WO2022065855A1 - 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법 - Google Patents

고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법 Download PDF

Info

Publication number
WO2022065855A1
WO2022065855A1 PCT/KR2021/012904 KR2021012904W WO2022065855A1 WO 2022065855 A1 WO2022065855 A1 WO 2022065855A1 KR 2021012904 W KR2021012904 W KR 2021012904W WO 2022065855 A1 WO2022065855 A1 WO 2022065855A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
ion conductor
solid ion
solid
conductor compound
Prior art date
Application number
PCT/KR2021/012904
Other languages
English (en)
French (fr)
Inventor
이석수
구준환
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Priority to EP21872883.0A priority Critical patent/EP4220800A1/en
Priority to JP2023518289A priority patent/JP2023542358A/ja
Priority to US18/013,127 priority patent/US20230291004A1/en
Publication of WO2022065855A1 publication Critical patent/WO2022065855A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a solid ion conductor compound, a solid electrolyte comprising the same, a lithium battery comprising the same, and a method for manufacturing the same.
  • An all-solid-state lithium battery includes a solid electrolyte as an electrolyte. All-solid-state lithium batteries have excellent stability because they do not contain flammable organic solvents.
  • One aspect is to provide a solid ion conductor compound having a reduced particle size and improved lithium ion conductivity at the same time.
  • Another aspect is to provide a solid electrolyte comprising the solid ion conductor compound.
  • Another aspect is to provide an electrochemical cell including the solid ion conductor compound.
  • Another aspect is to provide a method for preparing the solid ion conductor compound.
  • a solid ion conductor compound having an average particle diameter of 0.1 ⁇ m to 7 ⁇ m is provided:
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table,
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • a solid electrolyte comprising the solid ion conductor compound according to the above is provided.
  • a positive electrode layer including a positive electrode active material layer
  • a negative electrode layer including a negative electrode active material layer
  • An electrolyte layer disposed between the positive electrode layer and the negative electrode layer
  • At least one of the positive electrode active material layer and the electrolyte layer is provided an electrochemical cell including the solid ion conductor compound according to the above.
  • An average particle diameter of the solid ion conductor compound is 7 ⁇ m or less, respectively, a method for preparing a solid ion conductor compound is provided.
  • an electrochemical cell having improved cycle characteristics is provided by including a solid ion conductor compound having improved lithium ion conductivity and reduced average particle diameter.
  • FIG. 2 is a particle size distribution diagram of a lithium precursor, a phosphorus (P) precursor, a chlorine precursor, and a precursor mixture used in Example 1.
  • FIG. 2 is a particle size distribution diagram of a lithium precursor, a phosphorus (P) precursor, a chlorine precursor, and a precursor mixture used in Example 1.
  • Example 3 is a particle size distribution diagram of the solid ion conductor compounds prepared in Example 1, Comparative Example 1, and Comparative Example 4.
  • FIG. 6 is a schematic diagram of an embodiment of an all-solid-state secondary battery.
  • FIG. 7 is a schematic diagram of another embodiment of an all-solid-state secondary battery.
  • FIG. 8 is a schematic diagram of another embodiment of an all-solid-state secondary battery.
  • first,” “second,” “third,” etc. may be used herein to describe various components, components, regions, layers and/or regions, these components, components, regions, Layers and/or zones should not be limited by these terms. These terms are used only to distinguish one element, component, region, layer or region from another element, component, region, layer or region. Thus, a first component, component, region, layer or region described below may be referred to as a second component, component, region, layer or region without departing from the teachings herein.
  • spatially relative terms such as “below”, “below”, “lower”, “above”, “above”, “upper”, etc. are used to facilitate describing the relationship of one component or feature to another. can be used here. It will be understood that spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the drawings. For example, if the device in the figures is turned over, components described as “below” or “beneath” other components or features will be oriented “above” the other components or features. Thus, the exemplary term “below” may encompass both directions above and below. The device may be disposed in other orientations (rotated 90 degrees or rotated in other orientations), and spatially relative terms used herein may be interpreted accordingly.
  • Exemplary implementations are described herein with reference to cross-sectional views that are schematic diagrams of idealized implementations. As such, deformations from the shape of the figures should be expected as a result of, for example, manufacturing techniques and/or tolerances. Accordingly, the embodiments described herein should not be construed as limited to the specific shapes of regions as shown herein, but should include variations in shapes resulting from, for example, manufacturing. For example, regions shown or described as being flat may typically have rough and/or non-linear characteristics. Moreover, the sharply shown angle may be round. Accordingly, the regions depicted in the drawings are schematic in nature, and the shapes are not intended to depict the precise shape of the regions, nor are they intended to limit the scope of the claims.
  • Group means a group of the Periodic Table of Elements according to the International Union of Pure and Applied Chemistry (“IUPAC”) Groups 1-18 grouping system.
  • the "particle diameter" of a particle indicates an average diameter when the particle is spherical, and indicates an average major axis length when the particle is non-spherical.
  • the particle size of the particles may be measured using a particle size analyzer (PSA).
  • PSD particle size analyzer
  • the "particle diameter” of the particles is, for example, the average particle diameter.
  • Average particle diameter is, for example, D50 which is a median particle diameter.
  • D50 is the particle size corresponding to 50% of the cumulative volume calculated from the particle side having a small particle size in the particle size distribution measured by the laser diffraction method.
  • D90 is the particle size corresponding to 90% of the cumulative volume calculated from the particle side having a small particle size in the particle size distribution measured by the laser diffraction method.
  • D10 is the particle size corresponding to 10% cumulative volume calculated from the particle size distribution with a small particle size in the particle size distribution measured by the laser diffraction method.
  • solid ion conductor compound according to one or more exemplary embodiments, a solid electrolyte containing the same, an electrochemical cell containing the same, and a method for preparing the solid ion conductor compound will be described in more detail.
  • the solid ion conductor compound according to one embodiment is represented by the following Chemical Formula 1, has an Argyrodite type crystal structure, has an ion conductivity of 3 mS/cm or more at 25° C., and has an average particle diameter 0.1 ⁇ m to 7 ⁇ m:
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table,
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • the compound represented by Formula 1 is, for example, a crystalline compound having a crystal structure, and by including M and/or Me substituted for a part of a lithium site in the crystal structure, in the compound
  • the ionic conductivity of lithium ions may be improved and the activation energy may be reduced.
  • the crystal lattice volume (crystal lattice volume) by disposing other ions having the same oxidation number as lithium and having a similar or larger ionic radius than lithium ions are disposed in a part of the lithium site included in the solid ion conductor compound represented by Formula 1 lattice volume) can be increased. As the volume of the crystal lattice is increased, movement of lithium ions within the crystal lattice may be facilitated.
  • ions having a higher oxidation number than lithium ions that is, ions having an oxidation number of 2 or higher
  • ions having an oxidation number of 2 or higher are disposed in a part of the lithium site included in the solid ion conductor compound represented by Formula 1, a part of the lithium site is vacant. site) can be The presence of vacancies in the crystal lattice may facilitate movement of lithium ions in the crystal lattice.
  • M1 may be a monovalent cation or a divalent cation.
  • M1 may be a monovalent cation.
  • the compound represented by Formula 1 has an average particle diameter of, for example, 0.3 ⁇ m to 7 ⁇ m, 0.4 ⁇ m to 6 ⁇ m, 0.5 ⁇ m to 5 ⁇ m, 0.5 ⁇ m to 4 ⁇ m, or 0.5 ⁇ m to 3 ⁇ m. Since the solid ion conductor compound has a particle diameter in this range, it can be suitably used for the positive electrode layer of an all-solid-state secondary battery. Therefore, the cycle characteristics of the all-solid-state secondary battery employing the positive electrode layer including the solid ion conductor compound can be further improved.
  • the compound represented by Formula 1 has an average particle diameter of, for example, 1 ⁇ m to 7 ⁇ m, 1 ⁇ m to 6 ⁇ m, 1 ⁇ m to 5 ⁇ m, or 2 ⁇ m to 4 ⁇ m. Since the ion conductor compound has a particle size within this range, it can be suitably used in the solid electrolyte layer of an all-solid-state secondary battery. Accordingly, the cycle characteristics of the all-solid-state secondary battery employing the solid electrolyte layer including the solid ion conductor compound can be further improved.
  • the D90 - D10 value of the compound represented by Formula 1 is, for example, 1 to 30 ⁇ m, 1 to 25 ⁇ m, 1 to 20 ⁇ m, 1 to 15 ⁇ m, 1 to 10 ⁇ m, 1 to 9 ⁇ m, 1 to 8 ⁇ m , 1 to 7 ⁇ m, or 1 to 6 ⁇ m. Since the ion conductor compound has a D90-D10 value in this range, it can be suitably used in the solid electrolyte layer of an all-solid secondary battery. Accordingly, the cycle characteristics of the all-solid-state secondary battery employing the solid electrolyte layer including the solid ion conductor compound can be further improved.
  • the ionic conductivity of the compound represented by Formula 1 is, for example, 3 mS/cm to 100 mS/cm, 3 mS/cm to 50 mS/cm, 3 mS/cm to 40 mS/cm, 3 mS/cm to 30 mS/cm, 3 mS/cm to 20 mS/cm or 3 mS/cm to 10 mS/cm.
  • the solid ion conductor compound of Formula 1 has ionic conductivity in this range, it is possible to effectively perform ion transfer between the anode and the cathode in an electrochemical cell containing such a solid ion conductor, thereby reducing the internal resistance between the anode and the cathode.
  • Ion conductivity can be measured using a DC polarization method.
  • the ionic conductivity can be measured using a complex impedance method.
  • M1 is Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si , Zr, Ta, Nb, V, Ga, Al, As, or a combination thereof.
  • M1 may be, for example, a monovalent cation or a divalent cation.
  • M1 may include Na, K, Cu, Mg, Ag, or a combination thereof.
  • M1 may be, for example, a monovalent cation.
  • M2 may include F, Cl, Br, I, or a combination thereof.
  • M2 may be, for example, a monovalent anion.
  • SO n of M3 is S 4 O 6 , S 3 O 6 , S 2 O 3 , S 2 O 4 , S 2 O 5 , S 2 O 6 , S 2 O 7 , S 2 O 8 , SO 4 , SO 5 , or a combination thereof.
  • SO n may be, for example, a divalent anion.
  • SO n 2- is, for example, S 4 O 6 2- , S 3 O 6 2- , S 2 O 3 2- , S 2 O 4 2- , S 2 O 5 2- , S 2 O 6 2- , S 2 O 6 2- , S 2 O 7 2- , S 2 O 8 2- , SO 4 2- , SO 5 2- , or a combination thereof.
  • the solid ion conductor compound represented by Formula 1 may be, for example, a solid ion conductor compound represented by the following Formulas 1a to 1c:
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table,
  • M2 is one or more elements selected from group 17 of the periodic table
  • the solid ion conductor compound represented by Formula 1a includes M1 and M2 and does not include M3.
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table,
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • the solid ion conductor compound represented by Formula 1b is a compound including all of M1, M2 and M3.
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • the solid ion conductor compound represented by Formula 1c does not contain M1, but contains M2 and M3.
  • the solid ion conductor compound represented by Formula 1 may be, for example, a solid ion conductor compound represented by the following Formula 2:
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table, m is the oxidation number of M1,
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z ⁇ 2, and 0 ⁇ w ⁇ 0.5 For example, 0 ⁇ v ⁇ 0.5, 0 ⁇ z ⁇ 2, and 0 ⁇ w ⁇ 0.2.
  • 0 ⁇ v ⁇ 0.3, 0.2 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1 For example, 0 ⁇ v ⁇ 0.1, 0.5 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1.
  • the solid ion conductor compound represented by Formula 1 may be, for example, a solid ion conductor compound represented by the following Formulas 2a to 2c:
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table, m is the oxidation number of M1,
  • M2 is one or more elements selected from group 17 of the periodic table
  • the solid ion conductor compound represented by Formula 2a is a compound including M1 and M2 but not including M3.
  • M1 may be, for example, one metal element or two or more metal elements.
  • M1 is at least one metal element other than Li selected from Groups 1 to 15 of the periodic table, m is the oxidation number of M1,
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • the solid ion conductor compound represented by Formula 2b is a compound including M1, M2 and M3.
  • M1 may be, for example, one metal element or two or more metal elements.
  • M2 may be, for example, one halogen element or two or more halogen elements.
  • M2 is one or more elements selected from group 17 of the periodic table
  • M3 is SO n ,
  • the solid ion conductor compound represented by Formula 2c is a compound containing M2 and M3.
  • the solid ion conductor compound represented by Chemical Formula 1 may be, for example, a solid ion conductor compound represented by the following Chemical Formula 3:
  • M4 is Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, or a combination thereof, m is the oxidation number of M4,
  • M5 and M6 are each independently F, Cl, Br, or I;
  • M4 may be, for example, one metallic element or two metallic elements.
  • the solid ion conductor compound represented by Formula 3 may include, for example, one type of halogen element or two types of halogen elements.
  • the solid ion conductor compound represented by Formula 1 may be, for example, a solid ion conductor compound represented by the following Formulas 3a to 3e:
  • M5 and M6 are each independently F, Cl, Br, or I;
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z1 ⁇ 2, 0 ⁇ Z2 ⁇ 1, 0 ⁇ z ⁇ 2 and z z1+z2.
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z1 ⁇ 2, 0 ⁇ z2 ⁇ 0.5, 0 ⁇ z ⁇ 2, and z z1+z2.
  • 0 ⁇ v ⁇ 0.5, 0 ⁇ z1 ⁇ 2, 0 ⁇ z2 ⁇ 0.5, 0 ⁇ z ⁇ 2, and z z1+z2.
  • 0 ⁇ v ⁇ 0.3, 0 ⁇ z1 ⁇ 1.5, 0 ⁇ z2 ⁇ 0.5, 0.2 ⁇ z ⁇ 1.8, and z z1+z2.
  • 0 ⁇ v ⁇ 0.1, 0 ⁇ z1 ⁇ 1.5, 0 ⁇ z2 ⁇ 0.5, 0.5 ⁇ z ⁇ 1.8, and z z1+z2.
  • 0 ⁇ v ⁇ 0.05, 0 ⁇ z1 ⁇ 1.5, 0 ⁇ z2 ⁇ 0.2, 1.0 ⁇ z ⁇ 1.8, and z z1+z2.
  • the solid ion conductor compound represented by Chemical Formula 1 may be, for example, a solid ion conductor compound represented by the following Chemical Formulas:
  • Li 7-vz Na v PS 6-z F z1 Li 7-vz Na v PS 6-z Cl z1 , Li 7-vz Na v PS 6-z Br z1 , Li 7-vz Na v PS 6-z I z1 ,
  • Li 7-vz Cu v PS 6-z F z1 Li 7-vz Cu v PS 6-z Cl z1 , Li 7-vz Cu v PS 6-z Br z1 , Li 7-vz Cu v PS 6-z I z1 ,
  • Li 7-vz Ag v PS 6-z F z1 Li 7-vz Ag v PS 6-z Cl z1 , Li 7-vz Ag v PS 6-z Br z1 , Li 7-vz Ag v PS 6-z I z1 ,
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z1 ⁇ 2, 0 ⁇ z2 ⁇ 1, 0 ⁇ z ⁇ 2 and z z1+z2.
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z1 ⁇ 2, 0 ⁇ z2 ⁇ 0.5, 0 ⁇ z ⁇ 2, and z z1+z2.
  • 0 ⁇ v ⁇ 0.5, 0 ⁇ z1 ⁇ 2, 0 ⁇ z2 ⁇ 0.5, 0 ⁇ z ⁇ 2, and z z1+z2.
  • 0 ⁇ v ⁇ 0.3, 0 ⁇ z1 ⁇ 1.5, 0 ⁇ z2 ⁇ 0.5, 0.2 ⁇ z ⁇ 1.8, and z z1+z2.
  • 0 ⁇ v ⁇ 0.1, 0 ⁇ z1 ⁇ 1.5, 0 ⁇ z2 ⁇ 0.5, 0.5 ⁇ z ⁇ 1.8, and z z1+z2.
  • 0 ⁇ v ⁇ 0.05, 0 ⁇ z1 ⁇ 1.5, 0 ⁇ z2 ⁇ 0.2, 1.0 ⁇ z ⁇ 1.8, and z z1+z2.
  • the solid ion conductor compound represented by Chemical Formula 1 may be, for example, a solid ion conductor compound represented by the following Chemical Formula 4:
  • M4 is Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, or a combination thereof, m is the oxidation number of M4,
  • M7 is F, Cl, Br, or I
  • the solid ion conductor compound represented by Formula 1 may be, for example, a solid ion conductor compound represented by the following Formulas 4a to 4e:
  • M7 is F, Cl, Br, or I
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z ⁇ 2, and 0 ⁇ w ⁇ 0.2 0 ⁇ v ⁇ 0.7, 0 ⁇ z ⁇ 2, and 0 ⁇ w ⁇ 0.2.
  • 0 ⁇ v ⁇ 0.5, 0 ⁇ z ⁇ 2 and 0 ⁇ w ⁇ 0.2 0 ⁇ v ⁇ 0.3, 0.2 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1.
  • 0 ⁇ v ⁇ 0.1, 0.5 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1 0 ⁇ v ⁇ 0.05, 1.0 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1.
  • the solid ion conductor compound represented by Chemical Formula 1 may be, for example, a solid ion conductor compound represented by the following Chemical Formulas:
  • 0 ⁇ v ⁇ 0.7, 0 ⁇ z ⁇ 2, and 0 ⁇ w ⁇ 0.2 0 ⁇ v ⁇ 0.7, 0 ⁇ z ⁇ 2, and 0 ⁇ w ⁇ 0.2.
  • 0 ⁇ v ⁇ 0.5, 0 ⁇ z ⁇ 2 and 0 ⁇ w ⁇ 0.2 0 ⁇ v ⁇ 0.3, 0.2 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1.
  • 0 ⁇ v ⁇ 0.1, 0.5 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1 0 ⁇ v ⁇ 0.05, 1.0 ⁇ z ⁇ 1.8, and 0 ⁇ w ⁇ 0.1.
  • the solid ion conductor compound represented by Formula 1 may be, for example, a solid ion conductor compound represented by the following Formula 5:
  • M7 is F, Cl, Br, or I
  • the solid ion conductor compound represented by Chemical Formula 1 may be, for example, a solid ion conductor compound represented by the following Chemical Formulas:
  • Li 7-z PS 6-zw F z (SO 4 ) w Li 7-z PS 6-zw Cl z (SO 4 ) w , Li 7-z PS 6-zw Br z (SO 4 ) w , Li 7 -z PS 6-zw I z (SO 4 ) w
  • the solid ion conductor compound represented by Formula 1 may belong to, for example, a cubic crystal system, and more specifically, belong to the F-43m space group.
  • the solid ion conductor compound represented by Formula 1 may be an argyrodite-type sulfide having an argyrodite-type crystal structure.
  • the solid ion conductor compound represented by Formula 1 contains at least one of a monovalent cationic element and a divalent cationic element substituted for a part of lithium sites in an azirodite-type crystal structure, or contains a heterogeneous halogen element, or , It is possible to simultaneously provide improved lithium ion conductivity and electrochemical stability to lithium metal by including the SO n anion substituted at the halogen site.
  • the solid ion conductor compound represented by Formula 1 is, for example, 25.48° ⁇ 0.50°, 30.01° ⁇ 1.0°, 31.38° ⁇ 0.50°, 46.0° ⁇ 1.0°, 48.5° ⁇ 1.0°, It may have a peak at a position of 53.0° ⁇ 1.0°. Since the solid ion conductor compound represented by Formula 1 has an azirodite structure, it may have such a peak in the XRD spectrum using CuK ⁇ ray.
  • the solid electrolyte according to another embodiment includes the solid ion conductor compound represented by Chemical Formula 1 described above.
  • the solid electrolyte may have high ionic conductivity and high chemical stability by including such a solid ion conductor compound.
  • the solid electrolyte including the solid ion conductor compound represented by Formula 1 may provide improved stability to air and electrochemical stability to lithium metal. Accordingly, the solid ion conductor compound represented by Chemical Formula 1 may be used, for example, as a solid electrolyte of an electrochemical cell.
  • the solid electrolyte may additionally include a conventional general solid electrolyte in addition to the solid ion conductor compound represented by Chemical Formula 1.
  • a conventional general sulfide-based solid electrolyte and/or an oxide-based solid electrolyte may be additionally included.
  • the conventional solid ion conductor compound additionally included is, for example, Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 (LATP), LISICON (Lithium Super Ionic Conductor), LIPON (Li 3-y PO 4 -x N x , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 3), Thio-LISICON(Li 3.25 Ge 0.25 P 0.75 S 4 ), Li 2 S, Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 S-GeS 2 , Li 2 SB 2 S 3 , and Li 2 S-Al 2 S 3 and the like may be included, but are not necessarily limited thereto, and any one available in the art may be used.
  • the solid electrolyte may be in the form of a powder or a molded product.
  • the solid electrolyte in the form of a molded article may be in the form of, for example, a pellet, a sheet, a thin film, etc., but is not necessarily limited thereto and may have various forms depending on the intended use.
  • An electrochemical cell includes: a positive electrode layer including a positive electrode active material layer; a negative electrode layer including a negative electrode active material layer; and an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, wherein the positive electrode active material layer and/or the electrolyte layer includes a solid ion conductor compound represented by Chemical Formula 1.
  • the electrochemical cell includes the solid ion conductor compound represented by Formula 1, lithium ion conductivity and stability to lithium metal of the electrochemical cell are improved.
  • the electrochemical cell may be, for example, an all-solid secondary battery, a secondary battery containing a liquid electrolyte, or a lithium-air battery, but is not limited thereto, and any electrochemical cell that can be used in the art may be used.
  • the all-solid-state secondary battery may include a solid ion conductor compound represented by Formula 1.
  • the all-solid-state secondary battery includes, for example, a positive electrode layer including a positive electrode active material layer; a negative electrode layer including a negative electrode active material layer; and an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and the positive electrode active material layer and/or the electrolyte layer may include a solid ion conductor compound represented by Chemical Formula 1.
  • the all-solid-state secondary battery according to an embodiment may be prepared as follows.
  • the solid electrolyte layer can be prepared by mixing and drying the solid ion conductor compound represented by Formula 1 and a binder, or rolling the powder of the solid ion conductor compound represented by Formula 1 in a certain form at a pressure of 1 ton to 10 tons. there is.
  • the solid ion conductor compound represented by Formula 1 is used as the solid electrolyte.
  • the average particle diameter of the solid electrolyte may be, for example, 0.5 ⁇ m to 20 ⁇ m. Since the solid electrolyte has such an average particle diameter, binding properties are improved in the process of forming a sintered body, so that the ionic conductivity and lifespan characteristics of the solid electrolyte particles can be improved.
  • the thickness of the solid electrolyte layer may be 10 ⁇ m to 200 ⁇ m.
  • a sufficient movement speed of lithium ions is ensured and, as a result, high ionic conductivity can be obtained.
  • the solid electrolyte layer may further include a solid electrolyte such as a conventional sulfide-based solid electrolyte and/or an oxide-based solid electrolyte in addition to the solid ion conductor compound represented by Formula 1.
  • a solid electrolyte such as a conventional sulfide-based solid electrolyte and/or an oxide-based solid electrolyte in addition to the solid ion conductor compound represented by Formula 1.
  • the conventional sulfide-based solid electrolyte may include, for example, lithium sulfide, silicon sulfide, phosphorus sulfide, boron sulfide, or a combination thereof.
  • Conventional sulfide-based solid electrolyte particles may include Li 2 S, P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 , or a combination thereof.
  • Conventional sulfide-based solid electrolyte particles may be Li 2 S or P 2 S 5 .
  • Conventional sulfide-based solid electrolyte particles are known to have higher lithium ion conductivity than other inorganic compounds.
  • the conventional sulfide-based solid electrolyte includes Li 2 S and P 2 S 5 .
  • the sulfide solid electrolyte material constituting the conventional sulfide-based solid electrolyte includes Li 2 SP 2 S 5
  • the mixing molar ratio of Li 2 S to P 2 S 5 is, for example, from about 50:50 to about 90:10. can be a range.
  • Li 3 PO 4 halogens, halogen compounds, Li 2+2x Zn 1-x GeO 4 (“LISICON”), Li 3+y PO 4-x N x ( “LIPON”), Li 3.25 Ge 0.25 P 0.75 Li 2 SP 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 , or S 4 ("ThioLISICON"), Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 ( "LATP”), etc.
  • An inorganic solid electrolyte prepared by adding a combination thereof to an inorganic solid electrolyte may be used as a conventional sulfide solid electrolyte.
  • the conventional sulfide-based solid electrolyte material is a sulfide-based solid electrolyte material raw material starting material (eg, Li 2 S, P 2 S 5 , etc.) melt quenching method (melt quenching method), mechanical milling method It can be prepared by processing by the Also, a calcinations process may be performed after the treatment.
  • a sulfide-based solid electrolyte material raw material starting material eg, Li 2 S, P 2 S 5 , etc.
  • melt quenching method melt quenching method
  • mechanical milling method mechanical milling method It can be prepared by processing by the Also, a calcinations process may be performed after the treatment.
  • the binder included in the solid electrolyte layer for example, styrene butadiene rubber (SBR), polytetrafluoroethylene (polytetrafluoroethylene), polyvinylidene fluoride (polyvinylidene fluoride), polyethylene (polyethylene), polyvinyl alcohol (Polyvinyl alcohol) It is not limited thereto, and all are possible as long as it is used as a binder in the art.
  • the binder of the solid electrolyte layer may be the same as or different from the binder of the positive electrode layer and the negative electrode layer.
  • the positive electrode layer may be manufactured by forming a positive electrode active material layer including a positive electrode active material on a current collector.
  • the average particle diameter of the positive electrode active material may be, for example, 2 ⁇ m to 10 ⁇ m.
  • the cathode active material may be used without limitation as long as it is commonly used in secondary batteries.
  • it may be a lithium transition metal oxide, a transition metal sulfide, or the like.
  • one or more of a complex oxide of lithium and a metal selected from cobalt, manganese, nickel, and combinations thereof may be used, and specific examples thereof include Li a A 1-b B b D 2 (above where 0.90 ⁇ a ⁇ 1.8, and 0 ⁇ b ⁇ 0.5); Li a E 1-b B b O 2-c D c (in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2-b B b O 4-c D c (wherein 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b B c D ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5,
  • A is Ni, Co, Mn, or a combination thereof
  • B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element, or a combination thereof
  • D is O, F, S, P, or a combination thereof
  • E is Co, Mn, or a combination thereof
  • F is F, S, P, or a combination thereof
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof
  • Q is Ti, Mo, Mn, or a combination thereof
  • I is Cr, V, Fe, Sc, Y, or a combination thereof
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • A is Ni, Co, Mn, or a combination thereof
  • B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element, or a combination thereof
  • D is O, F, S, P, or a combination thereof
  • E is Co, Mn, or a combination thereof
  • F is F, S, P, or a combination thereof
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof
  • Q is Ti, Mo, Mn, or a combination thereof
  • I is Cr, V, Fe, Sc, Y, or a combination thereof
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • the coating layer applied to the surface of such a compound includes, for example, a coating element compound of oxide, hydroxide, coating element oxyhydroxide, coating element oxycarbonate, or coating element hydroxycarbonate.
  • the compound constituting this coating layer is amorphous or crystalline.
  • the coating element included in the coating layer is Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof.
  • the coating layer forming method is selected within a range that does not adversely affect the physical properties of the positive electrode active material.
  • the coating method is, for example, spray coating, dipping, or the like. Since the specific coating method can be well understood by those skilled in the art, a detailed description thereof will be omitted.
  • the positive electrode active material includes, for example, a lithium salt of a transition metal oxide having a layered rock salt type structure among the lithium transition metal oxides described above.
  • the “layered rock salt structure” refers to, for example, that oxygen atomic layers and metal atomic layers are alternately and regularly arranged in the ⁇ 111> direction of a cubic rock salt type structure, whereby each atomic layer is a two-dimensional plane is the structure that forms the
  • the "cubic rock salt structure” refers to a sodium chloride type (NaCl type) structure, which is a type of crystal structure, and specifically, the face centered cubic lattice (fcc) formed respectively of the cation and the anion is a unit lattice with each other.
  • the positive electrode active material includes a ternary lithium transition metal oxide having a layered rock salt structure, the energy density and thermal stability of the all-solid-state secondary battery are further improved.
  • the positive electrode active material may be covered by the coating layer as described above.
  • the coating layer may be any one known as a coating layer of the positive electrode active material of an all-solid-state secondary battery.
  • the coating layer is, for example, Li 2 O-ZrO 2 (LZO) or the like.
  • the positive electrode active material contains nickel (Ni) as a ternary lithium transition metal oxide such as NCA or NCM, it is possible to increase the capacity density of the all-solid-state secondary battery to reduce the metal elution of the positive electrode active material in the charged state. . As a result, cycle characteristics in the charged state of the all-solid-state secondary battery are improved.
  • Ni nickel
  • NCM ternary lithium transition metal oxide
  • the shape of the positive electrode active material is, for example, a particle shape such as a true sphere or an elliptical sphere.
  • the particle diameter of the positive electrode active material is not particularly limited, and is within a range applicable to the positive electrode active material of a conventional all-solid-state secondary battery.
  • the content of the positive electrode active material in the positive electrode layer is also not particularly limited, and is within a range applicable to the positive electrode layer of a conventional all-solid-state secondary battery.
  • the content of the positive electrode active material in the positive electrode active material layer may be, for example, 50 to 95% by weight.
  • the positive electrode active material layer may additionally include a solid ion conductor compound represented by Chemical Formula 1.
  • the positive electrode active material layer may include a binder.
  • the binder is, for example, styrene butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, or the like.
  • the positive electrode active material layer may include a conductive material.
  • the conductive material is, for example, graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder, or the like.
  • the positive electrode active material layer may further include additives such as, for example, a filler, a coating agent, a dispersing agent, and an ion conductive auxiliary agent in addition to the above-described positive electrode active material, solid electrolyte, binder, and conductive material.
  • additives such as, for example, a filler, a coating agent, a dispersing agent, and an ion conductive auxiliary agent in addition to the above-described positive electrode active material, solid electrolyte, binder, and conductive material.
  • the positive electrode active material layer may contain, a known material generally used for an electrode of an all-solid-state secondary battery may be used.
  • the positive electrode current collector is, for example, aluminum (Al), indium (In), copper (Cu), magnesium (Mg), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), A plate or foil made of zinc (Zn), germanium (Ge), lithium (Li) or an alloy thereof is used.
  • the positive electrode current collector may be omitted.
  • the positive electrode current collector may further include a carbon layer disposed on one or both surfaces of the metal substrate.
  • a carbon layer disposed on one or both surfaces of the metal substrate.
  • the thickness of the carbon layer may be, for example, 1 ⁇ m to 5 ⁇ m. If the thickness of the carbon layer is too thin, it may be difficult to completely block the contact between the metal substrate and the solid electrolyte. If the thickness of the carbon layer is too thick, the energy density of the all-solid-state secondary battery may be reduced.
  • the carbon layer may include amorphous carbon, crystalline carbon, or the like.
  • the cathode layer is prepared.
  • the negative electrode layer may be manufactured in the same manner as the positive electrode layer except that the negative electrode active material is used instead of the positive electrode active material.
  • the negative electrode layer may be prepared by forming a negative electrode active material layer including the negative electrode active material on the negative electrode current collector.
  • the negative electrode active material layer may additionally include a solid ion conductor compound represented by the above-described Chemical Formula 1.
  • the negative electrode active material may be a lithium metal, a lithium metal alloy, or a combination thereof.
  • the negative electrode active material layer may further include a conventional negative electrode active material in addition to lithium metal, lithium metal alloy, or a combination thereof.
  • the conventional negative electrode active material may include, for example, at least one selected from the group consisting of a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
  • the metal alloyable with lithium is, for example, Ag, Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y alloy (wherein Y is alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) an element or a combination element thereof, but not Si), Sn-Y alloy (wherein Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth element, or a combination element thereof, and not Sn ) and so on.
  • the element Y includes Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof.
  • the transition metal oxide may be, for example, lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like.
  • the non-transition metal oxide may be, for example, SnO 2 , SiO x (0 ⁇ x ⁇ 2), or the like.
  • the carbon-based material may be, for example, crystalline carbon, amorphous carbon, or mixtures thereof.
  • the crystalline carbon may be graphite, such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon is soft carbon (low-temperature calcined carbon) or hard carbon (hard carbon). ), mesophase pitch carbide, calcined coke, and the like.
  • an all-solid-state secondary battery 40 includes a solid electrolyte layer 30 and a positive electrode layer 10 disposed on one surface of the solid electrolyte layer 30 , and a solid electrolyte layer 30 of and a cathode layer 20 disposed on the other surface.
  • the positive electrode layer 30 includes a positive electrode active material layer 12 in contact with the solid electrolyte layer 30 and a positive electrode current collector 11 in contact with the positive electrode active material layer 12
  • the negative electrode layer 20 includes a solid electrolyte layer 30 ) includes a negative electrode active material layer 22 in contact with the negative electrode active material layer 22 and a negative electrode current collector 21 in contact with the negative electrode active material layer 22 .
  • the all-solid-state secondary battery 40 forms, for example, a positive electrode active material layer 12 and a negative electrode active material layer 22 on both surfaces of the solid electrolyte layer 30 , and a positive electrode active material layer 12 and a negative electrode active material layer 22 . ), the positive electrode current collector 11 and the negative electrode current collector 21 are respectively formed on the solid-state secondary battery 30 is completed.
  • an all-solid-state secondary battery 40 by sequentially stacking a negative electrode active material layer 22, a solid electrolyte layer 30, a positive electrode active material layer 12, and a positive electrode current collector 11 on the negative electrode current collector 21 is completed
  • the average particle diameter of the solid ion conductor compound included in the positive electrode active material layer 12 is, for example, 0.5 to 5 , 0.5 ⁇ m to 4 ⁇ m, or 0.5 ⁇ m to 3 ⁇ m.
  • the average particle diameter of the solid ion conductor compound included in the solid electrolyte layer 30 is, for example, 1 to 7 ⁇ m, 1 ⁇ m to 6 ⁇ m, 1 ⁇ m to 5 ⁇ m, or 2 ⁇ m to 4 ⁇ m. Since the solid ion conductor compound included in the positive electrode active material layer 12 and/or the solid electrolyte layer 30 has a particle size within this range, the cycle characteristics of the all-solid-state secondary battery 40 may be further improved.
  • the all-solid-state secondary battery 1 includes, for example, a positive electrode layer 10 including a positive electrode active material layer 12 disposed on a positive electrode current collector 11 ; a negative electrode layer 20 including a negative electrode active material layer 22 disposed on the negative electrode current collector 21; and an electrolyte layer 30 disposed between the positive electrode layer 10 and the negative electrode layer 20, wherein the positive electrode active material layer 12 and/or the electrolyte layer 30 is a solid ion conductor compound represented by Formula 1 may include
  • the all-solid-state secondary battery according to another embodiment may be prepared as follows.
  • the positive electrode layer and the solid electrolyte layer are manufactured in the same manner as in the above-described all-solid secondary battery.
  • the cathode layer is prepared.
  • the negative electrode layer 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22 disposed on the negative electrode current collector 21, and the negative electrode active material layer 22 is, for example, For example, an anode active material and a binder are included.
  • the anode active material included in the anode active material layer 22 has, for example, a particle shape.
  • the average particle diameter of the negative active material having a particle shape is, for example, 4 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, or 900 nm or less.
  • the average particle diameter of the negative active material having a particle shape is, for example, 10 nm to 4 ⁇ m or less, 10 nm to 3 ⁇ m or less, 10 nm to 2 ⁇ m or less, 10 nm to 1 ⁇ m or less, or 10 nm to 900 nm or less.
  • the average particle diameter of the negative electrode active material is, for example, a median diameter (D50) measured using a laser particle size distribution meter.
  • the anode active material included in the anode active material layer 22 includes, for example, at least one selected from a carbon-based anode active material and a metal or metalloid anode active material.
  • the carbon-based negative active material is particularly amorphous carbon.
  • Amorphous carbon is for example carbon black (CB), acetylene black (AB), furnace black (FB), ketjen black (KB), graphene (graphene) ), etc., but are not necessarily limited thereto, and all are possible as long as they are classified as amorphous carbon in the art.
  • Amorphous carbon is carbon that does not have crystallinity or has very low crystallinity, and is distinguished from crystalline carbon or graphite-based carbon.
  • Metal or metalloid anode active materials include gold (Au), platinum (Pt), palladium (Pd), silicon (Si), silver (Ag), aluminum (Al), bismuth (Bi), tin (Sn), and zinc (Zn). ), but is not necessarily limited thereto, and all are possible as long as it is used as a metal negative active material or a metalloid negative active material that forms an alloy or compound with lithium in the art. For example, since nickel (Ni) does not form an alloy with lithium, it is not a metal negative active material.
  • the anode active material layer 22 includes a kind of anode active material from among these anode active materials, or a mixture of a plurality of different anode active materials.
  • the anode active material layer 22 may include only amorphous carbon, gold (Au), platinum (Pt), palladium (Pd), silicon (Si), silver (Ag), aluminum (Al), or bismuth (Bi). ), including at least one selected from the group consisting of tin (Sn) and zinc (Zn).
  • the anode active material layer 22 may include amorphous carbon, gold (Au), platinum (Pt), palladium (Pd), silicon (Si), silver (Ag), aluminum (Al), bismuth (Bi), tin ( Sn) and a mixture with at least one selected from the group consisting of zinc (Zn).
  • the mixing ratio of the mixture of amorphous carbon and gold is, for example, 10:1 to 1:2, 5:1 to 1:1, or 4:1 to 2:1 as a weight ratio, but is not necessarily limited to this range, and is not necessarily limited to the required total It is selected according to the characteristics of the solid secondary battery (1).
  • the cycle characteristics of the all-solid-state secondary battery 1 are further improved by the negative active material having such a composition.
  • the anode active material included in the anode active material layer 22 includes, for example, a mixture of first particles made of amorphous carbon and second particles made of metal or metalloid.
  • Metals or metalloids are, for example, gold (Au), platinum (Pt), palladium (Pd), silicon (Si), silver (Ag), aluminum (Al), bismuth (Bi), tin (Sn) ) and zinc (Zn).
  • Metalloids are otherwise semiconductors.
  • the content of the second particles is 8 to 60% by weight, 10 to 50% by weight, 15 to 40% by weight, or 20 to 30% by weight based on the total weight of the mixture. When the second particle has a content in this range, for example, the cycle characteristics of the all-solid-state secondary battery 1 are further improved.
  • the binder included in the negative electrode active material layer 22 is, for example, styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, polyethylene (polyethylene), vinylidene fluoride / Hexafluoropropylene copolymer, polyacrylonitrile, polymethyl methacrylate, etc., but is not necessarily limited thereto, and any one used as a binder in the art is possible.
  • the binder may be composed of a single or a plurality of different binders.
  • the anode active material layer 22 includes a binder, the anode active material layer 22 is stabilized on the anode current collector 21 .
  • the cracking of the anode active material layer 22 is suppressed in spite of a change in volume and/or a relative position change of the anode active material layer 22 in the charging/discharging process.
  • the anode active material layer 22 does not include a binder, it is possible for the anode active material layer 22 to be easily separated from the anode current collector 21 .
  • a short circuit may occur when the anode current collector 21 comes into contact with the solid electrolyte layer 30 in the portion where the anode current collector 21 is exposed due to the separation of the anode active material layer 22 from the anode current collector 21 .
  • the negative electrode active material layer 22 is prepared by, for example, applying a slurry in which the material constituting the negative electrode active material layer 22 is dispersed on the negative electrode current collector 21 and drying it. By including the binder in the negative electrode active material layer 22, it is possible to stably disperse the negative electrode active material in the slurry. For example, when the slurry is applied on the negative electrode current collector 21 by a screen printing method, it is possible to suppress clogging of the screen (eg, clogging by an agglomerate of the negative electrode active material).
  • the anode active material layer 22 may further include additives used in the conventional all-solid-state secondary battery 1 , for example, a filler, a coating agent, a dispersing agent, an ion conductive auxiliary agent, and the like.
  • the thickness of the negative electrode active material layer 22 is, for example, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, or 5% or less of the thickness of the positive electrode active material layers 12, 12a, 12b.
  • the thickness of the negative electrode active material layer 22 is, for example, 1 ⁇ m to 20 ⁇ m, 2 ⁇ m to 10 ⁇ m, or 3 ⁇ m to 7 ⁇ m.
  • the charging capacity of the negative electrode active material layer 22 is, for example, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, or 2% of the charging capacity of the positive electrode active material layer 12 . is below.
  • the charging capacity of the negative electrode active material layer 22 is, for example, 0.1% to 50%, 0.1% to 40%, 0.1% to 30%, 0.1% to 20%, 0.1% compared to the charging capacity of the positive electrode active material layer 12 . to 10%, 0.1% to 5%, or 0.1% to 2%.
  • the thickness of the negative electrode active material layer 22 becomes very thin, so lithium formed between the negative electrode active material layer 22 and the negative electrode current collector 21 in repeated charging and discharging processes.
  • the dendrites cause the anode active material layer 22 to collapse, making it difficult to improve the cycle characteristics of the all-solid-state secondary battery 1 .
  • the charging capacity of the anode active material layer 22 is excessively increased, the energy density of the all-solid-state secondary battery 1 is lowered and the internal resistance of the all-solid-state secondary battery 1 by the anode active material layer 22 is increased, so that the all-solid-state secondary battery 1 It is difficult to improve the cycle characteristics of the battery 1 .
  • the charging capacity of the positive electrode active material layer 12 is obtained by multiplying the charging capacity density (mAh/g) of the positive electrode active material by the mass of the positive electrode active material in the positive electrode active material layer 12 .
  • the charging capacity density ⁇ mass value is calculated for each positive electrode active material, and the sum of these values is the charging capacity of the positive electrode active material layer 12 .
  • the charging capacity of the anode active material layer 22 is calculated in the same way. That is, the charging capacity of the negative electrode active material layer 22 is obtained by multiplying the charging capacity density (mAh/g) of the negative electrode active material by the mass of the negative electrode active material in the negative electrode active material layer 22 .
  • a charge capacity density ⁇ mass value is calculated for each anode active material, and the sum of these values is the capacity of the anode active material layer 22 .
  • the charge capacity densities of the positive electrode active material and the negative electrode active material are estimated using an all-solid-state half-cell using lithium metal as a counter electrode.
  • the charging capacity of the positive electrode active material layer 12 and the negative electrode active material layer 22 is directly measured by measuring the charging capacity using an all-solid-state half-cell. When the measured charge capacity is divided by the mass of each active material, the packed capacity density is obtained.
  • the charging capacities of the cathode active material layer 12 and the anode active material layer 22 may be initial charging capacities measured during the first cycle.
  • the all-solid-state secondary battery 1a may further include, for example, a metal layer 23 disposed between the negative electrode current collector 21 and the negative electrode active material layer 22 .
  • the metal layer 23 includes lithium or a lithium alloy.
  • the metal layer 23 acts, for example, as a lithium reservoir.
  • the lithium alloy is, for example, a Li-Al alloy, a Li-Sn alloy, a Li-In alloy, a Li-Ag alloy, a Li-Au alloy, a Li-Zn alloy, a Li-Ge alloy, a Li-Si alloy, etc. It is not limited to, and all are possible as long as it is used as a lithium alloy in the art.
  • the metal layer 23 may be made of one of these alloys or lithium, or made of several types of alloys.
  • the thickness of the metal layer 23 is not particularly limited, for example, 1 ⁇ m to 1000 ⁇ m, 1 ⁇ m to 500 ⁇ m, 1 ⁇ m to 200 ⁇ m, 1 ⁇ m to 150 ⁇ m, 1 ⁇ m to 100 ⁇ m, or 1 ⁇ m to 50 ⁇ m. If the thickness of the metal layer 23 is too thin, it is difficult to perform the role of a lithium reservoir by the metal layer 23 . If the thickness of the metal layer 23 is too thick, the mass and volume of the all-solid-state secondary battery 1a may increase, and cycle characteristics may be rather deteriorated.
  • the metal layer 23 may be, for example, a metal foil having a thickness in this range.
  • the metal layer 23 is, for example, disposed between the anode current collector 21 and the anode active material layer 22 before assembly of the all-solid-state secondary battery 1 or the all-solid-state secondary battery 1 is deposited between the negative electrode current collector 21 and the negative electrode active material layer 22 by charging after assembly.
  • the metal layer 23 is disposed between the negative electrode current collector 21 and the negative electrode active material layer 22 before assembling the all-solid-state secondary battery 1a
  • a lithium reservoir acts as
  • a lithium foil is disposed between the negative electrode current collector 21 and the negative electrode active material layer 22 before assembling the all-solid-state secondary battery 1a.
  • the cycle characteristics of the all-solid-state secondary battery 1a including the metal layer 23 are further improved.
  • the metal layer 23 is deposited by charging after assembling the all-solid-state secondary battery 1a, since the metal layer 23 is not included when the all-solid-state secondary battery 1a is assembled, the energy of the all-solid-state secondary battery 1a density increases.
  • the all-solid-state secondary battery 1 it is charged in excess of the charging capacity of the negative electrode active material layer 22 . That is, the negative electrode active material layer 22 is overcharged. At the initial stage of charging, lithium is occluded in the anode active material layer 22 .
  • the anode active material included in the anode active material layer 22 forms an alloy or compound with lithium ions that have migrated from the cathode layer 10 .
  • lithium is deposited on the rear surface of the negative electrode active material layer 22, that is, between the negative electrode current collector 21 and the negative electrode active material layer 22, A metal layer corresponding to the metal layer 23 is formed by lithium.
  • the metal layer 23 is a metal layer mainly composed of lithium (ie, metallic lithium). Such a result is obtained, for example, when the negative electrode active material included in the negative electrode active material layer 22 is composed of a material that forms an alloy or compound with lithium.
  • the negative electrode active material layer 22 and the metal layer 23 that is, lithium in the metal layer is ionized and moves toward the positive electrode layer 10 . Therefore, it is possible to use lithium as an anode active material in the all-solid-state secondary battery 1a.
  • the anode active material layer 22 covers the metal layer 23 , it serves as a protective layer for the metal layer 23 , that is, the metal layer, and serves to suppress the precipitation growth of lithium dendrites. Therefore, the short circuit and capacity reduction of the all-solid-state secondary battery 1a are suppressed, and as a result, the cycle characteristics of the all-solid-state secondary battery 1a are improved.
  • the negative electrode current collector 21 and the negative electrode active material layer 22 and the region between them are, for example, all-solid-state secondary battery It is a Li-free region that does not contain lithium (Li) in the initial state of (1a) or the state after discharging.
  • the negative electrode current collector 21 is made of, for example, a material that does not react with lithium, that is, does not form both an alloy and a compound.
  • the material constituting the negative electrode current collector 21 is, for example, copper (Cu), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), etc., but is not necessarily limited thereto. All are possible as long as it is used as an electrode current collector in the technical field.
  • the negative electrode current collector 21 may be made of one of the above metals, an alloy of two or more metals, or a coating material.
  • the negative electrode current collector 21 is, for example, in the form of a plate or foil.
  • the all-solid-state secondary batteries 1 and 1a may further include, for example, a thin film including an element capable of forming an alloy with lithium on the negative electrode current collector 21 .
  • the thin film is disposed between the negative electrode current collector 21 and the negative electrode active material layer 22 .
  • the thin film contains, for example, an element capable of forming an alloy with lithium.
  • Elements capable of forming an alloy with lithium include, for example, gold, silver, zinc, tin, indium, silicon, aluminum, bismuth, etc., but are not necessarily limited thereto and are capable of forming an alloy with lithium in the art. Any element is possible.
  • the thin film is composed of one of these metals or an alloy of several types of metals.
  • the deposition form of the metal layer 23 deposited between the thin film 24 and the negative electrode active material layer 22 is further flattened, and the all-solid-state secondary battery 1 ) cycle characteristics can be further improved.
  • the thickness of the thin film is, for example, 1 nm to 800 nm, 10 nm to 700 nm, 50 nm to 600 nm, or 100 nm to 500 nm.
  • the thickness of the thin film is less than 1 nm, it may be difficult to exhibit the function of the thin film. If the thickness of the thin film is too thick, the thin film itself occludes lithium and the amount of lithium precipitation from the negative electrode decreases, thereby lowering the energy density of the all-solid-state battery, and the cycle characteristics of the all-solid-state secondary batteries 1 and 1a may be reduced. .
  • the thin film may be disposed on the negative electrode current collector 21 by, for example, a vacuum deposition method, a sputtering method, a plating method, etc., but is not necessarily limited to this method, and any method capable of forming a thin film in the art is possible.
  • a method for preparing a solid ion conductor compound according to another embodiment includes the steps of separately preparing different types of precursor particles having an average particle diameter of 7 ⁇ m or less; preparing a mixture by mixing the different types of precursor particles with each other; and preparing a solid ion conductor compound by heat-treating the mixture, wherein the average particle diameter of the solid ion conductor compound is 7 ⁇ m or less.
  • precursor particles having an average particle diameter of 7 ⁇ m or less are used, and by not using a mixing method that induces agglomeration of particles such as mechanical milling, it has an average particle diameter (D50) of 7 ⁇ m or less and is heated at 25°C. It is possible to prepare a solid ion conductor compound having a high ionic conductivity of 3 mS/cm or more.
  • the solid ion conductor compound is, for example, a solid ion conductor compound represented by the formula (1).
  • the manufacturing method excludes the use of a mixing method that induces agglomeration of particles, such as dry milling, in the entire manufacturing process.
  • Dry milling includes, but is not limited to, ball milling, for example.
  • precursor particles having an average particle diameter of 7 ⁇ m or less are individually prepared.
  • a precursor compound containing sulfur (S) having an average particle diameter of 7 ⁇ m or less is additionally prepared.
  • the average particle size is, for example, D50 particle size.
  • the precursor compound having an average particle diameter of 7 ⁇ m or less may be prepared, for example, by wet grinding a precursor compound having an average particle diameter of 10 ⁇ m to 10 mm.
  • Wet grinding is, for example, a method in which a precursor compound is dispersed in a dispersion medium and then pulverized using a medium stirring mill, for example, a ball mill. Any solvent that is inert to the precursor compound may be used as the dispersion medium.
  • the dispersion medium is, for example, an organic solvent.
  • the organic solvent is, for example, xylene, heptane, or the like. Agglomeration between the precursor compound particles is prevented by wet grinding.
  • the average particle diameter of the precursor compound having an average particle diameter of 7 ⁇ m or less is, for example, 0.5 to 5 ⁇ m, 0.5 ⁇ m to 4 ⁇ m, or 0.5 ⁇ m to 3 ⁇ m.
  • the average particle diameter of the precursor compound having an average particle diameter of 7 ⁇ m or less is, for example, 1 to 7 ⁇ m, 1 ⁇ m to 6 ⁇ m, 1 ⁇ m to 5 ⁇ m, or 2 ⁇ m to 4 ⁇ m.
  • D90 - D10 of the precursor compound having an average particle diameter of 7 ⁇ m or less is, for example, 1 to 10 ⁇ m, 1 to 9 ⁇ m, 1 to 8 ⁇ m, 1 to 7 ⁇ m, or 1 to 6 ⁇ m. Since the precursor compound has a particle size distribution in such a narrow range, agglomeration of particles during the preparation of the precursor mixture can be prevented.
  • Precursor compounds comprising lithium include sulfides comprising lithium. Lithium sulfide is mentioned, for example.
  • the precursor compound comprising an element selected from Groups 2 and 11 of the Periodic Table includes a sulfide comprising an element selected from Groups 2 and 11 of the Periodic Table.
  • a sulfide comprising an element selected from Groups 2 and 11 of the Periodic Table.
  • copper sulfide, silver sulfide, sodium sulfide are mentioned.
  • the precursor compound containing phosphorus (P) includes a sulfide containing phosphorus.
  • P 2 S 5 is mentioned.
  • the precursor compound containing a group 17 element includes a lithium salt containing a group 17 element.
  • LiCl, LiF, LiBr, LiI are mentioned, for example.
  • the precursor mixture may further include a compound including a Group 1 metal element other than Li.
  • the compound containing a Group 1 metal other than Li includes, for example, a sulfide of a Group 1 metal other than Li. For example, Na 2 S, K 2 S are mentioned.
  • the precursor mixture may further include a compound comprising SO n (1.5 ⁇ n ⁇ 5).
  • the compound containing SO n (1.5 ⁇ n ⁇ 5) includes a lithium salt containing SO n .
  • Li 2 S 4 O 6 , Li 2 S 3 O 6 , Li 2 S 2 O 3 , Li 2 S 2 O 4 , Li 2 S 2 O 5 , Li 2 S 2 O 6 , Li 2 S 2 O 7 , Li 2 S 2 O 8 , Li 2 SO 4 , Li 2 SO 5 and the like are mentioned.
  • a precursor mixture is prepared by mixing the prepared precursor compound in an appropriate amount, for example a stoichiometric amount.
  • the mixing of the precursor compound may be carried out in a dry or wet manner.
  • a dry mixer or the like may be used for mixing the precursor compound. Methods involving mechanochemical reactions such as dry milling are excluded.
  • D90 - D10 of the precursor mixture is, for example, 1 to 10 ⁇ m, 1 to 9 ⁇ m, 1 to 8 ⁇ m, 1 to 7 ⁇ m, or 1 to 6 ⁇ m.
  • a mixture of precursors mixed with a stoichiometric composition may be heat-treated in an inert atmosphere to prepare a solid ion conductor compound having an average particle diameter of 7 ⁇ m or less.
  • Heat treatment is, for example, 250 to 700 ° C. 300 to 700 ° C. 400 to 650°C 400 to 600°C 400 to 550°C or 400 to 500°C.
  • the heat treatment time may be, for example, 1 to 36 hours, 2 to 30 hours, 4 to 24 hours, 10 to 24 hours, or 16 to 24 hours.
  • the inert atmosphere is an atmosphere containing an inert gas.
  • the inert gas is, for example, nitrogen, argon, etc., but is not necessarily limited thereto, and any inert gas used in the art may be used.
  • Li 2 S as a lithium precursor, P 2 S 5 as a phosphorus (P) precursor, LiCl as a chlorine precursor, and Cu 2 S as a copper precursor were individually prepared.
  • the precursors described above were individually prepared by wet grinding. 10 g of the precursor, 30 ml of a xylene solvent, and 100 g of a zirconia ball (ZrO2 ball) were put into an 80 ml container, and wet ball milling was performed at 800 rpm for 2 hours. The xylene solvent was removed by vacuum drying at 120° C. for 36 hours, and the pulverized precursor was stored in an inert atmosphere. Agglomeration of the pulverized particles was prevented by wet grinding. The D50, D90, and D10 values of the prepared precursor particles were measured and shown in Table 1 below.
  • a precursor mixture was prepared by mixing individually prepared precursor particles in a stoichiometric ratio to obtain a desired composition of Li 5.72 Cu 0.03 PS 4.75 Cl 1.25 .
  • the prepared precursor mixture powder was put into a carbon crucible, and the carbon crucible was sealed in an argon atmosphere using a quartz glass tube.
  • the argon-encapsulated precursor mixture was heated from room temperature to 450° C. at 1.0° C./min using an electric furnace, and then heat-treated at 450° C. for 18 hours, and then cooled to room temperature at 1.0° C./min to prepare a solid ion conductor compound.
  • the composition of the prepared solid ion conductor compound was Li 5.72 Cu 0.03 PS 4.75 Cl 1.25 .
  • a solid ion conductor compound was prepared in the same manner as in Example 1, except that the stoichiometric mixing ratio of the starting material was changed to obtain the desired composition, Li 5.72 Cu 0.03 PS 4.75 Cl 1.15 Br 0.1 .
  • the composition of the prepared solid ion conductor compound was Li 5.72 Cu 0.03 PS 4.75 Cl 1.15 Br 0.1 .
  • LiBr was additionally used as a bromine precursor.
  • a solid ion conductor compound was prepared in the same manner as in Example 1, except that the stoichiometric mixing ratio of the starting material was changed to obtain the desired composition, Li 5.72 Cu 0.03 PS 4.725 Cl 1.25 (SO 4 ) 0.025 .
  • the composition of the prepared solid ion conductor compound was Li 5.72 Cu 0.03 PS 4.725 Cl 1.25 (SO 4 ) 0.025 .
  • Li 2 SO 4 was additionally used as SO 4 precursor.
  • Example 10 g of individual precursor mixture and 100 g of zirconia balls (ZrO 2 ball) were put into an 80 ml container based on 10 g of the objective composition of Example 1, and dry ball milling was performed at 100 rpm for 1 hour, followed by dry ball milling at 800 rpm for 30 minutes to prepare a milled precursor mixture.
  • the prepared precursor mixture was heat-treated in the same manner as in Example 1 to prepare a solid ion conductor compound having the desired composition.
  • a solid ion conductor compound having a target composition was prepared in the same manner as in Comparative Example 1, except that the target composition was changed to be the same as in Example 2.
  • a solid ion conductor compound having a target composition was prepared in the same manner as in Comparative Example 1, except that the target composition was changed in the same manner as in Example 3.
  • the solid ion conductor compound prepared in Comparative Example 1 was additionally pulverized to prepare a pulverized solid ion conductor compound.
  • the pulverization of the solid ion conductor compound prepared in Comparative Example 1 was performed by the following method.
  • the solid ion conductor compound powder prepared in Comparative Example 1 90 g of zirconia balls (ZrO 2 ball), and 30 ml of xylene were put into a planetary mill. After pulverization at 100 rpm for 24 hours, vacuum drying at 60° C. for 24 hours to prepare a pulverized solid ion conductor compound.
  • the solid ion conductor compound prepared in Comparative Example 2 was additionally pulverized in the same manner as in Comparative Example 4 to prepare a solid ion conductor compound.
  • the solid ion conductor compound prepared in Comparative Example 3 was additionally pulverized in the same manner as in Comparative Example 4 to prepare a solid ion conductor compound.
  • xylene was added to prepare a positive electrode slurry.
  • the prepared positive electrode slurry was molded into a sheet shape to prepare a positive electrode sheet.
  • the mixing weight ratio of the opposite positive electrode active material and the small positive active material was 3:1.
  • the mixing weight ratio of positive electrode active material: conductive material: binder: solid ion conductor compound was 84:0.2:1.0:14.8.
  • the prepared positive electrode sheet was pressed on the positive electrode current collector of 18 ⁇ m thick aluminum foil, placed in a batch type oil chamber, and warm isostatic pressurized (WIP, Warm Isostactic Press) at 90° C. for 1 hour at a pressure of 500 MPa.
  • a positive electrode layer was prepared by performing the process.
  • a mixture was prepared by mixing the solid electrolyte prepared according to Example 1 and an acrylic resin (manufactured by Xeon) as a binder in a weight ratio of 98.5:1.5.
  • Isobutyl Isobutyrate IBIB, Isobutyl Isobutyrate
  • the solid electrolyte slurry was placed on a polyethylene nonwoven fabric, dried in air at 25° C. for 12 hours and vacuum dried at 70° C. for 2 hours.
  • a solid electrolyte layer in the form of a sheet formed on the polyethylene nonwoven fabric was prepared by the above process.
  • a Ni foil As a negative electrode current collector, a Ni foil (thickness: 10 ⁇ m) was prepared.
  • As an anode active material Ag particles (average primary particle diameter of about 60 nm) and carbon black (average primary particle diameter of about 35 nm) were mixed in a weight ratio of 25:75 to prepare a mixed powder.
  • the mixed powder and polyvinylidene fluoride (PVDF) binder (#9300, Kureha Co., Ltd.) prepared in the container were put in N-methylpyrrolidone (NMP) and stirred to prepare a negative electrode slurry.
  • the binder content was 7% by weight based on the total dry weight of the negative electrode layer.
  • the prepared negative electrode slurry was applied on Ni foil using a blade coater, dried in air at 80° C. for 20 minutes, and vacuum dried at 100° C. for 12 hours to prepare a negative electrode layer.
  • An all-solid-state secondary battery was manufactured in the same manner as in Example 4, except that the solid electrolyte powder prepared in Examples 2 to 3 was used instead of the solid electrolyte powder prepared in Example 1.
  • An all-solid-state secondary battery was manufactured in the same manner as in Example 4, except that the solid electrolyte powders prepared in Comparative Examples 1 to 6 were respectively used instead of the solid electrolyte powder prepared in Example 1.
  • the impedance of the pellets was measured by a two-probe method using an impedance analyzer (Material Mates 7260 impedance analyzer) for a specimen having indium electrodes disposed on both sides.
  • the frequency range was 0.1 Hz to 1 MHz, and the amplitude voltage was 10 mV.
  • Measurements were made at 25°C in an Ar atmosphere.
  • the resistance value was obtained from the arc of the Nyguist plot for the impedance measurement result, and the ionic conductivity was calculated in consideration of the area and thickness of the specimen.
  • Table 2 The measurement results are shown in Table 2 below.
  • D50 and D90 - D10 values of the solid ion conductor compound particles prepared in Examples 1 to 3 and Comparative Examples 1 to 6 were measured using a particle size analyzer (PSA, particle size analyzer).
  • PSD particle size analyzer
  • the measurement solvent was xylene.
  • the median particle diameter which is the D50 value of the prepared solid ion conductor compound particles, was taken as the average particle diameter.
  • the solid ion conductor compounds of Examples 1 to 3 had an ionic conductivity of 3 mS/cm or more and an average particle diameter (D50) of 7 ⁇ m or less.
  • the solid ion conductor compounds of Comparative Examples 1 to 3 had an ionic conductivity of 3 mS/cm or more, but had an average particle diameter (D50) of 10 ⁇ m or more.
  • the solid ion conductor compounds of Comparative Examples 4 to 6 had an average particle diameter (D50) of 7 ⁇ m or less, but had an ionic conductivity of less than 2 mS/cm.
  • the solid ion conductor compounds of Examples 1 to 3 simultaneously provided excellent ionic conductivity and a reduced average particle diameter, but the solid ion conductor compounds of Comparative Examples 1 to 6 had poor ionic conductivity or increased average particle diameter.
  • the charge-discharge characteristics of the all-solid-state secondary batteries prepared in Examples 4 to 6 and Comparative Examples 7 to 12 were evaluated by the following charge and discharge tests.
  • the charge/discharge test was performed by putting the all-solid-state secondary battery in a chamber at 45°C.
  • the battery was charged at a constant current of 0.1C and a constant voltage of 4.25V until the battery voltage reached 4.25V until a current value of 0.05C was reached.
  • discharge was performed at a constant current of 0.1 C until the battery voltage reached 2.5 V.
  • the battery was charged at a constant current of 0.1C and a constant voltage of 4.25V until the battery voltage reached 4.25V until a current value of 0.05C was reached.
  • discharge was performed at a constant current of 0.33 C until the battery voltage reached 2.5 V.
  • the battery was charged at a constant current of 0.1C and a constant voltage of 4.25V until the battery voltage reached 4.25V until a current value of 0.05C was reached.
  • discharge was performed at a constant current of 1.0C until the battery voltage reached 2.5V.
  • Table 3 below shows the charge capacity, the discharge capacity, and the charge/discharge efficiency in each cycle of the all-solid-state secondary batteries prepared in Examples 4 to 6 and Comparative Example 10.
  • the charging/discharging efficiency is calculated from Equation 1 below.
  • Example 4 0.1C 230.5 191.9 83.3
  • Example 4 1.0C 179.2 167.6 93.5
  • Example 5 0.1C 225.4 197.7 87.7
  • Example 5 0.33C 195.5 181.7 93.0
  • Example 5 1.0C 179.7 164.8 91.7
  • Example 6 0.1C 231.1 203.1 87.9
  • Example 6 0.33C 201.3 188.1 93.5
  • Example 6 1.0C 186.2 172.4 92.6
  • Comparative Example 10 0.1C 231.0 190.8 82.6 Comparative Example 10 0.33C 190.2 177.7 93.4 Comparative Example 10 1.0C 177.3 164.1 92.6
  • the all-solid-state secondary batteries of Examples 4 to 6 had improved discharge capacity and improved charge-discharge efficiency compared to the all-solid-state secondary batteries of Comparative Example 10 under most conditions.
  • Evaluation Example 5 Charging/discharging test, evaluation of life characteristics
  • the battery was charged with a constant current of 0.33C until the battery voltage reached 4.25V, and charged at a constant voltage of 4.25V until the current value reached 0.1C. Next, discharge was performed at a constant current of 0.33 C until the battery voltage reached 2.5 V. This charge/discharge cycle was performed 50 times. After each cycle, there was a 10-minute rest period after the charging and discharging steps.
  • the capacity retention rates of the all-solid-state secondary batteries prepared in Examples 4 to 6 and Comparative Example 10 are shown in Tables 4 and 5 below.
  • the capacity retention rate is calculated from Equation 2 below.
  • Capacity retention rate (%) [Discharge capacity of 50th cycle / Discharge capacity of 1st cycle] ⁇ 100
  • the all-solid-state secondary batteries of Examples 4 to 6 had improved discharge capacity as compared to the all-solid-state secondary batteries of Comparative Example 10.
  • an electrochemical cell having improved cycle characteristics is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

하기 화학식 1로 표시되며, 아지로다이트형(Argyrodite type) 결정 구조를 가지며, 25℃에서 3 mS/cm 이상의 이온전도도(ion conductivity)를 가지며, 평균 입경이 0.5 ㎛ 내지 7 ㎛ 인, 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀 및 이의 제조방법이 제시된다: <화학식 1> LiaM1xPSyM2zM3w 상기 식에서, M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, M2는 주기율표 17족에서 선택된 하나 이상의 원소이며, M3는 SOn 이며, 4≤a≤8, 0≤x<1, 3≤y≤7, 0<z≤2, 0≤w<2, 1.5≤n≤5, 및 0<x+w<3 이다.

Description

고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법에 관한 것이다.
전고체 리튬전지는 전해질로서 고체전해질을 포함한다. 전고체 리튬전지는 가연성 유기용매를 포함하지 않으므로 안정성이 우수하다.
종래의 고체전해질 재료들은, 전고체 리튬전지에 적용하기 위하여, 일정한 범위의 평균 입경을 가지도록 분쇄되어 사용된다.
한 측면은 감소된 입경과 향상된 리튬 이온 전도도를 동시에 가지는 고체이온전도체 화합물을 제공하는 것이다.
다른 한 측면은 상기 고체이온전도체 화합물을 포함하는 고체전해질을 제공하는 것이다.
또 다른 한 측면은 상기 고체이온전도체 화합물을 포함하는 전기화학 셀을 제공하는 것이다.
또 다른 한 측면은 상기 고체이온전도체 화합물의 제조방법을 제공하는 것이다.
한 측면에 따라
하기 화학식 1로 표시되며,
아지로다이트형(Argyrodite type) 결정 구조를 가지며,
25℃에서 3 mS/cm 이상의 이온전도도(ion conductivity)를 가지며,
평균 입경이 0.1 ㎛ 내지 7 ㎛ 인, 고체이온전도체 화합물이 제공된다:
<화학식 1>
LiaM1xPSyM2zM3w
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
4≤a≤8, 0≤x<1, 3≤y≤7, 0<z≤2, 0≤w<2, 1.5≤n≤5, 및 0<x+w<3 이다.
다른 한 측면에 따라
상기에 따른 고체이온전도체 화합물을 포함하는 고체전해질이 제공된다.
또 다른 한 측면에 따라
양극활물질층을 포함하는 양극층;
음극활물질층을 포함하는 음극층; 및
상기 양극층 및 음극층 사이에 배치되는 전해질층을 포함하며,
상기 양극활물질층 및 상기 전해질층 중 하나 이상이 상기에 따른 고체이온전도체 화합물을 포함하는 전기화학 셀이 제공된다.
또 다른 한 측면에 따라
평균 입경 7 ㎛ 이하인 서로 다른 종류의 전구체 화합물을 개별적으로 준비하는 단계;
상기 서로 다른 종류의 전구체 화합물을 서로 혼합하여 혼합물을 준비하는 단계; 및
상기 혼합물을 열처리하여 고체이온전도체 화합물을 준비하는 단계;를 포함하며,
상기 고체이온전도체 화합물의 평균 입경이 각각 7 ㎛ 이하인, 고체이온전도체 화합물 제조방법이 제공된다.
한 측면에 따르면 향상된 리튬 이온 전도도 및 감소된 평균 입경을 가지는 고체이온전도체 화합물을 포함함에 의하여, 개선된 사이클 특성을 가지는 전기화학 셀이 제공된다.
도 1은 실시예 1 내지 3, 비교예 1, 및 비교예 4에서 제조된 고체이온전도체 화합물에 대한 분말 XRD 스펙트럼이다.
도 2는 실시예 1에서 사용된 리튬 전구체, 인(P) 전구체, 염소 전구체, 및 전구체 혼합물의 입도 분포도이다.
도 3은 실시예 1, 비교예 1 및 비교예 4에서 제조된 고체이온전도체 화합물의 입도 분포도이다.
도 4는 실시예 1 내지 3에서 제조된 고체이온전도체 화합물의 입도 분포도이다.
도 5는 실시예 4 내지 6 및 비교예 10에서 제조된 전고체 이차전지의 수명 특성 및 방전용량을 나타낸 그래프이다
도 6은 전고체 이차전지의 일 구현예의 개략도이다.
도 7은 전고체 이차전지의 다른 일 구현예의 개략도이다.
도 8은 전고체 이차전지의 다른 일 구현예의 개략도이다.
<도면의 주요 부분에 대한 부호의 설명>
1, 1a: 전고체 이차전지 10: 양극
11: 양극집전체 12: 양극활물질층
20: 음극 21: 음극집전체
22: 음극활물질층 23: 금속층
30: 고체전해질층 40: 전고체 이차전지
다양한 구현예가 첨부 도면에 도시되었다. 그러나 본 창의적 사상은 많은 다른 형태로 구체화될 수 있으며, 본 명세서에 설명된 구현예에 한정되는 것으로 해석되어서는 안된다. 오히려 이들 실시예들은 본 개시가 철저하고 완전하게 이루어질 수 있도록 제공되며, 기술분야에서 통상의 지식을 가진 이들에게 본 창의적 사상의 범위를 충분히 전달할 것이다. 동일한 도면 부호는 동일한 구성 요소를 지칭한다.
어떤 구성 요소가 다른 구성 요소의 "위에" 있다고 언급될 때, 다른 구성 요소의 바로 위에 있을 수 있거나 그 사이에 다른 구성 요소가 개재될 수 있음을 이해할 수 있을 것이다. 대조적으로, 구성 요소가 다른 구성 요소의 "직접적으로 위에" 있다고 언급될 때, 그 사이에 구성 요소가 개재하지 않는다.
"제1", "제2", "제3" 등의 용어는 본 명세서에서 다양한 구성 요소, 성분, 영역, 층 및/또는 구역을 설명하기 위해 사용될 수 있지만, 이들 구성 요소, 성분, 영역, 층 및/또는 구역은 이들 용어들에 의해 제한되어서는 안된다. 이들 용어는 하나의 구성 요소, 성분, 영역, 층 또는 구역을 다른 요소, 성분, 영역, 층 또는 구역과 구별하기 위해서만 사용된다. 따라서 이하에서 설명되는 제1 구성요소, 성분, 영역, 층 또는 구역은 본 명세서의 교시를 벗어나지 않으면서 제2 구성요소, 성분, 영역, 층 또는 구역으로 지칭될 수 있다.
본 명세서에서 사용된 용어는 특정한 구현예만을 설명하기 위한 것이며 본 창의적 사상을 제한하려는 것은 아니다. 본원에서 사용된 단수 형태는 내용이 명확하게 달리 지시하지 않는 한 "적어도 하나"를 포함하는 복수 형태를 포함하고자 한다. "적어도 하나"는 단수로 제한하는 것으로 해석되어서는 안된다. 본 명세서에서 사용된 바와 같이, "및/또는"의 용어는 목록 항목 중 하나 이상의 임의의 모든 조합을 포함한다. 상세한 설명에서 사용된 "포함한다" 및/또는 "포함하는"의 용어는 명시된 특징, 영역, 정수, 단계, 동작, 구성 요소 및/또는 성분의 존재를 특정하며, 하나 이상의 다른 특징, 영역, 정수, 단계, 동작, 구성 요소, 성분 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
"밑", "아래쪽", "하부", "위", "위쪽", "상부" 등과 같은 공간적으로 상대적인 용어는 하나의 구성 요소 또는 특징의 다른 구성 요소 또는 특징에 대한 관계를 용이하게 기술하기 위하여 여기에서 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시된 방향에 추가하여 사용 또는 작동시 장치의 상이한 방향을 포함하도록 의도된 것으로 이해될 것이다. 예를 들어, 도면의 장치가 뒤집힌다면, 다른 구성 요소 또는 특징의 "밑" 또는 "아래"로 기술된 구성 요소는 다른 구성 요소 또는 특징의 "위"에 배향될 것이다. 따라서 예시적인 용어 "아래"는 위와 아래의 방향 모두를 포괄할 수 있다. 상기 장치는 다른 방향으로 배치될 수 있고(90도 회전되거나 다른 방향으로 회전될 수 있음), 본 명세서에서 사용되는 공간적으로 상대적인 용어는 그에 따라 해석될 수 있다.
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어(기술 및 과학 용어 포함)는 본 개시가 속하는 기술 분야의 통상의 지식을 가진 이에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 또한, 일반적으로 사용되는 사전에서 정의된 바와 같은 용어는 관련 기술 및 본 개시 내용의 문맥 내의 그 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 이상화되거나 지나치게 형식적인 의미로 해석되지 않아야 함이 또한 이해될 것이다.
예시적인 구현예들이 이상화된 구현예들의 개략도인 단면도를 참조하여 본 명세서에서 설명된다. 이와 같이, 예를 들어 제조 기술 및/또는 허용 오차와 같은 결과로서 도시의 형상으로부터의 변형이 예상되어야 한다. 따라서 본 명세서에 기술된 실시예들은 본 명세서에 도시된 바와 같은 영역들의 특정 형상들로 제한되는 것으로 해석되어서는 안되며, 예를 들어 제조로부터 야기되는 형상들의 편차들을 포함해야 한다. 예를 들어, 평평한 것으로 도시되거나 기술된 영역은 전형적으로 거칠거나 및/또는 비선형 특징을 가질 수 있다. 더욱이, 예리하게 도시된 각은 둥글 수 있다. 따라서 도면들에 도시된 영역들은 본질적으로 개략적이며, 그 형상들은 영역의 정확한 형상을 도시하기 위한 것이 아니며, 본 청구항의 범위를 제한하려는 것이 아니다.
"족"은 국제 순수 및 응용 화학 연맹("IUPAC") 1-18족 족분류 시스템에 따른 원소 주기율표의 그룹을 의미한다.
본 명세서에서 입자의 "입경"는 입자가 구형인 경우 평균 직경을 나타내며 입자가 비구형인 경우에는 평균 장축 길이를 나타낸다. 입자의 입경은 입자 크기 분석기(particle size analyzer(PSA))를 이용하여 측정할 수 있다. 입자의 "입경"은 예를 들어 평균 입경이다. "평균 입경"은, 예를 들어 메디안 입자 직경인 D50이다.
D50은 레이저 회절법으로 측정되는 입자의 크기 분포에서 작은 입자 크기를 가지는 입자 측으로부터 계산하여 50% 누적 부피에 해당하는 입자의 크기이다.
D90은 레이저 회절법으로 측정되는 입자의 크기 분포에서 작은 입자 크기를 가지는 입자 측으로부터 계산하여 90% 누적 부피에 해당하는 입자의 크기이다.
D10은 레이저 회절법으로 측정되는 입자의 크기 분포에서 작은 입자 크기를 가지는 입자 측으로부터 계산하여 10% 누적 부피에 해당하는 입자의 크기이다.
특정한 구현예가 기술되었지만, 현재 예상되지 않거나 예상할 수 없는 대안, 수정, 변형, 개선 및 실질적인 균등물이 출원인 또는 당업자에게 발생할 수 있다. 따라서 출원되고 수정될 수 있는 첨부된 청구범위는 그러한 모든 대안, 수정, 변형, 개선 및 실질적 균등물을 포함하는 것으로 의도된다.
이하에서 예시적인 하나 이상의 구현예에 따른 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 상기 고체이온전도체 화합물의 제조방법에 관하여 더욱 상세히 설명한다.
[고체이온전도체 화합물]
일구현예에 따른 고체이온전도체 화합물은 하기 화학식 1로 표시되며, 아지로다이트형(Argyrodite type) 결정 구조를 가지며, 25℃에서 3 mS/cm 이상의 이온전도도(ion conductivity)를 가지며, 평균 입경이 0.1 ㎛ 내지 7 ㎛ 이다:
<화학식 1>
LiaM1xPSyM2zM3w
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
4≤a≤8, 0≤x<1, 3≤y≤7, 0<z≤2, 0≤w<2, 1.5≤n≤5 및 0<x+w<3 이다.
예를 들어, 5≤a≤8, 0≤x≤0.7, 4≤y≤7, 0<z≤2 및 0≤w≤0.5 이다. 예를 들어, 5≤a≤7, 0≤x≤0.5, 4≤y≤6, 0<z≤2 및 0≤w≤0.2 이다. 예를 들어, 5.5≤a≤7, 0≤x≤0.3, 4.5≤y≤6, 0.2≤z≤1.8 및 0≤w≤0.1 이다. 예를 들어, 5.5≤a≤7, 0≤x≤0.1, 4.5≤y≤6, 0.5≤z≤1.8 및 0≤w≤0.1 이다. 예를 들어, 5.5≤a≤7, 0≤x≤0.05, 4.5≤y≤6, 1.0≤z≤1.8 및 0≤w≤0.1 이다.
화학식 1로 표시되는 화합물은 예를 들어 결정 구조를 가지는 결정성 화합물(crystalline compound)이며, 결정 구조 내에서 리튬 자리(site)의 일부에 치환되는 M 및/또는 Me를 포함함에 의하여, 화합물 내에서 리튬 이온의 이온 전도도가 향상되고 활성화 에너지가 감소될 수 있다. 예를 들어, 화학식 1로 표시되는 고체이온전도체 화합물이 포함하는 리튬 자리의 일부에 리튬과 동일한 산화수를 가지면서 리튬 이온에 비하여 이온 반경이 유사하거나 더 큰 다른 이온이 배치됨에 의하여 결정 격자 부피(crystal lattice volume)이 증가될 수 있다. 결정 격자의 부피가 증가됨에 의하여 결정 격자 내에서 리튬 이온의 이동이 용이해질 수 있다. 또한, 예를 들어, 화학식 1로 표시되는 고체이온전도체 화합물이 포함하는 리튬 자리의 일부에 리튬 이온에 비하여 산화수가 더 큰 즉, 산화수 2 이상의 이온이 배치됨에 의하여 리튬 자리의 일부가 빈 자리(vacant site)가 될 수 있다. 결정 격자 내에 빈 자리가 존재함에 의하여 결정 격자 내에서 리튬 이온의 이동이 용이해질 수 있다. 화학식 1에서 예를 들어 M1은 1가 양이온 또는 2가 양이온일 수 있다. 화학식 1에서 특히 M1은 1가 양이온일 수 있다.
화학식 1로 표시되는 화합물은 평균 입경은 예를 들어 0.3 ㎛ 내지 7 ㎛, 0.4 ㎛ 내지 6 ㎛, 0.5 ㎛ 내지 5 ㎛, 0.5 ㎛ 내지 4 ㎛ 또는 0.5 ㎛ 내지 3 ㎛ 이다. 고체이온전도체 화합물이 이러한 범위의 입경을 가짐에 의하여 전고체 이차전지의 양극층에 적합하게 사용될 수 있다. 따라서, 이러한 고체이온전도체 화합물을 포함하는 양극층을 채용한 전고체 이차전지의 사이클 특성이 더욱 향상될 수 있다.
화학식 1로 표시되는 화합물은 평균 입경은 예를 들어 1 ㎛ 내지 7 ㎛, 1 ㎛ 내지 6 ㎛, 1 ㎛ 내지 5 ㎛, 또는 2 ㎛ 내지 4 ㎛ 이다. 이온전도체 화합물이 이러한 범위의 입경을 가짐에 의하여 전고체 이차전지의 고체전해질층에 적합하게 사용될 수 있다. 따라서, 이러한 고체이온전도체 화합물을 포함하는 고체전해질층을 채용한 전고체 이차전지의 사이클 특성이 더욱 향상될 수 있다.
화학식 1로 표시되는 화합물의 D90 - D10값은 예를 들어, 1 내지 30 ㎛, 1 내지 25 ㎛, 1 내지 20 ㎛, 1 내지 15 ㎛, 1 내지 10 ㎛, 1 내지 9 ㎛, 1 내지 8 ㎛, 1 내지 7 ㎛, 또는 1 내지 6 ㎛이다. 이온전도체 화합물이 이러한 범위의 D90-D10 값을 가짐에 의하여 전고체 이차전지의 고체전해질층에 적합하게 사용될 수 있다. 따라서, 이러한 고체이온전도체 화합물을 포함하는 고체전해질층을 채용한 전고체 이차전지의 사이클 특성이 더욱 향상될 수 있다.
화학식 1로 표시되는 화합물의 이온전도도는 에를 들어 25℃에서 3 mS/cm 내지 100 mS/cm, 3 mS/cm 내지 50 mS/cm, 3 mS/cm 내지 40 mS/cm, 3 mS/cm 내지 30 mS/cm, 3 mS/cm 내지 20 mS/cm 또는 3 mS/cm 내지 10 mS/cm이다. 화학식 1의 고체이온전도체 화합물이 이러한 범위의 이온전도도를 가짐에 의하여 이러한 고체이온전도체를 포함하는 전기화학 셀에서 양극과 음극 사이의 이온 전달을 효과적으로 수행하여 양극과 음극 사이에 내부 저항을 감소시킬 수 있다. 이온 전도도는 직류 분극법(DC polarization method)을 사용하여 측정할 수 있다. 다르게는, 이온전도도는 복수 임피던스법(complex impedance method)을 사용하여 측정할 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물에서 예를 들어 M1이 Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, 또는 이들의 조합을 포함할 수 있다. M1은 예를 들어 1가 양이온 또는 2가 양이온일 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물에서 예를 들어 M1이 Na, K, Cu, Mg, Ag 또는 이들의 조합을 포함할 수 있다. M1은 예를 들어 1가 양이온일 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물에서 예를 들어 M2가 F, Cl, Br, I 또는 이들의 조합을 포함할 수 있다. M2는 예를 들어 1가 음이온일 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물에서 예를 들어 M3의 SOn은 S4O6, S3O6, S2O3, S2O4, S2O5, S2O6, S2O7, S2O8, SO4, SO5, 또는 이들의 조합일 수 있다. SOn은 예를 들어 2가 음이온일 수 있다. SOn 2-은 예를 들어, S4O6 2-, S3O6 2-, S2O3 2-, S2O4 2-, S2O5 2-, S2O6 2-, S2O7 2-, S2O8 2-, SO4 2-, SO5 2-, 또는 이들의 조합일 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 1a 내지 1c로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 1a>
LiaM1xPSyM2z
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
4≤a≤8, 0<x<1, 3≤y≤7, 및 0<z≤2 이다.
화학식 1a로 표시되는 고체이온전도체 화합물은 M1 및 M2를 포함하며 M3을 포함하지 않는 화합물이다.
<화학식 1b>
LiaM1xPSyM2zM3w
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
4≤a≤8, 0<x<1, 3≤y≤7, 0<z≤2, 0<w<2, 및 1.5≤n≤5 이다.
화학식 1b로 표시되는 고체이온전도체 화합물은 M1, M2 및 M3를 모두 포함하는 화합물이다.
<화학식 1c>
LiaPSyM2zM3w
상기 식에서,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
4≤a≤8, 3≤y≤7, 0<z≤2, 0<w<2, 및 1.5≤n≤5 이다.
화학식 1c로 표시되는 고체이온전도체 화합물은 M1을 포함하지 않으며, M2 및 M3를 포함하는 화합물이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 2로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 2>
Li7-mХv-zM1vPS6-z-wM2zM3w
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, m은 M1의 산화수이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
0≤v<1, 0<z≤2, 0≤w<2, 1.5≤n≤5, 1≤m≤2, 및 0<v+w<3 이다.
예를 들어, 0≤v≤0.7, 0<z≤2 및 0≤w≤0.5 이다. 예를 들어, 0≤v≤0.5, 0<z≤2 및 0≤w≤0.2 이다. 예를 들어, 0≤v≤0.3, 0.2≤z≤1.8 및 0≤w≤0.1 이다. 예를 들어, 0≤v≤0.1, 0.5≤z≤1.8 및 0≤w≤0.1 이다. 예를 들어, 0≤v≤0.05, 1.0≤z≤1.8 및 0≤w≤0.1 이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 2a 내지 2c로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 2a>
Li7-mХv-zM1vPS6-zM2z
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, m은 M1의 산화수이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
0<v<1, 0<z≤2, 및 1≤m≤2이다.
화학식 2a로 표시되는 고체이온전도체 화합물은 M1 및 M2를 포함하며 M3을 포함하지 않는 화합물이다. M1은 예를 들어 1종의 금속 원소 또는 2종 이상의 금속 원소일 수 있다.
<화학식 2b>
Li7-mХv-zM1vPS6-z-wM2zM3w
상기 식에서,
M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, m은 M1의 산화수이며,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
0<v<1, 0<z≤2, 0<w<2, 1.5≤n≤5, 및 1≤m≤2이다.
화학식 2b로 표시되는 고체이온전도체 화합물은 M1, M2 및 M3을 포함하는 화합물이다. M1은 예를 들어 1종의 금속 원소 또는 2종 이상의 금속 원소일 수 있다. M2은 예를 들어 1종의 할로겐 원소 또는 2종 이상의 할로겐 원소일 수 있다.
<화학식 2c>
Li7-zPS6-z-wM2zM3w
상기 식에서,
M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
M3는 SOn 이며,
0<z≤2, 0<w<2, 1.5≤n≤5, 및 1≤m≤2이다.
화학식 2c로 표시되는 고체이온전도체 화합물은 M2 및 M3를 포함하는 화합물이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 3으로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 3>
Li7-mХv-zM4vPS6-zM5z1M6z2
상기 식에서,
M4는 Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, 또는 이들의 조합이며, m은 M4의 산화수이며,
M5 및 M6는 서로 독립적으로 F, Cl, Br, 또는 I이며,
0<v<0.7, 0<z1<2, 0≤z2<1, 0<z<2, z=z1+z2 및 1≤m≤2이다.
예를 들어, 0<v≤0.7, 0<z1<2, 0≤z2≤0.5, 0<z<2, 및 z=z1+z2 이다. 예를 들어, 0<v≤0.5, 0<z1<2, 0≤z2≤0.5, 0<z<2 및 z=z1+z2이다. 예를 들어, 0<v≤0.3, 0<z1≤1.5, 0≤z2≤0.5, 0.2≤z≤1.8 및 z=z1+z2이다. 예를 들어, 0<v≤0.1, 0<z1≤1.5, 0≤z2≤0.5, 0.5≤z≤1.8 및 z=z1+z2이다. 예를 들어, 0<v≤0.05, 0<z1≤1.5, 0≤z2≤0.2, 1.0≤z≤1.8 및 z=z1+z2이다. M4는 예를 들어 1종의 금속 원소 또는 2종의 금속 원소일 수 있다.
화학식 3으로 표시되는 고체이온전도체 화합물은 예를 들어 1종의 할로겐 원소 또는 2종의 할로겐 원소를 포함할 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 3a 내지 3e로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 3a>
Li7-v-zNavPS6-zM5z1M6z2
<화학식 3b>
Li7-v-zKvPS6-zM5z1M6z2
<화학식 3c>
Li7-v-zCuvPS6-zM5z1M6z2
<화학식 3d>
Li7-v-zMgvPS6-zM5z1M6z2
<화학식 3e>
Li7-v-zAgvPS6-zM5z1M6z2
상기 식들에서,
M5 및 M6는 서로 독립적으로 F, Cl, Br, 또는 I이며,
0<v<0.7, 0<z1<2, 0≤Z2<1, 0<z<2 및 z=z1+z2 이다. 예를 들어, 0<v≤0.7, 0<z1<2, 0≤z2≤0.5, 0<z<2, 및 z=z1+z2 이다. 예를 들어, 0<v≤0.5, 0<z1<2, 0≤z2≤0.5, 0<z<2 및 z=z1+z2이다. 예를 들어, 0<v≤0.3, 0<z1≤1.5, 0≤z2≤0.5, 0.2≤z≤1.8 및 z=z1+z2이다. 예를 들어, 0<v≤0.1, 0<z1≤1.5, 0≤z2≤0.5, 0.5≤z≤1.8 및 z=z1+z2이다. 예를 들어, 0<v≤0.05, 0<z1≤1.5, 0≤z2≤0.2, 1.0≤z≤1.8 및 z=z1+z2이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식들로 표시되는 고체이온전도체 화합물일 수 있다:
Li7-v-zNavPS6-zFz1, Li7-v-zNavPS6-zClz1, Li7-v-zNavPS6-zBrz1, Li7-v-zNavPS6-zIz1,
Li7-v-zNavPS6-zFz1Clz2, Li7-v-zNavPS6-zFz1Brz2, Li7-v-zNavPS6-zFz1Iz2, Li7-v-zNavPS6-zClz1Brz2, Li7-v-zNavPS6-zClz1Iz2, Li7-v-zNavPS6-zClz1Fz2, Li7-v-zNavPS6-zBrz1Iz2, Li7-v-zNavPS6-zBrz1Fz2, Li7-v-zNavPS6-zBrz1Clz2, Li7-v-zNavPS6-zIz1Fz2, Li7-v-zNavPS6-zIz1Clz2, Li7-v-zNavPS6-zIz1Brz2,
Li7-v-zKvPS6-zFz1, Li7-v-zKvPS6-zClz1, Li7-v-zKvPS6-zBrz1, Li7-v-zKvPS6-zIz1,
Li7-v-zKvPS6-zFz1Clz2, Li7-v-zKvPS6-zFz1Brz2, Li7-v-zKvPS6-zFz1Iz2, Li7-v-zKvPS6-zClz1Brz2, Li7-v-zKvPS6-zClz1Iz2, Li7-v-zKvPS6-zClz1Fz2, Li7-v-zKvPS6-zBrz1Iz2, Li7-v-zKvPS6-zBrz1Fz2, Li7-v-zKvPS6-zBrz1Clz2, Li7-v-zKvPS6-zIz1Fz2, Li7-v-zKvPS6-zIz1Clz2, Li7-v-zKvPS6-zIz1Brz2,
Li7-v-zCuvPS6-zFz1, Li7-v-zCuvPS6-zClz1, Li7-v-zCuvPS6-zBrz1, Li7-v-zCuvPS6-zIz1,
Li7-v-zCuvPS6-zFz1Clz2, Li7-v-zCuvPS6-zFz1Brz2, Li7-v-zCuvPS6-zFz1Iz2, Li7-v-zCuvPS6-zClz1Brz2, Li7-v-zCuvPS6-zClz1Iz2, Li7-v-zCuvPS6-zClz1Fz2, Li7-v-zCuvPS6-zBrz1Iz2, Li7-v-zCuvPS6-zBrz1Fz2, Li7-v-zCuvPS6-zBrz1Clz2, Li7-v-zCuvPS6-zIz1Fz2, Li7-v-zCuvPS6-zIz1Clz2, Li7-v-zCuvPS6-zIz1Brz2,
Li7-v-zMgvPS6-zFz1, Li7-v-zMgvPS6-zClz1, Li7-v-zMgvPS6-zBrz1, Li7-v-zMgvPS6-zIz1,
Li7-v-zMgvPS6-zFz1Clz2, Li7-v-zMgvPS6-zFz1Brz2, Li7-v-zMgvPS6-zFz1Iz2, Li7-v-zMgvPS6-zClz1Brz2, Li7-v-zMgvPS6-zClz1Iz2, Li7-v-zMgvPS6-zClz1Fz2, Li7-v-zMgvPS6-zBrz1Iz2, Li7-v-zMgvPS6-zBrz1Fz2, Li7-v-zMgvPS6-zBrz1Clz2, Li7-v-zMgvPS6-zIz1Fz2, Li7-v-zMgvPS6-zIz1Clz2, Li7-v-zMgvPS6-zIz1Brz2,
Li7-v-zAgvPS6-zFz1, Li7-v-zAgvPS6-zClz1, Li7-v-zAgvPS6-zBrz1, Li7-v-zAgvPS6-zIz1,
Li7-v-zAgvPS6-zFz1Clz2, Li7-v-zAgvPS6-zFz1Brz2, Li7-v-zAgvPS6-zFz1Iz2, Li7-v-zAgvPS6-zClz1Brz2, Li7-v-zAgvPS6-zClz1Iz2, Li7-v-zAgvPS6-zClz1Fz2, Li7-v-zAgvPS6-zBrz1Iz2, Li7-v-zAgvPS6-zBrz1Fz2, Li7-v-zAgvPS6-zBrz1Clz2, Li7-v-zAgvPS6-zIz1Fz2, Li7-v-zAgvPS6-zIz1Clz2, Li7-v-zAgvPS6-zIz1Brz2,
상기 식들에서, 0<v<0.7, 0<z1<2, 0<z2<1, 0<z<2 및 z=z1+z2 이다. 예를 들어, 0<v≤0.7, 0<z1<2, 0<z2≤0.5, 0<z<2, 및 z=z1+z2 이다. 예를 들어, 0<v≤0.5, 0<z1<2, 0<z2≤0.5, 0<z<2 및 z=z1+z2이다. 예를 들어, 0<v≤0.3, 0<z1≤1.5, 0<z2≤0.5, 0.2≤z≤1.8 및 z=z1+z2이다. 예를 들어, 0<v≤0.1, 0<z1≤1.5, 0<z2≤0.5, 0.5≤z≤1.8 및 z=z1+z2이다. 예를 들어, 0<v≤0.05, 0<z1≤1.5, 0<z2≤0.2, 1.0≤z≤1.8 및 z=z1+z2이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 4로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 4>
Li7-mХv-zM4vPS6-z-wM7z(SO4)w
상기 식에서,
M4는 Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, 또는 이들의 조합이며, m은 M4의 산화수이며,
M7는 F, Cl, Br, 또는 I이며,
0<v<1, 0<z≤2, 0<w<1, 및 1≤m≤2이다. 예를 들어, 0<v≤0.7, 0<z≤2 및 0<w≤0.5 이다. 예를 들어, 0<v≤0.5, 0<z≤2 및 0<w≤0.2 이다. 예를 들어, 0<v≤0.3, 0.2≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 0<v≤0.1, 0.5≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 0<v≤0.05, 1.0≤z≤1.8 및 0<w≤0.1 이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 4a 내지 4e로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 4a>
Li7-v-zNavPS6-z-wM7z(SO4)w
<화학식 4b>
Li7-v-zKvPS6-z-wM7z(SO4)w
<화학식 4c>
Li7-v-zCuvPS6-z-wM7z(SO4)w
<화학식 4d>
Li7-v-zMgvPS6-z-wM7z(SO4)w
<화학식 4e>
Li7-v-zAgvPS6-z-wM7z(SO4)w
상기 식들에서,
M7는 F, Cl, Br, 또는 I이며,
0<v<0.7, 0<z≤2, 및 0<w<0.2 이다. 예를 들어, 0<v≤0.7, 0<z≤2 및 0<w<0.2 이다. 예를 들어, 0<v≤0.5, 0<z≤2 및 0<w<0.2 이다. 예를 들어, 0<v≤0.3, 0.2≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 0<v≤0.1, 0.5≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 0<v≤0.05, 1.0≤z≤1.8 및 0<w≤0.1 이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식들로 표시되는 고체이온전도체 화합물일 수 있다:
Li7-v-zNavPS6-z-wFz(SO4)w, Li7-v-zNavPS6-z-wClz(SO4)w, Li7-v-zNavPS6-z-wBrz(SO4)w, Li7-v-zNavPS6-z-wIz(SO4)w,
Li7-v-zKvPS6-z-wFz(SO4)w, Li7-v-zKvPS6-z-wClz(SO4)w, Li7-v-zKvPS6-z-wBrz(SO4)w, Li7-v-zKvPS6-z-wIz(SO4)w,
Li7-v-zCuvPS6-z-wFz(SO4)w, Li7-v-zCuvPS6-z-wClz(SO4)w, Li7-v-zCuvPS6-z-wBrz(SO4)w, Li7-v-zCuvPS6-z-wIz(SO4)w,
Li7-v-zMgvPS6-z-wFz(SO4)w, Li7-v-zMgvPS6-z-wClz(SO4)w, Li7-v-zMgvPS6-z-wBrz(SO4)w, Li7-v-zMgvPS6-z-wIz(SO4)w,
Li7-v-zAgvPS6-z-wFz(SO4)w, Li7-v-zAgvPS6-z-wClz(SO4)w, Li7-v-zAgvPS6-z-wBrz(SO4)w, Li7-v-zAgvPS6-z-wIz(SO4)w.
상기 식들에서,
0<v<0.7, 0<z≤2, 및 0<w<0.2 이다. 예를 들어, 0<v≤0.7, 0<z≤2 및 0<w<0.2 이다. 예를 들어, 0<v≤0.5, 0<z≤2 및 0<w<0.2 이다. 예를 들어, 0<v≤0.3, 0.2≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 0<v≤0.1, 0.5≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 0<v≤0.05, 1.0≤z≤1.8 및 0<w≤0.1 이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식 5로 표시되는 고체이온전도체 화합물일 수 있다:
<화학식 5>
Li7-zPS6-z-wM7z(SO4)w
상기 식에서,
M7은 F, Cl, Br, 또는 I이며,
0<z≤2 및 0<w<2 이다. 예를 들어, 0<z≤2 및 0<w≤1 이다. 예를 들어, 0<z≤2 및 0<w≤0.5 이다. 예를 들어, 0.2≤z≤1.8 및 0<w≤0.2 이다. 예를 들어, 0.5≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 1.0≤z≤1.8 및 0<w≤0.1 이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 하기 화학식들로 표시되는 고체이온전도체 화합물일 수 있다:
Li7-zPS6-z-wFz(SO4)w, Li7-zPS6-z-wClz(SO4)w, Li7-zPS6-z-wBrz(SO4)w, Li7-zPS6-z-wIz(SO4)w
상기 식들에서,
0<z≤2 및 0<w<2 이다. 예를 들어, 0<z≤2 및 0<w≤1 이다. 예를 들어, 0<z≤2 및 0<w≤0.5 이다. 예를 들어, 0.2≤z≤1.8 및 0<w≤0.2 이다. 예를 들어, 0.5≤z≤1.8 및 0<w≤0.1 이다. 예를 들어, 1.0≤z≤1.8 및 0<w≤0.1 이다.
화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 입방정계(cubic) 결정계에 속하며 보다 구체적으로 F-43m 공간군에 속할 수 있다. 또한, 상술한 바와 같이 화학식 1로 표시되는 고체이온전도체 화합물이 아지로다이트형(argyrodite-type) 결정 구조를 가지는 아지로다이트형 황화물(argyrodite-type sulfide)일 수 있다. 화학식 1로 표시되는 고체이온전도체 화합물은 아지로다이트형 결정 구조에서 리튬 자리의 일부에 치환된 1가 양이온 원소, 및 2가 양이온 원소 양이온 원소 중 하나 이상을 포함하거나, 이종의 할로겐 원소를 포함하거나, 할로겐 자리에 치환된 SOn 음이온을 포함함에 의하여 향상된 리튬 이온 전도도와 리튬 금속에 대한 전기화학적 안정성을 동시에 제공할 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물은 CuKα 선을 이용한 XRD 스펙트럼에서 예를 들어 25.48°±0.50°, 30.01°±1.0°, 31.38°±0.50°, 46.0°±1.0°, 48.5°±1.0°, 53.0°±1.0°의 위치에 피크를 가질 수 있다. 화학식 1로 표시되는 고체이온전도체 화합물이 아지로다이트 구조를 가지므로, CuKα 선을 이용한 XRD 스펙트럼에서 이러한 피크를 가질 수 있다.
화학식 1로 표시되는 고체이온전도체 화합물은 CuKα 선을 이용한 XRD 스펙트럼에서 회절각 2θ=30.01±1.0°에서의 결정성 피크의 피크 강도(Ia)가 회절각 2θ=19.0°±3.0°에서의 브로드한(broad) 피크의 피크 강도(Ib)에 비하여 더 크다. 고체이온전도체 화합물이 이러한 피크 강도의 관계를 가짐에 의하여, 고체이온전도체 화합물이 높은 결정성을 가지므로, 결과적으로 고체이온전도체 화합물이 25℃에서 3 mS/cm 이상의 높은 이온전도도를 제공할 수 있다.
[고체전해질]
다른 일구현예에 따른 고체전해질은 상술한 화학식 1로 표시되는 고체이온전도체 화합물을 포함한다. 고체전해질은 이러한 고체이온전도체 화합물을 포함함에 의하여 높은 이온전도도, 및 높은 화학적 안정성을 가질 수 있다. 화학식 1로 표시되는 고체이온전도체 화합물을 포함하는 고체전해질은 공기에 대한 개선된 안정성을 제공할 수 있고, 리튬 금속에 대한 전기화학적 안정성을 제공할 수 있다. 따라서, 화학식 1로 표시되는 고체이온전도체 화합물은 예를 들어 전기화화학 셀의 고체전해질로 사용될 수 있다.
고체전해질은 화학식 1로 표시되는 고체이온전도체 화합물 외에 종래의 일반적인 고체전해질을 추가적으로 포함할 수 있다. 예를 들어, 종래의 일반적인 황화물계 고체전해질 및/또는 산화물계 고체전해질을 추가적으로 포함할 수 있다. 추가적으로 포함되는 종래의 고체이온전도체 화합물은 예를 들어, Li2O-Al2O3-TiO2-P2O5(LATP), LISICON(Lithium Super Ionic Conductor), LIPON(Li3-yPO4-xNx, 0<x<4, 0<y<3), Thio-LISICON(Li3.25Ge0.25P0.75S4), Li2S, Li2S-P2S5, Li2S-SiS2, Li2S-GeS2, Li2S-B2S3, 및 Li2S-Al2S3 및 등일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술 분야에서 사용할 수 있는 것이라면 모두 가능하다.
고체전해질은 분말 또는 성형물 형태일 수 있다. 성형물 형태의 고체전해질은 예를 들어 펠렛, 시트, 박막 등의 형태일 수 있으나 반드시 이들로 한정되지 않으며 사용되는 용도에 따라 다양한 형태를 가질 수 있다.
[전기화학 셀]
다른 일구현예에 따른 전기화학 셀은, 양극활물질층을 포함하는 양극층; 음극활물질층을 포함하는 음극층; 및 양극층 및 음극층 사이에 배치되는 전해질층을 포함하며, 양극활물질층 및/또는 전해질층이 화학식 1로 표시되는 고체이온전도체 화합물을 포함한다. 전기화학 셀이 화학식 1로 표시되는 고체이온전도체 화합물을 포함함에 의하여 전기화학 셀의 리튬 이온 전도성 및 리튬 금속에 대한 안정성이 향상된다. 전기화학 셀은 예를 들어 전고체 이차전지, 액체전해질 함유 이차전지, 또는 리튬공기전지일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술 분야에서 사용할 수 있는 전기화학 셀이라면 모두 가능하다.
이하에서, 전고체 이차전지에 대하여 보다 구체적으로 설명한다.
[전고체 이차전지: 제1 타입]
전고체 이차전지는 화학식 1로 표시되는 고체이온전도체 화합물을 포함할 수 있다.
전고체 이차전지는 예를 들어 양극활물질층을 포함하는 양극층; 음극활물질층을 포함하는 음극층; 및 양극층 및 음극층 사이에 배치되는 전해질층을 포함하며, 양극활물질층 및/또는 전해질층이 화학식 1로 표시되는 고체이온전도체 화합물을 포함할 수 있다.
일 구현예에 따른 전고체 이차전지는 다음과 같이 준비될 수 있다.
(고체전해질층)
먼저, 고체전해질층이 준비된다.
고체전해질층은 화학식 1로 표시되는 고체이온전도체 화합물과 바인더를 혼합 및 건조하여 제조하거나, 화학식 1로 표시되는 고체이온전도체 화합물의 분말을 일정한 형태로 1 ton 내지 10ton의 압력으로 압연하여 제조할 수 있다. 화학식 1로 표시되는 고체이온전도체 화합물이 고체전해질로 사용된다.
고체전해질의 평균 입경은 예를 들어 0.5㎛ 내지 20㎛ 일 수 있다. 고체전해질이 이러한 평균 입경을 가짐에 의하여 소결체 형성 과정에서 결착성이 향상되어 고체전해질 입자의 이온전도도 및 수명 특성이 향상될 수 있다.
고체전해질층의 두께는 10㎛ 내지 200㎛ 일 수 있다. 고체전해질층이 이러한 두께를 가짐에 의하여 리튬 이온의 충분한 이동 속도가 보장되고 결과적으로 높은 이온전도도가 얻어질 수 있다.
고체전해질층은 화학식 1로 표시되는 고체이온전도체 화합물 외에 종래의 황화물계 고체전해질 및/또는 산화물계 고체전해질 등의 고체전해질을 더 포함할 수 있다.
종래의 황화물(sulfide)계 고체전해질은, 예컨대 황화 리튬, 황화 규소, 황화 인, 황화 붕소 또는 이들의 조합을 포함할 수 있다. 종래의 황화물계 고체전해질 입자는 Li2S, P2S5, SiS2, GeS2, B2S3 또는 이들의 조합을 포함할 수 있다. 종래의 황화물계 고체전해질 입자는 Li2S 또는 P2S5일 수 있다. 종래의 황화물계 고체전해질 입자는 다른 무기 화합물에 비해 높은 리튬 이온 전도도를 갖는 것으로 알려져있다. 예를 들어, 종래의 황화물계 고체전해질은 Li2S 및 P2S5를 포함한다. 종래의 황화물계 고체전해질을 구성하는 황화물 고체전해질 재료가 Li2S-P2S5를 포함하는 경우, Li2S 대 P2S5 의 혼합 몰비는 예를 들면 약 50:50 내지 약 90:10의 범위일 수 있다. 또한, Li3PO4, 할로겐, 할로겐 화합물, Li2+2xZn1-xGeO4("LISICON"), Li3+yPO4-xNx("LIPON"), Li3.25Ge0.25P0.75S4("ThioLISICON"), Li2O-Al2O3-TiO2-P2O5("LATP") 등을 Li2S-P2S5, SiS2, GeS2, B2S3, 또는 이들의 조합의 무기 고체전해질에 첨가하여 제조된 무기 고체전해질이 종래의 황화물 고체전해질로서 사용될 수 있다. 종래의 황화물 고체전해질 재료의 비제한적인 예들은 Li2S-P2S5; Li2S-P2S5-LiX (X=할로겐 원소); Li2S-P2S5-Li2O; Li2S-P2S5-Li2O-LiI; Li2S-SiS2; Li2S-SiS2-LiI; Li2S-SiS2-LiBr; Li2S-SiS2-LiCl; Li2S-SiS2-B2S3-LiI; Li2S-SiS2-P2S5-LiI; Li2S-B2S3; Li2S -P2S5-ZmSn (0<m<10, 0<n<10, Z=Ge, Zn 또는 Ga); Li2S-GeS2; Li2S-SiS2-Li3PO4; 및 Li2S-SiS2-LipMOq (0<p<10, 0<q<10, M=P, Si, Ge, B, Al, Ga 또는 In)을 포함한다. 이와 관련하여, 종래의 황화물계 고체전해질 재료는 황화물계 고체전해질 물질의 원료 시작 물질(예를 들면, Li2S, P2S5, 등)을 용융 담금질법(melt quenching method), 기계적 밀링법 등에 의해 처리함으로써 제조될 수 있다. 또한, 소성(calcinations) 공정이 상기 처리 후에 수행될 수 있다.
고체전해질층에 포함되는 바인더는, 예를 들면, 스티렌 부타디엔 고무(SBR), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리불화비닐리덴(polyvinylidene fluoride), 폴리에틸렌 (polyethylene), 폴리비닐알코올(Polyvinyl alcohol) 등이나 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용하는 것이라면 모두 가능하다. 고체전해질층의 바인더는 양극층과 음극층의 바인더와 동종이거나 다를 수 있다.
(양극층)
다음으로, 양극층이 준비된다.
양극층은 집전체 상에 양극활물질을 포함하는 양극활물질층을 형성시켜 제조할 수 있다. 양극활물질의 평균 입경은 예를 들어 2㎛ 내지 10㎛일 수 있다.
양극활물질은 이차전지에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 리튬전이금속산화물, 전이금속황화물 등일 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1-bBbD2(상기 식에서, 0.90≤ a ≤ 1.8, 및 0≤ b ≤ 0.5이다); LiaE1-bBbO2-cDc(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2-bBbO4-cDc(상기 식에서, 0≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobBcDα(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cCobBcO2-αFα(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cCobBcO2-αF2(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcDα(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cMnbBcO2-αFα(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcO2-αF2(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O2; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0≤ f ≤ 2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다. 상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다. 예를 들어, LiCoO2, LiMnxO2x(x=1, 2), LiNi1-xMnxO2x(0<x<1), Ni1-x-yCoxMnyO2 (0≤x≤0.5, 0≤y≤0.5), Ni1-x-yCoxAlyO2 (0≤x≤0.5, 0≤y≤0.5), LiFePO4, TiS2, FeS2, TiS3, FeS3 등이다. 이러한 화합물에서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다. 이러한 화합물 표면에 코팅층이 부가된 화합물의 사용도 가능하며, 상술한 화합물과 코팅층이 부가된 화합물의 혼합물의 사용도 가능하다. 이러한 화합물의 표면에 부가되는 코팅층은 예를 들어 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함한다. 이러한 코팅층을 이루는 화합물은 비정질 또는 결정질이다. 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물이다. 코팅층 형성 방법은 양극활물질의 물성에 악영향을 주지 않는 범위 내에서 선택된다. 코팅 방법은 예를 들어 스프레이 코팅, 침지법 등이다. 구체적인 코팅 방법은 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
양극활물질은 예를 들어 상술한 리튬전이금속산화물 중 층상암염형(layered rock salt type) 구조를 갖는 전이금속산화물의 리튬염을 포함한다. "층상 암염형 구조"는 예를 들어 입방정 암염형(cubic rock salt type) 구조의 <111> 방향으로 산소 원자층과 금속 원자층이 교대로 규칙적으로 배열하고, 이에 의하여 각각의 원자층이 이차원 평면을 형성하고 있는 구조이다. "입방정 암염형 구조"는 결정 구조의 일종인 염화나트륨형(NaCl type) 구조를 나타내며, 구체적으로는 양이온 및 음이온의 각각 형성하는 면심 입방 격자(face centered cubic lattice, fcc)가 서로 단위 격자(unit lattice)의 능(ridge)의 1/2 만큼 어긋나 배치된 구조를 나타낸다. 이러한 층상암염형 구조를 갖는 리튬전이금속산화물은, 예를 들어, LiNixCoyAlzO2 (NCA) 또는 LiNixCoyMnzO2 (NCM) (0 < x < 1, 0 < y < 1, 0 < z < 1, x + y + z = 1) 등의 삼원계 리튬전이금속산화물이다. 양극활물질이 층상암염형 구조를 갖는 삼원계 리튬전이금속산화물을 포함하는 경우, 전고체 이차전지의 에너지(energy) 밀도 및 열안정성이 더욱 향상된다.
양극활물질은 상술한 바와 같이 피복층에 의해 덮여 있을 수 있다. 피복층은 전고체 이차 전지의 양극 활물질의 피복층으로 공지된 것이면 어떤 것이라도 좋다. 피복층은 예를 들어 Li2O-ZrO2 (LZO)등이다.
양극활물질이 예를 들어 NCA 또는 NCM 등의 삼원계 리튬전이금속산화물로서 니켈(Ni)을 포함하는 경우, 전고체 이차전지의 용량 밀도를 상승시켜 충전 상태에서 양극활물질의 금속 용출의 감소가 가능하다. 결과적으로, 전고체 이차전지의 충전 상태에서의 사이클(cycle) 특성이 향상된다.
양극활물질의 형상은, 예를 들어, 진구, 타원 구형 등의 입자 형상이다. 양극활물질의 입경은 특별히 제한되지 않으며, 종래의 전고체 이차전지의 양극활물질에 적용 가능한 범위이다. 양극층의 양극활물질의 함량도 특별히 제한되지 않고, 종래의 전고체 이차전지의 양극층에 적용 가능한 범위이다. 양극활물질층에서 양극활물질의 함량은 예를 들어 50 내지 95 중량%일 수 있다.
양극활물질층은 화학식 1로 표시되는 고체이온전도체 화합물을 추가적으로 포함할 수 있다.
양극활물질층은 바인더를 포함할 수 있다. 바인더는 예를 들어 스티렌 부타디엔 고무(SBR), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리불화비닐리덴(polyvinylidene fluoride), 폴리에틸렌(polyethylene) 등이다.
양극활물질층은 도전재를 포함할 수 있다. 도전재는 예를 들어 흑연, 카본 블랙, 아세틸렌 블랙, 켓젠(Ketjen) 블랙, 탄소 섬유, 금속 분말 등이다.
양극활물질층은 상술한 양극활물질, 고체전해질, 바인더, 도전재 외에 예를 들어 필러(filler), 코팅제, 분산제, 이온 전도성 보조제 등의 첨가제를 더 포함할 수 있다.
양극활물질층이 포함할 수 있는 필러, 코팅제, 분산제, 이온 전도성 보조제 등으로는 일반적으로 전고체 이차전지의 전극에 사용되는 공지의 재료를 사용할 수 있다.
양극집전체는 예를 들어 알루미늄(Al), 인듐(In), 구리(Cu), 마그네슘(Mg), 스테인레스 스틸, 티타늄(Ti), 철(Fe), 코발트(Co), 니켈(Ni), 아연(Zn), 게르마늄(Ge), 리튬(Li) 또는 이들의 합금으로 이루어진 판상체(plate) 또는 호일(foil) 등을 사용한다. 양극 집전체는 생략 가능하다.
양극집전체는 금속 기재의 일면 또는 양면 상에 배치되는 카본층을 더 포함할 수 있다. 금속 기재 상에 카본층이 추가적으로 배치됨에 의하여 금속 기재의 금속이 양극층이 포함하는 고체전해질에 의하여 부식되는 것을 방지하고 양극활물질층층과 양극집전체 사이의 계면 저항을 감소시킬 수 있다. 카본층의 두께는 예를 들어 1㎛ 내지 5㎛ 일 수 있다. 카본층의 두께가 지나치게 얇으면 금속 기재와 고체전해질의 접촉을 완전히 차단하기 어려울 수 있다. 카본층의 두께가 지나치게 두꺼우면 전고체 이차전지의 에너지 밀도가 저하될 수 있다. 카본층은 비정질 탄소, 결정질 탄소 등을 포함할 수 있다.
(음극층)
다음으로, 음극층이 준비된다.
음극층은 양극활물질 대신에 음극활물질이 사용된다는 것을 제외하고는 양극층과 동일한 방법으로 제조될 수 있다. 음극층은 음극집전체 상에 음극활물질을 포함하는 음극활물질층을 형성시켜 제조할 수 있다.
음극활물질층이 상술한 화학식 1로 표시되는 고체이온전도체 화합물을 추가적으로 포함할 수 있다.
음극활물질은 리튬 금속, 리튬 금속 합금 또는 이들의 조합일 수 있다.
음극활물질층은 리튬 금속, 리튬 금속 합금 또는 이들의 조합 외에 종래의 음극활물질을 더 포함할 수 있다. 종래의 음극활물질은 예를 들어, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 리튬과 합금가능한 금속은 예를 들어 Ag, Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합일 수 있다. 전이금속 산화물은 예를 들어 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다. 비전이금속 산화물은 예를 들어 SnO2, SiOx(0<x<2) 등일 수 있다. 탄소계 재료는 예를 들어 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 결정질 탄소는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
도 6을 참조하면, 일 구현예에 따른 전고체 이차전지(40)는 고체전해질층(30)과 고체전해질층(30)의 일면에 배치된 양극층(10), 고체전해질층(30)의 다른 일면에 배치된 음극층(20)을 포함한다. 양극층(30)은 고체전해질층(30)과 접하는 양극활물질층(12) 및 양극활물질층(12)과 접하는 양극집전체(11)를 포함하고, 음극층(20)은 고체전해질층(30)과 접하는 음극활물질층(22) 및 음극활물질층(22)과 접하는 음극집전체(21)를 포함한다. 전고체 이차전지(40)는 예를 들어, 고체전해질층(30)의 양면에 양극활물질층(12) 및 음극활물질층(22)을 형성시키고, 양극활물질층(12) 및 음극활물질층(22)상에 양극집전체(11) 및 음극집전체(21)를 각각 형성시켜 전고체형 이차전지(30)가 완성된다. 다르게는, 음극집전체(21) 상에 음극활물질층(22), 고체전해질층(30), 양극활물질층(12), 양극집전체(11)를 순차적으로 적층하여 전고체형 이차전지(40)가 완성된다.
전고체 이차전지(40)에서, 양극활물질층(12)이 포함하는 고체이온전도체 화합물의 평균 입경은 예를 들어 0.5 내지 5 , 0.5 ㎛ 내지 4 ㎛ 또는 0.5 ㎛ 내지 3 ㎛ 이다. 전고체 이차전지(40)에서, 고체전해질층(30)이 포함하는 고체이온전도체 화합물의 평균 입경은 예를 들어 1 내지 7 ㎛, 1 ㎛ 내지 6 ㎛, 1 ㎛ 내지 5 ㎛, 또는 2 ㎛ 내지 4 ㎛ 이다. 양극활물질층(12) 및/또는 고체전해질층(30)이 포함하는 고체이온전도체 화합물이 이러한 범위의 입경을 가짐에 의하여 전고체 이차전지(40)의 사이클 특성이 더욱 향상될 수 있다.
[전고체 이차전지: 제2 타입]
도 7 내지 8을 참조하면, 전고체 이차전지(1)는 예를 들어 양극집전체(11) 상에 배치된 양극활물질층(12)을 포함하는 양극층(10); 음극집전체(21) 상에 배치된 음극활물질층(22)을 포함하는 음극층(20); 및 양극층(10) 및 음극층(20) 사이에 배치되는 전해질층(30)을 포함하며, 양극활물질층(12) 및/또는 전해질층(30)이 화학식 1로 표시되는 고체이온전도체 화합물을 포함할 수 있다.
다른 일구현예에 따른 전고체 이차전지는 다음과 같이 준비될 수 있다.
양극층 및 고체전해질층은 상술한 전고체 이차전지와 동일하게 제조된다.
(음극층)
다음으로, 음극층이 준비된다.
도 7 내지 8을 참조하면, 음극층(20)은 음극집전체(21) 및 음극집전체(21) 상에 배치된 음극활물질층(22)을 포함하며, 음극활물질층(22)은 예를 들어 음극활물질 및 바인더를 포함한다.
음극활물질층(22)이 포함하는 음극활물질은 예를 들어 입자 형태를 가진다. 입자 형태를 가지는 음극활물질의 평균 입경은 예를 들어, 4㎛ 이하, 3㎛ 이하, 2㎛ 이하, 1㎛ 이하, 또는 900nm 이하이다. 입자 형태를 가지는 음극활물질의 평균 입경은 예를 들어, 10nm 내지 4㎛ 이하, 10nm 내지 3㎛ 이하, 10nm 내지 2㎛ 이하, 10nm 내지 1㎛ 이하, 또는 10nm 내지 900nm 이하이다. 음극활물질이 이러한 범위의 평균 입경을 가짐에 의하여 충방전 시에 리튬의 가역적인 흡장(absorbing) 및/또는 방출(desorbing)이 더욱 용이할 수 있다. 음극활물질의 평균 입경은, 예를 들어, 레이저식 입도 분포계를 사용하여 측정한 메디안(median) 직경(D50)이다.
음극활물질층(22)이 포함하는 음극활물질은 예를 들어 탄소계 음극활물질 및 금속 또는 준금속 음극활물질 중에서 선택된 하나 이상을 포함한다.
탄소계 음극활물질은 특히 비정질 탄소(amorphous carbon)이다. 비정질 탄소는 예를 들어 카본 블랙(carbon black)(CB), 아세틸렌 블랙(acetylene black)(AB), 퍼니스 블랙(furnace black)(FB), 켓젠 블랙(ketjen black)(KB), 그래핀(graphene) 등이나 반드시 이들로 한정되지 않으며 당해 기술분야에서 비정질 탄소로 분류되는 것이라면 모두 가능하다. 비정질 탄소는 결정성을 가지지 않거나 결정성이 매우 낮은 탄소로서 결정성 탄소 또는 흑연계 탄소와 구분된다.
금속 또는 준금속 음극활물질은 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn) 및 아연(Zn)으로 이루어진 군에서 선택되는 하나 이상을 포함하나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 리튬과 합금 또는 화합물을 형성하는 금속 음극활물질 또는 준금속 음극활물질로 사용하는 것이라면 모두 가능하다. 예를 들어, 니켈(Ni)은 리튬과 합금을 형성하지 않으므로 금속 음극활물질이 아니다.
음극활물질층(22)은 이러한 음극활물질 중에서 일종의 음극활물질을 포함하거나, 복수의 서로 다른 음극활물질의 혼합물을 포함한다. 예를 들어, 음극활물질층(22)은 비정질 탄소만을 포함하거나, 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn) 및 아연(Zn)으로 이루어진 군에서 선택되는 하나 이상을 포함한다. 다르게는, 음극활물질층(22)은 비정질 탄소와 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn) 및 아연(Zn)으로 이루어진 군에서 선택되는 하나 이상과의 혼합물을 포함한다. 비정질 탄소와 금 등의 혼합물의 혼합비는 중량비로서 예를 들어 10:1 내지 1:2, 5:1 내지 1:1, 또는 4:1 내지 2:1 이나 반드시 이러한 범위로 한정되지 않으며 요구되는 전고체 이차전지(1)의 특성에 따라 선택된다. 음극활물질이 이러한 조성을 가짐에 의하여 전고체 이차전지(1)의 사이클 특성이 더욱 향상된다.
음극활물질층(22)이 포함하는 음극활물질은 예를 들어 비정질 탄소로 이루어진 제1 입자 및 금속 또는 준금속으로 이루어진 제2 입자의 혼합물을 포함한다. 금속 또는 준금속은 예를 들어 예를 들어, 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn) 및 아연(Zn) 등을 포함한다. 준금속은 다르게는 반도체이다. 제2 입자의 함량은 혼합물의 총 중량을 기준으로 8 내지 60 중량%, 10 내지 50중량%, 15 내지 40 중량%, 또는 20 내지 30 중량%이다. 제2 입자가 이러한 범위의 함량을 가짐에 의하여 예를 들어 전고체 이차전지(1)의 사이클 특성이 더욱 향상된다.
음극활물질층(22)이 포함하는 바인더는 예를 들어 스티렌-부타디엔 고무(SBR), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리불화비닐리덴(polyvinylidene fluoride), 폴리에틸렌(polyethylene), 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 등이나 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용하는 것이라면 모두 가능하다. 바인더는 단독 또는 복수의 서로 다른 바인더로 구성될 수 있다.
음극활물질층(22)이 바인더를 포함함에 의하여 음극활물질층(22)이 음극집전체(21) 상에 안정화된다. 또한, 충방전 과정에서 음극활물질층(22)의 부피 변화 및/또는 상대적인 위치 변경에도 불구하고 음극활물질층(22)의 균열이 억제된다. 예를 들어, 음극활물질층(22)이 바인더를 포함하지 않는 경우, 음극활물질층(22)이 음극집전체(21)로부터 쉽게 분리되는 것이 가능하다. 음극집전체(21)로부터 음극활물질층(22)이 이탈함에 의하여 음극집전체(21)가 노출된 부분에서, 음극집전체(21)가 고체전해질층(30)과 접촉함에 의하여, 단락이 발생할 가능성이 증가한다. 음극활물질층(22)은 예를 들어 음극활물질층(22)을 구성하는 재료가 분산된 슬러리를 음극집전체(21) 상에 도포하고, 건조하여 제작된다. 바인더를 음극활물질층(22)에 포함시킴에 의하여 슬러리 중에 음극활물질의 안정적인 분산이 가능하다. 예를 들어, 스크린 인쇄법으로 슬러리를 음극집전체(21) 상에 도포하는 경우, 스크린의 막힘(예를 들어, 음극 활물질의 응집체에 의한 막힘)을 억제하는 것이 가능하다.
음극활물질층(22)은 종래의 전고체 이차전지(1)에 사용되는 첨가제 예를 들어 필러, 코팅제, 분산제, 이온 전도성 보조제 등을 더 포함하는 것이 가능하다.
음극활물질층(22)의 두께는 예를 들어 양극활물질층(12, 12a, 12b) 두께의 50% 이하, 40% 이하, 30% 이하, 20% 이하, 10% 이하, 또는 5% 이하이다. 음극활물질층(22)의 두께는 예를 들어 1㎛ 내지 20㎛, 2㎛ 내지 10㎛, 또는 3㎛ 내지 7㎛이다. 음극활물질층(22)의 두께가 지나치게 얇으면, 음극활물질층(22)과 음극집전체(21) 사이에 형성되는 리튬 덴드라이트가 음극활물질층(22)을 붕괴시켜 전고체 이차전지(1)의 사이클 특성이 향상되기 어렵다. 음극활물질층(22)의 두께가 지나치게 증가하면 전고체 이차전지(1)의 에너지 밀도가 저하되고 음극활물질층(22)에 의한 전고체 이차전지(1)의 내부 저항이 증가하여 전고체 이차전지(1)의 사이클 특성이 향상되기 어렵다.
음극활물질층(22)의 두께가 감소하면 예를 들어 음극활물질층(22)의 충전 용량도 감소한다. 음극활물질층(22)의 충전 용량은 예를 들어 양극활물질층(12)의 충전용량에 비하여 50% 이하, 40% 이하, 30% 이하, 20% 이하, 10% 이하, 5% 이하 또는 2% 이하이다. 음극활물질층(22)의 충전 용량은 예를 들어 양극활물질층(12)의 충전용량에 비하여 0.1% 내지 50%, 0.1% 내지 40%, 0.1% 내지 30%, 0.1% 내지 20%, 0.1% 내지 10%, 0.1% 내지 5%, 또는 0.1% 내지 2% 이다. 음극활물질층(22)의 충전 용량이 지나치게 작으면, 음극활물질층(22)의 두께가 매우 얇아지므로 반복되는 충방전 과정에서 음극활물질층(22)과 음극집전체(21) 사이에 형성되는 리튬 덴드라이트가 음극활물질층(22)을 붕괴시켜 전고체 이차전지(1)의 사이클 특성이 향상되기 어렵다. 음극활물질층(22)의 충전 용량이 지나치게 증가하면 전고체 이차전지(1)의 에너지 밀도가 저하되고 음극활물질층(22)에 의한 전고체 이차전지(1)의 내부 저항이 증가하여 전고체 이차전지(1)의 사이클 특성이 향상되기 어렵다.
양극활물질층(12)의 충전 용량은 양극활물질의 충전 용량 밀도(mAh/g)에 양극활물질층(12)중 양극활물질의 질량을 곱하여 얻어진다. 양극활물질이 여러 종류 사용되는 경우, 양극활물질마다 충전 용량 밀도 Х 질량 값을 계산하고, 이 값의 총합이 양극활물질층(12)의 충전 용량이다. 음극활물질층(22)의 충전 용량도 같은 방법으로 계산된다. 즉, 음극활물질층(22)의 충전 용량은 음극활물질의 충전 용량 밀도(mAh/g)에 음극활물질층(22) 중 음극활물질의 질량을 곱함하여 얻어진다. 음극활물질이 여러 종류 사용되는 경우, 음극활물질마다 충전 용량 밀도 Х 질량 값을 계산하고, 이 값의 총합이 음극활물질층(22)의 용량이다. 여기서, 양극활물질 및 음극활물질의 충전 용량 밀도는 리튬 금속을 상대 전극으로 사용한 전고체 반전지(half-cell)을 이용하여 추정된 용량이다. 전고체 반전지(half-cell)를 이용한 충전 용량 측정에 의해 양극활물질층(12)과 음극활물질층(22)의 충전 용량이 직접 측정된다. 측정된 충전 용량을 각각 활물질의 질량으로 나누면, 충전 용량 밀도가 얻어진다. 다르게는, 양극활물질층(12)과 음극활물질층(22)의 충전 용량은 1 사이클 번째 충전시에 측정되는 초기 충전 용량일 수 있다.
도 8을 참조하면, 전고체 이차전지(1a)는 예를 들어 음극집전체(21)와 음극활물질층(22) 사이에 배치되는 금속층(23)을 더 포함할 수 있다. 금속층(23)은 리튬 또는 리튬 합금을 포함한다. 따라서, 금속층(23)은 예를 들어 리튬 저장고(reservoir)로서 작용한다. 리튬 합금은, 예를 들어, Li-Al 합금, Li-Sn 합금, Li-In 합금, Li-Ag 합금, Li-Au 합금, Li-Zn 합금, Li-Ge 합금, Li-Si 합금 등이나 이들로 한정되지 않으며 당해 기술분야에서 리튬 합금으로 사용하는 것이라면 모두 가능하다. 금속층(23)은 이러한 합금 중 하나 또는 리튬으로 이루어질 수 있거나, 여러 종류의 합금으로 이루어진다.
금속층(23)의 두께는 특별히 제한되지 않지만, 예를 들어, 1㎛ 내지 1000㎛, 1㎛ 내지 500㎛, 1㎛ 내지 200㎛, 1㎛ 내지 150㎛, 1㎛ 내지 100㎛, 또는 1㎛ 내지 50㎛이다. 금속층(23)의 두께가 지나치게 얇으면, 금속층(23)에 의한 리튬 저장고(reservoir) 역할을 수행하기 어렵다. 금속층(23)의 두께가 지나치게 두꺼우면 전고체 이차전지(1a)의 질량 및 부피가 증가하고 사이클 특성이 오히려 저하될 가능성이 있다. 금속층(23)은, 예를 들어, 이러한 범위의 두께를 갖는 금속 호일일 수 있다.
전고체 이차전지(1a)에서 금속층(23)은 예를 들어 전고체 이차전지(1)의 조립 전에 음극집전체(21)와 음극활물질층(22) 사이에 배치되거나 전고체 이차전지(1)의 조립 후에 충전에 의하여 음극집전체(21)와 음극활물질층(22) 사이에 석출된다. 전고체 이차전지(1a)의 조립 전에 음극집전체(21)와 음극활물질층(22) 사이에 금속층(23)이 배치되는 경우, 금속층(23)이 리튬을 포함하는 금속층이므로 리튬 저장고(reservoir)로서 작용한다. 예를 들어, 전고체 이차전지(1a)의 조립 전에 음극집전체(21)와 음극활물질층(22) 사이에 리튬 호일이 배치된다. 이에 의해, 금속층(23)을 포함하는 전고체 이차전지(1a)의 사이클 특성이 더욱 향상된다. 전고체 이차전지(1a)의 조립 후에 충전에 의하여 금속층(23)이 석출되는 경우, 전고체 이차전지(1a)의 조립 시에 금속층(23)을 포함하지 않으므로 전고체 이차전지(1a)의 에너지 밀도가 증가한다. 예를 들어, 전고체 이차전지(1)의 충전시, 음극활물질층(22)의 충전 용량을 초과하여 충전한다. 즉, 음극활물질층(22)을 과충전한다. 충전 초기에는 음극활물질층(22)에 리튬을 흡장된다. 음극활물질층(22)이 포함하는 음극활물질은 양극층(10)에서 이동해온 리튬 이온과 합금 또는 화합물을 형성한다. 음극활물질층(22)의 용량을 초과하여 충전을 하면, 예를 들어 음극활물질층(22)의 후면, 즉 음극집전체(21)와 음극활물질층(22) 사이에 리튬이 석출되고, 석출된 리튬에 의해 금속층(23)에 해당하는 금속층이 형성된다. 금속층(23)은 주로 리튬(즉, 금속 리튬)으로 구성되는 금속층이다. 이러한 결과는 예를 들어 음극활물질층(22)에 포함되는 음극활물질이 리튬과 합금 또는 화합물을 형성하는 물질로 구성됨에 의하여 얻어진다. 방전시에는 음극활물질층(22) 및 금속층(23), 즉 금속층의 리튬이 이온화되어 양극층(10) 방향으로 이동한다. 따라서, 전고체 이차전지(1a)에서 리튬을 음극활물질로 사용하는 것이 가능하다. 또한, 음극활물질층(22)이 금속층(23)을 피복하기 때문에, 금속층(23), 즉 금속층의 보호층 역할을 하는 동시에, 리튬 덴드라이트(dendrite)의 석출 성장을 억제하는 역할을 수행한다. 따라서, 전고체 이차전지(1a)의 단락 및 용량 저하를 억제하고, 결과적으로 전고체 이차전지(1a)의 사이클 특성을 향상시킨다. 또한, 전고체 이차전지(1a)의 조립 후에 충전에 의하여 금속층(23)이 배치되는 경우, 음극집전체(21)와 음극활물질층(22) 및 이들 사이의 영역은 예를 들어 전고체 이차전지(1a)의 초기 상태 또는 방전 후 상태에서 리튬(Li)을 포함하지 않는 Li-프리(free) 영역이다.
음극집전체(21)은 예를 들어 리튬과 반응하지 않는, 즉, 합금 및 화합물을 모두 형성하지 않는 재료로 구성된다. 음극집전체(21)를 구성하는 재료는 예를 들어 구리(Cu), 스테인리스 스틸, 티타늄(Ti), 철(Fe), 코발트(Co) 및 니켈(Ni) 등이나 반드시 이들로 한정되지 않으며 당해 기술분야에서 전극집전체로 사용하는 것이라면 모두 가능하다. 음극집전체(21)는 상술한 금속 중 1 종으로 구성되거나, 2 종 이상의 금속의 합금 또는 피복 재료로 구성될 수 있다. 음극집전체(21)는, 예를 들면, 판상 또는 박상(foil) 형태이다.
전고체 이차전지(1, 1a)는 예를 들어 음극집전체(21) 상에 리튬과 합금을 형성할 수 있는 원소를 포함하는 박막(thin film)을 더 포함할 수 있다. 박막은 음극집전체(21)와 상기 음극활물질층(22) 사이에 배치된다. 박막은 예를 들어 리튬과 합금을 형성할 수 있는 원소를 포함한다. 리튬과 합금을 형성할 수 있는 원소는, 예를 들어, 금, 은, 아연, 주석, 인듐, 규소, 알루미늄, 비스무스 등이나 반드시 이들로 한정되지 않으며 당해 기술분야에서 리튬과 합금을 형성할 수 있는 원소라면 모두 가능하다. 박막은 이들 금속 중 하나로 구성되거나, 여러 종류의 금속의 합금으로 구성된다. 박막이 음극집전체(21) 상에 배치됨에 의하여, 예를 들어 박막(24)과 음극활물질층(22) 사이에 석출되는 금속층(23)의 석출 형태가 더 평탄화되며, 전고체 이차전지(1)의 사이클 특성이 더욱 향상될 수 있다.
박막의 두께는 예를 들어 1nm 내지 800nm, 10nm 내지 700nm, 50nm 내지 600nm, 또는 100nm 내지 500nm이다. 박막의 두께가 1nm 미만이 되는 경우 박막에 의한 기능이 발휘되기 어려울 수 있다. 박막의 두께가 지나치게 두꺼우면, 박막 자신이 리튬을 흡장하여 음극에서 리튬의 석출량이 감소하여 전고체 전지의 에너지 밀도가 저하되고, 전고체 이차전지(1, 1a)의 사이클 특성이 저하될 수 있다. 박막은 예를 들어 진공 증착법, 스퍼터링 법, 도금법 등에 의해 음극 집전체(21) 상에 배치될 수 있으나 반드시 이러한 방법으로 한정되지 않으며 당해 기술 분야에서 박막을 형성할 수 있는 방법이라면 모두 가능하다.
다른 일구현예에 따른 고체이온전도체 화합물의 제조방법은 평균 입경 7 ㎛ 이하인 서로 다른 종류의 전구체 입자를 개별적으로 준비하는 단계; 상기 서로 다른 종류의 전구체 입자를 서로 혼합하여 혼합물을 준비하는 단계; 및 상기 혼합물을 열처리하여 고체이온전도체 화합물을 준비하는 단계;를 포함하며, 상기 고체이온전도체 화합물의 평균 입경이 7 ㎛ 이하이다.
이러한 제조방법에 의하여, 평균 입경 7 ㎛ 이하인 전구체 입자를 사용하며, 기계적 밀링과 같은 입자들의 응집을 유도하는 혼합 방법을 사용하지 않음에 의하여 7㎛ 이하의 평균 입경(D50)을 가지면서도 25℃에서 3 mS/cm 이상의 높은 이온전도도를 가지는 고체이온전도체 화합물의 제조가 가능하다. 고체이온전도체 화합물은 예를 들어 화학식 1로 표시되는 고체이온전도체 화합물이다.
상기 제조방법은 전체 제조 과정에서 건식 밀링과 같은 입자들의 응집을 유도하는 혼합 방법의 사용이 배제된다. 건식 밀링은 예를 들어 볼 밀링 등이나 이들로 한정되지 않는다.
평균 입경 7 ㎛ 이하인 서로 다른 종류의 전구체 입자를 개별적으로 준비된다. 예를 들어, 평균 입경 7 ㎛ 이하인 리튬을 포함하는 전구체 화합물, 평균 입경 7 ㎛ 이하인 주기율표 2족 및 11 족 중에서 선택된 원소를 포함하는 전구체 화합물, 평균 입경 7 ㎛ 이하인 인(P)를 포함하는 전구체 화합물 및 평균 입경 7 ㎛ 이하인 17족 원소를 포함하는 전구체 화합물이 개별적으로 준비된다. 필요한 경우 평균 입경 7 ㎛ 이하인 황(S)을 포함하는 전구체 화합물이 추가적으로 준비된다. 평균 입경은 예를 들어 D50 입경 이다.
평균 입경 7 ㎛ 이하인 전구체 화합물은 예를 들어 평균 입경 10 ㎛ 내지 10mm의 전구체 화합물을 습식 분쇄하여 준비할 수 있다. 습식 분쇄는 예를 들어 전구체 화합물을 분산 매질에 분산시킨 후 매체 교반형 분쇄기 예를 들어 볼밀 등을 사용하여 분쇄하는 방법이다. 분산 매질로서는 전구체 화합물에 불활성인 용매라면 모두 가능하다. 분산 매질은 예를 들어 유기용매이다. 유기용매는 예를 들어, 자일렌(xylene), 헵탄(heptane) 등이다. 습식 분쇄에 의하여 전구체 화합물 입자들간의 응집(agglomeration)이 방지된다.
평균 입경 7 ㎛ 이하의 전구체 화합물의 평균 입경은 예를 들어, 0.5 내지 5 ㎛, 0.5 ㎛ 내지 4 ㎛ 또는 0.5 ㎛ 내지 3 ㎛ 이다. 다르게는, 평균 입경 7㎛ 이하의 전구체 화합물의 평균 입경은 예를 들어 1 내지 7 ㎛, 1 ㎛ 내지 6 ㎛, 1 ㎛ 내지 5 ㎛, 또는 2 ㎛ 내지 4 ㎛ 이다. 평균 입경 7 ㎛ 이하의 전구체 화합물의 D90 - D10은 예를 들어, 1 내지 10 ㎛, 1 내지 9 ㎛, 1 내지 8 ㎛, 1 내지 7 ㎛, 또는 1 내지 6 ㎛이다. 전구체 화합물이 이러한 좁은 범위의 입도 분포를 가짐에 의하여 전구체 혼합물의 제조 과정에서 입자의 응집(agglomeration)이 방지될 수 있다.
리튬을 포함하는 전구체 화합물은 리튬을 포함하는 황화물을 포함한다. 예를 들어 황화 리튬이 언급된다.
주기율표 2족 및 11 족 중에서 선택된 원소를 포함하는 전구체 화합물은 주기율표 2족 및 11족 중에서 선택된 원소를 포함하는 황화물을 포함한다. 예를 들어, 황화 구리, 황화 은, 황화 나트륨이 언급된다.
인(P)를 포함하는 전구체 화합물은 인을 포함하는 황화물을 포함한다. 예를 들어, P2S5가 언급된다.
17족 원소를 포함하는 전구체 화합물은 17족 원소를 포함하는 리튬염을 포함한다. 예를 들어, LiCl, LiF, LiBr, LiI가 언급된다.
전구체 혼합물은 Li 이외의 1족 금속 원소를 포함하는 화합물을 더 포함할 수 있다. Li 이외의 1족 금속을 포함하는 화합물은 예를 들어 Li 이외의 1족 금속의 황화물을 포함한다. 예를 들어, Na2S, K2S가 언급된다.
전구체 혼합물은 SOn(1.5≤n≤5)를 포함하는 화합물을 더 포함할 수 있다. SOn(1.5≤n≤5)를 포함하는 화합물은 SOn을 포함하는 리튬염을 포함한다. 예를 들어, Li2S4O6, Li2S3O6, Li2S2O3, Li2S2O4, Li2S2O5, Li2S2O6, Li2S2O7, Li2S2O8, Li2SO4, Li2SO5 등이 언급된다.
준비된 전구체 화합물을 적절한 양, 예를 들어 화학양론적 양으로 혼합하여 전구체 혼합물이 준비된다. 전구체 화합물의 혼합은 건식 또는 습식으로 수행될 수 있다. 전구체 화합물의 혼합은 건식 믹서 등을 사용할 수 있다. 건식 밀링과 같은 기계화학적 반응을 수반하는 방법은 제외된다. 건식 밀링에 의하여 전구체 화합물을 혼합하는 경우, 전구체 화합물 입자들의 응집(agglomeration)에 의하여 응집물이 발생하고, 이러한 응집물에 의하여 이어지는 열처리 과정에서 얻어지는 고체이온전도체의 평균 입경이 10 ㎛ 이상으로 지나치게 증가할 수 있다. 전구체 혼합물의 D90 - D10은 예를 들어, 1 내지 10 ㎛, 1 내지 9 ㎛, 1 내지 8 ㎛, 1 내지 7 ㎛, 또는 1 내지 6 ㎛이다.
화학양론적 조성으로 혼합된 전구체의 혼합물은 불활성 분위기에서 열처리하여 평균 입경 7㎛ 이하의 고체이온전도체 화합물을 제조할 수 있다.
열처리는 예를 들어 250 내지 700℃ 300 내지 700℃ 400 내지 650℃ 400 내지 600℃ 400 내지 550℃ 또는 400 내지 500℃ 에서 수행될 수 있다. 열처리 시간은 예를 들어 1 내지 36 시간, 2 내지 30 시간, 4 내지 24 시간, 10 내지 24 시간, 또는 16 내지 24시간일수 있다. 불활성 분위기는 불활성 기체를 포함하는 분위기이다. 불활성 기체는 예를 들어 질소, 아르곤 등이나 반드시 이들로 한정되지 않으며 당해 기술분야에서 불활성 가스로 사용하는 것이라면 모두 가능하다.
이하의 실시예 및 비교예를 통하여 본 창의적 사상이 더욱 상세하게 설명된다. 단, 실시예는 본 창의적 사상을 예시하기 위한 것으로서 이들만으로 본 창의적 사상의 범위가 한정되는 것이 아니다.
(고체이온전도체 화합물의 제조)
실시예 1: Li5.72Cu0.03PS4.75Cl1.25의 제조
리튬전구체인 Li2S, 인(P) 전구체인 P2S5, 염소 전구체인 LiCl 및 구리 전구체인 Cu2S를 개별적으로 준비하였다.
상술한 전구체들은 습식으로 분쇄하여 개별적으로 준비되었다. 전구체 10g 및 자일렌(xylene) 용매 30ml, 지르코니아 볼(ZrO2 ball) 100g을 80ml 용기에 투입하고, 800rpm 속도로 2시간 습식 볼밀을 실시하였다. 자일렌 용매의 제거는 120℃, 36시간 진공 건조 실시하였으며 불활성 분위기에서 분쇄된 전구체를 보관하였다. 습식 분쇄에 의하여 분쇄된 입자들의 응집(agglomeration)이 방지되었다. 준비된 전구체 입자들의 D50, D90, 및 D10 값을 측정하여 하기 표 1에 나타내었다.
개별적으로 준비된 전구체 입자들을 목적하는 조성인 Li5.72Cu0.03PS4.75Cl1.25 가 얻어지도록 화학양론적 비율로 혼합하여 전구체 혼합물을 준비하였다.
전구체 입자들의 혼합은 드라이 믹서(dry mixer)를 사용하여 수행되었다. 드라이 믹서를 사용하여 혼합함에 의하여 전구체 입자들의 응집(agglomeration) 및 기계화학적 반응(mechano-chemical reaction)이 방지되었다. 드라이 믹서 공정은 목적 조성 10g 기준으로 개별 전구체를 혼합하고 25000 rpm으로 5분간 (10초 회전 및 10초 정지의 사이클 반복) 고속 혼합을 실시하였다. 준비된 전구체 혼합물의 D50, D90, 및 D10 값을 측정하여 하기 표 1 및 도 2에 나타내었다.
준비된 전구체 혼합물 분말을 카본 도가니에 넣고 카본 도가니를 석영 유리관을 이용하여 아르곤 분위기로 봉입하였다. 아르곤 봉입된 전구체 혼합물을 전기로를 이용하여 상온에서 450 ℃까지 1.0℃/분으로 승온한 후 450 ℃에서 18시간 동안 열처리한 후, 1.0℃/분으로 실온까지 냉각하여 고체이온전도체 화합물을 제조하였다. 제조된 고체이온전도체 화합물의 조성은 Li5.72Cu0.03PS4.75Cl1.25 이었다.
리튬 전구체
Li2S
[㎛]
인(P) 전구체
P2S5
[㎛]
염소 전구체
LiCl
[㎛]
전구체 혼합물
[㎛]
D90 5.70 3.22 4.13 5.22
D50 1.98 1.18 2.57 2.00
D10 0.50 0.13 1.45 0.59
D90 - D10 5.20 3.09 2.68 4.63
실시예 2: Li5.72Cu0.03PS4.75Cl1.15Br0.1 제조
목적하는 조성인 Li5.72Cu0.03PS4.75Cl1.15Br0.1 가 얻어지도록 출발물질의 화학양론적인 혼합비를 변경한 것을 제외하고는 실시예 1와 동일한 방법으로 고체이온전도체 화합물을 제조하였다. 제조된 고체이온전도체 화합물의 조성은 Li5.72Cu0.03PS4.75Cl1.15Br0.1 이었다. 브롬 전구체로서 LiBr이 추가적으로 사용되었다.
실시예 3: Li5.72Cu0.03PS4.725Cl1.25(SO4)0.025 제조
목적하는 조성인 Li5.72Cu0.03PS4.725Cl1.25(SO4)0.025 가 얻어지도록 출발물질의 화학양론적인 혼합비를 변경한 것을 제외하고는 실시예 1와 동일한 방법으로 고체이온전도체 화합물을 제조하였다. 제조된 고체이온전도체 화합물의 조성은 Li5.72Cu0.03PS4.725Cl1.25(SO4)0.025 이었다. SO4 전구체로서 Li2SO4가 추가적으로 사용되었다.
비교예 1: Li5.72Cu0.03PS4.75Cl1.25 제조, 고상 합성
실시예 1의 목적 조성 10g 기준으로 개별 전구체 혼합물 10g 및 지르코니아볼(ZrO2 ball) 100g을 80ml 용기에 투입하고, 100rpm 속도로 1시간 건식 볼밀을 실시한 후, 800 rpm 속도로 30분 건식 볼밀을 실시하여 밀링된 전구체 혼합물을 준비하였다. 준비된 전구체 혼합물을 실시예 1과 동일한 방법으로 열처리하여 목적 조성의 고체이온전도체 화합물을 제조하였다.
비교예 2: Li5.72Cu0.03PS4.75Cl1.15Br0.1 제조, 고상 합성
목적 조성을 실시예 2와 동일하게 변경한 것을 제외하고는, 비교예 1과 동일한 방법으로 목적 조성의 고체이온전도체 화합물을 제조하였다.
비교예 3: Li5.72Cu0.03PS4.725Cl1.25(SO4)0.025 제조, 고상 합성
목적 조성을 실시예 3과 동일하게 변경한 것을 제외하고는, 비교예 1과 동일한 방법으로 목적 조성의 고체이온전도체 화합물을 제조하였다.
비교예 4: Li5.72Cu0.03PS4.75Cl1.25 제조, 고상 합성 후 추가 분쇄
비교예 1에서 제조된 고체이온전도체 화합물을 추가적으로 분쇄하여 분쇄된 고체이온전도체 화합물을 제조하였다.
비교예 1에서 제조된 고체이온전도체 화합물의 분쇄는 하기 방법으로 수행되었다.
Ar 분위기의 글러브 박스(glove box) 안에서 비교예 1에서 제조된 고체이온전도체 화합물 분말, 지르코니아볼(ZrO2 ball) 90g, 및 자일렌(xylene) 30ml를 투입한 후 플레너터리 밀(planetary ball mill)에서 100rpm으로 24시간 분쇄한 후, 60℃에서 24시간 진공 건조하여 분쇄된 고체이온전도체 화합물을 제조하였다.
비교예 5: Li5.72Cu0.03PS4.75Cl1.15Br0.1 제조, 고상 합성 후 추가 분쇄
비교예 2에서 제조된 고체이온전도체 화합물을 비교예 4와 동일한 방법으로 추가적으로 분쇄하여 고체이온전도체 화합물을 제조하였다.
비교예 6: Li5.72Cu0.03PS4.725Cl1.25(SO4)0.025 제조, 고상 합성 후 추가 분쇄
비교예 3에서 제조된 고체이온전도체 화합물을 비교예 4와 동일한 방법으로 추가적으로 분쇄하여 고체이온전도체 화합물을 제조하였다.
실시예 4: 전고체 이차전지 제조
(양극층 제조)
대립 양극 활물질 LiNi0.8Co0.15Al0.05O2 (NCA) (D50 = 14㎛), 소립 양극 활물질 LiNi0.8Co0.15Al0.05O2 (NCA) (D50 = 5㎛), 도전재인 카본 나노섬유, 바인더인 폴리테트라플루오로에틸렌 및 실시예 1에서 제조된 고체이온전도체 화합물을 혼합한 후 자일렌(xylene)을 추가하여 양극 슬러리를 준비하였다. 준비된 양극 슬러리를 시트 형태로 성형하여 양극 시트를 제조하였다. 대립 양극 활물질과 소립 양극 활물질의 혼합 중량비는 3:1이었다. 양극활물질 : 도전재 : 바인더 : 고체이온전도체 화합물의 혼합 중량비는 84:0.2:1.0:14.8 이었다. 제조된 양극 시트를 18㎛ 두께의 알루미늄 호일의 양극 집전체 상에 압착하고 배치 타입의 오일 챔버에 넣고 500 MPa의 압력 압력으로, 90℃에서 1시간 동안 온간 등수압 가압(WIP, Warm Isostactic Press) 공정을 수행하여 양극층을 준비하였다.
(고체 전해질층 제조)
실시예 1에서 제조된 고체이온전도체 화합물 (D50 = 2.34 ㎛)을 고체전해질 분말로 사용하여 다음과 같이 고체전해질층을 제조하였다.
실시예 1에 따라 준비된 고체전해질과 바인더인 아크릴계 수지(Xeon사 제조)를 98.5:1.5의 중량비로 혼합하여 혼합물을 준비하였다. 준비된 혼합물에 용매인 이소부틸 이소부티레이트(IBIB, Isobutyl Isobutyrate)를 추가하고 교반하여 고체전해질슬러리를 준비하였다. 고체전해질 슬러리를 폴리에틸렌 부직포 위에 배치하고, 공기 중에서 25℃에서 12시간 동안 건조 및 70℃에서 2시간 동안 진공 건조하였다. 이상의 공정에 의하여 폴리에틸렌 부직포 상에 형성된 시트 형태의 고체전해질층을 준비하였다.
(음극층 제조)
음극 집전체로서 Ni 호일(두께: 10 ㎛)을 준비하였다. 음극활물질로서 Ag 입자 (평균 일차 입경 약 60 nm)과 카본블랙(평균 일차 입경 약 35 nm)을 25:75의 중량비로 혼합하여 혼합 분말을 준비하였다. 용기에 준비된 혼합 분말 및 폴리비닐리덴플루오라이드(PVDF) 바인더(# 9300, 쿠레하 社)를 N-메틸피롤리돈(NMP)에 넣고 교반하여 음극 슬러리를 준비하였다. 바인더 함량은 음극층 전체 건조 중량을 기준으로 7중량%이었다. 준비된 음극 슬러리를 Ni 호일 상에 블레이드 코터(blade coater)를 이용하여 도포하고, 공기 중에서 80℃온도로 20 분간 건조 및 100℃에서 12 시간 진공 건조하여 음극층을 준비하였다.
(전고체 이차전지의 제조)
양극층, 고체 전해질층, 음극층을 순서대로 적층한 후 압착하고 배치 타입의 오일 챔버에 넣고 500 MPa의 압력으로, 90℃에서 1시간 동안 온간 등수압 가압(WIP, Warm Isotactic Press) 공정을 수행하여 면적 4cm2의 전고체 전지를 형성하였다.
실시예 5 내지 6
실시예 1에서 제조된 고체전해질 분말 대신에 실시예 2 내지 3에서 제조된 고체전해질 분말을 각각 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 전고체 이차전지를 제조하였다.
비교예 7 내지 12
실시예 1에서 제조된 고체전해질 분말 대신에 비교예 1 내지 6에서 제조된 고체전해질 분말을 각각 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 전고체 이차전지를 제조하였다.
평가예 1: 이온전도도 측정
실시예 1 내지 3 및 비교예 1 내지 6 에서 제조된 고체이온전도체 화합물 분말을 준비한 후, 분말 200mg을 4 ton/cm2의 압력으로 2분간 프레스하여 두께 약 0.101mm 및 직경 약 13mm의 펠렛(pellet) 시편을 준비하였다. 준비된 시편의 양면에 두께 50㎛ 및 직경 13mm의 인듐(In) 전극을 각각 배치하여 대칭셀(symmetry cell)을 준비하였다. 대칭셀의 준비는 Ar 분위기의 글로버박스에서 진행되었다.
인듐 전극이 양면에 배치된 시편에 대하여 임피던스 분석기(Material Mates 7260 impedance analyzer)를 사용하여 2-프로브(probe)법으로 펠렛의 임피던스를 측정하였다. 주파수 범위는 0.1Hz 내지 1MHz, 진폭 전압은 10 mV였다. Ar 분위기의 25℃에서 측정하였다. 임피던스 측정 결과에 대한 나이퀴스트 플롯(Nyguist plot)의 원호(arc)로부터 저항치를 구하고 시편의 면적과 두께를 고려하여 이온전도도를 계산하였다. 측정 결과를 하기 표 2에 나타내었다.
평가예 2: 입경 측정
입자 크기 분석기(PSA, particle size analyzer)를 이용하여 실시예 1 내지 3 및 비교예 1 내지 6에서 제조된 고체이온전도체 화합물 입자의 D50 및 D90 - D10 값을 측정하였다. 측정 용매는 자일렌(xylene)이었다.
제조된 고체이온전도체 화합물 입자의 D50 값인 메디안 입경(median particle diameter)을 평균 입경으로 하였다.
측정 결과를 하기 표 2 및 도 3-4에 나타내었다.
이온전도도
[mS/cm]
D50
[㎛]
D90 - D10
[㎛]
실시예 1 4.1 2.34 4.2
실시예 2 4.14 2.62 5.4
실시예 3 4.3 2.91 4.85
비교예 1 3.5 10 44
비교예 2 4.3 14.4 40
비교예 3 3.55 11 42
비교예 4 1.4 1.3 3.25
비교예 5 1.23 1.7 5.36
비교예 6 1.57 1.4 6.3
표 2 및 도 3-4에서 보여지는 바와 같이, 실시예 1 내지 3의 고체이온전도체 화합물은, 3 mS/cm 이상의 이온전도도를 가지면서 평균 입경(D50)은 7 ㎛ 이하이었다.
이에 반해, 비교예 1 내지 3의 고체이온전도체 화합물은, 3 mS/cm 이상의 이온전도도를 가지나, 평균 입경(D50)은 10 ㎛ 이상이었다.
비교예 4 내지 6의 고체이온전도체 화합물은, 평균 입경(D50)은 7 ㎛ 이하였으나, 이온전도도가 2 mS/cm 미만이었다.
실시예 1 내지 3의 고체이온전도체 화합물은 우수한 이온전도도와 감소된 평균 입경을 동시에 제공하였으나, 비교예 1 내지 6의 고체이온전도체 화합물은 이온전도도가 부진하거나, 평균 입경이 증가하였다.
평가예 3: X선 회절 실험
실시예 1 내지 3, 비교예 1 및 비교예 4에서 제조된 고체이온전도체 화합물 분말에 대하여, 분말 XRD 스펙트럼을 측정하여 그 결과의 일부를 도 1에 도시하였다. XRD 스펙트럼 측정에 Cu Kα 방사선(radiation)을 사용하였다. 실시예 1 내지 5의 고체이온전도체 화합물은 F-23m 공간군에 속하며 입방정계(cubic) 결정계에 속하는 구조를 가지며, 아지로다이트형(Argyrodite type) 결정 구조를 가지는 아지로다이트형 황화물(Argyrodite type sulfide)임을 확인하였다.
실시예 1 내지 3 및 비교예 1의 고체이온전도체 화합물은 CuKα 선을 이용한 XRD 스펙트럼에서 회절각 2θ=30.0°±1.0°에서의 결정성 피크의 피크 강도(Ia)에 대한 회절각 2θ=19.0°±3.0°에서의 브로드한(broad) 피크의 피크 강도(Ib)에 비하여 컸다. 실시예 1 내지 3 및 비교예 1의 고체이온전도체 화합물은, 열처리에 의하여 제조된 고체이온전도체 화합물을 그대로 사용하므로, 회절각 2θ=30.0°±1.0°에서의 결정성 피크가 높은 피크 강도(I)를 그대로 유지하였기 때문으로 판단되었다.
이에 반해, 비교예 4의 고체이온전도체 화합물은 CuKα 선을 이용한 XRD 스펙트럼에서 회절각 2θ=30.0°±1.0°에서의 결정성 피크의 피크 강도(Ia)에 대한 회절각 2θ=19.0°±3.0°에서의 브로드한(broad) 피크의 피크 강도(Ib)에 비하여 작았다. 비교예 4의 고체이온전도체 화합물은, 열처리에 의하여 제조된 고체이온전도체 화합물의 입경을 감소시키기 위한 분쇄 과정을 거침에 의하여, 분쇄 과정에서 비정질상의 함량이 증가함에 의하여 회절각 2θ=30.0°±1.0°에서의 결정성 피크의 피크 강도(Ia)가 감소하였기 때문으로 판단되었다.
평가예 4: 충방전 시험
실시예 4 내지 6 및 비교예 7 내지 12에서 제조된 전고체 이차전지의 충방전 특성을 다음의 충방전 시험에 의해 평가하였다. 충방전 시험은 전고체 이차전지를 45℃의 챔버에 넣어서 수행하였다.
제1 사이클은 전지 전압이 4.25V가 될 때까지 0.1C의 정전류 및 4.25V 정전압으로 0.05C 전류값이 될 때까지 충전하였다. 이어서, 전지 전압이 2.5V가 될 때까지 0.1C의 정전류로 방전을 실시하였다.
제1 사이클은 전지 전압이 4.25V가 될 때까지 0.1C의 정전류 및 4.25V 정전압으로 0.05C 전류값이 될 때까지 충전하였다. 이어서, 전지 전압이 2.5V가 될 때까지 0.33C의 정전류로 방전을 실시하였다.
제1 사이클은 전지 전압이 4.25V가 될 때까지 0.1C의 정전류 및 4.25V 정전압으로 0.05C 전류값이 될 때까지 충전하였다. 이어서, 전지 전압이 2.5V가 될 때까지 1.0C의 정전류로 방전을 실시하였다.
각 사이클 마다 충전 및 방전 단계 후에 10 분간 휴지기를 두었다. 측정 결과의 일부를 하기 표 3에 나타내었다.
실시예 4 내지 6 및 비교예 10에서 제조된 전고체 이차전지의 각 사이클에서의 충전 용량, 방전 용량 및 충방전 효율을 하기 표 3에 나타내었다.
충방전 효율은 하기 수학식 1으로부터 계산된다.
<수학식 1>
충방전 효율(%) = [방전 용량 / 충전 용량]Х100
방전 조건
[C rate]
충전 용량 [mAh/g] 방전 용량 [mAh/g] 충방전 효율 [%]
실시예 4 0.1C 230.5 191.9 83.3
실시예 4 0.33C 191.3 179.6 93.9
실시예 4 1.0C 179.2 167.6 93.5
실시예 5 0.1C 225.4 197.7 87.7
실시예 5 0.33C 195.5 181.7 93.0
실시예 5 1.0C 179.7 164.8 91.7
실시예 6 0.1C 231.1 203.1 87.9
실시예 6 0.33C 201.3 188.1 93.5
실시예 6 1.0C 186.2 172.4 92.6
비교예 10 0.1C 231.0 190.8 82.6
비교예 10 0.33C 190.2 177.7 93.4
비교예 10 1.0C 177.3 164.1 92.6
표 3에 보여지는 바와 같이 실시예 4 내지 6의 전고체 이차전지는 비교예 10의 전고체 이차전지에 비하여 방전용량이 향상되었으며, 충방전 효율도 대부분의 조건에서 향상되었다.
이러한 방전용량의 감소는 실시예 4 내지 6의 전고체 이차전지가 포함하는 고체이온전도체 화합물의 이온전도도가 증가하여 전지 내부 저항이 비교예 10의 전고체 이차전지에 비하여 감소하였기 때문으로 판단되었다.
평가예 5: 충방전 시험, 수명 특성 평가
평가예 4의 율특성 평가가 종료된 실시예 4 내지 6 및 비교예 10의 전고체 이차전지에 대하여 수명 특성을 평가하였다. 충방전 시험은 전고체 이차 전지를 45℃의 챔버에 넣어서 수행하였다.
전지 전압이 4.25V가 될 때까지 0.33C의 정전류 충전하고, 4.25V의 정전압에서 전류값이 0.1C 될 때까지 충전하였다. 이어서, 전지 전압이 2.5V가 될 때까지 0.33C의 정전류로 방전을 실시하였다. 이러한 충방전 사이클을 50회 수행하였다. 각 사이클 마다 충전 및 방전 단계 후에 10 분간 휴지기를 두었다.
실시예 4 내지 6 및 비교예 10에서 제조된 전고체 이차전지의 용량 유지율을 하기 표 4 및 도 5에 나타내었다. 용량 유지율은 하기 수학식 2로부터 계산된다.
<수학식 2>
용량 유지율(%) = [50번째 사이클의 방전 용량 / 첫번째 사이클의 방전 용량]Х100
용량유지율 [%]
실시예 4 93
실시예 5 97
실시예 6 95
비교예 10 92
표 4 및 도 5에서 보여지는 바와 같이 실시예 4 내지 6의 전고체 이차전지는 비교예 10의 전고체 이차전지에 비하여 고온 수명 특성이 향상되었다.
또한, 도 5에서 보여지는 바와 같이, 실시예 4 내지 6의 전고체 이차전지는 비교예 10의 전고체 이차전지에 비하여 방전 용량도 향상되었다.
향상된 리튬 이온 전도도 및 감소된 평균 입경을 가지는 고체이온전도체 화합물을 포함함에 의하여, 개선된 사이클 특성을 가지는 전기화학 셀이 제공된다.

Claims (20)

  1. 하기 화학식 1로 표시되며,
    아지로다이트형(Argyrodite type) 결정 구조를 가지며,
    25℃에서 3 mS/cm 이상의 이온전도도(ion conductivity)를 가지며,
    평균 입경이 0.1 ㎛ 내지 7 ㎛ 인, 고체이온전도체 화합물:
    <화학식 1>
    LiaM1xPSyM2zM3w
    상기 식에서,
    M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    M3는 SOn 이며,
    4≤a≤8, 0≤x<1, 3≤y≤7, 0<z≤2, 0≤w<2, 1.5≤n≤5, 및 0<x+w<3 이다.
  2. 제1 항에 있어서, 상기 M1이 Na, K, Cu, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, 또는 이들의 조합을 포함하는, 고체이온전도체 화합물.
  3. 제1 항에 있어서, 상기 M2가 F, Cl, Br, I 또는 이들의 조합을 포함하며,
    상기 M3의 SOn이 S4O6, S3O6, S2O3, S2O4, S2O5, S2O6, S2O7, S2O8, SO4, SO5, 또는 이들의 조합인, 고체이온전도체 화합물.
  4. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 1a 내지 1c로 표시되는, 고체이온전도체 화합물:
    <화학식 1a>
    LiaM1xPSyM2z
    상기 식에서,
    M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    4≤a≤8, 0<x<1, 3≤y≤7, 및 0<z≤2 이다.
    <화학식 1b>
    LiaM1xPSyM2zM3w
    상기 식에서,
    M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    M3는 SOn 이며,
    4≤a≤8, 0<x<1, 3≤y≤7, 0<z≤2, 0<w<2, 및 1.5≤n≤5 이다.
    <화학식 1c>
    LiaPSyM2zM3w
    상기 식에서,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    M3는 SOn 이며,
    4≤a≤8, 3≤y≤7, 0<z≤2, 0<w<2, 및 1.5 n≤5 이다.
  5. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 2로 표시되는, 고체이온전도체 화합물:
    <화학식 2>
    Li7-mХv-zM1vPS6-z-wM2zM3w
    상기 식에서,
    M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, m은 M1의 산화수이며,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    M3는 SOn 이며,
    0≤v<1, 0<z≤2, 0≤w<2, 1.5≤n≤5, 1≤m≤2, 및 0<v+w<3 이다.
  6. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 2a 내지 2c로 표시되는, 고체이온전도체 화합물:
    <화학식 2a>
    Li7-mХv-zM1vPS6-zM2z
    상기 식에서,
    M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, m은 M1의 산화수이며,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    0<v<1, 0<z≤2, 및 1≤m≤2이다.
    <화학식 2b>
    Li7-mХv-zM1vPS6-z-wM2zM3w
    상기 식에서,
    M1은 주기율표 1족 내지 15족 중에서 선택된 Li 이외의 하나 이상의 금속 원소이며, m은 M1의 산화수이며,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    M3는 SOn 이며,
    0<v<1, 0<z≤2, 0<w<2, 1.5≤n≤5, 및 1≤m≤2이다.
    <화학식 2c>
    Li7-zPS6-z-wM2zM3w
    상기 식에서,
    M2는 주기율표 17족에서 선택된 하나 이상의 원소이며,
    M3는 SOn 이며,
    0<z≤2, 0<w<2, 1.5≤n≤5, 및 1≤m≤2이다.
  7. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 3으로 표시되는, 고체이온전도체 화합물:
    <화학식 3>
    Li7-mХv-zM4vPS6-zM5z1M6z2
    상기 식에서,
    M4는 Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, 또는 이들의 조합이며, m은 M4의 산화수이며,
    M5 및 M6는 서로 독립적으로 F, Cl, Br, 또는 I이며,
    0<v<0.7, 0<z1<2, 0≤Z2<1, 0<z<2, z=z1+z2 및 1≤m≤2이다.
  8. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 3a 내지 3e로 표시되는, 고체이온전도체 화합물:
    <화학식 3a>
    Li7-v-zNavPS6-zM5z1M6z2
    <화학식 3b>
    Li7-v-zKvPS6-zM5z1M6z2
    <화학식 3c>
    Li7-v-zCuvPS6-zM5z1M6z2
    <화학식 3d>
    Li7-v-zMgvPS6-zM5z1M6z2
    <화학식 3e>
    Li7-v-zAgvPS6-zM5z1M6z2
    상기 식들에서,
    M5 및 M6는 서로 독립적으로 F, Cl, Br, 또는 I이며,
    0<v<0.7, 0<z1<2, 0≤Z2<1, 0<z<2 및 z=z1+z2 이다.
  9. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식들로 표시되는, 고체이온전도체 화합물:
    Li7-v-zNavPS6-zFz1, Li7-v-zNavPS6-zClz1, Li7-v-zNavPS6-zBrz1, Li7-v-zNavPS6-zIz1,
    Li7-v-zNavPS6-zFz1Clz2, Li7-v-zNavPS6-zFz1Brz2, Li7-v-zNavPS6-zFz1Iz2, Li7-v-zNavPS6-zClz1Brz2, Li7-v-zNavPS6-zClz1Iz2, Li7-v-zNavPS6-zClz1Fz2, Li7-v-zNavPS6-zBrz1Iz2, Li7-v-zNavPS6-zBrz1Fz2, Li7-v-zNavPS6-zBrz1Clz2, Li7-v-zNavPS6-zIz1Fz2, Li7-v-zNavPS6-zIz1Clz2, Li7-v-zNavPS6-zIz1Brz2,
    Li7-v-zKvPS6-zFz1, Li7-v-zKvPS6-zClz1, Li7-v-zKvPS6-zBrz1, Li7-v-zKvPS6-zIz1,
    Li7-v-zKvPS6-zFz1Clz2, Li7-v-zKvPS6-zFz1Brz2, Li7-v-zKvPS6-zFz1Iz2, Li7-v-zKvPS6-zClz1Brz2, Li7-v-zKvPS6-zClz1Iz2, Li7-v-zKvPS6-zClz1Fz2, Li7-v-zKvPS6-zBrz1Iz2, Li7-v-zKvPS6-zBrz1Fz2, Li7-v-zKvPS6-zBrz1Clz2, Li7-v-zKvPS6-zIz1Fz2, Li7-v-zKvPS6-zIz1Clz2, Li7-v-zKvPS6-zIz1Brz2,
    Li7-v-zCuvPS6-zFz1, Li7-v-zCuvPS6-zClz1, Li7-v-zCuvPS6-zBrz1, Li7-v-zCuvPS6-zIz1,
    Li7-v-zCuvPS6-zFz1Clz2, Li7-v-zCuvPS6-zFz1Brz2, Li7-v-zCuvPS6-zFz1Iz2, Li7-v-zCuvPS6-zClz1Brz2, Li7-v-zCuvPS6-zClz1Iz2, Li7-v-zCuvPS6-zClz1Fz2, Li7-v-zCuvPS6-zBrz1Iz2, Li7-v-zCuvPS6-zBrz1Fz2, Li7-v-zCuvPS6-zBrz1Clz2, Li7-v-zCuvPS6-zIz1Fz2, Li7-v-zCuvPS6-zIz1Clz2, Li7-v-zCuvPS6-zIz1Brz2,
    Li7-v-zMgvPS6-zFz1, Li7-v-zMgvPS6-zClz1, Li7-v-zMgvPS6-zBrz1, Li7-v-zMgvPS6-zIz1,
    Li7-v-zMgvPS6-zFz1Clz2, Li7-v-zMgvPS6-zFz1Brz2, Li7-v-zMgvPS6-zFz1Iz2, Li7-v-zMgvPS6-zClz1Brz2, Li7-v-zMgvPS6-zClz1Iz2, Li7-v-zMgvPS6-zClz1Fz2, Li7-v-zMgvPS6-zBrz1Iz2, Li7-v-zMgvPS6-zBrz1Fz2, Li7-v-zMgvPS6-zBrz1Clz2, Li7-v-zMgvPS6-zIz1Fz2, Li7-v-zMgvPS6-zIz1Clz2, Li7-v-zMgvPS6-zIz1Brz2,
    Li7-v-zAgvPS6-zFz1, Li7-v-zAgvPS6-zClz1, Li7-v-zAgvPS6-zBrz1, Li7-v-zAgvPS6-zIz1,
    Li7-v-zAgvPS6-zFz1Clz2, Li7-v-zAgvPS6-zFz1Brz2, Li7-v-zAgvPS6-zFz1Iz2, Li7-v-zAgvPS6-zClz1Brz2, Li7-v-zAgvPS6-zClz1Iz2, Li7-v-zAgvPS6-zClz1Fz2, Li7-v-zAgvPS6-zBrz1Iz2, Li7-v-zAgvPS6-zBrz1Fz2, Li7-v-zAgvPS6-zBrz1Clz2, Li7-v-zAgvPS6-zIz1Fz2, Li7-v-zAgvPS6-zIz1Clz2, Li7-v-zAgvPS6-zIz1Brz2,
    상기 식들에서, 0<v<0.7, 0<z1<2, 0≤Z2<1, 0<z<2 및 z=z1+z2 이다.
  10. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 4로 표시되는, 고체이온전도체 화합물:
    <화학식 4>
    Li7-mХv-zM4vPS6-z-wM7z(SO4)w
    상기 식에서,
    M4는 Na, K, Mg, Ag, Cu, Hf, In, Ti, Pb, Sb, Fe, Zr, Zn, Cr, B, Sn, Ge, Si, Zr, Ta, Nb, V, Ga, Al, As, 또는 이들의 조합이며, m은 M4의 산화수이며,
    M7는 F, Cl, Br, 또는 I이며,
    0<v<1, 0<z≤2, 0<w<1, 및 1≤m≤2이다.
  11. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 4a 내지 4e로 표시되는, 고체이온전도체 화합물:
    <화학식 4a>
    Li7-v-zNavPS6-z-wM7z(SO4)w
    <화학식 4b>
    Li7-v-zKvPS6-z-wM7z(SO4)w
    <화학식 4c>
    Li7-v-zCuvPS6-z-wM7z(SO4)w
    <화학식 4d>
    Li7-v-zMgvPS6-z-wM7z(SO4)w
    <화학식 4e>
    Li7-v-zAgvPS6-z-wM7z(SO4)w
    상기 식들에서,
    M7는 F, Cl, Br, 또는 I이며,
    0<v<0.7, 0<z≤2, 및 0<w<0.2 이다.
  12. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식들로 표시되는, 고체이온전도체 화합물:
    Li7-v-zNavPS6-z-wFz(SO4)w, Li7-v-zNavPS6-z-wClz(SO4)w, Li7-v-zNavPS6-z-wBrz(SO4)w, Li7-v-zNavPS6-z-wIz(SO4)w,
    Li7-v-zKvPS6-z-wFz(SO4)w, Li7-v-zKvPS6-z-wClz(SO4)w, Li7-v-zKvPS6-z-wBrz(SO4)w, Li7-v-zKvPS6-z-wIz(SO4)w,
    Li7-v-zCuvPS6-z-wFz(SO4)w, Li7-v-zCuvPS6-z-wClz(SO4)w, Li7-v-zCuvPS6-z-wBrz(SO4)w, Li7-v-zCuvPS6-z-wIz(SO4)w,
    Li7-v-zMgvPS6-z-wFz(SO4)w, Li7-v-zMgvPS6-z-wClz(SO4)w, Li7-v-zMgvPS6-z-wBrz(SO4)w, Li7-v-zMgvPS6-z-wIz(SO4)w,
    Li7-v-zAgvPS6-z-wFz(SO4)w, Li7-v-zAgvPS6-z-wClz(SO4)w, Li7-v-zAgvPS6-z-wBrz(SO4)w, Li7-v-zAgvPS6-z-wIz(SO4)w
    상기 식들에서,
    0<v<0.7, 0<z≤2, 및 0<w<0.2 이다.
  13. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식 5로 표시되는, 고체이온전도체 화합물:
    <화학식 5>
    Li7-zPS6-z-wM7z(SO4)w
    상기 식에서,
    M7은 F, Cl, Br, 또는 I이며,
    0<z≤2 및 0<w<2 이다.
  14. 제1 항에 있어서, 상기 화학식 1로 표시되는 고체이온전도체 화합물이 하기 화학식들로 표시되는, 고체이온전도체 화합물:
    Li7-zPS6-z-wFz(SO4)w, Li7-zPS6-z-wClz(SO4)w, Li7-zPS6-z-wBrz(SO4)w, Li7-zPS6-z-wIz(SO4)w
    상기 식들에서,
    0<z≤2 및 0<w<2 이다.
  15. 제1 항에 있어서, CuKα 선을 이용한 XRD 스펙트럼에서 회절각 2θ=30.01°±1.0°에서의 결정성 피크의 피크 강도(Ia)가 회절각 2θ=19.0°±3.0°에서의 브로드한(broad) 피크의 피크 강도(Ib)에 비하여 큰, 고체이온전도체 화합물.
  16. 제1 항 내지 제15 항 중 어느 한 항에 따른 고체이온전도체 화합물을 포함하는 고체전해질.
  17. 양극활물질층을 포함하는 양극층;
    음극활물질층을 포함하는 음극층; 및
    상기 양극층 및 음극층 사이에 배치되는 전해질층을 포함하며,
    상기 양극활물질층 및 상기 전해질층 중 하나 이상이 제1 항 내지 제15 항 중 어느 한 항에 따른 고체이온전도체 화합물을 포함하는 전기화학 셀.
  18. 제17 항에 있어서, 상기 전기화학 셀이 전고체 이차전지이며,
    상기 양극활물질층이 포함하는 고체이온전도체 화합물의 평균 입경이 0.5 내지 5 ㎛ 이거나,
    상기 전해질층이 포함하는 고체이온전도체 화합물의 평균 입경이 1 내지 7 ㎛ 인, 전기화학 셀.
  19. 평균 입경 7 ㎛ 이하인 서로 다른 종류의 전구체 화합물을 개별적으로 준비하는 단계;
    상기 서로 다른 종류의 전구체 화합물을 서로 혼합하여 혼합물을 준비하는 단계; 및
    상기 혼합물을 열처리하여 고체이온전도체 화합물을 준비하는 단계;를 포함하며,
    상기 고체이온전도체 화합물의 평균 입경이 7 ㎛ 이하인, 고체이온전도체 화합물 제조방법.
  20. 제19 항에 있어서, 상기 전구체 입자의 D90 - D10 값이 10 ㎛ 이하인, 고체이온전도체 화합물 제조방법.
PCT/KR2021/012904 2020-09-22 2021-09-17 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법 WO2022065855A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21872883.0A EP4220800A1 (en) 2020-09-22 2021-09-17 Solid ion conductor compound, solid electrolyte containing same, electrochemical cell comprising same, and manufacturing method therefor
JP2023518289A JP2023542358A (ja) 2020-09-22 2021-09-17 固体イオン伝導体化合物、それを含む固体電解質、それを含む電気化学セル、及びその製造方法
US18/013,127 US20230291004A1 (en) 2020-09-22 2021-09-17 Solid ion conductor compound, solid electrolyte containing same electrochemical cell comprising same, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0122436 2020-09-22
KR1020200122436A KR20220039386A (ko) 2020-09-22 2020-09-22 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022065855A1 true WO2022065855A1 (ko) 2022-03-31

Family

ID=80845719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012904 WO2022065855A1 (ko) 2020-09-22 2021-09-17 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20230291004A1 (ko)
EP (1) EP4220800A1 (ko)
JP (1) JP2023542358A (ko)
KR (1) KR20220039386A (ko)
WO (1) WO2022065855A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070216A1 (fr) * 2021-10-27 2023-05-04 HYDRO-QUéBEC Composés inorganiques possédant une structure de type argyrodite, leurs procédés de préparation et leurs utilisations dans des applications électrochimiques
CN118289807A (zh) * 2024-06-05 2024-07-05 北京紫越知新科技有限公司 硫化电解质及其制备方法、复合电解质膜用组合物、制备复合电解质膜的方法、锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096273A (ko) * 2011-11-07 2014-08-05 이데미쓰 고산 가부시키가이샤 고체 전해질
KR20170077014A (ko) * 2015-12-25 2017-07-05 삼성전자주식회사 고체 전해질, 및 이를 포함하는 리튬 전지
WO2018218057A2 (en) * 2017-05-24 2018-11-29 Sion Power Corporation Ionically conductive compounds and related uses
US20190198916A1 (en) * 2017-12-27 2019-06-27 Hyundai Motor Company All-solid battery
JP2020102460A (ja) * 2016-09-12 2020-07-02 出光興産株式会社 硫化物固体電解質

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096273A (ko) * 2011-11-07 2014-08-05 이데미쓰 고산 가부시키가이샤 고체 전해질
KR20170077014A (ko) * 2015-12-25 2017-07-05 삼성전자주식회사 고체 전해질, 및 이를 포함하는 리튬 전지
JP2020102460A (ja) * 2016-09-12 2020-07-02 出光興産株式会社 硫化物固体電解質
WO2018218057A2 (en) * 2017-05-24 2018-11-29 Sion Power Corporation Ionically conductive compounds and related uses
US20190198916A1 (en) * 2017-12-27 2019-06-27 Hyundai Motor Company All-solid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070216A1 (fr) * 2021-10-27 2023-05-04 HYDRO-QUéBEC Composés inorganiques possédant une structure de type argyrodite, leurs procédés de préparation et leurs utilisations dans des applications électrochimiques
CN118289807A (zh) * 2024-06-05 2024-07-05 北京紫越知新科技有限公司 硫化电解质及其制备方法、复合电解质膜用组合物、制备复合电解质膜的方法、锂离子电池
CN118289807B (zh) * 2024-06-05 2024-09-10 北京紫越知新科技有限公司 硫化电解质及其制备方法、复合电解质膜用组合物、制备复合电解质膜的方法、锂离子电池

Also Published As

Publication number Publication date
US20230291004A1 (en) 2023-09-14
JP2023542358A (ja) 2023-10-06
EP4220800A1 (en) 2023-08-02
KR20220039386A (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021153916A1 (en) All-solid secondary battery and method of preparing same
WO2019103470A2 (en) All-solid-state secondary battery and method of charging the same
WO2022080628A1 (ko) 전고체이차전지 및 그 제조방법
WO2021182762A1 (en) All-solid secondary battery and method of preparing the same
WO2021006520A1 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
WO2021157896A1 (ko) 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
WO2022065855A1 (ko) 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
WO2022108027A1 (ko) 이차전지용 복합고체 전해질, 이를 포함하는 이차전지 및 그 제조방법
WO2019088805A2 (ko) 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022131705A1 (ko) 고체이온전도체, 이를 포함하는 고체전해질, 그 제조방법 및 이를 포함하는 전기화학셀
WO2019088806A1 (ko) 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 양극재, 양극 및 리튬 이차전지
WO2020256473A1 (ko) 이종원소가 도핑된 표면부를 갖는 양극활물질, 및 그 제조 방법
WO2024054035A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2023048550A1 (ko) 리튬 이차전지용 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
WO2022085891A1 (ko) 전극 활물질, 그 제조방법, 이를 포함하는 전극 및 이차전지
WO2022139289A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2023013889A1 (ko) 리튬 이차 전지
WO2022139387A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022139385A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2017150893A1 (ko) 리튬 이차전지용 양극활물질 및 이의 제조 방법
WO2022071644A1 (ko) 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2021194262A1 (en) Solid ion conductor compound, solid electrolyte including the same, electrochemical cell including the same, and method of preparing the same
WO2024205088A1 (ko) 전고체 이차전지
WO2024205089A1 (ko) 전고체 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872883

Country of ref document: EP

Effective date: 20230424