WO2016052944A1 - 양극 활물질 및 이의 제조방법 - Google Patents

양극 활물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2016052944A1
WO2016052944A1 PCT/KR2015/010183 KR2015010183W WO2016052944A1 WO 2016052944 A1 WO2016052944 A1 WO 2016052944A1 KR 2015010183 W KR2015010183 W KR 2015010183W WO 2016052944 A1 WO2016052944 A1 WO 2016052944A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
active material
positive electrode
transition metal
particles
Prior art date
Application number
PCT/KR2015/010183
Other languages
English (en)
French (fr)
Inventor
곽익순
조승범
윤여준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150135492A external-priority patent/KR101791744B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017501371A priority Critical patent/JP6389318B2/ja
Priority to US15/037,218 priority patent/US9972841B2/en
Priority to CN201580033530.9A priority patent/CN106663793B/zh
Priority to EP15846391.9A priority patent/EP3203551B1/en
Publication of WO2016052944A1 publication Critical patent/WO2016052944A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
  • Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably, and the demand for lithium secondary battery is increasing day by day as a power source to drive these portable electronic information communication devices. Doing.
  • Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged. In particular, this problem is more serious at high temperatures. This is due to the phenomenon that the electrolyte is decomposed or the active material is deteriorated due to moisture or other influences inside the battery, and the internal resistance of the battery is increased.
  • LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , and Li (NixCoyMnz) O 2 may be mentioned as positive electrode active materials for lithium secondary batteries that are actively researched and developed.
  • LiNiO 2 is not only difficult to synthesize, but also difficult to commercialize due to problems in thermal stability, while LiMn 2 O 4 has been commercialized in low-priced products, but Mn 3 + structural deformation (Jahn-Teller distortion) Due to the poor lifespan.
  • LiFePO 4 has a low price and excellent safety and is currently being studied for a hybrid electric vehicle (HEV; hybrid electric vehicle), but due to the low conductivity it is difficult to apply to other fields.
  • HEV hybrid electric vehicle
  • Li (NixCoyMnz) O 2 is the material that is currently attracting the most attention as an alternative positive electrode active material of LiCoO 2 .
  • This material is cheaper than LiCoO 2 and has the advantage of being able to be used for high capacity and high voltage, but has disadvantages of poor rate characteristics and long life at high temperatures.
  • a lot of researches have been conducted on a method of coating a metal oxide coating layer on a surface of a cathode active material.
  • Korean Patent Publication No. 10-277796 discloses a technique of coating a metal oxide by coating a metal such as Mg, Al, Co, K, Na, Ca on the surface of the positive electrode active material and heat-treating in an oxidizing atmosphere. have.
  • the first technical problem to be solved of the present invention is to provide a positive electrode active material which can improve the output characteristics and cycle characteristics of a secondary battery while having excellent conductivity and suppressing an interfacial reaction with an electrolyte solution.
  • the second technical problem to be solved of the present invention is to provide a method that can be economically and easily produced the positive electrode active material.
  • the third technical problem to be solved of the present invention is to provide a positive electrode including the positive electrode active material.
  • the fourth technical problem to be solved of the present invention is to provide a lithium secondary battery including the positive electrode.
  • the present invention is lithium transition metal oxide particles; And conductive oxide particles, wherein the conductive oxide particles are formed of indium tin oxide (ITO) and antimony tin oxide (ATO). It provides a cathode active material comprising any one selected from the group or a mixture of two or more thereof.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • the present invention also includes mixing and heat treating lithium transition metal oxide particles and conductive oxide particles, according to one embodiment, wherein the conductive oxide particles are indium tin oxide (ITO), and antimony.
  • ITO indium tin oxide
  • ATO Antimony Tin Oxide
  • the present invention provides a positive electrode including the positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the positive electrode active material according to the embodiment of the present invention includes lithium transition metal oxide particles and specific conductive oxide particles having a single phase, and thus has excellent electronic conductivity, so that metal ions such as lithium ions are transferred to the lithium transition metal oxide particles. In addition to having excellent ion transfer capacity, it is possible to minimize the capacity reduction or output reduction of the secondary battery.
  • the structural characteristics of the conductive oxide particles may have a shock absorbing effect during the positive electrode process, in particular, the press process, thereby minimizing the cracking of the positive electrode active material, thereby further improving the life characteristics when applied to the secondary battery. .
  • nano-type oxide particles in the form of the precursor not in the form of a preliminary heat treatment of the nano-sized oxide particles on the outside, inside or outside and inside the lithium transition metal oxide By doing so, it is possible to economically manufacture the positive electrode active material easily.
  • YSZ yttria stabilized zirconia
  • DFT Discrete Fourier transformation
  • YSZ yttria stabilized zirconia
  • DFT Discrete Fourier transformation
  • Example 3 is a result showing a scanning electron microscope (SEM) photomicrograph of Example 1 of the present invention.
  • Example 4 is a result showing a scanning electron microscope (SEM) photomicrograph of Example 2 of the present invention.
  • FIG. 5 shows the results of a scanning electron microscope (SEM) micrograph of Comparative Example 1.
  • FIG. 6 shows the results of a scanning electron microscope (SEM) micrograph of Comparative Example 2.
  • FIG. 7 shows the results of a scanning electron microscope (SEM) micrograph of Comparative Example 3.
  • FIG. 9 is a graph showing an XRD analysis result of transition metal oxide particles ITO included in the cathode active material of the present invention.
  • FIG 10 is a graph showing an XRD analysis result of transition metal oxide particles ATO included in the positive electrode active material.
  • a cathode active material is lithium transition metal oxide particles; And conductive oxide particles, wherein the conductive oxide particles are made of indium tin oxide (ITO) and antimony tin oxide (ATO). Any one selected from the group or mixtures of two or more thereof.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • the cathode active material according to an embodiment of the present invention may include conductive oxide particles having a single phase peak when measured by X-Ray Diffraction (XRD) analysis.
  • the positive electrode active material according to the embodiment of the present invention includes lithium transition metal oxide particles and specific conductive oxide particles having a single phase, and thus has excellent electronic conductivity, so that metal ions such as lithium ions are transferred to the lithium transition metal oxide particles. Not only does it have excellent ion transfer capacity, but also it can minimize the capacity reduction or output reduction of the secondary battery.
  • the structural characteristics of the conductive oxide particles may have a shock absorbing effect during the positive electrode process, in particular, the press process, thereby minimizing the cracking of the positive electrode active material, thereby further improving the life characteristics when applied to the secondary battery. .
  • the conductive oxide particles are made of ITO and ATO It may include any one selected from the group or two or more of these mixed oxides, preferably ATO alone or a mixed conductive oxide containing ATO.
  • the content ratio of ITO and ATO may be in a weight ratio of 1: 0.01 to 1: 1, preferably in a ratio of 1: 0.1 to 1: 0.5.
  • the ATO may include any one or a mixture thereof of the compounds represented by the following Chemical Formulas 1 and 2.
  • x is preferably 0.6 to 0.99
  • y may be 0.001 to 0.2, more preferably 0.002 to 0.1.
  • the ITO may include any one or a mixture thereof of the compounds represented by the following Chemical Formulas 3 and 4.
  • a is preferably 0.6 to 0.99
  • b may be 0.001 to 0.2, more preferably 0.002 to 0.1.
  • the ITO used in the present invention is a material synthesized from indium oxide and tin oxide, and has high electrical conductivity and optical transparency at the same time, and has electrical characteristics with high transmittance and low electrical resistivity in the visible region. .
  • the ATO is a tin oxide coated with antimony oxide, it is economical in terms of cost compared to the ITO, and has the advantage of excellent transparency and conductivity.
  • the ATO may be present in the particles as Sb 3 + or Sb 5 +, and when present as Sb 3+ , may produce oxygen vacancy.
  • the resulting oxygen deficiency can increase the ionic conductivity. That is, when the ionic conductivity and the electrical conductivity are formed together to be included in the particles outside, inside or outside and inside of the cathode active material, the rate characteristics and the output characteristics of the secondary battery may be improved.
  • the cathode active material may include a conductive oxide having a single phase peak, that is, ATO or ITO, when measured by XRD.
  • the conductive oxide included in the coating layer may mean that the oxide-specific structure is maintained in the cathode active material without phase separation even after heat treatment.
  • the average particle diameter of the conductive oxide particles is 1 nm to 100 nm, preferably 5 nm to 80 nm, more preferably 10 nm to 60 nm It may be desirable.
  • the cathode active material according to the first embodiment of the present invention may include lithium transition metal oxide particles and conductive oxide particles, and the conductive oxide particles may be coated on an outer surface of the lithium transition metal oxide particles to form a coating layer.
  • the coating layer is formed of a single layer of the conductive oxide particles, it may have a thickness of the coating layer of 1 nm to 100 nm the same or similar to the average particle diameter of the conductive oxide.
  • the coating layer forms a multi-layer
  • conductive oxide particles having an average particle diameter of 1 nm to 100 nm are formed in a single layer, and the thickness is preferably 5 nm to 80 nm, more preferably 10 nm to 60 nm.
  • the cathode active material according to the second embodiment of the present invention may include lithium transition metal oxide particles and conductive oxide particles, and the conductive oxide particles may be included in the lithium transition metal oxide particles.
  • the positive electrode active material according to the embodiment of the present invention includes conductive oxide particles inside the lithium transition metal oxide particles to form a composite with the lithium transition metal oxide particles, thereby preventing structural crystallization of the positive electrode active material to prevent structural stability and electrical Improve chemical properties.
  • the conductive oxide particles have a concentration gradient that decreases from the surface of the lithium transition metal oxide particles toward the inside, and is complexed with the lithium transition metal oxide particles to form a composite. can do.
  • the conductive oxide particles may have a content in the outer bulk of the lithium transition metal oxide particles at least 20% higher than the content in the inner bulk, wherein the inner bulk is As the center of the lithium transition metal oxide particles and the peripheral region thereof, it may mean a region containing 50% of the number of transition metal atoms of the entire particle.
  • the conductive oxide particles may be included in the thickness range of 0.0001 to 80% of the particle radius from the surface of the lithium transition metal oxide particles.
  • the cathode active material according to the third embodiment of the present invention includes lithium transition metal oxide particles and conductive oxide particles, the conductive oxide particles are coated on the outer surface of the lithium transition metal oxide particles to form a coating layer, The lithium transition metal oxide particles may be included together with the lithium transition metal oxide particles.
  • the conductive oxide particles have a concentration gradient that decreases from the surface of the lithium transition metal oxide particles toward the inside thereof, and may be complexed with the lithium transition metal oxide particles to form a composite.
  • the conductive oxide particles may be included in an amount of 50 to 30000 ppm, preferably 100 to 20000 ppm with respect to the positive electrode active material as a whole.
  • the average particle diameter of the cathode active material is preferably 3 to 30 ⁇ m.
  • the cathode active material according to an embodiment of the present invention may further include composite particles.
  • the composite particles may be included together with or separately from the conductive oxide particles on the outside, inside or outside and inside of the lithium transition metal oxide particles.
  • the mixing (content) ratio of the conductive oxide particles and the composite particles may be a weight ratio of 1: 0.01 to 1: 1.5, preferably a weight ratio of 1: 0.1 to 1: 1.
  • the structural advantages of the composite particles can be taken to the maximum, and thus the shock absorbing effect of the positive electrode active material can be maximized, so that the cracking effect can be reduced, and the output or capacity is reduced by preventing the relative conductivity decrease. Can be prevented.
  • the composite particles are yttria stabilized zirconia (YSZ ) , gadolinia-doped ceria (GDC), lanthanum strontium gallate magnesite (LSGM), Lanthanum strontium manganite (LSM), Ca doped zirconia, CaO-stabilized zirconia (CSZ), Sc doped zirconia (SSZ), and any one selected from the group consisting of Ni-YSZ, or a mixture of two or more thereof.
  • the particles like the conductive oxide particles, have a single phase peak upon XRD measurement.
  • the cathode active material according to an embodiment of the present invention includes lithium transition metal oxide particles and specific conductive oxide particles having a single phase, in particular, conductive oxide particles and composite particles, thereby further minimizing capacity reduction or output reduction of a secondary battery.
  • due to the structural characteristics of the composite particles may have a shock absorbing effect during the positive electrode process, in particular the pressing process can minimize the breakage of the positive electrode active material, thereby further improving the life characteristics when applied to the secondary battery.
  • the YSZ is a yttria stabilized zirconia, and is a ceramic material made of yttria oxide (zirconia) added to zirconium oxide (zirconia) and stabilized at room temperature.
  • a portion of Zr 4+ ions may be replaced with Y 3+ by adding yttria to zirconia. This is replaced by three O 2 ions instead of four O 2 ions, resulting in oxygen vacancy. Because of this oxygen deficiency, YSZ has O 2 -ion conductivity, and the higher the temperature, the better the conductivity. This feature can be useful in solid oxide fuel cells (SOFCs) operating at high temperatures.
  • SOFCs solid oxide fuel cells
  • the LSGM is a lanthanum-strontium-gallium-magnesium oxide (LaSrGaMg), and thus has a high ion conductivity, and thus is capable of lowering an operating temperature of a solid oxide fuel cell.
  • LaSrGaMg lanthanum-strontium-gallium-magnesium oxide
  • GDC is geria doped with gadolinium (Gd), for example, Gd 0 . 1 Ce 0 . 9 O 1 . 95 , and has a high ion conductivity like LSGM.
  • Gd gadolinium
  • LSM has a manganese-based perovskite structure, for example, LaSrMnO or La (1-x) Sr x MnO 3 (0.01 ⁇ x ⁇ 0.30) perovskite structure, and has almost ion conductivity. No electronic conductivity.
  • SSZ is (ZrO 2) 1- 2x (Sc 2 O 3) X, (ZrO 2) 1 - 2x (Sc 2 O 3) x - z (Y 2 O 3) z , or (Zr0 2) 1-2x -z (Sc 2 O 3 ) x (CeO 2 ) z (0 ⁇ x ⁇ 0.25) (0 ⁇ z ⁇ 0.l).
  • CSZ may be calcium doped zirconia or calcia stabilized zirconia, and the addition of calcia may improve the thermal stability of zirconia.
  • the CSZ is a mixed state of a cubic crystal structure and a tetragonal crystal structure.
  • the tetragonal crystal structure changes to a cubic crystal structure when the temperature rises, and changes to a tetragonal crystal structure when the temperature decreases. In this process, the expansion and contraction of the volume may be repeated.
  • the composite particles YSZ, GDC, LSGM, LSM, CSZ, SSZ and Ni-YSZ are characterized in that they have a single phase.
  • the composite particles may be any one selected from the group consisting of YSZ, CSZ and SSZ, or a mixture of two or more thereof, which are zirconia-based.
  • the YSZ may be Zr (1-x) Y x O 2 -x / 2, 0.01 ⁇ x ⁇ 0.30, preferably 0.03 ⁇ x ⁇ 0.20.
  • SSZ is preferably a (ZrO 2) 1- 2x (Sc 2 O 3) X, (ZrO 2) 1 - 2x (Sc 2 O 3) x - z (Y 2 O 3) z , or (Zr0 2) 1-2x-z (Sc 2 O 3 ) x (CeO 2 ) z (0.01 ⁇ x ⁇ 0.2) (0.01 ⁇ z ⁇ 0.l).
  • the CSZ preferably includes CSZ having a CaO content of 2% to 17% by weight relative to the total weight of the CSZ.
  • the positive electrode active material according to an embodiment of the present invention includes lithium transition metal oxide particles, conductive oxide particles, and composite particles, wherein the composite particles are together with the conductive oxide particles or outside, inside, or respectively of the lithium transition metal oxide particles. It can be included inside and outside.
  • the composite particle when the composite particle is YSZ and includes YSZ on the outer surface of the lithium transition metal oxide, Y may enter the Zr site to form a single phase first, and the positive electrode active material structure may be superseded.
  • oxygen deficiency may occur inside the structure, thereby creating a large amount of empty space on the surface of the positive electrode active material.
  • FIG. 1 and 2 illustrate lithium in a composite particle YSZ (yttria stabilized zirconia ) optimized by YSZ (yttria stabilized zirconia ) included in a cathode active material according to an embodiment of the present invention through structural optimization of Discrete Fourier transformation (DFT ) .
  • DFT Discrete Fourier transformation
  • lithium ion conductivity may be very high when a path having oxygen deficiency is connected, and when the cathode active material including the composite particle YSZ is applied to a secondary battery due to such oxygen deficiency, capacity reduction or output reduction may be minimized.
  • the cathode active material according to an embodiment of the present invention may further include an oxide including one or more elements of Ca, Nb, W, Mg, Ti, B, Mo, and Zr in the coating layer.
  • An oxide including at least one element of Ca, Nb, W, Mg, Ti, B, Mo, and Zr may be included in an amount of 50 ppm to 30000 ppm in the coating layer.
  • the lithium transition metal oxide particles may include a compound of formula (5):
  • M ′ is any one selected from the group consisting of Sb, Sn, In, Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc and Ni, or a mixed element of two or more thereof, preferably Is any one selected from the group consisting of Y, Zr, and Ni or a mixed element of two or more thereof,
  • M ′′ is one or more elements of Ca, Nb, W, Mg, Ti, B, Mo, Sc and Zr,
  • M ' is any one selected from the group consisting of Sb, Sn, In, Zr, Y, Zr, Ca, Sc and Ni or It is preferable to include two or more of these mixed elements, and s and v may have a concentration gradient decreasing from the surface of the lithium transition metal oxide particles to the inside.
  • a when a is greater than 0.09, in particular, a is greater than or equal to 0.2, when the oxides having different effects of coating conductive oxide particles and composite particles (for example, YSZ) on lithium transition metal particles are coated with another oxide (for example, ZrO 2 ) In comparison, the difference in lifespan characteristics may be less than about 10%.
  • a when a is less than or equal to 0.09, especially a is 0, the effect of coating the composite particles on lithium transition metal particles is 30% to 70% longer than that of other oxides. The difference can be significant.
  • the BET specific surface area of the cathode active material according to an embodiment of the present invention is preferably 0.1 m 2 / g to 10 m 2 / g.
  • the output characteristics of the secondary battery may be degraded.
  • the specific surface area of the positive electrode active material may be measured by a Brunauer-Emmett-Teller (BET) method.
  • BET Brunauer-Emmett-Teller
  • it can be measured by BET 6-point method by nitrogen gas adsorption distribution method using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
  • the present invention provides a method for producing the positive electrode active material.
  • the method of manufacturing a cathode active material according to an embodiment of the present invention includes mixing and heat treating lithium transition metal oxide particles and conductive oxide particles, and the conductive oxide particles are indium tin oxide (ITO) and antimony tin.
  • ITO indium tin oxide
  • ATO Antimony Tin Oxide
  • the cathode active material including any one selected from the group or a mixture of two or more thereof, may include conductive oxide particles having a single phase peak when measured by X-Ray Diffraction (XRD) analysis.
  • the composite particles may be further added during the mixing.
  • the composite particles are selected from the group consisting of yttria stabilized zirconia (YSZ ) , gadolinia-doped ceria (GDC), LaSrGaMg (LSGM), La (1-x) Sr x MnO 3 ), LSM (CSZ, SSZ and Ni-YSZ). It may include any one or a mixture of two or more thereof.
  • the conductive oxide particles preferably include ATO or mixed particles of ATO and ITO, the composite particles are any one selected from the group consisting of YSZ, CSZ and SSZ, or It is preferred to include two or more mixtures.
  • the cathode active material may more preferably include ATO as lithium transition metal oxide particles and conductive oxide particles, and YSZ as composite particles.
  • the mixing (content) ratio of ATO and YSZ is in a weight ratio of 1: 0.01 to 1: 1.5, preferably 1: 0.1 to 1: 1. It may be a weight ratio.
  • the heat treatment may be performed for 4 hours to 24 hours in the temperature range of 100 to 1200 °C.
  • the heat treatment for example, when performing a heat treatment in the temperature range of 200 to 800, preferably 300 to 600, by the heat treatment to form a coating layer on the outer surface of the lithium transition metal oxide particles Can be.
  • a coating layer is formed on the surface of the lithium transition metal oxide particles, the coating layer includes the conductive oxide particles, or the conductive oxide particles and composite particles, the conductive oxide Particles and composite particles can obtain a positive electrode active material having a single phase peak at the time of XRD measurement.
  • the conductive oxide particles, or a portion of the conductive oxide particles and composite particles may be included in the lithium transition metal oxide, in this case, the The conductive oxide particles, or the conductive oxide particles and the composite particles have a concentration gradient that gradually decreases from the surface of the lithium transition metal oxide particles to the inside thereof, and are included in the surface of the lithium transition metal oxide particles and inside the lithium transition metal oxide particles to form a lithium transition. It can be complexed with metal oxide particles to form a composite.
  • nano dispersion when forming an outer coating layer on the lithium transition metal oxide particles, for example, when coating by spray spray rotating at high speed, nano dispersion is possible so that the coating layer is well coated with a single layer coating. Can be done.
  • the thickness of the coating layer formed on the lithium transition metal oxide particles may vary depending on the amount of the conductive oxide particles. Therefore, when the amount of the conductive oxide particles exceeds the range, the coating layer may be formed of a single particle of the conductive oxide. Since it is formed as a multilayer rather than a layer, it may be undesirable in terms of output and internal resistance.
  • the conductive oxide particles, or conductive oxide particles and inside the lithium transition metal oxide particles by the heat treatment and A positive electrode active material containing composite particles can be obtained.
  • the conductive oxide particles, or the conductive oxide particles and the composite particles have a concentration gradient that decreases from the surface of the lithium transition metal oxide particles to the inside, and may be complexed with the lithium transition metal oxide particles to form a composite.
  • the conductive oxide particles, or the conductive oxide particles and the composite particles may be present in the surface of the lithium transition metal oxide particles, for example, up to about 500 nm or more.
  • conductive oxide particles, or conductive oxide particles and composite particles may be present on the outer surface of the lithium transition metal oxide even when the heat treatment is performed in the temperature range of 600 to 1200 ° C.
  • the transition metal oxide particles include the lithium transition metal composite oxide particles of the formula (1), s and v are the inside of the lithium transition metal oxide particles on the surface You may have a concentration gradient that goes down to:
  • the average particle diameter (D 50 ) of the conductive oxide particles, or conductive oxide particles and composite particles used as a surface modifier is 1 nm to 100 nm, preferably It is preferred that they are 5 nm to 80 nm, more preferably 10 nm to 60 nm.
  • the average particle diameter (D 50 ) of the conductive oxide particles, or the conductive oxide particles and the composite particles may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the method for measuring the average particle diameter (D 50 ) of the ATO after dispersing the ATO in a solution, it is introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to generate ultrasonic waves of about 28 kHz. after examining the output 60 W, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the surface modifier may be used in an amount of 50 to 30000 ppm, preferably in an amount of 100 to 20000 ppm, more preferably in an amount of 400 to 10000 ppm.
  • a dry mixing method or a wet mixing method may be used for the mixing.
  • the dry mixing method may be performed using a mixing method using a shaker, a mortar grinder mixing method and a mixing method using a mechanical milling method.
  • a mechanical milling method may be desirable in forming a uniform coating layer.
  • the mixing method by the shaker may be performed by mixing the lithium transition metal oxide particles with the surface modifier by shaking several times.
  • the mortar grinder mixing method is a method of uniformly mixing the lithium transition metal oxide particles and the surface modifier using the mortar.
  • the mechanical milling method is, for example, roll mill (ball-mill), ball mill (ball-mill), high energy ball mill (high energy ball mill), planetary mill (planetary mill), stirred ball mill (stirred ball mill, Using a vibrating mill or a jet-mill, the lithium transition metal oxide particles and the surface modifier can be mixed by mechanical friction, for example, by rotating at a rotational speed of 100 rpm to 1000 rpm Compressive stress can be applied.
  • the nanosol wet mixing method in consideration of the dry mixing method or the uniformity of the coating.
  • the nanosol wet mixing method for example, by adding a solvent and a dispersant to a purified inorganic precursor and stirred to form a colloidal inorganic nanosol, and then to the nanosol Surface modifiers and lithium transition metal oxide particles may be added to perform lithium oxide surface treatment.
  • the nanosol wet mixing method has an advantage of improving the uniformity of the coating.
  • the present invention provides a cathode including the cathode active material.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a positive electrode may be prepared by mixing and stirring a solvent, a binder, a conductive agent, and a dispersant in a positive electrode active material, if necessary, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same. have.
  • the porous anode since it is resistant to the toughness of the porous particles of the positive electrode active material, it is particularly preferably included in the porous anode.
  • the current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the positive electrode active material is a metal that can be easily adhered.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the present invention provides a secondary battery including a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, and aluminum-cadmium alloys may be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder and the conductive agent used in the negative electrode can be used as can be commonly used in the art as the positive electrode.
  • the negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then applying the same to a current collector and compressing the negative electrode.
  • the separator may be a conventional porous polymer film conventionally used as a separator, for example, polyolefin such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 - may be any one
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • the mixed solution was added to MPO5 (Multi-Purpose, Japan Coke Co., Ltd.), spray coated and dried for 10 minutes, and then dried in an oven for more than 12 hours at 130. After drying, 400 in a kiln After the heat treatment for 10 hours at, induced and sieved to obtain a positive electrode active material.
  • MPO5 Multi-Purpose, Japan Coke Co., Ltd.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • Al aluminum
  • a negative electrode active material slurry 96.3% by weight of carbon powder as a negative electrode active material, 1.0% by weight of super-p as a conductive material, and 1.5% by weight and 1.2% by weight of styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) as a binder were added to NMP as a solvent.
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • LiPF 6 was added to a nonaqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 30:70 as an electrolyte to prepare a 1 M LiPF 6 nonaqueous electrolyte.
  • the positive electrode and the negative electrode thus prepared were interposed with a mixed separator of polyethylene and polypropylene, followed by fabrication of a polymer battery in a conventional manner, followed by pouring the prepared non-aqueous electrolyte to complete the production of a lithium secondary battery.
  • Example 2 Except for using ITO instead of ATO in Example 1, it was carried out in the same manner as in Example 1 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 2 Except that ATO and ITO were mixed in a weight ratio of 1: 1 instead of ATO in Example 1, it was carried out in the same manner as in Example 1 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 2 Except that ATO and YSZ were mixed in a weight ratio of 1: 1 instead of ATO in Example 1, it was carried out in the same manner as in Example 1 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 2 Except for using ATO and YSZ in a weight ratio of 1: 1 instead of ATO in Example 1, it was carried out in the same manner as in Example 1 to obtain a positive electrode active material and a lithium secondary battery.
  • a positive active material and a lithium secondary battery were obtained in the same manner as in Example 6, except that ATO and YSZ were mixed at a weight ratio of 1: 1 in place of ATO.
  • Example 6 Except for using ITO and YSZ in a weight ratio of 1: 1 instead of ATO in Example 1, it was carried out in the same manner as in Example 6 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 2 Except that the heat treatment was performed at 900 for 6 hours, the same method as in Example 1 was carried out LiNi 0 . 78 Mn 0 . 11 Co 0 . A positive electrode active material and a lithium secondary battery containing ATO inside and outside of 11 O 2 were obtained.
  • Example 2 Except that ATO was not added in Example 1, it was carried out in the same manner as in Example 1 to obtain a positive electrode active material.
  • LiNi 0 . 78 Mn 0 . 11 Co 0 . Li 1 instead of 11 O 2 (Li / M 1) . 2 Ni 0 . 8 Mn 0 . 1 Co 0 . 1 O 2
  • Li / M 1.2
  • compositions of the positive electrode active materials of Examples 1 to 9 and Comparative Examples 1 to 7 are summarized in Table 1 below:
  • Example 1 ATO 10 nm 10 nm (single layer)
  • Example 2 ITO 10 nm 10 nm (single layer) Comparative Example 1
  • ITO 10 nm 40 nm (multilayer) Comparative Example 3 TiO 2 10 nm 10 nm (single layer) Comparative Example 4 none 0 0 0
  • the coating layer when the conductive oxide coating layer is included on the lithium transition metal oxide particles according to the embodiment of the present invention, the coating layer has a single thickness of 10 nm similar to the average particle diameter of the conductive oxide. It can be seen that it forms a layer.
  • the thickness of the coating layer forms a multilayer of 40 nm, which is about 4 times the average particle diameter of the conductive oxide particles.
  • Measuring zone and step angle / measuring time Measuring zone and step angle / measuring time:
  • the lithium secondary batteries obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were charged until the constant current (CC) of 4.2 to 45V at 1C, followed by charging to a constant voltage (CV) of 4.2V. The first charge was performed until the current became 0.05 mAh. After leaving for 20 minutes, and then discharged to a constant current of 2C until 3.0V, it was repeated in 1 to 5 cycles.
  • CC constant current
  • CV constant voltage
  • Comparative Example 4 in which the coating layer of the conductive oxide is not formed on the lithium transition metal oxide, it can be seen that it is significantly reduced by about 23% compared to Examples 1 and 2 of the present invention.
  • Example 4 Except for mixing ATO and YSZ in a weight ratio of 1: 1 in Example 4, except that the mixture in a weight ratio of 1: 0.01, was carried out in the same manner as in Example 4 to obtain a positive electrode active material and a lithium secondary battery.
  • ATO and YSZ in Example 4 was mixed in a weight ratio of 1: 0.1, instead of mixing in a weight ratio of 1: 1, was carried out in the same manner as in Example 4 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 4 Except for mixing ATO and YSZ in a weight ratio of 1: 1 in Example 4, except for mixing in a weight ratio of 1: 0.5, was carried out in the same manner as in Example 4 to obtain a positive electrode active material and a lithium secondary battery.
  • ATO and YSZ in Example 4 was mixed in a weight ratio of 1: 1.5, instead of mixing in a weight ratio of 1: 1, was carried out in the same manner as in Example 4 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 4 Except for mixing ATO and YSZ in a weight ratio of 1: 1 in Example 4, except that the mixture in a weight ratio of 1: 0.005, was carried out in the same manner as in Example 4 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 4 except that ATO and YSZ were mixed at a weight ratio of 1: 2, instead of mixing at a weight ratio of 1: 1, the positive active material and the lithium secondary battery were obtained in the same manner as in Example 4.
  • Example 4 1: 1 100 93.5 89.2
  • Example 10 1: 0.01 100 90.1 86.3
  • Example 11 1: 0.1 100 92.5 88.3
  • Example 12 1: 0.5 100 93.3 89.8
  • Example 13 1: 1.5 100 93.2 89.1
  • Comparative Example 8 1: 0.005 100 89.5 85.1 Comparative Example 9 1: 2 97 93.3 89.1
  • Example 3 except that ATO and ITO were mixed at a weight ratio of 1: 0.01, instead of mixing at a weight ratio of 1: 1, the same procedure as in Example 3 was performed to obtain a cathode active material and a lithium secondary battery.
  • Example 3 except that ATO and ITO were mixed in a weight ratio of 1: 0.1 instead of mixing in a weight ratio of 1: 1, the positive active material and the lithium secondary battery were obtained in the same manner as in Example 3.
  • Example 3 except that ATO and ITO were mixed in a weight ratio of 1: 0.5, instead of mixing in a weight ratio of 1: 1, the positive active material and the lithium secondary battery were obtained in the same manner as in Example 4.
  • Example 3 Except for mixing ATO and YSZ in a weight ratio of 1: 1 in Example 3, except that the mixture in a weight ratio of 1: 0.005, was carried out in the same manner as in Example 4 to obtain a positive electrode active material and a lithium secondary battery.
  • Example 3 except that ATO and YSZ were mixed at a weight ratio of 1: 2, instead of mixing at a weight ratio of 1: 1, the same procedure as in Example 4 was performed to obtain a cathode active material and a lithium secondary battery.
  • ITO ATO Initial Capacity Relative % Capacity after 30 cycles % Capacity after 50 cycles
  • Example 3 1 100 91.4 87.6
  • Example 14 1: 0.01 100 90.2 86.1
  • Example 15 1: 0.1 100 90.5 86.2
  • Example 16 1: 0.5 100 91.0 87.1
  • Comparative Example 10 1: 0.005 100 90.1 86.0 Comparative Example 11 1: 2 98 91.1 87.5
  • the conductive oxide particles and the composite particles in a ratio of 1: 0.01 to 1: 1, and furthermore, to obtain a better effect, the ratio is 1: 0.1 to It was confirmed that mixing at a ratio of 1: 1 is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 전이금속 산화물 입자; 및 상기 리튬 전이금속 산화물 입자 표면에 1종 이상의 전도성 산화물 입자를 포함하는 것을 특징으로 하는 양극 활물질 및 이의 제조방법을 제공한다. 본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 및 단일상을 갖는 특정 전도성 산화물 입자를 포함함으로써 우수한 전자 전도성을 가지면서, 리튬 이온과 같은 금속 이온이 리튬 전이금속 산화물 입자에 전달될 수 있도록 우수한 이온 전달능을 가질 뿐만 아니라, 이차전지의 용량 감소나 출력감소를 최소화할 수 있다.

Description

양극 활물질 및 이의 제조방법
관련출원과의 상호인용
본 출원은 2014년 09월 30일자 한국 특허 출원 제10-2014-0131747호 및 2015년 09월 24일자 한국 특허 출원 제10-2015-0135492호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되고 있는 리튬 이차전지용 양극활물질로서 LiNiO2, LiMn2O4, LiFePO4, Li(NixCoyMnz)O2를 들 수 있다. 그러나 LiNiO2의 경우는 합성이 어려울 뿐만 아니라, 열적 안정성에 문제가 있어 상품화가 어려우며, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion)때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(HEV; hybrid electric vehicle)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
따라서, LiCoO2의 대체 양극 활물질로 최근 가장 각광받고 있는 물질이 Li(NixCoyMnz)O2이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성 및 고온에서의 수명특성이 안 좋은 단점을 갖고 있다. 이러한 단점을 극복하기 위해 양극 활물질 표면에 금속 산화물 코팅층으로 코팅(coating)하는 방법 등의 연구가 많이 진행되어 왔다.
예를 들어, 대한민국 등록특허공보 제10-277796호에는 양극 활물질의 표면에 Mg, Al, Co, K, Na, Ca 등의 금속을 코팅하여 산화성 분위기에서 열처리하여 금속산화물을 코팅하는 기술이 공지되어 있다.
그러나 아직까지 전해질과 양극 활물질간의 반응, 양극 활물질의 표면에 존재하는 불순물에 의한 양극 활물질 표면에서의 구조전이 문제를 해결하기 어려운 실정이다. 따라서, 충방전시 전해액과 활물질의 부가 반응을 감소시키고 전지의 내부저항을 감소시킴으로써 이차전지의 용량감소나 출력 감소를 최소화하고 수명 특성을 향상시킬 수 있는 양극 활물질이 요구되고 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제10-277796호
본 발명의 해결하고자 하는 제1 기술적 과제는 전도성이 우수하면서, 전해액과의 계면 반응이 억제됨으로써, 이차전지의 출력특성 및 사이클 특성을 향상시킬 수 있는, 양극 활물질을 제공하는 것이다.
본 발명의 해결하고자 하는 제2 기술적 과제는 상기 양극 활물질을 경제적이고 용이하게 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 해결하고자 하는 제3 기술적 과제는 상기 양극 활물질을 포함하는 양극을 제공하는 것이다.
본 발명의 해결하고자 하는 제4 기술적 과제는 상기 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리튬 전이금속 산화물 입자; 및 전도성 산화물 입자를 포함하고, 상기 전도성 산화물 입자는 인듐 주석 산화물(ITO; Indium tin oxide) 및 안티몬 주석 산화물(ATO; Antimony tin oxide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 양극 활물질을 제공한다.
또한, 본 발명은 하나의 일 실시예에 따라, 리튬 전이금속 산화물 입자 및 전도성 산화물 입자를 혼합하고 열처리하는 단계를 포함하고, 상기 전도성 산화물 입자는 인듐 주석 산화물(ITO; Indium tin oxide), 및 안티몬 주석 산화물(ATO; Antimony Tin Oxide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 양극 활물질의 제조방법을 제공한다.
아울러, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
나아가, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 및 단일상을 갖는 특정 전도성 산화물 입자를 포함함으로써 우수한 전자 전도성을 가지면서, 리튬 이온과 같은 금속 이온이 리튬 전이금속 산화물 입자에 전달될 수 있도록 우수한 이온 전달능을 가질 뿐만 아니라, 이차전지의 용량 감소나 출력 감소를 최소화할 수 있다.
뿐만 아니라, 상기 전도성 산화물 입자의 구조적 특징으로 인해 양극 공정, 특히 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있으며, 이로써 이차전지에 적용할 경우 수명 특성을 더욱 향상시킬 수 있다.
또한, 본 발명의 실시예에 따른 제조방법에 따르면, 전구체 형태가 아닌 미리 형성된 나노 크기의 산화물 입자들을 사용하여 리튬 전이금속 산화물 외부, 내부 또는 외부 및 내부에 상기 나노 크기의 산화물 입자를 단순하게 열처리 함으로써, 경제적으로 양극 활물질을 용이하게 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 DFT(Discrete Fourier transformation)의 구조 최적화를 통해 최적화된 복합 입자 YSZ(yttria stabilized zirconia) 에서의 리튬의 이동통로 예상 모델을 나타낸 것이다.
도 2는 DFT(Discrete Fourier transformation)의 구조 최적화를 통해 최적화된 복합 입자 YSZ(yttria stabilized zirconia) 에서의 산소 결핍에 따른 이온전도도를 분석한 그래프이다.
도 3은 본 발명의 실시예 1의 SEM(scanning electron microscope) 현미경 사진을 나타낸 결과이다.
도 4는 본 발명의 실시예 2의 SEM(scanning electron microscope) 현미경 사진을 나타낸 결과이다.
도 5는 비교예 1의 SEM(scanning electron microscope) 현미경 사진을 나타낸 결과이다.
도 6은 비교예 2의 SEM(scanning electron microscope) 현미경 사진을 나타낸 결과이다.
도 7은 비교예 3의 SEM(scanning electron microscope) 현미경 사진을 나타낸 결과이다.
도 8은 실시예 1과 2, 비교예 1 내지 4에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 9는 본 발명의 양극 활물질에 포함된 전이금속 산화물 입자 ITO의 XRD 분석 결과를 나타낸 그래프이다.
도 10 양극 활물질에 포함된 전이금속 산화물 입자 ATO의 XRD 분석 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자; 및 전도성 산화물 입자를 포함하고, 상기 전도성 산화물 입자는 인듐 주석 산화물(ITO; Indium tin oxide, 이하 ITO라 칭함) 및 안티몬 주석 산화물(ATO; Antimony Tin Oxide, 이하 ATO라 칭함)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함한다.
또한, 본 발명의 일 실시예에 따른 상기 양극 활물질은 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 전도성 산화물 입자를 포함할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 및 단일상을 갖는 특정 전도성 산화물 입자를 포함함으로써 우수한 전자 전도성을 가지면서, 리튬 이온과 같은 금속 이온이 리튬 전이금속 산화물 입자에 전달될 수 있도록 우수한 이온 전달능을 가질 뿐만 아니라, 이차전지의 용량 감소나 출력감소를 최소화할 수 있다.
뿐만 아니라, 상기 전도성 산화물 입자의 구조적 특징으로 인해 양극 공정, 특히 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있으며, 이로써 이차전지에 적용할 경우 수명 특성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 전도성 산화물 입자는 ITO 및 ATO로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 산화물을 포함할 수 있으며, 바람직하게는 ATO 단독 또는 ATO를 포함하는 혼합 전도성 산화물인 것이 좋다.
만일, 상기 혼합 전도성 산화물 사용하는 경우 상기 ITO 및 ATO의 함량 비율은 1:0.01 내지 1:1의 중량비, 바람직하게는 비율은 1:0.1 내지 1:0.5의 중량비일 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 ATO는 하기 화학식 1 및 2로 표시되는 화합물 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다.
<화학식 1>
(SnO2)x(Sb2O3)y, x+y = 1, 0<y/x≤2
<화학식 2>
(SnO2)x(Sb2O5)y, x+y = 1, 0<y/x≤2
이때, 상기 식에서, x는 바람직하게는 0.6 내지 0.99이고, y는 0.001 내지 0.2, 더욱 바람직하게는 0.002 내지 0.1 일 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 ITO는 하기 화학식 3 및 4로 표시되는 화합물 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다.
<화학식 3>
(InO2)a(Sb2O3)b, a+b = 1, 0<b/a≤2
<화학식 4>
(InO2)a(Sb2O5)b, a+b = 1, 0<b/a≤2
이때, 상기 식에서, a는 바람직하게는 0.6 내지 0.99이고, b는 0.001 내지 0.2, 더욱 바람직하게는 0.002 내지 0.1 일 수 있다.
본 발명에서 사용되는 상기 ITO는 인듐 산화물과 주석 산화물로부터 합성된 물질로서, 높은 전기 전도도와 광학적 투명을 동시에 지님을 특징으로 하며, 가시광 영역에서 높은 투과율과 낮은 전기 비저항을 갖는 전기적인 특성을 지니고 있다.
또한, 상기 ATO는 주석산화물에 안티몬 산화물이 코팅된 것으로서, 상기 ITO에 비해 비용면에서 경제적이며, 투명성과 도전성이 우수한 장점을 갖고 있다.
구체적으로, 상기 ATO는 상기 입자 내에 Sb3 + 또는 Sb5 +로 존재가 가능하며, Sb3+로 존재하는 경우 산소 결핍(oxygen vacancy)을 생성시킬 수 있다. 이렇게 생성된 산소 결핍 때문에 이온 전도도가 증가할 수 있다. 즉, 이온 전도도 및 전기 전도도가 같이 형성되어 양극 활물질의 입자 외부, 내부 또는 외부 및 내부에 포함될 경우 이차전지의 율특성 및 출력 특성을 향상시킬 수 있다.
또한, 상기 양극 활물질은 XRD 측정시 단일상 피크를 갖는 전도성 산화물, 즉 ATO 또는 ITO를 포함할 수 있다. 상기 코팅층에 포함되는 전도성 산화물은 열처리 후에도 상분리가 되지 않고 양극 활물질에 상기 산화물 고유의 구조가 유지됨을 의미할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 따르면, 상기 전도성 산화물 입자의 평균 입경은 1 nm 내지 100 nm, 바람직하게는 5 nm 내지 80 nm, 더욱 바람직하게는 10 nm 내지 60 nm인 나노 입자 산화물이 바람직할 수 있다.
본 발명의 제1 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자 및 전도성 산화물 입자를 포함하며, 상기 전도성 산화물 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면에 코팅되어 코팅층을 형성할 수 있다.
본 발명의 일 실시예에 따르면, 상기 코팅층은 상기 전도성 산화물 입자가 단일층으로 형성됨으로써, 상기 전도성 산화물의 평균 입경과 동일 또는 유사한 1 nm 내지 100 nm의 코팅층의 두께를 가질 수 있다.
상기 코팅층이 다층을 형성하는 경우, 코팅층 두께가 증가하여 Li 이온 이동을 방해하기 때문에 출력 특성의 저하 문제가 있을 수 있으며, 상기 코팅층이 100 nm를 초과하는 경우, 상기 두꺼운 코팅층이 저항으로 작용할 수 있기 때문에 과전압 발생 및 출력 저하 등의 문제가 있을 수 있다.
따라서, 본 발명은 일 실시예에 따라, 상기 1 nm 내지 100 nm의 평균 입경을 갖는 전도성 산화물 입자가 단일층으로 형성되는 것이 초기 용량 및 출력 측면에서 바람직하며, 상기 두께는 바람직하게는 5 nm 내지 80 nm, 더욱 바람직하게는 10 nm 내지 60 nm일 수 있다.
또한, 본 발명의 제2 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자 및 전도성 산화물 입자를 포함하며, 상기 전도성 산화물 입자는 상기 리튬 전이금속 산화물 입자의 내부에 포함될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 내부에 전도성 산화물 입자가 포함되어 상기 리튬 전이금속 산화물 입자와 함께 복합체를 형성함으로써, 양극 활물질의 구조적 결정 붕괴를 방지하여 구조적 안정성 및 전기 화학적 특성을 개선시킬 수 있다.
구체적으로 살펴보면, 본 발명의 일 실시예에 따르면, 상기 전도성 산화물 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 농도가 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성할 수 있다.
예를 들어, 본 발명의 양극 활물질에 있어서, 상기 전도성 산화물 입자는 리튬 전이금속 산화물 입자의 외부 벌크에서의 함량이 내부 벌크에서의 함량에 비해 적어도 20% 이상 더 높을 수 있으며, 상기 내부 벌크는 상기 리튬 전이금속 산화물 입자의 중심과 그 주변 영역으로서, 입자 전체의 전이금속 원자 수의 50%를 포함하고 있는 영역을 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 전도성 산화물 입자는 리튬 전이금속 산화물 입자의 표면으로부터 입자 반경의 0.0001 내지 80%의 두께 범위로 포함될 수 있다.
또한, 본 발명의 제3 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자 및 전도성 산화물 입자를 포함하며, 상기 전도성 산화물 입자는 상기 리튬 전이금속 산화물 입자의 외부 표면에 코팅되어 코팅층을 형성하고, 상기 리튬 전이금속 산화물 입자의 내부에 상기 리튬 전이금속 산화물 입자와 함께 포함할 수 있다.
상기 전도성 산화물 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성할 수 있다.
본 발명의 일 실시예에 따르면, 상기 전도성 산화물 입자는 양극 활물질 전체에 대해 50 내지 30000 ppm의 양, 바람직하게는 100 내지 20000 ppm의 양으로 포함될 수 있다.
상기 양극 활물질의 평균 입경은 3 내지 30 ㎛인 것이 좋다.
또한, 본 발명의 일 실시예에 따른 양극 활물질은 복합 입자를 더 포함할 수 있다. 상기 복합 입자는 리튬 전이금속 산화물 입자의 외부, 내부 또는 외부 및 내부에 상기 전도성 산화물 입자와 함께 또는 각각 포함될 수 있다.
이 경우, 상기 전도성 산화물 입자와 복합 입자의 혼합(함량) 비율은 1:0.01 내지 1:1.5의 중량비, 바람직하게는 1:0.1 내지 1:1의 중량비일 수 있다. 상기 범위의 중량비율인 경우에 복합 입자의 구조적 이점을 최대한 취할 수 있고, 이에 양극 활물질의 충격 흡수 효과를 극대화 할 수 있어 깨짐 효과가 저감될 수 있고, 상대적인 도전성 감소를 방지하여 출력이나 용량이 저하를 방지할 수 있다.
상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia, CaO-stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하며, 상기 복합 입자는 전도성 산화물 입자와 마찬가지로 XRD 측정시 단일상 피크를 갖는다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물 입자 및 단일상을 갖는 특정 전도성 산화물 입자, 특히 전도성 산화물 입자 및 복합 입자를 함께 포함함으로써, 이차전지의 용량 감소나 출력감소를 더욱 최소화할 수 있다. 뿐만 아니라, 상기 복합 입자의 구조적 특징으로 인해 양극 공정, 특히 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있으며, 이로써 이차전지에 적용할 경우 수명 특성을 더욱 향상시킬 수 있다.
상기 YSZ는 이트리아 안정화 지르코니아(yttria stabilized zirconia)로서, 산화지르코늄(지르코니아)에 산화이트륨(이트리아)을 첨가하여 상온에서도 안정하도록 만든 세라믹 재료이다. 상기 YSZ는 지르코니아에 이트리아가 첨가됨으로써 Zr4+ 이온 중 일부가 Y3+로 대체될 수 있다. 이에 따라 4개의 O2- 이온 대신 3개의 O2- 이온으로 대체되며 결과적으로 산소 결핍(oxygen vacancy)이 만들어질 수 있다. 이렇게 생성된 산소 결핍 때문에 YSZ는 O2- 이온 전도성를 갖게 되며 온도가 높을수록 전도도가 좋아진다. 이러한 특징은 고온에서 동작하는 고체산화물 연료전지(SOFC)에서 유용하게 쓰일 수 있다.
또한, 상기 LSGM은 란타늄-스트론듐-갈륨-마그네슘 산화물(LaSrGaMg)로서 높은 이온 전도도를 가지므로, 고체산화물 연료전지의 작동온도를 낮출 수 있는 물질이다.
또한, GDC는 가돌리늄(Gd)이 도핑된 세리아로서, 예를 들어 Gd0 . 1Ce0 . 9O1 . 95 를 들 수 있고, LSGM과 마찬가지로 높은 이온 전도도를 갖는다.
또한, LSM은 망간계 페로브스카이트(Perovskite) 구조로서, 예를 들어 LaSrMnO 또는 La(1-x)SrxMnO3(0.01≤x≤0.30) 페로브스카이트 구조를 가지며, 이온전도성은 거의 없고, 전자전도성은 뛰어나다. La 1- xSrxMnyO3 (1 ≥ X ≥ 0.05) (0.95 ≤ y ≤ 1.15)(δ는 완전 화학량(perfect stoichiometry)으로부터 작은 편차를 의미하는 수치로써 규정된다)일 수 있다.
또한, SSZ는 (ZrO2)1- 2x(Sc2O3)X, (ZrO2)1- 2x(Sc2O3)x - z(Y2O3)z 또는 (Zr02)1-2x-z(Sc2O3)x (CeO2)z (0<x≤0.25)(0<z≤0.l)일 수 있다.
또한, CSZ는 칼슘 도핑된 지르코니아 또는 칼시아 안정화 지르코니아 (CaO- stabilized zirconia)일 수 있으며, 칼시아를 첨가함으로써 지르코니아의 열적 안정성을 향상시킬 수 있다. 상기 CSZ는 큐빅 결정 구조 및 테트라고날(tetragonal) 결정 구조가 혼재된 상태이다. 테트라고날 결정 구조는 온도가 상승하면 큐빅 결정 구조로 바뀌고, 온도가 낮아지면 다시 테트라고날 결정 구조로 변하는데, 이와 같이 결정 구조가 바뀌는 과정에서 부피의 팽창 및 수축이 반복될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자인 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ는 단일상을 갖는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 복합 입자는 지르코니아 계인, YSZ, CSZ 및 SSZ로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이 바람직할 수 있다.
특히, 상기 YSZ는 Zr(1-x)YxO2 -x/2, 0.01≤x≤0.30일 수 있고, 바람직하게는 0.03≤x≤0.20일 수 있다.
또한, SSZ는 바람직하게는 (ZrO2)1- 2x(Sc2O3)X, (ZrO2)1- 2x(Sc2O3)x - z(Y2O3)z 또는 (Zr02)1-2x-z(Sc2O3)x (CeO2)z (0.01≤x≤0.2)(0.01≤z≤0.l)일 수 있다.
또한, CSZ는 CaO 함량이 CSZ 전체 중량에 대해 2 중량% 내지 17 중량%인 CSZ를 포함하는 것이 바람직하다.
본 발명의 일 실시예에 따른 양극 활물질은, 리튬 전이금속 산화물 입자, 전도성 산화물 입자 및 복합 입자를 포함하며, 상기 복합 입자는 전도성 산화물 입자와 함께 또는 각각 상기 리튬 전이금속 산화물 입자의 외부, 내부 또는 내부 및 외부에 포함될 수 있다.
구체적으로 살펴보면, 예를 들어 상기 복합 입자가 YSZ이고, YSZ를 상기 리튬 전이금속 산화물의 외부 표면에 포함하는 경우, Y이 Zr 사이트에 들어가서 단일상을 먼저 형성할 수 있으며, 양극 활물질 구조가 슈퍼스터럭쳐(superstructure)를 가짐으로써, 구조 내부에 산소결핍이 발생하여 양극 활물질 표면에 빈 공간이 많이 생길 수 있다.
도 1 및 2는 본 발명의 일 실시예에 따른 양극 활물질에 포함된 YSZ(yttria stabilized zirconia)를 DFT(Discrete Fourier transformation)의 구조 최적화를 통해 최적화된 복합 입자 YSZ(yttria stabilized zirconia) 에서의 리튬의 이동통로 예상 모델링 및 리튬이온의 이온전도도를 비교분석한 것이다.
도 1을 살펴본 바와 같이, 상기 최적화된 YSZ에서 리튬의 이동통로를 살펴보면, 상기 YSZ의 구조 내부의 산소 결핍으로 인한 빈공간으로 인해 양극 활물질 표면에 Li이 빠져 나갈 수 있는 공간이 많이 생김을 알 수 있다.
또한, 도 2와 같이 DFT를 통해 YSZ에서 리튬 이온이 통과할 수 있는 경로를 찾아서 리튬이온의 이온 전도도를 분석한 결과, 산소 결핍이 있는 도 2의 Path 2-3-4 구간에서 약 1.0eV의 에너지 차이를 보임을 확인할 수 있다.
이를 통해, 산소 결핍이 있는 경로가 연결되면 리튬 이온 전도도가 매우 높을 수 있으며, 이러한 산소 결핍으로 복합 입자 YSZ를 포함하는 양극 활물질을 이차전지에 적용할 경우 용량 감소 또는 출력 감소가 최소화될 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질은 상기 코팅층에 Ca, Nb, W, Mg, Ti, B, Mo 및 Zr 중 하나 이상의 원소를 포함하는 산화물을 더 포함할 수 있다.
상기 Ca, Nb, W, Mg, Ti, B, Mo 및 Zr 중 하나 이상의 원소를 포함하는 산화물은 상기 코팅층에 50ppm 내지 30000ppm의 양으로 포함될 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 리튬 전이금속 산화물 입자는 하기 화학식 5의 화합물을 포함할 수 있다:
<화학식 5>
Li(1+a)Ni(1-b-c)Mn(b)Co(c) M'(s)M"(v)O2
상기 식에서, M'는 Sb, Sn, In, Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소, 바람직하게는 Y, Zr 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하며,
M"는 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소이고,
0≤a<0.2, 0≤b≤0.5, 0≤c≤0.5, 0≤s≤0.2, 0≤v≤0.2 이다.
본 발명의 일 실시예에 따르면, 상기 화학식 5에 있어서, 0≤a<0.2이고, M'는 Sb, Sn, In, Zr, Y, Zr, Ca, Sc 및 Ni로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하는 것이 바람직하며, 상기 s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1에서 바람직하게는 0≤a≤0.09, 더욱 바람직하게는 0≤a≤0.06일 수 있다.
상기 화학식 1에서 a가 0.09 초과, 특히 a가 0.2 이상인 경우, 리튬 전이금속 입자에 전도성 산화물 입자 및 복합 입자(예를 들어 YSZ)를 코팅하는 효과가 다른 산화물(예를 들어 ZrO2) 코팅한 경우에 비해 수명 특성 효과 차이가 약 10% 이내로 현저하지 않을 수 있다. 반면, 상기 화학식 1에서 a가 0.09 이하, 특히 a가 0인 경우, 리튬 전이금속 입자에 상기 복합 입자를 코팅하는 효과는 다른 산화물을 코팅한 경우에 비해 수명 특성 효과가 30% 내지 70%까지의 현저한 차이를 나타낼 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질의 BET 비표면적은 0.1 m2/g 내지 10 m2/g인 것이 바람직하다. BET 비표면적이 상기 범위를 벗어나는 경우, 이차전지의 출력 특성이 저하될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 활물질의 비표면적은 BET(Brunauer-Emmett-Teller; BET)법으로 측정할 수 있다. 예를 들어, 기공분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
한편, 본 발명은 상기 양극 활물질의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은 리튬 전이금속 산화물 입자 및 전도성 산화물 입자를 혼합하고 열처리하는 단계를 포함하고, 전도성 산화물 입자는 인듐 주석 산화물(ITO; Indium tin oxide) 및 안티몬 주석 산화물(ATO; Antimony Tin Oxide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하여, 상기 양극 활물질은 X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 전도성 산화물 입자를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 양극 활물질의 제조방법에 있어서, 상기 혼합시 복합입자를 더 첨가할 수 있다.
상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(LaSrGaMg), LSM(La(1-x)SrxMnO3), CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 전도성 산화물 입자는 ATO, 또는 ATO 및 ITO의 혼합 입자를 포함하는 것이 바람직하며, 상기 복합 입자는 YSZ, CSZ 및 SSZ로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물을 포함하는 것이 바람직하다.
또한, 본 발명의 일 실시예에 따르면, 상기 양극 활물질은 리튬 전이금속 산화물 입자 및 전도성 산화물 입자로 ATO, 복합 입자로 YSZ를 포함하는 것이 더욱 바람직하다.
만일, 상기 전도성 산화물 입자로 ATO, 복합 입자로 YSZ를 사용하는 경우, 상기 ATO 및 YSZ의 혼합(함량) 비율은 1:0.01 내지 1:1.5의 중량비, 바람직하게는 1:0.1 내지 1:1의 중량비일 수 있다.
본 발명의 일 실시예에 따르면, 상기 열처리는 100 내지 1200℃의 온도 범위에서 4 시간 내지 24 시간 동안 수행될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 리튬 전이금속 산화물 입자의 표면에 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자를 포함하는 코팅층 형성; 또는 리튬 전이금속 산화물 입자 내부에 상기 전도성 산화물 입자, 또는 상기 전도성 산화물 입자와 복합 입자를 함께 포함하거나; 또는 리튬 전이금속 산화물 입자 외부 및 내부에 상기 전도성 산화물 입자, 또는 상기 전도성 산화물 입자와 복합 입자를 함께 포함하는 것은 열처리시, 열처리 온도 및 시간에 영향을 미칠 수 있다.
본 발명의 일 실시예에 따라, 예를 들어, 200 내지 800, 바람직하게는 300 내지 600 의 온도 범위에서 열처리를 수행하는 경우, 상기 열처리에 의해 리튬 전이금속 산화물 입자의 외부 표면에 코팅층을 형성할 수 있다.
즉, 200 내지 800℃의 온도 범위에서 열처리를 수행하는 경우, 리튬 전이금속 산화물 입자 표면에 코팅층이 형성되고, 상기 코팅층은 전도성 산화물 입자, 또는 상기 전도성 산화물 입자 및 복합 입자를 포함하며, 상기 전도성 산화물 입자 및 복합 입자는 XRD 측정시 단일상 피크를 갖는 양극 활물질을 얻을 수 있다.
본 발명의 일 실시예에 따르면, 상기 200 내지 800의 온도 범위에서의 열처리에서도 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자의 일부가 상기 리튬 전이금속 산화물의 내부에 포함될 수 있으며, 이 경우, 상기 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자의 표면 및 리튬 전이금속 산화물 입자의 내부에 포함되어 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성할 수 있다.
본 발명의 일 실시예에 따르면, 리튬 전이금속 산화물 입자 상에 외부 코팅층을 형성하는 경우, 예를 들어 고속으로 회전하는 스프레이 분사 방식으로 코팅하는 경우, 나노 분산이 가능하여 코팅층이 단일층 코팅으로 잘 이루어질 수 있다.
상기 전도성 산화물 입자의 양에 따라 상기 리튬 전이금속 산화물 입자 상에 형성되는 코팅층의 두께가 달라질 수 있으며, 따라서, 상기 전도성 산화물 입자의 양이 상기 범위를 초과하는 경우, 코팅층이 전도성 산화물의 입자들이 단일층이 아닌 다층으로 형성된 형태이므로 출력 및 내부 저항의 측면에서 바람직하지 않을 수 있다.
또한, 본 발명의 일 실시예에 따라, 예를 들어, 600 내지 1200℃의 온도 범위에서 열처리를 수행하는 경우, 상기 열처리에 의해 리튬 전이금속 산화물 입자의 내부에 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자를 포함하는 양극 활물질을 얻을 수 있다.
이때, 상기 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 함께 복합화되어 복합체를 형성 할 수 있다. 이 경우, 상기 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자는 리튬 전이금속 산화물 입자의 표면에서 내부로 예를 들어 약 500 nm 이상까지 존재할 수 있다.
본 발명의 일 실시예에 따르면, 상기 600 내지 1200℃의 온도 범위에서의 열처리를 수행하는 경우에도 상기 리튬 전이금속 산화물의 외부 표면에 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자가 존재할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 전이금속 산화물 입자는 상기 화학식 1의 리튬 전이금속 복합 산화물 입자를 포함하고, 하기 s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다:
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 표면 개질제로 사용되는 상기 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자의 평균 입경(D50)은 1 nm 내지 100 nm, 바람직하게는 5 nm 내지 80 nm, 더욱 바람직하게는 10 nm 내지 60 nm인 것이 바람직하다.
본 발명에 있어서, 전도성 산화물 입자, 또는 전도성 산화물 입자 및 복합 입자의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
예를 들어, 상기 ATO의 평균 입경(D50)의 측정 방법은, ATO를 용액에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
본 발명의 일 실시예에 따르면, 상기 표면 개질제는 50 내지 30000 ppm의 양, 바람직하게는 100 내지 20000 ppm의 양, 더욱 바람직하게는 400 내지 10000 ppm의 양으로 사용될 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 혼합을 위해 건식 혼합법 또는 습식 혼합법(구체적으로, 나노졸 습식 혼합법)을 이용할 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 상기 건식 혼합법은 쉐이커에 의한 혼합법, 몰타르 그라인더 혼합(mortar grinder mixing)법 및 기계적 밀링법을 이용한 혼합법을 이용하여 수행할 수 있으며, 바람직하게는 기계적 밀링법을 이용하는 것이 균일한 코팅층 형성에 있어서 바람직할 수 있다.
구체적으로 살펴보면, 상기 쉐이커에 의한 혼합법은 리튬 전이금속 산화물 입자와 표면 개질제를 핸드 믹싱하여 수회 흔들어 혼합하여 수행될 수 있다.
또한, 몰타르 그라인더 혼합법은 리튬 전이금속 산화물 입자와 표면 개질제를 몰타르를 이용하여 균일하게 혼합하는 방법이다.
또한, 상기 기계적 밀링법은 예를 들어, 롤밀 (roll-mill), 볼밀 (ball-mill), 고에너지 볼밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibrating mill) 또는 제트 밀 (jet-mill)을 이용하여, 리튬 전이금속 산화물 입자와 표면 개질제를 기계적 마찰에 의해 혼합을 수행할 수 있으며, 예를 들어 회전수 100rpm 내지 1000rpm으로 회전시켜 기계적으로 압축응력을 가할 수 있다.
또한, 수용액으로 인해 리튬 전이금속 산화물 입자에 데미지(damage)가 발생할 가능성을 낮추기 위해 건식 혼합법 또는 코팅의 균일도를 고려하여 나노졸 습식 혼합법을 사용하는 것이 바람직하다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 상기 나노졸 습식 혼합법은 예를 들어 정제된 무기물 전구체에 용매 및 분산제를 첨가하여 교반시켜 콜로이드상의 무기물 나노졸을 형성 한 후, 상기 나노졸에 표면 개질제 및 리튬 전이금속 산화물 입자를 첨가하여 리튬 산화물을 표면 처리를 수행할 수 있다. 상기 나노졸 습식 혼합법은 코팅의 균일도를 향상시킬 수 있는 장점이 있다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 다공성 입자의 터프니스(toughness)에 강하기 때문에, 특히 다공성 양극에 포함되는 것이 바람직하다.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
또한, 본 발명은 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 이차전지를 제공한다.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
음극에 사용되는 바인더 및 도전제는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-,(SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
전도성 산화물 입자 및 복합 입자의 재료 특성에 따른 성능 평가
실시예 1( 단일층 코팅)
<양극 활물질의 제조>
LiNi0 . 78Mn0 . 11Co0 . 11O2 100g과 40 nm ATO((SnO2)x(Sb2O3)y 나노졸(메톡시 프로판올 90%, ATO 10%, x= 0.9 y =0.05) 5 g을 비이커에 넣고 전체 고형분이 10%가 되도록 에탄올을 첨가하였다. 이 혼합 용액을 MPO5(Multi-Purpose, 일본 코크스 공업)에 넣고 10분 동안 스프레이 코팅 및 건조 후, 오븐(oven)에서 130 에서 12시간 이상 건조하였다. 건조 후, 소성로에서 400 에서 10시간 동안 열처리를 진행한 후, 유발 및 체질하여 양극 활물질을 얻었다.
<양극 제조>
상기 실시예 1에서 제조된 양극 활물질 94 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
<음극 제조>
음극 활물질로 탄소 분말 96.3 중량%, 도전재로 super-p 1.0 중량% 및 바인더로 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 1.5 중량%와 1.2 중량%를 혼합하여 용매인 NMP에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
<비수성 전해액 제조>
한편, 전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다.
<리튬 이차전지 제조>
이와 같이 제조된 양극과 음극을 폴리에틸렌과 폴리프로필렌의 혼합 세퍼레이터를 개재시킨 후 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 2
상기 실시예 1에서 ATO 대신 ITO를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 3
상기 실시예 1에서 ATO 대신 ATO 및 ITO를 1:1의 중량비로 혼합하여 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 4
상기 실시예 1에서 ATO 대신 ATO 및 YSZ를 1:1의 중량비로 혼합하여 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 5
상기 실시예 1에서 ATO 대신 ITO 및 YSZ를 1:1의 중량비로 혼합하여 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 6
상기 실시예 1에서 LiNi0 . 78Mn0 . 11Co0 . 11O2 대신 Li1 . 05Ni0 . 8Mn0 . 1Co0 . 1O2(Li/M = 1.05)을 사용한 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 7
상기 실시예 1에서 ATO 대신 ATO 및 YSZ를 1:1의 중량비로 혼합하여 사용한 것을 제외하고는, 상기 실시예 6과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 8
상기 실시예 1에서 ATO 대신 ITO 및 YSZ를 1:1의 중량비로 혼합하여 사용한 것을 제외하고는, 상기 실시예 6과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 9 (내부 및 외부)
상기 열처리를 900 에서 6시간 동안 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 LiNi0 . 78Mn0 . 11Co0 . 11O2의 내부 및 외부에 ATO를 포함하는 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 1 (다층 코팅)
상기 실시예 1에서 40 nm ATO((SnO2)x(Sb2O3)y, x=0.9 y=0.05, 나노졸(메톡시 프로판올 90%, ATO 10%) 50 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 다층의 ATO 코팅층을 포함하는 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 2
상기 비교예 1에서 ATO 대신 ITO를 사용한 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 3
ATO((SnO2)x(Sb2O3)y, x=0.9 y=0.05) 대신 TiO2를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 4
상기 실시예 1에서 ATO를 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질을 얻었다.
비교예 5
LiNi0 . 78Mn0 . 11Co0 . 11O2 (Li/M = 1) 대신 Li1 . 2Ni0 . 8Mn0 . 1Co0 . 1O2 (Li/M = 1.2)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질을 얻었다.
비교예 6
LiNi0 . 78Mn0 . 11Co0 . 11O2 (Li/M = 1) 대신 Li1 . 2Ni0 . 8Mn0 . 1Co0 . 1O2 (Li/M = 1.2)를 사용한 것을 제외하고는, 상기 실시예 9와 동일한 방법으로 수행하여 양극 활물질을 얻었다.
비교예 7
ATO((SnO2)x(Sb2O3)y, x=0.9 y =0.05 대신 TiO2를 사용한 것을 제외하고는, 상기 실시예 9와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
상기 실시예 1 내지 9 및 비교예 1 내지 7의 양극 활물질의 조성을 정리하면 하기 표 1과 같다:
외부/내부 L/M 전도성 산화물 복합 입자(YSZ)
실시예 1 외부(단일층, 10nm) L/M =1 ATO X
실시예 2 외부(단일층, 10nm) L/M =1 ITO X
실시예 3 외부(단일층, 10nm) L/M =1 ATO 및 ITO X
실시예 4 외부(단일층, 10nm) L/M =1 ATO O
실시예 5 외부(단일층, 10nm) L/M =1 ITO O
실시예 6 외부(단일층, 10nm) L/M =1.05 ATO 및 ITO X
실시예 7 외부(단일층, 10nm) L/M =1.05 ATO O
실시예 8 외부(단일층, 10nm) L/M =1.05 ITO O
실시예 9 내부/외부(단일층, 10nm)) L/M =1 ATO X
비교예 1 외부(다층, 40nm) L/M =1 ATO X
비교예 2 외부(다층, 40nm) L/M =1 ITO X
비교예 3 외부(단일층, 10nm) L/M =1 TiO2 X
비교예 4 외부(단일층, 10nm) L/M =1 X X
비교예 5 외부(단일층, 10nm) L/M =1 ATO X
비교예 6 외부(단일층, 10nm) L/M =1 ATO X
비교예 7 외부(단일층, 10nm) L/M =1 TiO2 X
실험예 1: SEM 현미경 사진
상기 실시예 1과 2, 및 비교예 1 내지 4에서 제조된 양극 활물질에 대해 각각 SEM 현미경 사진을 확인하였고, 그 결과를 표 2, 및 도 3 내지 7에 나타내었다.
산화물 코팅층 전도성 산화물의 평균 입경 (nm) 코팅층 두께(단일층/다층)
실시예 1 ATO 10 nm 10 nm (단일층)
실시예 2 ITO 10 nm 10 nm (단일층)
비교예 1 ATO 10 nm 40 nm (다층)
비교예 2 ITO 10 nm 40 nm (다층)
비교예 3 TiO2 10 nm 10 nm (단일층)
비교예 4 없음 0 0
상기 표 2, 및 도 3 내지 7에 나타낸 바와 같이, 본 발명의 실시예에 따라 리튬 전이금속 산화물 입자 상에 전도성 산화물 코팅층을 포함하는 경우, 코팅층의 두께가 전도성 산화물의 평균 입경과 유사한 10nm로 단일층을 형성함을 알 수 있다.
이에 반해, 비교예 1 내지 3의 경우 코팅층의 두께가 전도성 산화물 입자의 평균 입경에 비해 약 4배 정도 되는 40 nm의 다층을 형성함을 알 수 있다.
실험예 2: X-선 회절 분석
실시예 1과 2, 및 비교예 1 내지 4에서 제조된 양극 활물질에 대해 X-선 회절분석을 수행하였다. 그 결과를 도 9와 10에 나타내었다.
본 발명의 양극 활물질에 포함된 ITO 및 ATO의 XRD 상을 비교분석하기 위하여, 양극 활물질에 대하여 Cu(Kα선)을 이용한 XRD 회절 측정을 하였고, 그 결과를 도 8에 나타내었다.
- 타겟: Cu(Kα선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 1도, 수신 슬릿 = 0.1㎜, 산란 슬릿 = 1도
- 측정 구역 및 스텝 각도/측정 시간:
- 20.0 도 < 2θ< 80도, 4도 / 1분(=0.2도 /3초), 여기서 2θ(Theta)는 회절 각도를 나타낸다.
도 9 및 10을 살펴보면, 양극 활물질에 2θ가 28~35 도에 존재하는 단일상의 ITO 피크 또는 ATO의 피크가 나타남을 확인하였다.
실험예 3: 사이클 특성 평가 1
실시예 1과 2, 및 비교예 1 내지 4에서 얻은 리튬 이차전지에 대하여 사이클 수에 따른 상대 효율을 알아보기 위해 다음과 같이 전기화학 평가 실험을 수행하였다.
구체적으로, 실시예 1과 2, 및 비교예 1 내지 4에서 얻은 리튬 이차전지를 45에서 1C의 정전류(CC) 4.2V가 될 때까지 충전하고, 이후 4.2V의 정전압(CV)으로 충전하여 충전전류가 0.05mAh가 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 2C의 정전류로 3.0V가 될 때까지 방전한 다음, 이를 1 내지 5 회의 사이클로 반복 실시하였다.
상기 도 8에서 알 수 있는 바와 같이, 본 발명의 실시예 1과 2, 및 비교예 1 내지 4에 비해 사이클수가 증가함에 따라 용량 보유율이 향상됨을 알 수 있다.
예를 들어, 실시예 1과 2와 같이, 전도성 산화물 코팅층이 단일층으로서 리튬 전이금속 산화물 입자의 외부에 형성되는 경우, 다층으로 형성된 비교예 1과 2에 비해 50회째 사이클에서는 10% 이상 향상되었다.
또한, 리튬 전이금속 산화물 입자 상에 코팅층이 단일층으로 형성되더라도 ATO 또는 ITO가 형성되는 경우 TiO2 가 형성된 비교예 3에 비해 약 16%까지 향상됨을 알 수 있다.
한편, 리튬 전이금속 산화물 상에 전도성 산화물의 코팅층이 형성되지 않은 비교예 4의 경우, 본 발명의 실시예 1과 2에 비해 약 23% 정도 현저히 감소함을 알 수 있다.
전도성 산화물 입자 및 복합 입자의 혼합 비율에 따른 성능 평가
실시예 10
상기 실시예 4에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:0.01의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 11
상기 실시예 4에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:0.1의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 12
상기 실시예 4에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:0.5의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 13
상기 실시예 4에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:1.5의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 8
상기 실시예 4에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:0.005의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 9
상기 실시예 4에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:2의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실험예 4: 사이클 특성 평가 2
실시예 4, 10 내지 13과, 비교예 8 및 9에서 얻은 리튬 이차전지에 대하여 사이클 수에 따른 상대 효율을 알아보기 위해 다음과 같이 전기화학 평가 실험을 수행하였고, 그 결과를 하기 표 3에 나타내었다.
ATO:YSZ 초기용량 상대화 30사이클 후 용량(%) 50사이클 후 용량(%)
실시예 4 1:1 100 93.5 89.2
실시예 10 1:0.01 100 90.1 86.3
실시예 11 1:0.1 100 92.5 88.3
실시예 12 1:0.5 100 93.3 89.8
실시예 13 1:1.5 100 93.2 89.1
비교예 8 1:0.005 100 89.5 85.1
비교예 9 1:2 97 93.3 89.1
상기 표 3을 참조하면, 전도성 산화물 입자(ATO)와 복합 입자(YSZ)를 1:0.1 내지 1:1.5의 비율로 첨가한 실시예 4, 10 내지 13의 경우 초기용량이 우수하면서도 수십회의 사이클 후에도 용량 유지율이 우수하여 우수한 사이클 특성을 나타냄을 확인할 수 있었으나, 상기 비율 범위를 벗어나는 비교예 8 및 9의 경우에는 사이클 특성이 저하되거나, 초기용량이 낮은 결과를 보이고 있음을 확인하였다. 특히, 복합 입자의 비율이 높은 경우 코팅층이 과도하게 두꺼워지는 등의 영향으로 인해 초기 용량이 저하됨을 확인할 수 있었다.
이를 통해, 초기용량 특성과 사이클 특성을 모두 동시에 만족하기 위해서는 전도성 산화물 입자와 복합 입자를 1:0.01 내지 1:1.5의 비율로 혼합하는 것이 좋고, 나아가, 보다 우수한 효과를 얻고자 한다면 1:0.1 내지 1:1의 비율로 혼합하는 것이 좋다는 점을 확인할 수 있었다.
혼합 전도성 산화물 입자 혼합 비율에 따른 성능 평가
실시예 14
상기 실시예 3에서 ATO 및 ITO를 1:1의 중량비로 혼합하는 대신 1:0.01의 중량비로 혼합한 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 15
상기 실시예 3에서 ATO 및 ITO를 1:1의 중량비로 혼합하는 대신 1:0.1의 중량비로 혼합한 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실시예 16
상기 실시예 3에서 ATO 및 ITO를 1:1의 중량비로 혼합하는 대신 1:0.5의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 10
상기 실시예 3에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:0.005의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
비교예 11
상기 실시예 3에서 ATO 및 YSZ를 1:1의 중량비로 혼합하는 대신 1:2의 중량비로 혼합한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 수행하여 양극 활물질 및 리튬 이차전지를 얻었다.
실험예 4: 사이클 특성 평가 2
실시예 3, 14 내지 16과, 비교예 10 및 11에서 얻은 리튬 이차전지에 대하여 사이클 수에 따른 상대 효율을 알아보기 위해 다음과 같이 전기화학 평가 실험을 수행하였고, 그 결과를 하기 표 4에 나타내었다.
ITO:ATO 초기용량 상대화 30사이클 후 용량(%) 50사이클 후 용량(%)
실시예 3 1:1 100 91.4 87.6
실시예 14 1:0.01 100 90.2 86.1
실시예 15 1:0.1 100 90.5 86.2
실시예 16 1:0.5 100 91.0 87.1
비교예 10 1:0.005 100 90.1 86.0
비교예 11 1:2 98 91.1 87.5
상기 표 4를 참조하면, 전도성 산화물 입자들(ATO 및 ITO)을 1:0.01 내지 1:1의 비율로 첨가한 실시예 3, 14 내지 16의 경우 초기용량이 우수하면서도 수십회의 사이클 후에도 용량 유지율이 우수하여 우수한 사이클 특성을 나타냄을 확인할 수 있었으나, 상기 비율 범위를 벗어나는 비교예 10 및 11의 경우에는 사이클 특성이 저하되거나, 초기용량이 낮은 결과를 보이고 있음을 확인하였다. 특히, ITO의 비율이 높은 경우 코팅층이 과도하게 두꺼워지거나, 혼합의 불균일해지는 등의 영향으로 인해 초기 용량이 저하됨을 확인할 수 있었다.
이를 통해, 초기용량 특성과 사이클 특성을 모두 동시에 만족하기 위해서는 전도성 산화물 입자와 복합 입자를 1:0.01 내지 1:1의 비율로 혼합하는 것이 좋고, 나아가, 보다 우수한 효과를 얻고자 한다면 1:0.1 내지 1:1의 비율로 혼합하는 것이 좋다는 점을 확인할 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (31)

  1. 리튬 전이금속 산화물 입자; 전도성 산화물 입자; 및 복합 입자;를 포함하고,
    상기 전도성 산화물 입자는 안티몬 주석 산화물(ATO; Antimony tin oxide)을 포함하거나, 인듐 주석 산화물(ITO; Indium tin oxide) 및 안티몬 주석 산화물(ATO; Antimony tin oxide)의 혼합물을 포함하며,
    상기 전도성 산화물 입자 및 복합 입자는, X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 것인 양극 활물질.
  2. 제1항에 있어서,
    상기 전도성 산화물 입자 및 복합 입자의 혼합 중량비는 1:0.01 내지 1:1.5인 것인 양극 활물질.
  3. 제1항에 있어서,
    상기 리튬 전이금속 산화물 입자의 외부 표면에 상기 전도성 산화물 입자 및 복합 입자를 포함하는 코팅층이 형성된 것인 양극 활물질.
  4. 제1항에 있어서,
    상기 전도성 산화물 입자 및 복합 입자는 리튬 전이금속 산화물 입자의 내부에 포함되어,
    리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 전도성 산화물 입자 및 복합 입자의 농도가 감소하는 농도구배를 가지며, 전도성 산화물 입자 및 복합 입자가 리튬 전이금속 산화물 입자와 복합화 된 복합체인 것인 양극 활물질.
  5. 제4항에 있어서,
    상기 전도성 산화물 입자 및 복합 입자는 리튬 전이금속 산화물 입자의 외부 벌크에서의 농도가 내부 벌크에서의 농도에 비해 20% 이상 더 높으며,
    상기 내부 벌크는 상기 리튬 전이금속 산화물 입자의 중심과 그 주변 영역으로서, 입자 전체의 전이금속 원자 수의 50%를 포함하고 있는 영역인 것인 양극 활물질.
  6. 제4항에 있어서,
    상기 전도성 산화물 입자 및 복합 입자는 리튬 전이금속 산화물 입자의 표면으로부터 내부 방향으로 입자 반경의 0.0001 내지 80%의 두께 범위로 포함되는 것인 양극 활물질.
  7. 제1항에 있어서,
    상기 리튬 전이금속 산화물 입자의 외부 표면에 전도성 산화물 입자 및 복합 입자를 포함하는 코팅층이 형성되고,
    상기 전도성 산화물 입자 및 복합 입자는 리튬 전이금속 산화물 입자의 내부에 포함되어, 표면에서 내부로 갈수록 감소하는 농도구배를 가지며, 리튬 전이금속 산화물 입자와 복합화 된 복합체인 것인 양극 활물질.
  8. 제1항에 있어서,
    상기 전도성 산화물 입자는 양극 활물질 전체에 대해 50 내지 30000 ppm의 양으로 포함되는 것인 양극 활물질.
  9. 제3항 또는 제7항에 있어서,
    상기 코팅층은 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소를 함유하는 산화물을 더 포함하는 것인 양극 활물질.
  10. 제3항 또는 제7항에 있어서,
    상기 전도성 산화물 입자는 평균 입경이 1 nm 내지 100 nm인 것을 포함하는 것인 양극 활물질.
  11. 제1항에 있어서,
    상기 복합 입자는 YSZ(yttria stabilized zirconia), GDC(gadolinia-doped ceria), LSGM(lanthanum strontium gallate magnesite), LSM(lanthanum strontium manganite), CSZ(Ca doped zirconia or Calcia stabilized zirconia), SSZ(Sc doped zirconia) 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것인 양극 활물질.
  12. 제11항에 있어서,
    상기 YSZ는 이트륨(Y) 원소의 양에 비례하여 산소 결핍(oxygen vacancy)이 존재하는 것인 양극 활물질.
  13. 제11항에 있어서,
    상기 YSZ는 Zr(1-x)YxO2 -x/2 (0.01≤x≤0.30)인 것인 양극 활물질.
  14. 제11항에 있어서,
    상기 전도성 산화물 입자는 ATO를 포함하고, 복합 입자는 YSZ를 포함하는 것인 양극 활물질.
  15. 제1항에 있어서,
    상기 전도성 산화물이 인듐 주석 산화물 및 안티몬 주석 산화물의 혼합 산화물인 경우 1:0.01 내지 1:1의 중량비로 포함하는 것인 양극 활물질.
  16. 제1항에 있어서,
    상기 안티몬 주석 산화물은 하기 화학식 1 및 2로 표시되는 화합물 중 어느 하나 또는 이들의 혼합물을 포함하는 것인 양극 활물질:
    <화학식 1>
    (SnO2)x(Sb2O3)y
    상기 식에서, x 및 y는 x+y = 1, 0<y/x≤2, 0.6≤x≤0.99 및 0.001≤y≤0.2이다.
    <화학식 2>
    (SnO2)x(Sb2O5)y
    상기 식에서, x 및 y는 x+y = 1, 0<y/x≤2, 0.6≤x≤0.99 및 0.001≤y≤0.2이다.
  17. 제1항에 있어서,
    상기 인듐 주석 산화물은 하기 화학식 3 및 4로 표시되는 화합물 중 어느 하나 또는 이들의 혼합물을 포함하는 것인 양극 활물질:
    <화학식 3>
    (InO2)a(Sb2O3)b
    상기 식에서, a 및 b는 a+b = 1, 0<b/a≤2, 0.6≤a≤0.99 및 0.001≤b≤0.2이다.
    <화학식 4>
    (InO2)a(Sb2O5)b
    상기 식에서, a 및 b는 a+b = 1, 0<b/a≤2, 0.6≤a≤0.99 및 0.001≤b≤0.2이다.
  18. 제1항에 있어서,
    상기 리튬 전이금속 산화물 입자는 하기 화학식 5의 화합물을 포함하는 것인 양극 활물질:
    <화학식 5>
    Li(1+a)Ni(1-b-c)Mn(b)Co(c) M'(s)M"(v)O2
    상기 식에서, M'는 Sb, Sn, In, Y, Zr, La, Sr, Ga, Mg, Mn, Ca, Sc 및 Ni로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 원소 또는 이들의 산화물을 포함하며,
    M"는 Ca, Nb, W, Mg, Ti, B, Mo, Sc 및 Zr 중 하나 이상의 원소 또는 이들의 산화물이고,
    a, b, c, s 및 v는 0≤a<0.2, 0≤b≤0.5, 0≤c≤0.5, 0≤s≤0.2, 0≤v≤0.2 이다.
  19. 제18항에 있어서,
    상기 화학식 5에 있어서, s 및 v는 리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도구배를 갖는 것인 양극 활물질.
  20. 제1항에 있어서,
    상기 양극 활물질의 평균 입경은 3 ㎛ 내지 30 ㎛인 것인 양극 활물질.
  21. 제1항에 있어서,
    상기 양극 활물질은 0.5 내지 10 mN 의 압력 하에서 압축 강도가 10 내지 500 MPa인 것인 양극 활물질.
  22. 리튬 전이금속 산화물 입자, 전도성 산화물 입자 및 복합 입자를 혼합하는 단계; 및 혼합된 입자들을 열처리하는 단계;를 포함하고,
    상기 전도성 산화물 입자는 안티몬 주석 산화물(ATO; Antimony tin oxide)을 포함하거나, 인듐 주석 산화물(ITO; Indium tin oxide) 및 안티몬 주석 산화물(ATO; Antimony tin oxide)의 혼합물을 포함하며,
    상기 전도성 산화물 입자 및 복합 입자는, X-레이 회절 (X-Ray Diffraction; XRD) 분석 측정시 단일상 피크를 갖는 것인 양극 활물질의 제조방법.
  23. 제22항에 있어서,
    상기 혼합은 건식 혼합 또는 습식 혼합이고, 리튬 전이금속 산화물 입자의 표면에 전도성 산화물 입자 및 복합 입자를 코팅하는 것인 양극 활물질의 제조방법.
  24. 제23항에 있어서,
    상기 코팅층의 형성은 스프레이(spray) 분사 방식을 통해 이루어지는 것인 양극 활물질의 제조방법.
  25. 제22항에 있어서,
    상기 열처리는 100 내지 1200의 온도 범위에서 수행되는 것인 양극 활물질의 제조방법.
  26. 제22항에 있어서,
    상기 열처리는 200 내지 800의 온도 범위에서 수행되는 것인 양극 활물질의 제조방법.
  27. 제26항에 있어서,
    상기 열처리에 의해 전도성 산화물 입자 및 복합 입자가 리튬 전이금속 산화물 입자의 표면에서 단일층인 코팅층을 형성하는 것인 양극 활물질의 제조방법.
  28. 제22항에 있어서,
    상기 열처리는 600 내지 1200의 온도 범위에서 수행되는 것인 양극 활물질의 제조방법.
  29. 제28항에 있어서,
    상기 열처리에 의해 전도성 산화물 입자 및 복합 입자가 리튬 전이금속 산화물 입자의 내부에 포함되어,
    리튬 전이금속 산화물 입자의 표면에서 내부로 갈수록 전도성 산화물 입자 및 복합 입자의 농도가 감소하는 농도구배를 가지며, 전도성 산화물 입자 및 복합 입자가 리튬 전이금속 산화물 입자와 복합화 되는 것인 양극 활물질의 제조방법.
  30. 제1항의 양극 활물질을 포함하는 양극.
  31. 제30항의 양극을 포함하는 리튬 이차전지.
PCT/KR2015/010183 2014-09-30 2015-09-25 양극 활물질 및 이의 제조방법 WO2016052944A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017501371A JP6389318B2 (ja) 2014-09-30 2015-09-25 正極活物質及びその製造方法
US15/037,218 US9972841B2 (en) 2014-09-30 2015-09-25 Positive electrode active material and preparation method thereof
CN201580033530.9A CN106663793B (zh) 2014-09-30 2015-09-25 正极活性材料及其制备方法
EP15846391.9A EP3203551B1 (en) 2014-09-30 2015-09-25 Positive electrode active material and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0131747 2014-09-30
KR20140131747 2014-09-30
KR10-2015-0135492 2015-09-24
KR1020150135492A KR101791744B1 (ko) 2014-09-30 2015-09-24 양극 활물질 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2016052944A1 true WO2016052944A1 (ko) 2016-04-07

Family

ID=55630910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010183 WO2016052944A1 (ko) 2014-09-30 2015-09-25 양극 활물질 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2016052944A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848293A (zh) * 2017-01-10 2017-06-13 上海电力学院 一种锂离子电池三元正极材料及其制备方法
CN114927671A (zh) * 2022-06-17 2022-08-19 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070008115A (ko) * 2005-07-13 2007-01-17 주식회사 엘지화학 사이클 특성과 안전성이 우수한 리튬 이차전지용 양극활물질
KR20120012628A (ko) * 2010-08-02 2012-02-10 한국과학기술연구원 표면 개질된 리튬 이차전지용 양극 활물질 및 그 제조방법
JP2012138197A (ja) * 2010-12-24 2012-07-19 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質、正極、リチウムイオン二次電池、および、リチウムイオン二次電池用正極活物質の製造方法
KR20140023861A (ko) * 2012-08-17 2014-02-27 강원대학교산학협력단 양극 활물질, 이의 제조 방법 및 이를 포함하는 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070008115A (ko) * 2005-07-13 2007-01-17 주식회사 엘지화학 사이클 특성과 안전성이 우수한 리튬 이차전지용 양극활물질
KR20120012628A (ko) * 2010-08-02 2012-02-10 한국과학기술연구원 표면 개질된 리튬 이차전지용 양극 활물질 및 그 제조방법
JP2012138197A (ja) * 2010-12-24 2012-07-19 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質、正極、リチウムイオン二次電池、および、リチウムイオン二次電池用正極活物質の製造方法
KR20140023861A (ko) * 2012-08-17 2014-02-27 강원대학교산학협력단 양극 활물질, 이의 제조 방법 및 이를 포함하는 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CUI, YAN ET AL.: "Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process", ELECTROCHIMICA ACTA, vol. 55, no. 3, 2010, pages 922 - 926, XP055291511 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848293A (zh) * 2017-01-10 2017-06-13 上海电力学院 一种锂离子电池三元正极材料及其制备方法
CN114927671A (zh) * 2022-06-17 2022-08-19 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备

Similar Documents

Publication Publication Date Title
WO2015065098A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019088340A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2020153833A1 (ko) 도핑원소를 포함하는 리튬이차전지용 복합금속산화물, 이로부터 형성된 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
WO2019088805A2 (ko) 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2017209561A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2017095133A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2019088806A1 (ko) 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 양극재, 양극 및 리튬 이차전지
WO2018164477A1 (ko) 칼륨 이차 전지용 양극 활물질, 이를 포함하는 칼륨 이차 전지
WO2020256473A1 (ko) 이종원소가 도핑된 표면부를 갖는 양극활물질, 및 그 제조 방법
WO2017175979A2 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2017095152A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2022065855A1 (ko) 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
WO2018080259A1 (ko) 이차전지용 고분자 전해질 및 이를 포함하는 이차전지
WO2017150893A1 (ko) 리튬 이차전지용 양극활물질 및 이의 제조 방법
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2016032222A1 (ko) 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018008952A1 (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
WO2022203347A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022149933A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2024058584A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2022203346A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15037218

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846391

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015846391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846391

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017501371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE