-03 2022-09-07 ユミコア 充電式リチウムイオン電池用の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物
JP7343682B2 (ja) 2019-07-03 2023-09-12 ユミコア 充電式リチウムイオン電池用の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物
CN112802993A (zh) * 2021-02-08 2021-05-14 宁德新能源科技有限公司 电池

Also Published As

Publication number Publication date
KR101539898B1 (ko) 2015-07-27
CN104995769B (zh) 2018-03-16
EP3062373A4 (en) 2017-05-17
TWI525889B (zh) 2016-03-11
JP2016506032A (ja) 2016-02-25
JP6108249B2 (ja) 2017-04-05
EP3062373B1 (en) 2019-05-22
KR20150050509A (ko) 2015-05-08
US20160028077A1 (en) 2016-01-28
US9960418B2 (en) 2018-05-01
EP3062373A2 (en) 2016-08-31
CN104995769A (zh) 2015-10-21
WO2015065098A3 (ko) 2015-06-25
TW201530877A (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
WO2015065098A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2015012651A1 (ko) 양극 활물질 및 이의 제조방법
WO2019088340A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2021132761A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2018101809A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2021034020A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2016018023A1 (ko) 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
WO2017213462A1 (ko) 소듐 이차전지용 양극활물질, 및 이의 제조 방법
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2022139290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2016089176A1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2020180160A1 (ko) 리튬 이차전지
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2020180125A1 (ko) 리튬 이차전지
WO2018008952A1 (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
WO2022060104A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2022203347A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014853151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853151

Country of ref document: EP

Ref document number: 14437085

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015546411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853151

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE