WO2022139289A1 - 양극 활물질 및 이를 포함하는 리튬 이차 전지 - Google Patents

양극 활물질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2022139289A1
WO2022139289A1 PCT/KR2021/018829 KR2021018829W WO2022139289A1 WO 2022139289 A1 WO2022139289 A1 WO 2022139289A1 KR 2021018829 W KR2021018829 W KR 2021018829W WO 2022139289 A1 WO2022139289 A1 WO 2022139289A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
mol
doping
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2021/018829
Other languages
English (en)
French (fr)
Inventor
송정훈
남상철
이상혁
최권영
박인철
권오민
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
(주)포스코케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원, (주)포스코케미칼 filed Critical 주식회사 포스코
Priority to CN202180086715.1A priority Critical patent/CN116615817A/zh
Priority to EP21911356.0A priority patent/EP4266422A1/en
Priority to JP2023538069A priority patent/JP2024500892A/ja
Publication of WO2022139289A1 publication Critical patent/WO2022139289A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present embodiments relate to a cathode active material and a lithium secondary battery including the same.
  • the nickel-cobalt-manganese-based positive electrode active material having a high nickel content results in 1) a decrease in efficiency due to a decrease in capacity as a result of an increase in the nickel content, 2) formation of a NiO rock salt structure and deterioration of cycle characteristics due to surface oxygen generation, and 3) resistance There are problems such as increase.
  • the positive active material for a lithium secondary battery according to an embodiment may include metal oxide particles including nickel, cobalt, manganese, and aluminum, and three kinds of doping elements doped into the metal oxide particles.
  • the three doping elements may be Nb, B, and Zr.
  • the doping amount of Nb may range from 0.00001 mole to 0.03 mole based on 1 mole of the total of nickel, cobalt, manganese, aluminum and doping elements.
  • the doping amount of B may be in the range of 0.001 mol to 0.02 mol based on 1 mol of the total of nickel, cobalt, manganese, aluminum, and doping elements.
  • the doping amount of Zr may range from 0.001 mol to 0.007 mol based on 1 mol of the total of nickel, cobalt, manganese, aluminum, and doping elements.
  • the doping amounts of Nb and Zr may satisfy the relationship of Equation 1 below.
  • the doping amounts of Nb and B may satisfy the relationship of Equation 2 below.
  • the positive electrode active material may be represented by the following formula (1).
  • X is one or more elements selected from the group comprising F, N, and P, and Zr
  • a 0.8 ⁇ a ⁇ 1.3
  • t is 0.0061 ⁇ t ⁇ 0.057
  • h may be in the range of 0.005 ⁇ h ⁇ 0.025.
  • the initial diffusion coefficient of the positive active material may be in the range of 7.30*10 -9 m 2 /sec to 8.10*10 -9 m 2 /sec.
  • the grain size of the metal oxide particles may be in the range of 1,000 ⁇ to 1,560 ⁇ .
  • the full width at half maximum (FWHM) for the (110) plane of the metal oxide particles may be in the range of 0.1901 to 0.27.
  • I(003)/I(104) which is the ratio of the peak intensity of the (003) plane to the peak intensity of the (104) plane, may be in the range of 1.2350 to 1.2410.
  • the content of nickel in the metal oxide particles may be 0.8 mol or more based on 1 mol of the total of nickel, cobalt, manganese, and aluminum.
  • a lithium secondary battery according to another embodiment may include a positive electrode including the positive electrode active material according to an embodiment, a negative electrode, and a non-aqueous electrolyte.
  • the cathode active material according to the present embodiment is applied by doping at least two kinds of elements to metal oxide particles including NCMA, room temperature and high temperature lifespan characteristics, initial efficiency, initial resistance, resistance while increasing the capacity of a lithium secondary battery
  • the increase rate and thermal stability can be significantly improved.
  • first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • the positive active material for a lithium secondary battery according to an embodiment may include metal oxide particles including nickel, cobalt, manganese, and aluminum, and two types of doping elements doped into the metal oxide particles.
  • the three kinds of doping elements may be Nb, Zr, and B.
  • Doping elements known to date include, for example, mono-valent ions such as Ag + , Na + , Co 2+ , Cu 2+ , Mg 2+ , Zn 2+ , Ba 2+ , Al 3+ , Fe 3+ , Cr 3+ , Ga 3+ , Zr 4+ , and a multivalent ion (multi-valent) having a divalent or higher value, such as Ti 4+ .
  • mono-valent ions such as Ag + , Na + , Co 2+ , Cu 2+ , Mg 2+ , Zn 2+ , Ba 2+ , Al 3+ , Fe 3+ , Cr 3+ , Ga 3+ , Zr 4+
  • multivalent ion (multi-valent) having a divalent or higher value
  • Zr 4+ acts as a kind of filler because Zr ions occupy the Li site and stabilizes the layered structure by relaxing the contraction of the lithium ion path during the charging and discharging process. will come This phenomenon, that is, reduces cation mixing and increases the lithium diffusion coefficient (lithium diffusion coefficient) may increase the cycle life.
  • Nb may improve initial capacity and initial efficiency.
  • the initial resistance may be reduced by reducing the grain size during sintering of the cathode active material.
  • life characteristics and thermal decomposition temperature can be increased.
  • the doping amount of Nb is 0.00001 mole to 0.03 mole, more specifically, 0.0001 mole to 0.01 mole, 0.00005 mole to 0.03 mole, or It may range from 0.0005 moles to 0.0025 moles.
  • the doping amount of Nb satisfies the above range, a very advantageous effect can be realized in that all of the room temperature life, high temperature life, resistance increase rate, and average leakage current value of the lithium secondary battery can be improved.
  • the diffusion coefficient of the lithium secondary battery can be increased and the resistance increase rate can be effectively reduced during impedance analysis.
  • the doping amount of B may be in the range of 0.001 mol to 0.02 mol, more specifically 0.005 mol to 0.02 mol, more specifically, 0.005 mol to 0.015 mol with respect to 1 mol of the total of nickel, cobalt, manganese, aluminum and doping elements. .
  • the doping amount of B satisfies the above range, since the grain size is reduced during sintering of the positive active material, the initial resistance value may be reduced, and the room temperature and high temperature life characteristics and the thermal decomposition temperature may be increased.
  • the doping amount of Zr may be in the range of 0.001 mole to 0.007 mole, more specifically, 0.002 mole to 0.005 mole or 0.0035 mole to 0.005 mole, based on 1 mole of the total of nickel, cobalt, manganese, aluminum and doping element. .
  • the Zr doping amount satisfies the above range, high-temperature lifespan and room-temperature lifespan characteristics of the lithium secondary battery may be remarkably improved.
  • the doping amounts of Nb and Zr may satisfy the relation of Equation 1 below.
  • Equation 1 [Nb] and [Zr] mean doping amounts of each element based on 1 mole of the total of nickel, cobalt, manganese, aluminum, and doping elements.
  • Equation 1 may be in the range of 0.6 or more and 9 or less, or 0.7 or more and 7 or less.
  • Equation 1 When Equation 1 satisfies the above range, the resistance increase rate can be improved and cycle characteristics are excellent. .
  • Nb and B may satisfy the relationship of Equation 2 below.
  • Equation 2 [Nb] and [B] mean doping amounts of each element based on 1 mole of the total of nickel, cobalt, manganese, aluminum, and doping elements.
  • Equation 2 may be in the range of 0.2 or more and 25 or less, or 0.4 or more and 20 or less.
  • Equation 2 satisfies the above range, stability is improved, DSC temperature is increased, and cycle characteristics are improved.
  • the positive active material for a lithium secondary battery according to this embodiment may be represented by the following Chemical Formula 1.
  • X is one or more elements selected from the group comprising F, N, and P, and Zr
  • a 0.8 ⁇ a ⁇ 1.3
  • t is 0.0061 ⁇ t ⁇ 0.057
  • the content range h of Al may be in the range of 0.008 to 0.029, and more specifically, in the range of 0.005 ⁇ h ⁇ 0.025.
  • Al 3+ inhibits the deterioration of the layered structure to the spinel structure due to the movement of Al ions to the tetragonal lattice site.
  • the layered structure facilitates removal and insertion of Li ions, but the spinel structure does not facilitate the movement of Li ions. Therefore, when the content of Al in the positive electrode active material of the present embodiment satisfies the above range, it is possible to realize a lithium secondary battery having excellent initial efficiency and thermal stability, and significantly improved room temperature life and high temperature life.
  • the content of nickel in this embodiment may be 0.8 mol or more based on 1 mol of the total of nickel, cobalt, manganese, and aluminum, and more specifically, 0.8 mol to 0.99 mol, 0.82 mol to 0.95 mol, or It may range from 0.83 moles to 0.92 moles.
  • the content of nickel is 0.8 or more based on 1 mole of the total of nickel, cobalt, manganese, and aluminum in the metal oxide, a positive active material having high output characteristics can be implemented. Since the positive active material of the present embodiment having such a composition has a higher energy density per volume, the capacity of a battery to which it is applied can be improved, and it is also suitable for use in electric vehicles.
  • the initial diffusion coefficient of the positive active material according to the present embodiment is 7.30*10 -9 m 2 /sec to 8.10*10 -9 m 2 /sec, more specifically 8.01*10 -9 m 2 /sec to 8.06*10 -9 m 2 /sec range, 8.01*10 -9 m 2 /sec to 8.04*10 -9 m 2 /sec, or 8.01*10 -9 m 2 /sec to 8.03*10 -9 m 2 /sec range can
  • the initial diffusion coefficient is from 8.01*10 -9 m 2 /sec to 8.06*10 -9 m 2 /sec, the movement of Li ions in the cathode material is effective, and thus the initial capacity and rate-limiting characteristics of the cathode material are high.
  • the grain size of the metal oxide particles may be in the range of 1,000 ⁇ to 1,560 ⁇ , more specifically, may be in the range of 1,090 ⁇ to 1,350 ⁇ , or 1,180 ⁇ to 1,350 ⁇ .
  • the high temperature life is improved without reducing the initial capacity.
  • the full width at half maximum (FWHM) with respect to the (110) plane of the metal oxide particles may be in the range of 0.1900 to 0.2030, more specifically, 0.1901 to 0.27, or 0.1901 to 0.104.
  • the full width at half maximum (FWHM) with respect to the (110) plane satisfies the above range, the high temperature lifespan is greatly improved.
  • I(003)/I(104) which is the ratio of the peak intensity of the (003) plane to the peak intensity of the (104) plane, may be in the range of 1.2350 to 1.2410, and more Specifically, it may be in the range of 1.2351 to 1.2407.
  • the peak intensity value means a peak height value or an integrated area value obtained by integrating the peak area, and in this embodiment, the peak intensity value means a peak area value.
  • the peak intensity ratio I(003)/I(104) is a cation mixing index, and when the value of I(003)/I(104) decreases, the initial capacity and rate-rate characteristics of the positive electrode active material may decrease.
  • I(003)/I(104) since I(003)/I(104) satisfies the above range, a positive electrode active material having excellent capacity and rate-rate characteristics may be implemented.
  • the positive active material of the present embodiment may have a bi-modal form in which large particle diameter particles and small particle diameter particles are mixed.
  • the large particle diameter particles may have an average particle diameter (D50) in the range of 10 ⁇ m to 20 ⁇ m
  • the small particle diameter particles may have an average particle diameter (D50) of 3 ⁇ m to 7 ⁇ m.
  • the large particle diameter particles and the small particle diameter particles may also be in the form of secondary particles in which at least one primary particle is assembled.
  • the mixing ratio of the large particle diameter particles and the small particle diameter particles may be 50 to 80 wt% of the large particle diameter particles based on 100 wt% of the total. Energy density can be improved due to this bimodal particle distribution.
  • a lithium secondary battery comprising a positive electrode including the positive electrode active material according to an embodiment of the present invention described above, a negative electrode including a negative electrode active material, and an electrolyte positioned between the positive electrode and the negative electrode do.
  • the positive active material layer may include a binder and a conductive material.
  • the binder serves to well adhere the positive active material particles to each other and also to adhere the positive active material to the current collector.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, any electronically conductive material may be used without causing a chemical change.
  • the negative electrode includes a current collector and a negative active material layer formed on the current collector, and the negative active material layer includes a negative electrode active material.
  • the negative active material includes a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • the material capable of reversibly intercalating/deintercalating the lithium ions is a carbon material, and any carbon-based negative active material generally used in lithium ion secondary batteries may be used, and a representative example thereof is crystalline carbon. , amorphous carbon or these may be used together.
  • the lithium metal alloy includes lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn from the group consisting of Alloys of metals of choice may be used.
  • Materials capable of doping and dedoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, An element selected from the group consisting of rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth) It is an element selected from the group consisting of elements and combinations thereof, and is not Sn) and the like.
  • the negative active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder serves to well adhere the negative active material particles to each other and also to adhere the negative active material to the current collector.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, any electronically conductive material may be used without causing a chemical change.
  • the current collector one selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with conductive metal, and combinations thereof may be used.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is widely known in the art, a detailed description thereof will be omitted herein.
  • the solvent may include, but is not limited to, N-methylpyrrolidone.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the lithium salt is dissolved in an organic solvent, serves as a source of lithium ions in the battery, enables basic lithium secondary battery operation, and promotes movement of lithium ions between the positive electrode and the negative electrode.
  • a separator may exist between the positive electrode and the negative electrode.
  • a separator polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof may be used.
  • a polyethylene/polypropylene two-layer separator, a polyethylene/polypropylene/polyethylene three-layer separator, and polypropylene/polyethylene/poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator or the like can be used.
  • Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries depending on the type of separator and electrolyte used, and can be classified into cylindrical, prismatic, coin-type, pouch-type, etc. according to the shape, According to the size, it can be divided into a bulk type and a thin film type. Since the structure and manufacturing method of these batteries are well known in the art, a detailed description thereof will be omitted.
  • the cathode active material precursor was prepared by a general co-precipitation method.
  • NiSO 4 ⁇ 6H 2 O was used as a raw material for nickel, CoSO 4 ⁇ 7H 2 O as a raw material for cobalt, and MnSO 4 ⁇ H 2 O as a raw material for manganese. These raw materials were dissolved in distilled water to prepare an aqueous metal salt solution.
  • N 2 was purged to prevent oxidation of metal ions during the co-precipitation reaction, and the reactor temperature was maintained at 50°C.
  • NH 4 (OH) was added as a chelating agent to the co-precipitation reactor, and NaOH was used for pH control.
  • the precipitate obtained according to the co-precipitation process was filtered, washed with distilled water, and dried in a cake dryer at 180° C. to prepare a cathode active material precursor.
  • the composition of the prepared precursor was (Ni 0.92 Co 0.04 Mn 0.04 )(OH) 2 , the average particle diameter (D50) of the large particle diameter precursor was 14.3 ⁇ m, and the average particle diameter (D50) of the small particle diameter precursor was 4.5 ⁇ m.
  • the mixture in which the precursor, lithium raw material, aluminum raw material, and doping raw material prepared in Preparation Example 1 were uniformly mixed was fired in an oxygen atmosphere in a tube furnace. Firing conditions were maintained at 480 o C for 5 hours, then at 740 ⁇ 780 o C for 15 hours, and the temperature increase rate was 5 o C/min.
  • LiOH ⁇ H 2 O (Samjeon Chemical, battery grade) was used as the lithium material used, Al(OH) 3 (Aldrich, 3N) was used as the aluminum material, and ZrO 2 (Aldrich, 3N) was used as the doping material. ), H 3 BO 3 (Aldrich, 3N) and Nb 2 O 5 (Aldrich, 3N) were used.
  • the total composition of the large and small particle diameter positive electrode active material doped with two elements prepared as described above was Li(M) 0.993 Zr 0.0035 Nb 0.0025 B 0.001 O 2 .
  • the calcined large particle diameter and small particle diameter positive electrode active material was uniformly mixed in a weight ratio of 80:20 (large particle diameter: small particle diameter) to prepare the positive electrode active material of Example 1 in a bi-modal form.
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the doping amount was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the large- and small-diameter positive electrode active material prepared according to Comparative Example 1 was Li(M) 0.9965 Zr 0.0035 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 2 was Li(M) 0.989 Zr 0.0035 Nb 0.0025 B 0.005 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 3 was Li(M) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 4 was Li(M) 0.979 Zr 0.0035 Nb 0.0025 B 0.015 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 5 was Li(M) 0.974 Zr 0.0035 Nb 0.0025 B 0.02 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 5 was Li(M) 0.9855 Zr 0.002 Nb 0.0025 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 6 was Li(M) 0.9825 Zr 0.005 Nb 0.0025 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Reference Example 2 was Li(M) 0.9795 Zr 0.008 Nb 0.0025 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amounts of the aluminum raw material and the doping raw material were adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 7 was Li(Ni 0.915 Co 0.04 Mn 0.04 Al 0.005 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 8 was Li(Ni 0.91 Co 0.04 Mn 0.04 Al 0.01 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the aluminum raw material and the amount of the doping raw material were adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 11 was Li(Ni 0.905 Co 0.04 Mn 0.04 Al 0.015 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the aluminum raw material and the amount of the doping raw material were adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 12 was Li(Ni 0.898 Co 0.04 Mn 0.04 Al 0.022 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the aluminum raw material and the amount of the doping raw material were adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Reference Example 3 was Li(Ni 0.895 Co 0.04 Mn 0.04 Al 0.025 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 11 was Li(M) 0.986 Zr 0.0035 Nb 0.0005 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Example 12 was Li(M) 0.9855 Zr 0.0035 Nb 0.0001 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor prepared in Preparation Example 1.
  • the total composition of the positive active material prepared according to Reference Example 4 was Li(M) 0.9815 Zr 0.0035 Nb 0.005 B 0.01 O 2 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amounts of the aluminum raw material and the doping raw material were adjusted using the precursor.
  • the total composition of the positive active material prepared according to Comparative Example 2 was Li(Ni 0.78 Co 0.10 Mn 0.10 Al 0.02 ) 0.994 Zr 0.0035 Nb 0.0025 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor.
  • the total composition of the positive active material prepared according to Comparative Example 3 was Li(Ni 0.81 Co 0.12 Mn 0.05 Al 0.02 ) 0.994 Zr 0.0035 Nb 0.0025 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor.
  • the total composition of the positive active material prepared according to Comparative Example 4 was Li(Ni 0.83 Co 0.07 Mn 0.08 Al 0.02 ) 0.994 Zr 0.0035 Nb 0.0025 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor.
  • the total composition of the positive active material prepared according to Comparative Example 5 was Li(Ni 0.84 Co 0.07 Mn 0.07 Al 0.02 ) 0.994 Zr 0.0035 Nb 0.0025 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the amount of the doping raw material was adjusted using the precursor.
  • the total composition of the positive active material prepared according to Comparative Example 6 was Li(Ni 0.86 Co 0.05 Mn 0.07 Al 0.02 ) 0.994 Zr 0.0035 Nb 0.0025 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the precursor was used.
  • the total composition of the positive active material prepared according to Reference Example 5 was Li(Ni 0.78 Co 0.01 Mn 0.01 Al 0.02 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the precursor was used.
  • the total composition of the positive active material prepared according to Reference Example 6 was Li(Ni 0.81 Co 0.12 Mn 0.05 Al 0.02 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the precursor was used.
  • the total composition of the positive active material prepared according to Example 13 was Li(Ni 0.83 Co 0.07 Mn 0.08 Al 0.02 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the precursor was used.
  • the total composition of the positive active material prepared according to Example 14 was Li(Ni 0.84 Co 0.07 Mn 0.07 Al 0.02 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • a bimodal positive electrode active material was prepared in the same manner as in Example 1, except that the precursor was used.
  • the total composition of the positive active material prepared according to Example 15 was Li(Ni 0.86 Co 0.05 Mn 0.07 Al 0.02 ) 0.984 Zr 0.0035 Nb 0.0025 B 0.01 .
  • the lattice constants of the positive active materials prepared according to Examples 1 to 4, Reference Example 1, and Comparative Example 1 were obtained by X-ray diffraction measurement using CuK ⁇ ray.
  • the measured a-axis length, b-axis length, and c-axis length are shown in Table 1 below.
  • the intensity (peak area) of the (003) and (104) planes and the intensity of the (110) plane were measured using XRD equipment (X'pert3 powder diffraction, manufactured by Panalytical) at a scan speed (°/s) of 0.328. From this result, the full width at half maximum (FWHM) of the I(003)/I(104) and (110) planes was calculated and shown in Table 1.
  • the (003) plane was well developed as the main peak near 18.7 o , the (006)/(102) peak between 37.5 o and 38.5 o , and (108)/(110) between 63.5 o and 35.5 o
  • the peak splitting appeared it was confirmed that the hexagonal layer had a good crystalline ordering, and it was found to represent a typical ⁇ -NaFeO 2 (space group R-3m) structure.
  • the doping amount of B may be in the range of 0.005 mol to 0.02 mol, and preferably in the range of 0.001 mol to 0.015 mol.
  • a positive active material a conductive material (Denka Black), and a polyvinylidene fluoride binder (trade name: KF1100) are mixed in a weight ratio of 92.5:3.5:4, and the mixture is mixed with N-methyl so that the solid content is about 30% by weight.
  • -2-pyrrolidone N-Methyl-2-pyrrolidone was added to a solvent to prepare a cathode active material slurry.
  • the slurry was coated on an aluminum foil (thickness: 15 ⁇ m) as a positive electrode current collector using a doctor blade, dried and rolled to prepare a positive electrode.
  • the loading amount of the positive electrode was about 14.6 mg/cm 2 , and the rolling density was about 3.1 g/cm 3 .
  • a 2032 coin-type half-cell was manufactured in a conventional manner using the positive electrode, lithium metal negative electrode (thickness 300 ⁇ m, MTI), electrolyte, and a polypropylene separator.
  • 205 mAh/g was used as a reference capacity, and a constant current (CC) / constant voltage (CV) 2.5V to 4.25V, 1/20C cut-off was applied as a charge/discharge condition.
  • CC constant current
  • CV constant voltage
  • the initial capacity was measured by measuring the discharge capacity after 0.1C charge/0.1C discharge, and after performing 0.2C charge/0.2C discharge, the initial efficiency was calculated, and the results are shown in Table 2 below.
  • Room temperature cycle life characteristics were measured 30 times at room temperature (25 o C), and high temperature cycle life characteristics at 0.3 C charge/0.3 C discharge conditions at high temperature (45 o C).
  • Room temperature initial resistance (Direct current internal resistance: DC-IR (Direct current internal resistance)) is a constant current-constant voltage 2.5V to 4.25V, 1/20C cut-off condition at 25°C, 0.2C charge and 0.2C discharge discharge. It was carried out once, and after measuring the voltage value 60 seconds after applying the discharge current at 100% of the 4.25V charge, it was calculated.
  • the resistance increase rate was measured in the same manner as the initial resistance measurement method after 30 cycles of cycle life compared to the resistance (room temperature initial resistance) measured initially at room temperature (25° C.), and the rate of increase was converted into a percentage (%).
  • Average leakage current was measured by measuring the current generation during 120 hours when the half-cell was maintained at 4.7V at a high temperature of 45°C, and obtaining the average value of the values.
  • DSC differential scanning calorimetry
  • Table 4 below shows the electrochemical property evaluation results performed by the method of Experimental Example 2 for the positive active materials prepared according to Examples 1 to 7 and Comparative Example 1.
  • Examples 1 to 4 are results of measuring electrochemical properties according to the doping amount when Al raw material is mixed with a precursor having a Ni content of 90 mol% or more and Zr, Nb and B are doped together.
  • the doping amount of B is nickel, cobalt, manganese, Based on 1 mol of the total of aluminum and doping elements, it may be in the range of 0.001 mol to 0.02 mol, and it can be confirmed that the range is preferably 0.005 mol to 0.015 mol.
  • Table 5 shows the electrochemical characteristics evaluation results performed by the method of Experimental Example 2 for the positive active materials prepared according to Examples 5 to 6 and Reference Example 2. For comparison, the results of Example 3 are also shown.
  • Example 5 219.6 94.3 93.9 94.4 29.8 61.4 0.31 228.0
  • Example 3 219.6 94.4 97.6 97.3 25.4 36.4 0.17 231.0
  • Example 6 216.5 92.9 97.6 97.2 33.7 38.5 0.18 232.0
  • a suitable doping amount of Zr in this embodiment is in the range of 0.001 mole to 0.007 mole, specifically 0.002 mole to 0.005 mole or 0.0035 mole to 0.005 mole, based on 1 mole of the total of nickel, cobalt, manganese and doping elements.
  • Table 6 below shows the electrochemical characteristics evaluation results performed by the method of Experimental Example 2 for the positive active materials prepared according to Examples 7 to 10 and Reference Example 3. For comparison, the results of Example 3 are also shown.
  • Example 7 222.3 94.8 91.0 90.9 37.0 73.9 0.45 223.0
  • Example 8 221.3 94.6 94.5 94.9 27.2 49.5 0.27 228.0
  • Example 3 219.6 94.4 97.6 97.3 25.4 36.4 0.18 231.0
  • Example 10 217.6 93.5 99.2 98.8 23.9 33.1 0.17 234.4 Reference Example 3 209.6 86.1 99.0 99.7 22.9 32.1 0.15 236.1
  • the amount of the aluminum raw material may be in the range of 0.008 moles to 0.029 moles, more specifically, 0.005 moles to 0.025 moles, based on 1 mole of the total of nickel, cobalt, manganese, aluminum and doping elements.
  • Table 7 below shows the electrochemical property evaluation results performed by the method of Experimental Example 2 for the positive active materials prepared according to Examples 11 to 12 and Reference Example 4. For comparison, the results of Example 3 are also shown.
  • Example 11 218.1 93.7 96.5 96.4 27.8 42.5 0.23 229.0
  • Example 12 218.8 94.1 97.0 96.1 27.3 40.3 0.20 231.0
  • Example 3 219.6 94.4 97.6 97.3 25.4 36.4 0.17 231.0
  • Reference Example 4 214.7 91.7 96.7 96.6 30.0 65.5 0.17 231.0
  • a suitable doping amount of Nb in this embodiment is in the range of 0.00005 mole to 0.03 mole, and specifically 0.0001 mole to 0.01 mole or 0.0005 mole to 0.0025 mole based on 1 mole of the total of nickel, cobalt, manganese, aluminum and doping elements. It can be a range.
  • Table 8 below shows the electrochemical property evaluation results performed by the method of Experimental Example 2 for the positive active materials prepared according to Comparative Examples 2 to 6, Reference Examples 5 to 6, and Examples 13 to 15. For comparison, the results of Comparative Examples 1 and 3 are also shown.
  • Example 2 (Ni78%) 198.43 86.80 96.9 95.3 16.2 42.8 0.21 233 Reference Example 5 198.32 86.75 97.3 97.1 17.1 35.7 0.17 236 Comparative Example 3 (Ni81%) 203.84 87.60 94.5 94.3 19.9 48.7 0.24 224 Reference Example 6 202.74 88.69 97.1 96.0 21.4 41.3 0.19 228 Comparative Example 4 (Ni83%) 210.5 89.50 95.5 95.4 21.9 44.9 0.21 222 Example 13 209.8 91.77 98.3 98.1 23.2 37.8 0.16 227 Comparative Example 5 (Ni84%) 211.7 91.80 95.3 95.1 22.2 47.9 0.23 223 Example 14 210.7 92.17 98.0 97.8 23.7 40.1 0.17 229 Comparative Example 2 (Ni84%) 211.7 91.80 95.3 95.1 22.2 47.9 0.23 223 Example 14 210.7 92.17 98.0 97.8 23.7 40.1 0.17
  • Comparative Examples 2 to 6 are positive electrode active materials in which NCMA is doped with Zr and Nb
  • Reference Examples 5 to 6 and Examples 13 to 15 are positive electrode active materials prepared by mixing NCMA with Zr, Nb, and B doped raw materials.
  • the diffusion coefficient was measured by the GITT method, and after 30 minutes of charging, 50 minutes of maintenance was carried out, and the data obtained at this time were analyzed using Equation 3 below.
  • V M Molar volume of positive active material
  • the molar volume of the positive active material was calculated using the unit volume analyzed through the XRD measurement result.
  • A is the electrode area when the diffusion coefficient is measured. In the case of the coin cell used for the diffusion coefficient measurement, the area has a size of 1.538 cm 2 .
  • I o means 0.1C current value.
  • X can be calculated assuming that the entire charge/discharge section is 100%. For example, x corresponding to the initial 30-minute charging section can be expressed as 0.05, the x value corresponding to the second 30-minute charging section can be expressed as 0.1, and x corresponding to the middle section can be expressed as 0.5.
  • Impedance analysis was performed using the obtained impedance graph at 3.7V, and the same as the diffusion coefficient is shown in Table 9 below.
  • the obtained impedance value was divided into real and imaginary axes and Nyquist plot was performed, and the obtained figure was divided into two semicircle shapes and fitted to obtain R sei and R ct .
  • R sei the resistance value obtained by the semicircle generated in the high frequency region
  • Rct the resistance value obtained by the semicircle generated in the low frequency region
  • the suppression of the increase in Rsei resistance means that the reaction with the electrolyte is suppressed
  • the suppression of the increase in Rct resistance means that the deterioration of the electrode activity of the cathode material is suppressed. It can be understood that the initial output improvement and deterioration phenomenon can be suppressed when doping of B is appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 실시예들은, 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다. 일 실시예에 따르면, 니켈, 코발트, 망간 및 알루미늄을 포함하는 금속 산화물 입자, 그리고 상기 금속 산화물 입자에 도핑된 3종의 도핑 원소를 포함하는 리튬 이차 전지용 양극 활물질을 제공한다.

Description

양극 활물질 및 이를 포함하는 리튬 이차 전지
본 실시예들은 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
최근 전기 자동차의 폭발적인 수요 증대와 주행거리 증대 요구에 힘입어 이에 적용시킬 수 있는 고용량 및 고에너지 밀도를 갖는 이차 전지의 개발이 전세계적으로 활발히 진행되고 있다.
특히, 이러한 고용량 전지를 제조하기 위해서는 고용량 양극 활물질을 사용해야 한다. 이에 고용량 양극 활물질로 니켈의 함량이 높은 니켈코발트망간계 양극 활물질을 적용하는 방안이 제안되고 있다.
그러나, 니켈의 함량이 높은 니켈코발트망간계 양극 활물질은 니켈 함량 증가에 따라 결과적으로 1) 용량 감소로 인한 효율 감소 2) 표면 산소 발생으로 인한 NiO 암염 구조상의 형성 및 사이클 특성 저하, 및 3) 저항 증가 등의 문제점이 나타나게 된다.
따라서, 니켈 함량이 높은 니켈코발트망간계 양극 활물질의 문제점을 해결할 수 있는 양극 활물질의 개발이 시급하다.
본 실시예에서는 니켈, 코발트, 망간 및 알루미늄을 포함하는 금속 산화물 입자에 3종의 원소를 도핑함으로써 니켈 함량이 높은 양극 활물질에서 나타나는 성능 저하의 문제점을 해결함과 동시에 전기화학적 특성을 현저하게 개선할 수 이는 양극 활물질 및 이를 포함하는 리튬 이차 전지를 제공하고자 한다.
일 실시예에 따른 리튬 이차 전지용 양극 활물질은, 니켈, 코발트, 망간 및 알루미늄을 포함하는 금속 산화물 입자, 그리고 상기 금속 산화물 입자에 도핑된 3종의 도핑 원소를 포함할 수 있다.
상기 3종의 도핑 원소는 Nb, B 및 Zr일 수 있다.
상기 Nb의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.00001몰 내지 0.03몰 범위일 수 있다.
상기 B의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.001몰 내지 0.02몰 범위일 수 있다.
상기 Zr의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.001몰 내지 0.007몰 범위일 수 있다.
상기 Nb 및 Zr의 도핑량은 하기 식 1의 관계를 만족하는 것일 수 있다.
[식 1]
0.5 < [Zr]/[Nb] < 10
(식 1에서, [Nb] 및 [Zr]은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰을 기준으로 한 각 원소의 도핑량을 의미함)
상기 Nb 및 B의 도핑량은 하기 식 2의 관계를 만족하는 것일 수 있다.
[식 2]
0.3 < [B]/[Nb] < 30
(식 1에서, [Nb] 및 [B]은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰을 기준으로 한 각 원소의 도핑량을 의미함)
상기 양극 활물질은 하기 화학식 1로 표현되는 것일 수 있다.
[화학식 1]
Lia[NixCoyMnzAlh]1-t(NbiZrjBk)tO2-pX2p
(상기 화학식 1에서,
X는, F, N, 및 P을 포함하는 군에서 선택된 하나 이상의 원소이며, Zr
a는 0.8 ≤ a ≤ 1.3이고,
t는 0.0061 ≤ t ≤ 0.057이고,
0.6 ≤ x ≤ 0.95, 0 < y ≤ 0.2, 0 < z ≤ 0.2, 0.008 ≤ h ≤ 0.029, 0.0001 ≤ i ≤ 0.03, 0.001 ≤ j ≤ 0.007, 0.005) ≤ k ≤ 0.02, 0 ≤ p ≤ 0.02이다.
본 실시예에서, 상기 h는 0.005 ≤ h ≤ 0.025 범위일 수 있다.
상기 양극 활물질의 초기 확산계수는 7.30*10-9m2/sec 내지 8.10*10-9m2/sec 범위일 수 있다.
상기 금속 산화물 입자의 결정립 크기는 1,000Å 내지 1,560Å 범위일 수 있다.
상기 금속 산화물 입자의 (110)면에 대한 반치폭(FWHM) 값은 0.1901 내지 0.2017 범위일 수 있다.
상기 리튬 이차 전지용 양극 활물질은 X-선 회절 패턴 측정시, (104)면의 피크 강도에 대한 (003)면의 피크 강도비인 I(003)/I(104)는 1.2350 내지 1.2410 범위일 수 있다.
상기 금속 산화물 입자에서 니켈의 함량은, 상기 니켈, 코발트, 망간 및 알루미늄의 총합 1몰을 기준으로, 0.8몰 이상일 수 있다.
다른 실시예에 따른 리튬 이차 전지는, 일 실시예에 따른 양극 활물질을 포함하는 양극, 음극, 및 비수 전해질을 포함할 수 있다.
본 실시예에 따른 양극 활물질은 NCMA를 포함하는 금속 산화물 입자에 적어도 2종의 원소를 도핑함으로써 이를 적용하는 경우, 리튬 이차 전지의 용량을 증가시키면서도 상온 및 고온 수명 특성, 초기 효율, 초기 저항, 저항 증가율 및 열 안정성을 현저하게 향상시킬 수 있다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
일 실시예에 따른 리튬 이차 전지용 양극 활물질은, 니켈, 코발트, 망간 및 알루미늄을 포함하는 금속 산화물 입자, 그리고 상기 금속 산화물 입자에 도핑된 2종의 도핑 원소를 포함할 수 있다.
이때, 상기 3종의 도핑 원소는 Nb, Zr 및 B일 수 있다.
리튬 금속 산화물을 도핑하여 수명 및 다양한 전기 화학적 성능을 확보하기 위해서는 도핑 원소의 선정이 중요하다. 현재까지 알려진 도핑 원소로는 예를 들면, Ag+, Na+와 같은 1가 이온(mono-valent)과 Co2+, Cu2+, Mg2+, Zn2+, Ba2+, Al3+, Fe3+, Cr3+, Ga3+, Zr4+, Ti4+와 같은 2가 이상의 다가 이온(multi-valent)등이 있다. 이러한 원소 별로 전지의 수명 및 출력 특성에 미치는 영향이 다르다.
본 실시예에서는 이러한 도핑 원소 중 Zr, Nb 및 B를 포함함으로써, 고 용량을 확보하면서도 상온 및 고온 수명 특성과 열 안정성을 향상시키고, 초기 저항 특성 및 저항 증가율을 현저하게 감소시킬 수 있다.
구체적으로, Zr4+는 Zr 이온이 Li site를 차지하기 때문에 일종의 필러(pillar) 역할을 수행하게 되고 충,방전 과정 중 리튬 이온 경로(lithium ion path)의 수축을 완화시켜 층상구조의 안정화를 가져오게 된다. 이러한 현상은 즉, 양이온 혼합(cation mixing)을 감소시키며 리튬 확산 계수(lithium diffusion coefficient)를 증가시켜 사이클 수명을 증가시킬 수 있다.
또한, Nb는 초기용량 및 초기효율을 개선할 수 있다.
상기 도핑 원소와 함께 B(Boron)을 도핑하는 경우, 양극 활물질 소성시 결정립 크기를 감소시켜 초기 저항을 감소시킬 수 있다. 아울러, 수명특성 및 열 분해 온도를 증가 시킬 수 있다.
본 실시예에서 상기 Nb의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1 몰에 대하여, 0.00001몰 내지 0.03몰, 보다 구체적으로, 0.0001몰 내지 0.01몰, 0.00005몰 내지 0.03몰, 또는 0.0005몰 내지 0.0025몰 범위일 수 있다. Nb의 도핑량이 상기 범위를 만족하는 경우, 리튬 이차 전지의 상온수명, 고온수명, 저항 증가율 및 평균 누설 전류 값을 모두 향상시킬 수 있다는 점에서 매우 유리한 효과를 구현할 수 있다. 또한, 리튬 이차 전지의 확산계수가 증가하고 임피던스 분석시 저항 증가율을 효과적으로 저감시킬 수 있다.
B의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1 몰에 대하여, 0.001몰 내지 0.02몰, 보다 구체적으로 0.005몰 내지 0.02몰, 보다 구체적으로, 0.005몰 내지 0.015몰 범위일 수 있다. B의 도핑량이 상기 범위를 만족하는 경우, 양극 활물질 소성시 결정립 크기를 감소시키기 때문에 초기 저항 값을 감소시킬 수 있으며, 상온 및 고온 수명 특성 및 열 분해 온도를 증가 시킬 수 있다.
다음, 상기 Zr의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1 몰에 대하여, 0.001몰 내지 0.007몰, 보다 구체적으로, 0.002몰 내지 0.005몰 또는 0.0035몰 내지 0.005몰 범위일 수 있다. Zr 도핑량이 상기 범위를 만족하는 경우 리튬 이차 전지의 고온 수명 및 상온 수명 특성을 현저하게 향상시킬 수 있다.
본 실시예에서 상기 Nb 및 Zr의 도핑량은 하기 식 1의 관계를 만족하는 것일 수 있다.
[식 1]
0.3 ≤ [Zr]/[Nb] ≤ 10
식 1에서, [Nb] 및 [Zr]은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰을 기준으로 한 각 원소의 도핑량을 의미한다.
보다 구체적으로, 식 1은 0.6 이상 및 9 이하의 범위일 수 있고, 또는 0.7 이상 및 7 이하의 범위일 수 있다.
식 1이 상기 범위를 만족하는 경우, 저항증가율이 개선될 수 있으며 사이클 특성이 우수하게 된다. .
한편, 상기 Nb 및 B의 도핑량은 하기 식 2의 관계를 만족하는 것일 수 있다.
[식 2]
0.1 ≤ [B]/[Nb] ≤ 30
식 2에서, [Nb] 및 [B]은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰을 기준으로 한 각 원소의 도핑량을 의미한다.
보다 구체적으로, 식 2는 0.2 이상 및 25 이하의 범위일 수 있고, 또는 0.4 이상 및 20 이하의 범위일 수 있다.
식 2가 상기 범위를 만족하는 경우, 안정성이 개선되어 DSC 온도가 증가하고 사이클 특성이 개선된다.
본 실시예에의 리튬 이차 전지용 양극 활물질은 하기 화학식 1로 표현될 수 있다.
[화학식 1]
Lia[NixCoyMnzAlh]1-t(NbiZrjBk)tO2-pX2p
상기 화학식 1에서,
X는, F, N, 및 P을 포함하는 군에서 선택된 하나 이상의 원소이며, Zr
a는 0.8 ≤ a ≤ 1.3이고,
t는 0.0061 ≤ t ≤ 0.057이고,
0.6 ≤ x ≤ 0.95, 0 < y ≤ 0.2, 0 < z ≤ 0.2, 0.008 ≤ h ≤ 0.029, 0.0001 ≤ i ≤ 0.03, 0.001 ≤ j ≤ 0.007, 0.005) ≤ k ≤ 0.02, 0 ≤ p ≤ 0.02이다.
본 실시예에서 Al의 함량 범위 h는 0.008 내지 0.029일수 있고, 보다 구체적으로, 0.005 ≤ h ≤ 0.025 범위일 수 있다. Al3+는 Al 이온이 tetragonal lattice site로 이동하여 층상구조가 스피넬 구조로 열화되는 것을 억제한다. 층상구조는 Li 이온의 탈,삽입이 용이하나 스피넬 구조는 Li 이온의 이동이 원활하지 않다. 따라서, 본 실시예의 양극 활물질에서 Al의 함량이 상기 범위를 만족하는 경우, 초기효율 및 열 안정성이 우수하고, 상온 수명 및 고온 수명이 현저하게 향상된 리튬 이차 전지를 구현할 수 있다.
또한, 본 실시예에서 상기 니켈의 함량은, 상기 니켈, 코발트, 망간, 및 알루미늄의 총합 1몰을 기준으로, 0.8몰 이상일 수 있으며, 보다 구체적으로, 0.8몰 내지 0.99몰 0.82몰 내지 0.95몰 또는 0.83몰 내지 0.92몰 범위일 수 있다.
본 실시예와 같이 금속 산화물 내 상기 니켈, 코발트, 망간, 및 알루미늄의 총합 1몰을 기준으로, 니켈의 함량이 0.8 이상인 경우 고출력 특성을 갖는 양극 활물질을 구현할 수 있다. 이러한 조성을 갖는 본 실시예의 양극 활물질은 부피당 에너지 밀도가 높아지므로 이를 적용하는 전지의 용량을 향상시킬 수 있으며, 전기 자동차 용으로 사용하기에도 적합하다.
한편, 본 실시예에 따른 양극 활물질의 초기 확산계수는 7.30*10-9m2/sec 내지 8.10*10-9m2/sec, 보다 구체적으로 8.01*10-9m2/sec 내지 8.06*10-9m2/sec 범위, 8.01*10-9m2/sec 내지 8.04*10-9m2/sec, 또는 8.01*10-9m2/sec 내지 8.03*10-9m2/sec 범위일 수 있다. 초기 확산 계수가 8.01*10-9m2/sec 내지 8.06*10-9m2/sec의 경우 양극재 내의 Li이온의 이동이 효과적이며 이로 인해 양극재의 초기 용량 및 율속특성이 높게 된다. 반면, 확산계수가 7.30*10-9m2/sec 미만인 경우 양극재 내의 저항이 높아지며 이로 인해 사이클 특성이 크게 저감하게 된다. 확산계수가 8.10*10-9m2/sec을 초과하는 경우 구조적으로 불안정성이 높아져 사이클 특성이 나빠지게 된다.
다음, 상기 금속 산화물 입자의 결정립 크기는 1,000Å 내지 1,560Å범위일 수 있고, 보다 구체적으로, 1,090Å 내지 1,350Å, 또는 1,180Å 내지 1,350Å 범위일 수 있다. 결정립 크기가 상기 범위를 만족하는 경우, 초기용량의 저감이 없이 고온수명이 개선된다.
또한, 상기 금속 산화물 입자의 (110)면에 대한 반치폭(FWHM) 값은 0.1900 내지 0.2030, 보다 구체적으로 0.1901 내지 0.2017, 또는 0.1901 내지 0.2014 범위일 수 있다. (110)면에 대한 반치폭(FWHM) 값이 상기 범위를 만족하는 경우, 고온수명이 크게 향상되는 특성을 가지게 된다.
본 실시예의 양극 활물질은 X-선 회절 패턴 측정시, (104)면의 피크 강도에 대한 (003)면의 피크 강도비인 I(003)/I(104)는 1.2350 내지 1.2410범위일 수 있고, 보다 구체적으로 1.2351 내지 1.2407 범위일 수 있다.
일반적으로 피크 강도 값은 피크의 높이 값 또는 피크의 면적을 적분하여 얻은 적분 면적 값을 의미하며, 본 실시예에서 피크 강도 값은 피크의 면적 값을 의미한다.
피크 강도비 I(003)/I(104)가 상기 범위에 포함되는 경우에는 용량 감소 없이, 구조 안정화가 증진되어, 양극 활물질의 열 안전성을 향상시킬 수 있다.
또한, 피크 강도비 I(003)/I(104)는 양이온 혼합 인덱스(cation mixing index)로, I(003)/I(104) 값이 감소하는 경우 양극 활물질의 초기 용량 및 율속 특성이 저하될 수 있다. 그러나, 본 실시예에서는 I(003)/I(104)가 상기 범위를 만족하는 바, 용량 및 율속 특성이 우수한 양극 활물질을 구현할 수 있다.
한편, 본 실시예의 양극 활물질은, 대입경 입자 및 소입경 입자가 혼합된 바이모달(bi-modal) 형태일 수 있다. 상기 대입경 입자는 평균 입경(D50)이 10㎛ 내지 20㎛ 범위일 수 있고, 상기 소입경 입자는 평균 입경(D50)이 3㎛ 내지 7㎛일 수 있다. 이때, 상기 대입경 입자 및 상기 소입경 입자 또한 적어도 하나의 1차 입자가 조립된 2차 입자 형태일 수 있음은 물론이다. 또한, 대입경 입자 및 소입경 입자의 혼합비율은 전체 100 중량% 기준으로 대입경 입자가 50 내지 80 중량%일 수 있다. 이러한 바이모달 입자 분포로 인해 에너지 밀도를 개선시킬 수 있다.
본 발명의 다른 실시예에서는, 전술한 본 발명의 일 구현예에 따른 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 및 상기 양극 및 음극 사이에 위치하는 전해질을 포함하는 리튬 이차 전지를 제공한다.
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 실시예와 동일하기 때문에 생략하도록 한다.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. 상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
제조예 1 -NCM 전구체의 제조
양극 활물질 전구체는 일반적인 공침법에 의해 제조하였다.
니켈 원료 물질로는 NiSO4·6H2O, 코발트 원료 물질로는 CoSO4·7H2O, 망간 원료 물질로는 MnSO4·H2O을 이용하였다. 이들 원료를 증류수에 용해시켜 금속염 수용액을 제조하였다.
공침 반응기를 준비한 후, 공침 반응 시 금속 이온의 산화를 방지하기 위해 N2를 퍼징(purging)하였으며, 반응기 온도는 50℃를 유지하였다.
상기 공침 반응기에 킬레이팅제로 NH4(OH)를 투입하였고, pH조절을 위해 NaOH를 사용하였다. 공침 공정에 따라 수득된 침전물을 여과하고, 증류수로 세척한 후, 180℃ Cake dryer에서 건조하여 양극 활물질 전구체를 제조하였다.
제조된 전구체의 조성은 (Ni0.92Co0.04Mn0.04)(OH)2 이고, 대입경 전구체의 평균 입경(D50)은 14.3㎛이고, 소입경 전구체의 평균 입경(D50)은 4.5㎛였다.
실시예 1 - 0.0035 mol Zr + 0.0025 mol Nb + 0.001mol B 도핑
상기 제조예 1에서 제조한 전구체, 리튬 원료, 알루미늄 원료 및 도핑 원료를 균일하게 혼합한 혼합물을 튜브로에서 산소 분위기 하에 소성하였다. 소성 조건은 480oC에서 5시간, 이후 740~780oC에서 15시간을 유지하였으며, 승온 속도는 5oC/min였다.
사용된 리튬 원료로는 LiOH·H2O(삼전화학, battery grade)를 사용하였고, 알루미늄 원료로는 Al(OH)3 (Aldrich, 3N)를 사용하였으며, 도핑 원료로는 ZrO2 (Aldrich, 3N), H3BO3(Aldrich, 3N) 및 Nb2O5 (Aldrich, 3N)을 사용하였다.
이때, 도핑량은 금속원소가 도핑되지 않은 LiNi0.90Co0.04Mn0.04Al0.02O2를 기준으로 M= Ni0.90Co0.04Mn0.04Al0.02로 표기하고 M과 도핑된 양 총합을 1mol이 되도록 도핑 원료의 투입량을 조절하였다. 즉, Li(M)1-x(D)xO2(M=NCMA, D=도핑소재)구조를 가지게 된다. 이와 같이 제조된 2종의 원소가 도핑된 대입경 및 소입경 양극 활물질의 전체 조성은 Li(M)0.993Zr0.0035Nb0.0025 B0.001O2 였다.
소성된 대입경 및 소입경 양극 활물질은 중량비로 80:20 (대입경:소입경)의 비율로 균일하게 혼합하여 바이모달(bi-modal)형태로 실시예 1의 양극 활물질을 제조하였다.
비교예 1 - NCMA + Zr 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
비교예 1에 따라 제조된 대입경 및 소입경 양극 활물질의 전체 조성은 Li(M)0.9965Zr0.0035O2 였다.
실시예 2 - 0.0035 mol Zr + 0.0025 mol Nb + 0.005mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 2에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.989Zr0.0035Nb0.0025B0.005O2 였다.
실시예 3 - 0.0035 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 3에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.984Zr0.0035Nb0.0025B0.01O2 였다.
실시예 4 - 0.0035 mol Zr + 0.0025 mol Nb + 0.015mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 4에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.979Zr0.0035Nb0.0025B0.015O2 였다.
참고예 1 - 0.0035 mol Zr + 0.0025 mol Nb + 0.02mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 5에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.974Zr0.0035Nb0.0025B0.02O2였다.
실시예 5 - 0.002 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 5에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.9855Zr0.002Nb0.0025B0.01O2였다.
실시예 6 - 0.005 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 6에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.9825Zr0.005Nb0.0025B0.01O2였다.
참고예 2 - 0.008 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
참고예 2에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.9795Zr0.008Nb0.0025B0.01O2였다.
실시예 7 - 0.0035 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑 + 0.005 mol Al
상기 제조예 1에서 제조한 전구체를 이용하여 알루미늄 원료 및 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 7에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.915Co0.04Mn0.04Al0.005)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 8 - 0.0035 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑 + 0.01 mol Al
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 8에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.91Co0.04Mn0.04Al0.01)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 9 - 0.0035 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑 + 0.015 mol Al
상기 제조예 1에서 제조한 전구체를 이용하여 알루미늄 원료의 양 및 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 11에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.905Co0.04Mn0.04Al0.015)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 12 - 0.0035 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑 + 0.022 mol Al
상기 제조예 1에서 제조한 전구체를 이용하여 알루미늄 원료의 양 및 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 12에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.898Co0.04Mn0.04Al0.022)0.984Zr0.0035Nb0.0025B0.01였다.
참고예 3 - 0.0035 mol Zr + 0.0025 mol Nb + 0.01mol B 도핑 + 0.025 mol Al
상기 제조예 1에서 제조한 전구체를 이용하여 알루미늄 원료의 양 및 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
참고예 3에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.895Co0.04Mn0.04Al0.025)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 11 - 0.0035 mol Zr + 0.0005 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 11에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.986Zr0.0035Nb0.0005B0.01O2였다.
실시예 12 - 0.0035 mol Zr + 0.001 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 12에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.9855Zr0.0035Nb0.0001B0.01O2였다.
참고예 4 - 0.0035 mol Zr + 0.005 mol Nb + 0.01mol B 도핑
상기 제조예 1에서 제조한 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
참고예 4에 따라 제조된 양극 활물질의 전체 조성은 Li(M)0.9815Zr0.0035Nb0.005B0.01O2였다.
상기 비교예 1, 실시예 1 내지 12 및 참고예 1 내지 4에 따라 제조된 양극 활물질의 도핑량 및 전체 조성은 하기 표와 같다.
구분 Al 도핑 원소 양극 활물질 전체 조성
Zr Nb B
실시예 1 0.02 0.0035 0.0025 0.001 Li(M)0.993Zr0.0035Nb0.0025 B0.001O2
비교예 1 0.02 0.0035 0  0 Li(M)0.9965Zr0.0035O2
실시예 2 0.02 0.0035 0.0025 0.005 Li(M)0.989Zr0.0035Nb0.0025B0.005O2
실시예 3 0.02 0.0035 0.0025 0.01 Li(M)0.984Zr0.0035Nb0.0025B0.01O2
실시예 4 0.02 0.0035 0.0025 0.015 Li(M)0.979Zr0.0035Nb0.0025B0.015O2
참고예 1 0.02 0.0035 0.0025 0.02 Li(M)0.974Zr0.0035Nb0.0025B0.02O2
실시예 5 0.02 0.002 0.0025 0.01 Li(M)0.9855Zr0.002Nb0.0025B0.01O2
실시예 6 0.02 0.005 0.0025 0.01 Li(M)0.9825Zr0.005Nb0.0025B0.01O2
참고예 2 0.02 0.008 0.0025 0.01 Li(M)0.9795Zr0.008Nb0.0025B0.01O2
실시예 7 0.005 0.0035 0.0025 0.01 Li(Ni0.915Co0.04Mn0.04Al0.005)0.984Zr0.0035Nb0.0025B0.01
실시예 8 0.01 0.0035 0.0025 0.01 Li(Ni0.91Co0.04Mn0.04Al0.01)0.984Zr0.0035Nb0.0025B0.01
실시예 9 0.015 0.0035 0.0025 0.01 Li(Ni0.905Co0.04Mn0.04Al0.015)0.984Zr0.0035Nb0.0025B0.01
실시예 10 0.022 0.0035 0.0025 0.01 Li(Ni0.898Co0.04Mn0.04Al0.022)0.984Zr0.0035Nb0.0025B0.01
참고예 3 0.025 0.0035 0.0025 0.01 Li(Ni0.895Co0.04Mn0.04Al0.025)0.984Zr0.0035Nb0.0025B0.01
실시예 11 0.02 0.0035 0.0005 0.01 Li(M)0.986Zr0.0035Nb0.0005B0.01O2
실시예 12 0.02 0.0035 0.001 0.01 Li(M)0.9855Zr0.0035Nb0.0001B0.01O2
참고예 4 0.02 0.0035 0.005 0.01 Li(M)0.9815Zr0.0035Nb0.005B0.01O2
비교예 2 - 0.78 mol Ni + 0.0035 mol Zr + 0.0025 mol Nb도핑 + 0.02 mol Al
*188상기 제조예 1과 동일한 방법으로 (Ni0.80Co0.10Mn0.10)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용하여 알루미늄 원료 및 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
비교예 2에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.78Co0.10Mn0.10Al0.02)0.994Zr0.0035Nb0.0025였다.
비교예 3 - 0.81 mol Ni + 0.0035 mol Zr + 0.0025 mol Nb도핑 + 0.02 mol Al
상기 제조예 1과 동일한 방법으로 (Ni0.83Co0.12Mn0.05)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
비교예 3에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.81Co0.12Mn0.05Al0.02)0.994Zr0.0035Nb0.0025였다.
비교예 4 - 0.83 mol Ni + 0.0035 mol Zr + 0.0025 mol Nb도핑 + 0.02 mol Al
상기 제조예 1과 동일한 방법으로 (Ni0.85Co0.07Mn0.08)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
비교예 4에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.83Co0.07Mn0.08Al0.02)0.994Zr0.0035Nb0.0025였다.
비교예 5 - 0.84 mol Ni + 0.0035 mol Zr + 0.0025 mol Nb도핑 + 0.02 mol Al
상기 제조예 1과 동일한 방법으로 (Ni0.86Co0.07Mn0.07)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
비교예 5에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.84Co0.07Mn0.07Al0.02)0.994Zr0.0035Nb0.0025였다.
비교예 6 - 0.86 mol Ni + 0.0035 mol Zr + 0.0025 mol Nb도핑 + 0.02 mol Al
상기 제조예 1과 동일한 방법으로 (Ni0.88Co0.05Mn0.07)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용하여 도핑 원료의 양을 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
비교예 6에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.86Co0.05Mn0.07Al0.02)0.994Zr0.0035Nb0.0025였다.
참고예 5 - 실시예 1에서 Ni만 0.78mol로 변경
상기 제조예 1과 동일한 방법으로 (Ni0.80Co0.10Mn0.10)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
참고예 5에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.78Co0.01Mn0.01Al0.02)0.984Zr0.0035Nb0.0025B0.01였다.
참고예 6 - 실시예 1에서 Ni만 0.81mol로 변경
상기 제조예 1과 동일한 방법으로 (Ni0.83Co0.12Mn0.05)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
참고예 6에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.81Co0.12Mn0.05Al0.02)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 13 - 실시예 1에서 Ni만 0.83mol로 변경
상기 제조예 1과 동일한 방법으로 (Ni0.85Co0.07Mn0.08)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 13에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.83Co0.07Mn0.08Al0.02)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 14 - 실시예 1에서 Ni만 0.84mol로 변경
상기 제조예 1과 동일한 방법으로 (Ni0.86Co0.07Mn0.07)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 14에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.84Co0.07Mn0.07Al0.02)0.984Zr0.0035Nb0.0025B0.01였다.
실시예 15 - 실시예 1에서 Ni만 0.86mol로 변경
상기 제조예 1과 동일한 방법으로 (Ni0.88Co0.05Mn0.07)(OH)2 조성을 갖는 대입경 및 소입경 전구체를 제조하였다.
다음, 상기 전구체를 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바이모달 형태의 양극 활물질을 제조하였다.
실시예 15에 따라 제조된 양극 활물질의 전체 조성은 Li(Ni0.86Co0.05Mn0.07Al0.02)0.984Zr0.0035Nb0.0025B0.01였다.
상기 비교예 2 내지 6 및 참고예 5 내지 6, 실시예 13 내지 15의 도핑량 및 전체 조성은 하기 표와 같다.
구분 도핑 원소 양극 활물질 전체 조성
Zr Nb B
비교예 2 0.0035 0.0025  0 Li(Ni0.78Co0.10Mn0.10Al0.02)0.994Zr0.0035Nb0.0025
비교예 3 0.0035 0.0025  0 Li(Ni0.81Co0.12Mn0.05Al0.02)0.994Zr0.0035Nb0.0025
비교예 4 0.0035 0.0025  0 Li(Ni0.83Co0.07Mn0.08Al0.02)0.994Zr0.0035Nb0.0025
비교예 5 0.0035 0.0025  0 Li(Ni0.84Co0.07Mn0.07Al0.02)0.994Zr0.0035Nb0.0025
비교예 6 0.0035 0.0025  0 Li(Ni0.86Co0.05Mn0.07Al0.02)0.994Zr0.0035Nb0.0025
참고예 5 0.0035 0.0025 0.01 Li(Ni0.78Co0.01Mn0.01Al0.02)0.984Zr0.0035Nb0.0025B0.01
참고예 6 0.0035 0.0025 0.01 Li(Ni0.81Co0.12Mn0.05Al0.02)0.984Zr0.0035Nb0.0025B0.01
실시예 13 0.0035 0.0025 0.01 Li(Ni0.83Co0.07Mn0.08Al0.02)0.984Zr0.0035Nb0.0025B0.01
실시예 14 0.0035 0.0025 0.01 Li(Ni0.84Co0.07Mn0.07Al0.02)0.984Zr0.0035Nb0.0025B0.01
실시예 15 0.0035 0.0025 0.01 Li(Ni0.86Co0.05Mn0.07Al0.02)0.984Zr0.0035Nb0.0025B0.01
실험예 1 - XRD 분석 결과
실시예 1 내지 4, 참고예 1 및 비교예 1에 따라 제조된 양극 활물질의 격자 상수를 에 대하여 CuKα선을 사용하여 X-선 회절 측정으로 얻었다. 측정된 a축 길이, b축 길이 및 c축 길이를 하기 표 1에 나타내었다.
또한 활물질의 단위 셀 부피 및 결정립 크기(crystalline size)를 측정하여, 하기 표 1에 나타내었다.
다음, 도핑에 의한 결정학적 고찰을 위해서 상용 소프트웨어인 하이 스코어 플러스(High Score Plus 4.0) 프로그램을 이용하여 리트벨드(Rietveld) 분석을 수행하였으며, 이에 대한 결과를 표 1에 나타내었다. XRD 측정 범위는 10o~130o에서 수행하였으며, Rietveld refinement를 통해서 fitting 하였다. GOF (Goodness of Fitness)값은 2.0이내에서 matching 하였다.
XRD 장비(Panalytical 사의 X’pert3 powder diffraction)를 사용하여 스캔 스피드(°/s) 0.328로 (003)면 및 (104)면의 강도(피크 면적)와 (110)면의 강도를 측정하였다. 이 결과로부터 I(003)/I(104), (110)면의 반치폭(Full Width at Half Maximum, FWHM)을 구하여, 표 1에 나타내었다.
또한, 측정 샘플 모두 18.7o 부근에서 (003)면이 주 peak로서 잘 발달되었으며 37.5o와 38.5o 사이의 (006)/(102) peak, 63.5o와 35.5o 사이에서 (108)/(110) peak의 splitting이 나타나는 것을 확인하였는 바, hexagonal layer의 양호한 crystalline ordering을 가지고 있음을 알 수 있었으며, 전형적인 α-NaFeO2(space group R-3m)구조를 나타냄을 알 수 있었다.
a b c 단위셀 부피 I(003)/I(104)
(강도기준)
(110)면 FWHM 결정립 크기(Å)
비교예1 2.8721 2.8721 14.2046 101.4829 1.2408 0.1886 1592
실시예1 2.8737 2.8737 14.2046 101.4970 1.2407 0.1901 1350
실시예2 2.8736 2.8736 14.2047 101.5120 1.2391 0.1916 1270
실시예3 2.8734 2.8734 14.2049 101.5210 1.2383 0.2014 1180
실시예4 2.8732 2.8732 14.2051 101.5360 1.2351 0.2017 1090
참고예 1 2.8722 2.8722 14.2046 101.4810 1.2408 0.1886 1576
표 3을 참고하면, 도핑 원소 및 도핑량에 따라서 XRD 분석결과 결정구조의 인자 값들이 변화되고 있음을 알 수 있다.
구체적으로, 참고예 1의 경우, B의 도핑량이 0.02몰로 과량 도핑됨에 따라 결정 구조상수인 a 및 b 값이 급격하게 감소함을 알 수 있다. 결정 상수인 a값이 급격한 감소는 단위 셀 볼륨(Unit cell volume)의 수축으로 이어지는데 이는 과량의 B도핑으로 인해 결정구조의 일부가 변화되었기 때문으로 사료된다.
즉, B의 도핑 양은 0.005몰 내지 0.02몰 범위일 수 있고, 0.001몰 내지 0.015몰 범위인 것이 바람직함을 확인할 수 있다.
실험예 2 - 전기 화학 평가
(1) 코인형 반쪽 전지 제조
상기와 같이 제조된 양극 활물질을 이용하여 CR2032코인셀을 제조한 후 전기화학 평가를 진행하였다.
구체적으로, 양극 활물질, 도전재(Denka Black) 및 폴리비닐리덴 플루오라이드 바인더(상품명: KF1100)를 92.5:3.5:4의 중량비로 혼합하고, 이 혼합물을 고형분이 약 30 중량%가 되도록 N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone) 용매에 첨가하여 양극 활물질 슬러리를 제조하였다.
상기 슬러리를 닥터 블레이드(Doctor blade)를 이용하여 양극 집전체인 알루미늄 포일(Al foil, 두께: 15 ㎛) 상에 코팅하고, 건조한 후 압연하여 양극을 제조하였다. 상기 양극의 로딩량은 약 14.6 mg/㎠이었고, 압연 밀도는 약 3.1g/cm3이었다.
상기 양극, 리튬 금속 음극(두께 300㎛, MTI), 전해액과 폴리프로필렌 세퍼레이터를 사용하여 통상의 방법으로 2032 코인형 반쪽 전지를 제조하였다. 상기 전해액은 1M LiPF6를 에틸렌 카보네이트, 디메틸 카보네이트 및 에틸메틸 카보네이트 (EMC)의 혼합 용매(혼합비 EC:DMC:EMC=3:4:3 부피%)에 용해시켜 혼합 용액을 제조한 후 여기에 비닐렌 카보네이트(VC) 3 중량%를 첨가하여 사용하였다.
(2) 충방전 특성 평가
상기 (1)에서 제조된 코인형 반쪽 전지를 상온(25℃)에서 10시간 동안 에이징(aging)한 후, 충방전 테스트를 진행하였다.
용량평가는 205mAh/g을 기준 용량으로 하였고, 충방전 조건은 정전류(CC) / 정전압(CV) 2.5V 내지 4.25V, 1/20C 컷-오프를 적용하였다.
초기 용량은 0.1C 충전/0.1C 방전 후 방전용량을 측정하고, 0.2C 충전/0.2C 방전을 실시한 후 초기효율을 계산하여 그 결과를 하기 표 2에 나타내었다.
(3) 수명 특성 측정
상온 사이클 수명 특성은 상온(25oC)에서, 고온 사이클 수명 특성은 고온 (45oC)에서 0.3C 충전/0.3C 방전 조건에서 30회를 측정하였다.
(4) 저항 특성 측정
상온 초기 저항(직류 내부 저항: DC-IR(Direct current internal resistance))은 전지를 25℃에서 정전류-정전압 2.5V 내지 4.25V, 1/20C 컷-오프 조건으로, 0.2C 충전 및 0.2방전 방전을 1회 실시하고, 4.25V 충전 100%에서 방전 전류 인가 후 60초후의 전압 값을 측정한 후, 이를 계산하였다.
저항증가율은 상온(25℃)에서 초기에 측정한 저항(상온 초기 저항) 대비 사이클 수명 30회후의 초기저항 측정 방법과 동일하게 실시하여 저항을 측정하고, 그 상승율을 백분율(%)로 환산하였다.
평균누설전류(Average leakage current)는 45℃의 고온에서 반쪽 전지를 4.7V로 유지시 120시간 경과하는 동안 전류발생을 측정하여, 그 값의 평균값을 구하는 방법으로 측정하였다.
(5) 열 안정성 평가
시차중량열분석(DSC: Differential Scanning Calorimetry) 분석은 반쪽 전지를 초기 0.1C 충전 조건에서 4.25V까지 충전 후, 반쪽 전지를 분해하여 양극만 별도로 얻어, 이 양극을 디메틸카보네이트로 5회 세척하여 준비하였다. DSC용 도가니에 세척된 양극을 전해액으로 함침시킨 후 온도를 265℃까지 상승시키면서 DSC 기기로 Mettler toledo사 DSC1 star system을 이용하여, 열량 변화를 측정하여, 얻어진 DSC 피크 온도를 나타내었다.
실험예 2-1. B 함량에 따른 효과
실시예 1 내지 7 및 비교예 1에 따라 제조된 양극 활물질에 대하여 실험예 2의 방법으로 수행한 전기화학특성 평가 결과를 하기 표 4에 나타내었다.
방전용량
(mAh/g)
초기효율
(%)
상온수명
(%)
고온수명
(%)
상온초기저항
(Ω)
저항증가율
(%)
평균 누설전류
(mA)
DSC peak 온도
(oC)
비교예1 213.7 90.9 92.4 92.1 29.3 79.8 0.37 228
실시예1 220.3 94.7 95.2 95.1 23.1 40.7 0.20 228
실시예2 220.1 94.5 97.1 97.0 25.3 37.2 0.17 230
실시예3 219.6 94.4 97.6 97.3 25.4 36.4 0.17 231
실시예4 219.8 94.3 97.4 97.2 25.7 36.2 0.16 231
참고예1 215.3 91.2 98.1 97.8 31.2 79.8 0.12 232
실시예 1 내지 4는 Ni 함량이 90 몰% 이상인 전구체에 Al 원료를 혼합하고, Zr, Nb 및 B를 함께 도핑한 경우 그 도핑량에 따른 전기화학 특성을 측정한 결과이다.
표 4를 참고하면, NCMA에 Zr, Nb 및 B를 도핑한 실시예 1 내지 4의 양극 활물질은, NCMA에 Zr이 도핑된 비교예 1의 양극 활물질과 비교할 때, 방전용량 및 초기 용량이 크게 증가하는 것을 확인할 수 있다.
또한, 실시예 1 내지 4과 같이 Zr과 함께 Nb 및 B를 도핑하는 경우 방전용량은 유사하게 유지되면서, 상온수명 및 고온수명이 현저하게 증가하는 것을 확인할 수 있다. 또한, 저항 증가율, 평균 누설 전류 값 및 DSC 피크 온도도 모두 향상되는 것을 알 수 있다. 이는 B이 양극 활물질의 표면에 남아서 리튬 이온 전도체 코팅 효과를 동시에 가지기 때문인 것으로 생각된다.
이는 종래 Al을 0.01몰 이상 추가하여 Al 및 Zr을 도핑한 양극 활물질에서 나타난 문제점인 급격한 방전 용량 감소 및 초기효율 감소 현상을 현저하게 개선한 것임을 알 수 있다.
다만, 참고예 1과 같이 B을 과량 도핑하는 경우에는 방전용량 및 초기효율이 현저하게 저하되는 것을 알 수 있는 바, 이를 고려할 때, 전술한 바와 같이, B의 도핑 양은, 니켈, 코발트, 망간, 알루미늄 및 도핑원소의 총합 1몰에 대하여, 0.001몰 내지 0.02몰 범위일 수 있고, 0.005몰 내지 0.015몰 범위인 것이 바람직함을 확인할 수 있다.
실험예 2-2. Zr 함량에 따른 효과
실시예 5 내지 6 및 참고예 2에 따라 제조된 양극 활물질에 대하여 실험예 2의 방법으로 수행한 전기화학특성 평가 결과를 하기 표 5에 나타내었다. 비교를 위하여 실시예 3의 결과도 함께 표시하였다.
방전용량
(mAh/g)
초기효율
(%)
상온수명
(%)
고온수명
(%)
상온초기저항
(Ω)
저항증가율
(%)
평균 누설전류
(mA)
DSC peak 온도
(oC)
실시예5 219.6 94.3 93.9 94.4 29.8 61.4 0.31 228.0
실시예3 219.6 94.4 97.6 97.3 25.4 36.4 0.17 231.0
실시예6 216.5 92.9 97.6 97.2 33.7 38.5 0.18 232.0
참고예2 206.9 86.9 98.5 98.2 39.1 58.3 0.20 232.0
실시예 5 내지 6 및 참고예 2는 0.2몰의 알루미늄을 도입한 NCMA에 Nb의 도핑량은 0.0025몰, B의 도입량은 0.01몰로 고정시킨 상태에서 Zr의 도핑량만 변화시킨 것이다.
표 5을 참고하면, Zr의 도핑량이 0.002몰에서 0.008몰까지 증가함에 따라서 일부의 특성은 개선되며 일부의 특성은 악화되는 것을 이해할 수 있다.
구체적으로, 실시예 3, 5, 6의 결과를 참고하면, Zr의 도핑량이 증가할수록 고온 수명 및 상온 수명이 개선되는 것을 알 수 있다. 그러나, 참고예 1과 같이 Zr 도핑량이 0.008몰로 증가되는 경우 방전용량 및 초기효율이 크게 저하되는 것을 확인할 수 있다.
따라서, 본 실시예에서 적절한 Zr의 도핑량은 니켈, 코발트, 망간 및 도핑 원소의 총합 1몰에 대하여, 0.001몰 내지 0.007몰 범위이고, 구체적으로 0.002몰 내지 0.005몰 또는 0.0035몰 내지 0.005몰 범위일 수 있다.
실험예 2-3. Al 함량에 따른 효과
실시예 7 내지 10, 참고예 3에 따라 제조된 양극 활물질에 대하여 실험예 2의 방법으로 수행한 전기화학특성 평가 결과를 하기 표 6에 나타내었다. 비교를 위하여 실시예 3의 결과도 함께 표시하였다.
방전용량
(mAh/g)
초기효율
(%)
상온수명
(%)
고온수명
(%)
상온초기저항
(Ω)
저항증가율
(%)
평균 누설전류
(mA)
DSC peak 온도
(oC)
실시예7 222.3 94.8 91.0 90.9 37.0 73.9 0.45 223.0
실시예8 221.3 94.6 94.5 94.9 27.2 49.5 0.27 228.0
실시예9 219.3 94.4 98.6 95.7 28.5 45.1 0.23 230.0
실시예3 219.6 94.4 97.6 97.3 25.4 36.4 0.18 231.0
실시예10 217.6 93.5 99.2 98.8 23.9 33.1 0.17 234.4
참고예 3 209.6 86.1 99.0 99.7 22.9 32.1 0.15 236.1
실시예 7 내지 10, 참고예 3은 도핑량은 Zr 0.0035몰, Nb 0.0025몰, B 0.01몰로 고정한 상태에서 Al 원료의 양만 변화시킨 것이다.
표 6를 참고하면, Al 원료의 양이 증가함에 따라서 상온수명, 고온수명이 크게 증가하고 상온 초기저항, 저항증가율, 누설전류는 감소하는 것을 확인할 수 있다. 특히, DSC 피크 온도가 현저하게 증가하였다.
그러나, 혼합되는 Al 원료의 양이 0.025몰인 참고예 3의 경우에는 방전용량이 크게 감소하고 이로 인해 초기효율도 현저하게 저하됨을 알 수 있다.
따라서, 본 실시예에서 알루미늄 원료의 양은 니켈, 코발트, 망간, 알루미늄 및 도핑원소의 총합 1몰에 대하여, 0.008몰 내지 0.029몰, 보다 구체적으로, 0.005몰 내지 0.025몰 범위일 수 있다.
실험예 2-4. Nb 함량에 따른 효과
실시예 11 내지 12 및 참고예 4에 따라 제조된 양극 활물질에 대하여 실험예 2의 방법으로 수행한 전기화학특성 평가 결과를 하기 표 7에 나타내었다. 비교를 위하여 실시예 3의 결과도 함께 표시하였다.
방전용량
(mAh/g)
초기효율
(%)
상온수명
(%)
고온수명
(%)
상온초기저항
(Ω)
저항증가율
(%)
평균 누설전류
(mA)
DSC peak 온도
(oC)
실시예11 218.1 93.7 96.5 96.4 27.8 42.5 0.23 229.0
실시예12 218.8 94.1 97.0 96.1 27.3 40.3 0.20 231.0
실시예3 219.6 94.4 97.6 97.3 25.4 36.4 0.17 231.0
참고예 4 214.7 91.7 96.7 96.6 30.0 65.5 0.17 231.0
실시예 11 내지 12 및 참고예 4는 0.02몰이 도입된 NCMA에 Zr 0.0035몰, B 0.01몰로 고정한 상태에서 Nb의 도핑량만 변화시킨 것이다.
표 7를 참고하면, Nb 함량이 증가할수록 방전용량 및 초기효율이 현저하게 증가하는 것을 확인할 수 있다.
그러나, Nb를 0.005몰로 과량 도핑한 참고예 4의 경우에는 방전용량이 크게 감소하고 초기효율도 급격하게 저하되는 것을 확인할 수 있다.
따라서, 본 실시예에서 적절한 Nb의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.00005몰 내지 0.03몰 범위이고, 구체적으로 0.0001몰 내지 0.01몰 또는 0.0005몰 내지 0.0025몰 범위일 수 있다.
실험예 2-5. Ni 함량에 따른 효과
비교예 2 내지 6, 참고예 5 내지 6 및 실시예 13 내지 15에 따라 제조된 양극 활물질에 대하여 실험예 2의 방법으로 수행한 전기화학특성 평가 결과를 하기 표 8에 나타내었다. 비교를 위하여 비교예 1 및 실시예 3의 결과도 함께 표시하였다.
방전용량
(mAh/g)
초기효율
(%)
상온수명
(%)
고온수명
(%)
상온초기저항
(Ω)
저항증가율
(%)
평균 누설전류
(mA)
DSC peak 온도
비교예2(Ni78%) 198.43 86.80 96.9 95.3 16.2 42.8 0.21 233
참고예 5 198.32 86.75 97.3 97.1 17.1 35.7 0.17 236
비교예3(Ni81%) 203.84 87.60 94.5 94.3 19.9 48.7 0.24 224
참고예 6 202.74 88.69 97.1 96.0 21.4 41.3 0.19 228
비교예4(Ni83%) 210.5 89.50 95.5 95.4 21.9 44.9 0.21 222
실시예13 209.8 91.77 98.3 98.1 23.2 37.8 0.16 227
비교예5(Ni84%) 211.7 91.80 95.3 95.1 22.2 47.9 0.23 223
실시예14 210.7 92.17 98.0 97.8 23.7 40.1 0.17 229
비교예6(Ni86%) 218.8 92.60 95.5 95.3 24.3 45.3 0.21 218
실시예15 217.5 95.14 97.2 97.1 25.1 41.0 0.13 224
비교예1(Ni90%) 213.7 90.9 92.4 92.1 29.3 79.8 0.37 228
실시예3 219.6 94.40 97.6 97.3 25.4 36.4 0.17 230
비교예 2 내지 6은 NCMA에, Zr 및 Nb를 도핑한 양극 활물질이고, 참고예 5 내지 6 및 실시예 13 내지 15는 NCMA에 Zr, Nb 및 B 도핑 원료를 혼합하여 제조한 양극 활물질이다.
표 8을 참고하면, 도핑 원료로 B이 함께 사용된 실시예 13 내지 15의 경우 상온수명, 고온수명, 저항 증가율 및 평균 누설전류 값이 모두 개선되었다.
또한, DSC 피크 온도가 모두 증가되었는 바, B를 도핑 원소로 포함하는 경우 양극 활물질의 열 안정성을 현저하게 향상시킬 수 있음을 알 수 있다.
결과적으로 본 실시예와 같이 Ni 함량이 83% 이상인 NCMA 제품에서 Zr, Nb 및 B을 포함하는 3원계 소재가 도핑되었을 경우 방전용량 증가 및 초기 효율 증가 효과가 매우 탁월하고 기타 물성도 전체적으로 개선됨을 확인할 수 있다.
실험예 3 - 확산계수 및 임피던스 분석
실시예 1 내지 4, 참고예 1 및 비교예 1에 따라 제조된 양극 활물질에 대하여 확산계수 및 임피던스 분석을 실시하여 하기 표 7에 나타내었다.
확산계수는 GITT법을 통해 측정하였으며 30분 충전후 50분 유지를 진행하였고 이때 얻어진 데이터를 하기 식 3을 이용하여 분석하였다.
[식 3]
Figure PCTKR2021018829-appb-img-000001
식 2에서,
VM: 양극 활물질의 몰 부피
A: 확산계수 측정시 전극 면적
F: Faraday 상수
ZLi: +1
Io: 0.1C
x: 리튬이 전극 내에 존재하는 fraction
dEs: 유지구간에서 얻어진 voltage 변화량,
dEt: 충전구간에서 얻어진 voltage 변화량
t: 시간(sec)
구체적으로, 양극 활물질의 몰 부피는, XRD 측정결과를 통해 분석된 단위 부피를 이용하여 계산하였다. A는 확산계수 측정시의 전극 면적으로 본 확산계수 측정시 사용된 코인 셀의 경우 면적이 1.538cm2의 크기를 갖는다. Io는 0.1C 전류 값을 의미한다. X는 전체 충방전 구간을 100%로 가정하여 계산할 수 있다. 예를 들면, 초기 30분 충전 구간에 해당하는 x는 0.05, 두번째 30분 충전구간에 해당하는 x값은 0.1로 표현할 수 있으며 중간 구간에 해당하는 x는 0.5으로 표현 가능하다.
임피던스 분석은 얻어진 3.7V에서 얻어진 임피던스 그래프를 이용하여 분석하였으며 확산계수와 마찬가지로 하기 표 9에 나타내었다. 얻어진 임피던스 값을 실수축과 허수축으로 분리하여 Nyquist plot을 했을 때 얻어지는 도형을 두 개의 반원 형태로 나누어서 fitting하여 Rsei와 Rct로 구하였다. 이때, 고주파영역에서 생성된 반원에 의해 얻어진 저항 값을 Rsei로 명명하고 저주파영역에서 생성된 반원에 의해서 얻어진 저항 값을 Rct로 명명하여 저항 값을 구하였다. 표 8에서 나타난 저항의 특성을 살펴보았을 때, B의 도핑량이 0.005mol 내지 0.015mol인 경우 초기 Rsei와 Rct값이 비교예 1에 비해서 미세하게 증가되어 초기저항이 미세하게 증가함을 확인할 수 있으나, 사이클 후에는 Rct값과 Rsei값의 증가값이 비교예 1에 비해서 감소하였음을 확인할 수 있다. 즉, B이 양극재에 도핑되었을때, 표면 특성이 개선하여 전해질과 양극과의 부반응이 억제되고 이로 인해서 고온 사이클 후에 저항의 증가가 크지 않은 것을 확인할 수 있다. 특히 Rsei 저항 증가의 억제는 전해질과의 반응억제된다는 의미를 나타내고, Rct저항 증가의 억제는 양극재의 전극 활성 열화현상이 억제되었음을 의미한다. 적절한 B의 도핑시 초기 출력 개선 및 열화 현상을 억제가능함을 이해할 수 있다.
초기 확산계수 (*10-9m2/sec) 초기
Rsei
(Ω)
초기
Rct
(Ω)
사이클 후 확산계수
(*10-9m2/sec)
사이클 후 Rsei
(Ω)
사이클 후 Rct
(Ω)
확산계수 증가율
(%)
Rsei
증가율 (%)
Rct
증가율
(5)
비교예1 7.24 3.22 5.62 5.96 11.90 8.88 21.47 269.5 58.0
실시예1 8.06 2.23 4.79 7.07 9.17 5.12 12.3 75.7 6.4
실시예2 8.04 2.31 4.84 7.06 8.76 5.03 12.2 73.6 3.8
실시예3 8.03 2.39 4.91 7.14 8.71 5.07 11.1 72.6 3.2
실시예4 8.01 2.51 4.93 7.21 8.64 5.11 10.0 70.9 3.5
참고예 1 6.24 3.48 6.17 6.18 9.64 7.03 1.0 63.9 12.2
표 9를 참고하면, 도핑원소로 Zr, Nb 및 B를 사용한 실시예에서 초기 Rsei와 Rct의 초기 저항 값은 증가되었으나 사이클 후의 저항 증가율은 현저하게 낮아지는 것을 확인할 수 있다. 특히, 전자 전달의 핵심 저항인 Rct값의 저항 증가율이 매우 크게 낮아짐을 알 수 있었다. 이를 토대로, Zr, Nb 및 B를 동시에 도핑하였을 때, 전극 열화 현상을 억제하는 특성을 가짐을 알 수 있다. 즉, 이들 원소를 동시 도핑함에 따라 Rsei와 Rct 저항 증가율이 효과적으로 억제되는 것을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (15)

  1. 니켈, 코발트, 망간 및 알루미늄을 포함하는 금속 산화물 입자; 그리고
    상기 금속 산화물 입자에 도핑된 3종의 도핑 원소
    를 포함하는 리튬 이차 전지용 양극 활물질.
  2. 제1항에 있어서,
    상기 3종의 도핑 원소는 Nb, B 및 Zr인 리튬 이차 전지용 양극 활물질.
  3. 제2항에 있어서,
    상기 Nb의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.00001몰 내지 0.03몰 범위인 리튬 이차 전지용 양극 활물질.
  4. 제2항에 있어서,
    상기 B의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.001몰 내지 0.02몰인 리튬 이차 전지용 양극 활물질.
  5. 제2항에 있어서,
    상기 Zr의 도핑량은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰에 대하여, 0.001몰 내지 0.007몰인 리튬 이차 전지용 양극 활물질.
  6. 제2항에 있어서,
    상기 Nb 및 Zr의 도핑량은 하기 식 1의 관계를 만족하는 것인 리튬 이차 전지용 양극 활물질.
    [식 1]
    0.5 < [Zr]/[Nb] < 10
    (식 1에서, [Nb] 및 [Zr]은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰을 기준으로 한 각 원소의 도핑량을 의미함)
  7. 제2항에 있어서,
    상기 Nb 및 B의 도핑량은 하기 식 2의 관계를 만족하는 것인 리튬 이차 전지용 양극 활물질.
    [식 2]
    0.3 < [B]/[Nb] < 30
    (식 1에서, [Nb] 및 [B]은 니켈, 코발트, 망간, 알루미늄 및 도핑 원소의 총합 1몰을 기준으로 한 각 원소의 도핑량을 의미함)
  8. 제1항에 있어서,
    상기 양극 활물질은 하기 화학식 1로 표현되는 것인 리튬 이차 전지용 양극 활물질.
    [화학식 1]
    Lia[NixCoyMnzAlh]1-t(NbiZrjBk)tO2-pX2p
    (상기 화학식 1에서,
    X는, F, N, 및 P을 포함하는 군에서 선택된 하나 이상의 원소이며, Zr
    a는 0.8 ≤ a ≤ 1.3이고,
    t는 0.0061 ≤ t ≤ 0.057이고,
    0.6 ≤ x ≤ 0.95, 0 < y ≤ 0.2, 0 < z ≤ 0.2, 0.008 ≤ h ≤ 0.029, 0.0001 ≤ i ≤ 0.03, 0.001 ≤ j ≤ 0.007, 0.005) ≤ k ≤ 0.02, 0 ≤ p ≤ 0.02이다.
  9. 제8항에 있어서,
    상기 h는 0.005 ≤ h ≤ 0.025 범위인 리튬 이차 전지용 양극 활물질.
  10. 제1항에 있어서,
    상기 양극 활물질의 초기 확산계수는 7.30*10-9m2/sec 내지 8.10*10-9m2/sec 범위인 리튬 이차 전지용 양극 활물질.
  11. 제1항에 있어서,
    상기 금속 산화물 입자의 결정립 크기는 1,000Å 내지 1,560Å 범위인 리튬 이차 전지용 양극 활물질.
  12. 제1항에 있어서,
    상기 금속 산화물 입자의 (110)면에 대한 반치폭(FWHM) 값은 0.1901 내지 0.2017 범위인 리튬 이차 전지용 양극 활물질.
  13. 제1항에 있어서,
    상기 리튬 이차 전지용 양극 활물질은 X-선 회절 패턴 측정시,
    (104)면의 피크 강도에 대한 (003)면의 피크 강도비인 I(003)/I(104)는 1.2350 내지 1.2410 범위인 리튬 이차 전지용 양극 활물질.
  14. 제1항에 있어서,
    상기 금속 산화물 입자에서 니켈의 함량은,
    상기 니켈, 코발트, 망간, 및 알루미늄의 총합 1몰을 기준으로, 0.8몰 이상인 리튬 이차 전지용 양극 활물질.
  15. 제1항 내지 제14항 중 어느 한 항의 양극 활물질을 포함하는 양극;
    음극; 및
    비수 전해질
    을 포함하는 리튬 이차 전지.
PCT/KR2021/018829 2020-12-21 2021-12-13 양극 활물질 및 이를 포함하는 리튬 이차 전지 WO2022139289A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180086715.1A CN116615817A (zh) 2020-12-21 2021-12-13 正极活性材料及包含该正极活性材料的锂二次电池
EP21911356.0A EP4266422A1 (en) 2020-12-21 2021-12-13 Cathode active material, and lithium ion battery including same
JP2023538069A JP2024500892A (ja) 2020-12-21 2021-12-13 正極活物質およびそれを含むリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200179686A KR102580745B1 (ko) 2020-12-21 2020-12-21 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR10-2020-0179686 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022139289A1 true WO2022139289A1 (ko) 2022-06-30

Family

ID=82159535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018829 WO2022139289A1 (ko) 2020-12-21 2021-12-13 양극 활물질 및 이를 포함하는 리튬 이차 전지

Country Status (5)

Country Link
EP (1) EP4266422A1 (ko)
JP (1) JP2024500892A (ko)
KR (1) KR102580745B1 (ko)
CN (1) CN116615817A (ko)
WO (1) WO2022139289A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071714A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190078498A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20200070650A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
CN111430700A (zh) * 2019-10-10 2020-07-17 蜂巢能源科技有限公司 用于锂离子电池的四元正极材料及其制备方法和锂离子电池
CN111435743A (zh) * 2019-12-19 2020-07-21 蜂巢能源科技有限公司 四元正极材料、正极、电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028371A1 (ja) * 2003-09-16 2005-03-31 Seimi Chemical Co., Ltd. リチウム−ニッケル−コバルト−マンガン−フッ素含有複合酸化物ならびにその製造方法およびそれを用いたリチウム二次電池
JP4394068B2 (ja) 2005-12-26 2010-01-06 Agcセイミケミカル株式会社 リチウム二次電池用正極物質及びその製造方法
KR101647198B1 (ko) * 2014-09-30 2016-08-10 한국교통대학교산학협력단 잔류 리튬 이온을 제거시키기 위한 열처리방법, 그 열처리방법을 적용한 양극활물질의 제조방법, 그 제조방법으로 제조된 양극활물질 및 리튬이차전지
WO2017150522A1 (ja) 2016-02-29 2017-09-08 三井金属鉱業株式会社 リチウム二次電池用正極活物質
CN110462894B (zh) * 2018-03-07 2024-05-24 株式会社博迈立铖 锂离子二次电池用正极活性物质和锂离子二次电池
CN111384372B (zh) 2018-12-29 2021-03-23 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
CN111435738A (zh) 2019-12-18 2020-07-21 蜂巢能源科技有限公司 正极材料及其制备方法和应用
CN111435739B (zh) * 2019-12-26 2024-04-30 蜂巢能源科技有限公司 正极材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071714A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190078498A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20200070650A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
CN111430700A (zh) * 2019-10-10 2020-07-17 蜂巢能源科技有限公司 用于锂离子电池的四元正极材料及其制备方法和锂离子电池
CN111435743A (zh) * 2019-12-19 2020-07-21 蜂巢能源科技有限公司 四元正极材料、正极、电池

Also Published As

Publication number Publication date
KR102580745B1 (ko) 2023-09-19
EP4266422A1 (en) 2023-10-25
CN116615817A (zh) 2023-08-18
KR20220089244A (ko) 2022-06-28
JP2024500892A (ja) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021153916A1 (en) All-solid secondary battery and method of preparing same
WO2020153833A1 (ko) 도핑원소를 포함하는 리튬이차전지용 복합금속산화물, 이로부터 형성된 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
WO2019088805A2 (ko) 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2017095133A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2022139290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021006520A1 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
WO2019088807A2 (ko) 리튬 이차전지
WO2019088806A1 (ko) 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 양극재, 양극 및 리튬 이차전지
WO2020256473A1 (ko) 이종원소가 도핑된 표면부를 갖는 양극활물질, 및 그 제조 방법
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022139387A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2017175979A2 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2023048550A1 (ko) 리튬 이차전지용 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
WO2021125898A2 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022119158A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095152A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2022065855A1 (ko) 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
WO2017150893A1 (ko) 리튬 이차전지용 양극활물질 및 이의 제조 방법
WO2022139289A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2022139385A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538069

Country of ref document: JP

Ref document number: 202180086715.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911356

Country of ref document: EP

Effective date: 20230721