WO2015052860A1 - 薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法 - Google Patents

薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法 Download PDF

Info

Publication number
WO2015052860A1
WO2015052860A1 PCT/JP2014/003822 JP2014003822W WO2015052860A1 WO 2015052860 A1 WO2015052860 A1 WO 2015052860A1 JP 2014003822 W JP2014003822 W JP 2014003822W WO 2015052860 A1 WO2015052860 A1 WO 2015052860A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin layer
transfer sheet
fluororesin
layer transfer
thin
Prior art date
Application number
PCT/JP2014/003822
Other languages
English (en)
French (fr)
Inventor
裕太 黒木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020167011895A priority Critical patent/KR102239198B1/ko
Priority to CN201480055980.3A priority patent/CN105636784B/zh
Priority to EP14853026.4A priority patent/EP3056344B1/en
Priority to US15/027,955 priority patent/US10224551B2/en
Publication of WO2015052860A1 publication Critical patent/WO2015052860A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a thin layer transfer sheet used for transferring a thin layer made of a material such as a battery electrode material and a method for producing the thin layer transfer sheet. Moreover, this invention relates to the sheet
  • a membrane electrode assembly (MEA) is used as a main component.
  • the MEA has a configuration in which electrode catalyst layers are laminated on both surfaces of an electrolyte membrane.
  • the electrode catalyst layer may be laminated as a fuel electrode catalyst layer or an air electrode catalyst layer.
  • a configuration in which a diffusion layer is laminated on the surface of the electrode catalyst layer is also preferably used as the MEA.
  • a thermal transfer method is often used as a method of laminating an electrode catalyst layer on an electrolyte membrane.
  • Patent Document 1 from the viewpoint of work efficiency and the like, a belt-shaped electrolyte membrane and a catalyst layer-carrying film carrying a catalyst layer are laminated, and after passing between a pair of thermal transfer rolls heated to a predetermined temperature, A method is described in which only the catalyst layer-carrying film is peeled off to continuously transfer the catalyst layer to the electrolyte membrane.
  • Patent Document 2 describes a method for producing MEA, in which an electrode catalyst layer formed on a substrate that is a transfer sheet is bonded to a polymer electrolyte membrane by hot pressing (hot pressing), and then the substrate is peeled off. Has been. That is, the electrode catalyst layer is thermally transferred to the polymer electrolyte membrane.
  • the performance of the thin layer transfer sheet on which the electrode catalyst layer is laminated is one factor that determines the performance and production quality of the electrode catalyst layer.
  • the electrocatalyst layer for MEA is required to be further thinned in response to the recent demand for miniaturization of fuel cells, and the surface irregularity of the thin layer transfer sheet that has not been a problem so far. May be transferred to the electrode catalyst layer. That is, if a thin portion is formed in the electrode catalyst layer, an electrical short circuit may occur, which may cause a decrease in the performance of the MEA and further the fuel cell.
  • the electrode catalyst layer control technology is also becoming finer, faster and cheaper, so it does not deteriorate due to thermal transfer by thermocompression bonding, and it is less likely to cause blurring and elongation due to roll conveyance, and can be used repeatedly.
  • the present invention provides a thin layer transfer sheet that has small surface irregularities, can withstand heat and pressure, and is easy to handle even when fine processing is required for the thin layer to be transferred. Objective. It is another object of the present invention to provide a method for producing such a thin layer transfer sheet.
  • the present invention also provides an electrode catalyst layer-attached thin layer transfer sheet comprising an electrode catalyst layer for a fuel cell membrane electrode assembly laminated on such a thin layer transfer sheet. Furthermore, this invention provides the manufacturing method of a membrane electrode assembly using such a sheet for thin layer transfer.
  • the present invention A substrate made of a metal thin film or a heat-resistant resin thin film; A fluororesin layer provided on at least one side of the base material, A thin layer transfer sheet is provided.
  • the present invention provides the above thin layer transfer sheet, An electrode catalyst layer for a membrane electrode assembly of a fuel cell, laminated on the above thin layer transfer sheet, A thin layer transfer sheet with an electrode catalyst layer is provided.
  • the present invention Preparing a substrate made of a metal thin film or a heat-resistant resin thin film; A dip coating step of immersing the substrate in a fluororesin dispersion; After the dip coating step, a heating and drying step of heating the sheet made of the base material coated with the fluororesin so as to remove the dispersion dispersion medium, After the heat drying step, a sintering step of heating the sheet at a temperature equal to or higher than the melting point of the fluororesin, A method for producing a thin layer transfer sheet is provided.
  • the present invention A catalyst layer laminating step of laminating an electrode catalyst layer containing at least a polymer electrolyte and catalyst substance-supporting particles on the thin layer transfer sheet; An electrolyte membrane laminating step in which an electrolyte membrane is brought into contact with the electrode catalyst layer laminated on the thin layer transfer sheet; A thermocompression bonding step of thermocompression bonding the electrode catalyst layer and the electrolyte membrane; A peeling step of peeling the sheet for thin layer transfer from the electrode catalyst layer, A method for producing a membrane electrode assembly is provided.
  • Sectional drawing which shows an example of the sheet
  • Sectional drawing which shows another example of the sheet
  • Sectional drawing which shows an example of the sheet
  • Sectional drawing which shows an example of the membrane electrode assembly manufactured using the sheet
  • the present invention relates to a thin layer transfer sheet in which at least one surface of a base material composed of a metal thin film or a heat resistant resin thin film is coated with a fluororesin.
  • the fluororesin layer may be formed so that the fluororesin layer 2 is provided on one side of the substrate 1, or as shown in FIG. It may be formed so as to cover both sides and end portions of 1.
  • this thin layer transfer sheet is used with a thin transfer layer such as the electrode catalyst layer 3 provided on the surface of the fluororesin layer 2 side of the thin layer transfer sheet 10 as shown in FIG. 3, for example. can do.
  • the thin layer to be transferred by the thin layer transfer sheet is not particularly limited.
  • PEFC polymer electrolyte fuel cell
  • the thin layer transfer sheet 10 includes a substrate 1 and a fluororesin layer 2.
  • the base material 1 consists of a metal thin film or a heat resistant resin thin film.
  • the fluororesin layer 2 is provided on at least one side of the substrate 1. As shown in FIG. 2, it is preferable that coatings with a fluororesin are provided on both surfaces of the substrate 1. That is, the fluororesin layer 2 is preferably provided on both surfaces of the substrate 1. Thereby, a thin layer to be transferred can be laminated on both surfaces of the thin layer transfer sheet 10.
  • a thin layer to be transferred is laminated on one side of the thin layer transfer sheet 10 to transfer the thin layer
  • a thin layer to be transferred is laminated on the other side of the thin layer transfer sheet 10 to form a thin layer Can be transferred.
  • the fluororesin layer 2 is provided on both surfaces of the substrate 1, the reusability of the thin layer transfer sheet 10 can be enhanced.
  • the fluororesin layer 2 is connected to the portions of the fluororesin layer 2 provided on both surfaces of the substrate 1 as shown in FIG. It is preferable to be formed as described above. That is, it is desirable that the end portion extending in the thickness direction of the substrate 1 is covered with the fluororesin.
  • the fluororesin layer 2 covers at least two places on both sides of the base material 1 and an end portion of the base material 1 extending in the thickness direction of the base material 1.
  • “at least two portions of the end portion of the base material 1 extending in the thickness direction of the base material 1” means, for example, four pieces extending in the thickness direction of the base material 1 when the base material 1 is rectangular.
  • “at least two portions of the end portion of the base material 1 extending in the thickness direction of the base material 1” mean two locations on one end surface extending in the thickness direction of the base material 1. If the portions of the fluororesin layer 2 that are provided on both surfaces of the substrate 1 are connected to each other, the fluororesin layer 2 is difficult to peel from the substrate 1. Thereby, the adhesiveness of the base material 1 and the fluororesin layer 2 can be improved, and the durability of the thin layer transfer sheet 10 is improved. Moreover, since there are few parts which the base material 1 exposes in the sheet
  • the metal thin film as the substrate 1 is not particularly limited, but a stainless steel thin film or an aluminum thin film can be preferably used.
  • the substrate 1 is more preferably an aluminum thin film from the viewpoints of resistance to alteration during heating, good heat conduction, light specific gravity, and availability. If the thickness of the metal thin film as the base material 1 is too thick, roll conveyance becomes difficult, and the heat capacity of the base material 1 becomes large so that heat is generated during the manufacture of the membrane electrode assembly or the transfer of the thin layer to be transferred. However, since it takes time to conduct the thin layer transfer sheet 10, it is not preferable. Therefore, the thickness of the metal thin film as the substrate 1 is preferably 100 ⁇ m or less, and more preferably 75 ⁇ m or less.
  • the thickness of the metal thin film as the substrate 1 is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • a metal thin film can be preferably used as the substrate 1 because of its high thermal conductivity in thermocompression bonding during transfer.
  • the resin for the heat-resistant resin thin film as the substrate 1 is a resin that can withstand a temperature (for example, a temperature of 350 ° C. or higher) for heating and sintering the fluororesin that forms the fluororesin layer 2,
  • the resin is not particularly limited as long as the resin does not dissolve in the dispersion medium of the fluororesin solution.
  • examples of such a resin include polyimide, polyether ether ketone, polyether imide, polyphenylene sulfide, polybenzimidazole, and the like.
  • a thin film of a fluororesin itself shown later may be used as the substrate 1.
  • the resin for the heat-resistant resin thin film that is the substrate 1 is preferably polyimide, and particularly preferably aromatic polyimide. That is, the substrate 1 is preferably a polyimide thin film.
  • Various compounds can be used as the tetracarboxylic acid component and the diamine component of the polyimide, and the linear expansion coefficient of the polyimide can be adjusted by selecting the tetracarboxylic acid component and the diamine component.
  • the fluororesin that covers the substrate 1 to form the fluororesin layer 2 is not particularly limited as long as it has high heat resistance and weather resistance and is excellent in releasability from a thin layer to be transferred.
  • the fluororesin that forms the fluororesin layer 2 is made of polytetrafluoroethylene (PTFE), tetrafluoroethylene-based on the past record of the use of the fluororesin single film used as the thin layer transfer sheet 10.
  • PTFE polytetrafluoroethylene
  • a perfluoroalkyl vinyl ether copolymer (PFA) or a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) can be preferably used. Among them, it is preferable to use PTFE or PFA, and PTFE is particularly preferable.
  • the fluororesin is preferably mixed with a dispersion medium and used as a dispersion.
  • the dispersion medium is not particularly limited as long as it does not dissolve the fluororesin and can be dried, but water is preferably used from the viewpoint of handleability. At this time, the concentration in the dispersion of the fluororesin is about 30 to 70% by weight.
  • two or more kinds of fluororesins may be mixed, and various additives are added. May be. Examples of the additive include silicone surfactants and fluorine surfactants for improving hydrophilicity.
  • the fluororesin layer 2 can be formed by heat-sintering the fluororesin, but in particular, PTFE has a decrease in molecular weight during heating. Therefore, it is preferable to use PTFE having a number average molecular weight of 5 million or more as the fluororesin in the fluororesin dispersion.
  • the thickness of the fluororesin layer 2 is preferably about 5 to 50 ⁇ m per side of the thin layer transfer sheet 10. If the thickness of the fluororesin layer 2 is too thin, defective portions such as a lack of a thin film to be transferred are likely to occur. Therefore, the thickness of the fluororesin layer 2 is more preferably 10 ⁇ m or more. If the thickness of the fluororesin layer 2 is too thick, large irregularities are likely to occur in the thin layer to be transferred, and therefore the thickness of the fluororesin layer 2 is more preferably 40 ⁇ m or less.
  • the thickness of the thin layer transfer sheet 10 is about 40 to 200 ⁇ m, preferably 60 to 150 ⁇ m, more preferably 70 to 120 ⁇ m from the viewpoint of rigidity and ease of handling.
  • the method for producing the thin layer transfer sheet 10 is not particularly limited as long as it is a method in which a fluororesin is laminated on at least one flat portion of the substrate 1, and a known method can be used.
  • a fluororesin dispersion is coated on the substrate 1 using a coating device such as a bar coater, die coater, spray coater, or immersion bath, drying and sintering are performed, or a fluororesin thin film and a substrate 1 is a method of thermocompression bonding under the conditions of a pressure of about 300 to 700 kPa and a temperature of about 330 to 450 ° C., and a method of bonding the fluororesin thin film and the substrate 1 with an adhesive or the like.
  • a urethane-based or epoxy-based heat-resistant adhesive as an adhesive for bonding the fluororesin thin film and the substrate 1 together.
  • the fluororesin layer 2 is directly formed on the substrate 1 without using an adhesive or the like. That is, the fluororesin layer 2 is preferably formed by the fluororesin being in direct contact with the substrate 1. As a result, it is possible to obtain the thin layer transfer sheet 10 that is less likely to be deteriorated such that the unevenness on the surface becomes large even when it is repeatedly used by thermocompression.
  • the method for manufacturing the thin layer transfer sheet 10 includes, for example, a step of preparing the substrate 1, a dip coating step, a heat drying step, and a sintering step.
  • the dip coating step is a step of immersing the base material 1 in a dispersion of fluororesin.
  • the heat drying step is a step of heating the sheet made of the base material 1 coated with a fluororesin so as to remove the dispersion dispersion medium after the dip coating step.
  • a sintering process is a process of heating the sheet
  • the end surface of the substrate 1 is also made of fluororesin. Since it can coat
  • the covering of the end surface portion of the base material 1 with the fluororesin at this time may be partial as long as the fluororesin layers 2 covering the upper and lower surfaces of the flat portion of the base material 1 are connected.
  • Two or more of the end surface portions of the substrate 1 are preferably covered with a fluororesin, and the entire end surface portion of the substrate 1 is more preferably covered with a fluororesin.
  • the coating amount of the fluororesin at this time is determined by appropriately adjusting the solid content concentration in the dispersion of the fluororesin according to the required thickness of the fluororesin layer 2.
  • a method of peeling the protective tape after applying the dip coating process by sticking the protective tape on one side of the base material 1 may be used.
  • the fluororesin coating formed on the end surface portion of the substrate 1 may be removed by cutting or polishing as necessary.
  • the heating temperature in the heating and drying step may be appropriately determined according to the boiling point and amount of the dispersion medium, but is about 80 to 150 ° C. when water is used as the dispersion medium.
  • the sintering temperature is preferably 300 ° C. or higher, more preferably 330 ° C. or higher.
  • the sintering temperature is preferably 450 ° C. or lower, and more preferably 400 ° C. or lower.
  • the heating time in the sintering step may be appropriately determined according to the object to be sintered and the heating temperature, but is about 5 seconds to 30 minutes.
  • a plurality of fluororesin layers 2 are laminated by repeating a series of steps including a dip coating step, a heat drying step, and a sintering step twice or more.
  • a series of steps including a dip coating step, a heat drying step, and a sintering step twice or more.
  • the number of repetitions of the series of steps is about 2 to 5 times. If the number of repetitions is too large, the fluororesin layer becomes thick and the surface unevenness of the thin layer transfer sheet 10 becomes large, which is not preferable.
  • the thin layer transfer sheet 10 preferably has a tensile modulus of 60 MPa or more in both the MD direction (length direction) and the TD direction (width direction), more preferably 70 MPa or more. Thereby, it is possible to obtain the thin layer transfer sheet 10 having high durability and capable of stable running even during roll transport in continuous production.
  • the arithmetic average roughness Ra (JIS B 0601-1994) of the surface of the thin layer transfer sheet 10 is preferably 1.5 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 0.7 ⁇ m or less.
  • the arithmetic average roughness of the surface of the thin layer transfer sheet 10 in the MD direction and the TD direction of the thin layer transfer sheet 10 is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and 0.7 ⁇ m or less. Is more preferable.
  • An example of a product that can be manufactured using the thin layer transfer sheet 10 of the present invention is a membrane electrode assembly (MEA) of a polymer electrolyte fuel cell.
  • MEA membrane electrode assembly
  • the thin layer transfer sheet 10 can be suitably used. Next, a specific example of this membrane electrode assembly is shown.
  • the membrane electrode assembly is not limited to this, but is constituted by an electrolyte membrane such as a polymer electrolyte membrane and an electrode catalyst layer sandwiching the electrolyte membrane.
  • the electrode catalyst layer is a porous thin layer having pores having a diameter of 1 ⁇ m or less, and mainly contains catalyst substance-supporting particles and a polymer electrolyte.
  • a known polymer electrolyte membrane such as a fluorine-based polymer electrolyte membrane or a hydrocarbon-based polymer electrolyte membrane can be used.
  • Such a method of manufacturing a membrane electrode assembly includes, for example, a catalyst layer laminating step, an electrolyte membrane laminating step, a thermocompression bonding step, and a peeling step.
  • the catalyst layer laminating step is a step of laminating an electrode catalyst layer including at least a polymer electrolyte and catalyst substance-supporting particles on the thin layer transfer sheet 10.
  • the electrolyte membrane lamination step is a step of bringing the electrolyte membrane into contact with the electrode catalyst layer laminated on the thin layer transfer sheet 10.
  • the thermocompression bonding step is a step of thermocompression bonding the electrode catalyst layer and the electrolyte membrane.
  • the peeling step is a step of peeling the thin layer transfer sheet 10 from the electrode catalyst layer.
  • An example of a method for producing an electrode catalyst layer is shown.
  • a catalyst solution in which catalyst substance-supporting particles and a polymer electrolyte are dispersed in a solvent is applied to the surface formed of the fluororesin layer 2 of the thin layer transfer sheet 10 and heated at a temperature of about 30 to 180 ° C.
  • a laminate of the thin layer transfer sheet 10 and the electrode catalyst layer 3 is obtained.
  • This process is called a catalyst layer lamination process.
  • known methods such as a doctor blade method, a dipping method, a screen printing method, a roll coating method, and a spray method can be used.
  • the spray method is preferable because the electrode catalyst layer 3 having a uniform and good dispersibility can be obtained.
  • the thin layer transfer sheet 10 and the electrode catalyst layer 3 for the membrane electrode assembly of the fuel cell laminated on the thin layer transfer sheet 10 are used.
  • a sheet 11 is manufactured.
  • the electrode catalyst layer 3 includes at least a polymer electrolyte and catalyst substance-supporting particles.
  • thermocompression bonding step is performed in which the electrode catalyst layer 3 and the electrolyte membrane are bonded by a hot press or a method of passing a pair of hot rolls.
  • the thermocompression bonding temperature at this time is not particularly limited because it depends on the type of the electrolyte membrane, but is about 80 to 150 ° C.
  • a method may be used in which the electrode catalyst layer 3 is formed on both surfaces of the electrolyte membrane at one time by sandwiching both surfaces of the electrolyte membrane with the thin film transfer sheet with electrode catalyst layer 11 and passing a pair of heat rolls.
  • the thin film transfer sheet 10 is peeled off from the electrode catalyst layer 3 to obtain a membrane electrode assembly 5 as shown in FIG.
  • the peeling method at this time is not specifically limited, The method of peeling continuously and automatically using the roll which winds the thin layer transfer sheet 10 can be used preferably. This thin layer transfer sheet 10 can be used repeatedly.
  • FIG. 5 An example of a series of these steps is shown in FIG.
  • the surface on the electrode catalyst layer 3 side of the electrode catalyst layer-attached thin layer transfer sheet 11 fed from the feed roll 12 is brought into contact with the electrolyte membrane 4 and passed between the pair of heating rolls 14. Adhere with. Only the thin layer transfer sheet 10 is peeled off and wound up by the collecting roll 13, whereby the membrane electrode assembly 5b in which the electrode catalyst layer 3 is bonded to one surface of the electrolyte membrane 4 can be continuously manufactured.
  • Catalyst materials used for catalyst material-supported particles include platinum group elements such as platinum, palladium, ruthenium, iridium, rhodium and osmium, iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. These metals or their alloys, or oxides or double oxides of these metals can be used.
  • the particle size of these catalysts is preferably from 0.5 to 20 nm, more preferably from 1 to 5 nm, because if the particle size is too large, the activity of the catalyst will decrease, and if too small, the stability of the catalyst will decrease.
  • the catalyst is one or more metal particles selected from platinum, gold, palladium, rhodium, ruthenium, and iridium, the electrode reaction is excellent, and the electrode reaction is performed efficiently and stably. Is called. For this reason, a polymer electrolyte fuel cell provided with an electrode catalyst layer containing such a catalyst exhibits high power generation characteristics. Therefore, it is preferable to use such a catalyst.
  • Carbon particles are used as the particles carrying the catalyst substance.
  • the carbon particles are not particularly limited as long as they are in the form of fine particles and have conductivity and are not affected by the catalyst, but carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, or fullerene is used. it can. If the particle size of the carbon particles is too small, it is difficult to form an electron conduction path. If the particle size is too large, the gas diffusibility of the electrode catalyst layer is reduced or the utilization factor of the catalyst is reduced. It is preferably 10 to 100 nm.
  • the polymer electrolyte only needs to have proton conductivity, and examples thereof include a fluorine-based polymer electrolyte material and a hydrocarbon-based polymer electrolyte material.
  • a fluorine-based polymer electrolyte material for example, Nafion (registered trademark) manufactured by DuPont can be used.
  • a hydrocarbon polymer electrolyte electrolyte materials such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • the adhesion to the electrolyte membrane it is preferable to use the same material as the electrolyte membrane as the polymer electrolyte.
  • the solvent used in the catalyst solution is not particularly limited as long as it does not corrode the catalyst substance-supporting particles and the polymer electrolyte and can dissolve or disperse the polymer electrolyte in a highly fluid state.
  • Solvents used in the catalyst solution include, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentaanol.
  • Alcohols such as acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone, heptanone, cyclohexanone, methyl cyclohexanone, acetonyl acetone, diisobutyl ketone, etc .; ketone solvents; tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxy toluene, dibutyl ether, etc.
  • Ether solvents dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, diacetone alcohol, 1-methyl Solvent such as carboxymethyl-2-propanol.
  • the solvent used in the catalyst solution preferably includes at least a volatile organic solvent, and a polar solvent or the like is used. Moreover, you may use what mixed 2 or more types among these solvents as a solvent used for a catalyst solution.
  • the catalyst solution may contain a dispersant.
  • the dispersant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • sulfonic acid type surfactants such as alkylbenzene sulfonic acid, oil-soluble alkyl benzene sulfonic acid, ⁇ -olefin sulfonic acid, sodium alkyl benzene sulfonate, oil-soluble alkyl benzene sulfonate and ⁇ -olefin sulfonate are preferably used.
  • Example 1 An aqueous dispersion (solid content concentration 60% by weight, specific gravity 1.52) of a commercially available emulsion-polymerized PTFE resin (number average molecular weight: 1.71 ⁇ 10 7 (molecular weight determined from a differential scanning calorimeter)) was prepared.
  • a fluororesin dispersion was prepared by adding 67% by weight.
  • Example 2 A thin layer transfer sheet according to Example 2 was obtained in the same manner as in Example 1 except that a polyimide sheet (manufactured by Ube Industries, trade name: Upilex-75S) was used instead of the aluminum foil used in Example 1. Obtained.
  • the thickness of the thin layer transfer sheet according to Example 2 was 105 ⁇ m.
  • Comparative Example 1 As a thin layer transfer sheet according to Comparative Example 1, a PTFE resin sheet obtained by cutting a cylindrical PTFE resin block into a sheet by cutting: No. 900L-T (manufactured by Nitto Denko Corporation, thickness: 100 ⁇ m) was prepared.
  • Comparative Example 2 As a thin layer transfer sheet according to Comparative Example 1, a resin sheet made of PFA: NEOFLON AF-0050 (manufactured by Daikin Industries, Ltd., thickness: 50 ⁇ m) was prepared.
  • the arithmetic average roughness Ra of the surface of the thin layer transfer sheet of each example and each comparative example was determined in accordance with JIS B 0601-1994 using a surface roughness measuring machine Surf Test SV-2100 (manufactured by Mitutoyo Corporation). It was measured. The measurement conditions were a measurement speed of 2 mm / second, a measurement length of 40 mm, and a measurement section number of 5 to determine the surface roughness Ra in the MD direction (length direction) and TD direction (width direction).
  • the tensile strength (tensile modulus) of the thin layer transfer sheet of each example and each comparative example was measured using a tensile tester AG-1 (manufactured by Shimadzu Corporation). The measurement conditions were as follows: sample size: dumbbell No. 3 punched product, tensile speed: 200 mm / min, and the tensile strength (tensile modulus) in the MD direction (length direction) and TD direction (width direction) was determined.
  • the thin layer transfer sheets according to Example 1 and Example 2 were compared with the thin layer transfer sheets according to Comparative Example 1 and Comparative Example 2, the thin layers according to Example 1 and Example 2 were compared.
  • the surface of the layer transfer sheet has an arithmetic average roughness that is smaller than the arithmetic average roughness Ra of the surface of the thin layer transfer sheet according to Comparative Example 1 and Comparative Example 2 in at least one of the MD direction and the TD direction.
  • the tensile strength of the thin layer transfer sheets according to Example 1 and Example 2 was stronger than the tensile strength of the thin layer transfer sheets according to Comparative Example 1 and Comparative Example 2 in the MD direction and the TD direction.
  • the arithmetic average roughness Ra of the surface of the thin layer transfer sheet is preferably 1 ⁇ m or less in both the MD direction and the TD direction, and more preferably 0.75 ⁇ m or less.
  • the arithmetic average roughness Ra of the surface can be remarkably reduced. For this reason, defects such as an electrical short circuit are less likely to occur due to a decrease in surface irregularities in the transferred thin film.
  • the tensile strength of the thin layer transfer sheet of the present invention is preferably 60 MPa or more in both the MD direction and the TD direction, and more preferably 70 MPa or more.
  • the tensile strength can be increased, deformation and deterioration of the thin layer transfer sheet due to repeated roll conveyance and thermal pressing can be suppressed.
  • fine blurring (swing) during sheet conveyance can be suppressed.
  • the thin layer transfer sheet of the present invention can be preferably used for, for example, transfer of an electrode catalyst layer for MEA transferred by thermocompression bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、金属薄膜または耐熱性樹脂薄膜からなる基材(1)と、基材(1)の少なくとも片面に設けられたフッ素樹脂層(2)と、を備えた、薄層転写用シート(10)を提供する。これにより、表面の凹凸が少なく、加熱圧着による繰り返しの熱転写にも劣化しにくい薄層転写用シートを提供できる。

Description

薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法
 本発明は、電池用電極材料などの材料からなる薄層を転写するために用いられる薄層転写用シート及びその薄層転写用シートの製造方法に関する。また、本発明は、その薄層転写用シートに積層された電極触媒層を備えた電極触媒層付薄層転写用シートに関する。さらに、本発明は、その薄層転写用シートを用いた、膜電極接合体の製造方法に関する。
 例えば固体高分子型燃料電池では、その主要な構成要素として膜電極接合体(MEA:Membrane Electrode Assembly)が用いられる。MEAは、電解質膜の両面に電極触媒層が積層された構成を有する。この電極触媒層は、例えば、燃料極用の触媒層または空気極用の触媒層として積層される場合もある。さらに、MEAとして、電極触媒層の表面に拡散層が積層された構成も好ましく用いられる。このようなMEAにおいて、電解質膜に電極触媒層を積層する方法としては熱転写法が多く用いられている。特許文献1には、作業効率等の観点から、帯状の電解質膜と、触媒層を担持した触媒層担持フィルムとを積層状態とし、所定温度に加熱した一対の熱転写ロール間を通過させた後、触媒層担持フィルムのみを剥離することで、触媒層を電解質膜に連続的に熱転写する方法が記載されている。特許文献2には、転写シートである基材上に形成された電極触媒層を高分子電解質膜にホットプレス(熱プレス)によって接合し、その後基材が剥離される、MEAの製造方法が記載されている。すなわち、高分子電解質膜に電極触媒層が熱転写されている。
特開2008-103251号公報 特開2013-073892号公報
 前記のように電解質膜に電極触媒層を熱転写する方法では、電極触媒層が積層される薄層転写用シートの性能が電極触媒層の性能や生産品質を決定する一つの要素となる。特にMEA用の電極触媒層には、近年の燃料電池の小型化の要請に伴ってさらなる薄層化が求められており、これまで問題にならなかったような薄層転写用シートの表面の凹凸が電極触媒層に転写されてしまうことが問題となる場合がある。つまり、電極触媒層に厚さが薄い部分ができてしまうと電気的な短絡が生じる場合があり、MEA、さらには燃料電池の性能を低下させる原因となる場合がある。また、電極触媒層の制御技術にも微細化、高速化および低コスト化が進んでいるため、加熱圧着による熱転写によって劣化せず、さらにロール搬送によってブレや伸びが生じにくいとともに、繰り返し使用可能な薄層転写用シートが求められている。薄層転写用シートが電極触媒層以外の薄層を転写する場合にも、薄層転写用シートが同様の要求を満たす必要がある場合がある。
 そこで本発明は、表面の凹凸が小さく、加熱および加圧に耐えるとともに、転写されるべき薄層に微細な加工が要求されるときにも取り扱いのしやすい薄層転写用シートを提供することを目的とする。また、本発明は、このような薄層転写用シートの製造方法を提供することを目的とする。また、本発明は、このような薄層転写用シートに積層された、燃料電池の膜電極接合体用の電極触媒層を備えた、電極触媒層付薄層転写用シートを提供する。さらに、本発明は、このような薄層転写用シートを用いた、膜電極接合体の製造方法を提供する。
 本発明は、
 金属薄膜または耐熱性樹脂薄膜からなる基材と、
 前記基材の少なくとも片面に設けられたフッ素樹脂層と、を備えた、
 薄層転写用シートを提供する。
 本発明は、上記の薄層転写用シートと、
 上記の薄層転写用シートに積層された、燃料電池の膜電極接合体用の電極触媒層と、を備えた、
 電極触媒層付薄層転写用シートを提供する。
 本発明は、
 金属薄膜または耐熱性樹脂薄膜からなる基材を準備する工程と、
 前記基材をフッ素樹脂のディスパージョン中に浸漬する浸漬塗布工程と、
 前記浸漬塗布工程後に、前記ディスパージョンの分散媒を除去するように前記フッ素樹脂で被覆された前記基材からなるシートを加熱する加熱乾燥工程と、
 前記加熱乾燥工程後に、前記シートを前記フッ素樹脂の融点以上の温度で加熱する焼結工程と、を備えた、
 薄層転写用シートの製造方法を提供する。
 本発明は、
 上記の薄層転写用シートに、少なくとも高分子電解質と触媒物質担持粒子とを含む電極触媒層を積層する触媒層積層工程と、
 前記薄層転写用シートに積層された前記電極触媒層に電解質膜を接触させる電解質膜積層工程と、
 前記電極触媒層と前記電解質膜とを加熱圧着する加熱圧着工程と、
 前記薄層転写用シートを前記電極触媒層から剥離する剥離工程と、を備えた、
 膜電極接合体の製造方法を提供する。
本発明の薄層転写用シートの一例を示す断面図 本発明の薄層転写用シートの別の一例を示す断面図 本発明の電極触媒層付薄層転写用シートの一例を示す断面図 本発明の薄層転写用シートを用いて製造される膜電極接合体の一例を示す断面図 本発明の膜電極接合体の製造方法の一部の工程を示す図
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
 本発明は、金属薄膜または耐熱性樹脂薄膜からなる基材の少なくとも片面をフッ素樹脂で被覆した薄層転写用シートに関する。このフッ素樹脂層は、図1に示すように、基材1の片面にフッ素樹脂層2が設けられるように形成されていてもよいし、図2に示すように、フッ素樹脂層2が基材1の両面および端部を被覆するように形成されていてもよい。また、この薄層転写用シートは、例えば図3に示すように、薄層転写用シート10のフッ素樹脂層2側の面に、例えば電極触媒層3のような転写用薄層を設けて使用することができる。この薄層転写用シートによって転写されるべき薄層は、特に限定されるものではないが、例えば、図4に示すような固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)に用いられる膜電極接合体(MEA)5における高分子電解質膜4に積層されるべき電極触媒層3である。
 図1及び図2に示すように、薄層転写用シート10は、基材1と、フッ素樹脂層2とを備える。基材1は、金属薄膜または耐熱性樹脂薄膜からなる。フッ素樹脂層2は、基材1の少なくとも片面に設けられている。図2に示すように、フッ素樹脂による被覆が基材1の両面に設けられていることが好ましい。すなわち、フッ素樹脂層2は、基材1の両面に設けられていることが好ましい。これにより、薄層転写用シート10の両面に転写すべき薄層を積層できる。例えば、薄層転写用シート10の一方面に転写すべき薄層を積層して薄層を転写した後、薄層転写用シート10の他方の面に転写すべき薄層を積層して薄層を転写できる。このように、フッ素樹脂層2が基材1の両面に設けられていると、薄層転写用シート10の再利用性を高めることができる。
 フッ素樹脂層2が基材1の両面に設けられている場合、フッ素樹脂層2は、図2に示すように、フッ素樹脂層2のうち基材1の両面に設けられている部分が互いに接続されるように形成されていることが好ましい。すなわち、基材1の厚み方向に延びる端部がフッ素樹脂によって被覆されていることが望ましい。例えば、フッ素樹脂層2が、基材1の両面と、基材1の厚み方向に延びる基材1の端部の少なくとも2か所を被覆していることが好ましい。ここで、「基材1の厚み方向に延びる基材1の端部の少なくとも2か所」とは、例えば、基材1が矩形状である場合に、基材1の厚み方向に延びる4つの端面の2つ以上の端面を意味する。また、場合によっては、「基材1の厚み方向に延びる基材1の端部の少なくとも2か所」とは、基材1の厚み方向に延びる1つの端面における2か所を意味する。フッ素樹脂層2のうち基材1の両面に設けられている部分が互いに接続されていると、フッ素樹脂層2が基材1から剥離しにくくなる。これにより、基材1とフッ素樹脂層2との密着性を高めることができ、薄層転写用シート10の耐久性が向上する。また、薄層転写用シート10において、基材1が露出する部分が少ないので、基材1から生じる屑が薄層転写用シート10を用いて製造される製品に混入することを防止できる。例えば、基材1が金属薄膜であると、基材1から金属粉が生じやすいので、基材1の両面及び端面がフッ素樹脂で被覆されていることが好ましい。
 基材1としての金属薄膜は、特に限定されるものではないが、ステンレス鋼薄膜またはアルミニウム薄膜を好ましく用いることができる。特に加熱時の変質のしにくさ、熱伝導の良さ、比重の軽さおよび入手の容易さ等の観点からは、基材1は、アルミニウム薄膜であることがより好ましい。基材1としての金属薄膜の厚さが厚すぎると、ロール搬送が困難になるとともに、基材1の熱容量が大きくなって膜電極接合体の製造時や転写されるべき薄層の転写時に熱が薄層転写用シート10を伝導するのに時間がかかるので、好ましくない。そのため、基材1としての金属薄膜の厚さは、100μm以下が好ましく、75μm以下がより好ましい。一方、基材1としての金属薄膜の厚さが薄すぎると、膜電極接合体の製造時に薄層転写用シート10にシワが入って転写されるべき薄層に凹凸が生じやすく、転写されるべき薄層の微細な加工に必要な薄層転写用シート10の引張弾性率を得にくい。このため、基材1としての金属薄膜の厚さは、30μm以上が好ましく、50μm以上がより好ましい。また、転写時の加熱圧着における熱伝導率が高いことから、基材1として金属薄膜を好ましく用いることができる。
 基材1としての耐熱性樹脂薄膜のための樹脂は、フッ素樹脂層2を形成するフッ素樹脂を加熱焼結するための温度(例えば350℃以上の温度)に耐えることのできる樹脂であって、フッ素樹脂の溶液の分散媒に溶解しない樹脂であれば特に限定されない。このような樹脂としては、例えば、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリフェニレンサルファイド、ポリベンゾイミダゾール等が挙げられる。さらには、基材1として、後に示すフッ素樹脂自体の薄膜を用いても良い。中でも、耐熱性及び安定性の点から、基材1である耐熱性樹脂薄膜のための樹脂としては、ポリイミドが好ましく、特に芳香族ポリイミドが好ましい。すなわち、基材1は、ポリイミド薄膜であることが好ましい。このポリイミドのテトラカルボン酸成分およびジアミン成分としては種々の化合物を用いることができ、テトラカルボン酸成分およびジアミン成分の選択によって、ポリイミドの線膨張係数を調整することができる。
 基材1を被覆してフッ素樹脂層2を形成するフッ素樹脂は、耐熱性や耐侯性が高く、さらに転写されるべき薄層との離型性に優れたものであれば特に限定されない。従来、薄層転写用シート10として使用されているフッ素樹脂単体の膜の使用実績等を踏まえて、フッ素樹脂層2を形成するフッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)またはテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)を好ましく用いることができる。中でもPTFE又はPFAを用いることが好ましく、特にPTFEが好ましい。
 フッ素樹脂は分散媒に混合してディスパージョンとして用いることが好ましい。分散媒としては、フッ素樹脂を溶解せず、乾燥が可能なものである限り特に限定されるものではないが、取り扱い性等の点から水を用いることが好ましい。このとき、フッ素樹脂のディスパージョン中の濃度としては30~70重量%程度であり、フッ素樹脂のディスパージョンにおいて、2種類以上のフッ素樹脂が混合されていてもよく、さらに各種添加剤が加えられていても良い。添加剤としては例えば、親水性向上のためのシリコーン系界面活性剤やフッ素系界面活性剤が挙げられる。
 フッ素樹脂を加熱焼結することでフッ素樹脂層2を形成することができるが、特にPTFEは加熱の際に分子量の低下が生じることが分かっている。そのため、フッ素樹脂のディスパージョン中のフッ素樹脂として、数平均分子量が500万以上のPTFEを用いることが好ましい。
 フッ素樹脂層2の厚さとしては薄層転写用シート10の片面につき5~50μm程度が好ましい。フッ素樹脂層2の厚さが薄すぎると転写されるべき薄膜の欠落等の欠陥部分が生じやすくなるため、フッ素樹脂層2の厚さは10μm以上がより好ましい。フッ素樹脂層2の厚さが厚すぎると転写されるべき薄層に大きな凹凸が生じやすくなるため、フッ素樹脂層2の厚さは40μm以下がより好ましい。
 薄層転写用シート10の厚さは、40~200μm程度であって、剛性及び取扱いやすさの点から、60~150μmが好ましく、70~120μmがより好ましい。
 薄層転写用シート10の製造方法としては、基材1の少なくとも片面の平面部分にフッ素樹脂が積層される方法であれば特に限定されるものでなく、公知の方法を用いることができる。例えば、フッ素樹脂のディスパージョンを基材1上にバーコーター、ダイコーター、スプレーコーター、浸漬浴等の塗布装置を用いて塗布した後、乾燥および焼結を行う方法や、フッ素樹脂薄膜と基材1を300~700kPa程度の圧力及び330~450℃程度の温度の条件で加熱圧着する方法、さらにはフッ素樹脂薄膜と基材1とを接着剤等を介して貼り合わせる方法などが挙げられる。ここで、フッ素樹脂薄膜と基材1とを貼り合わせるための接着剤としては、ウレタン系又はエポキシ系の耐熱性接着剤を用いることが好ましい。
 特に本発明では、接着剤等を用いることなく、直接基材1上にフッ素樹脂層2を密着形成することが好ましい。すなわち、フッ素樹脂層2は、フッ素樹脂が基材1に直接密着することによって形成されていることが好ましい。これにより加熱圧着等で繰り返し使用しても表面の凹凸が大きくなるといった劣化が生じにくい薄層転写用シート10を得ることができる。また、フッ素樹脂のディスパージョンを基材1上に塗布後、乾燥及び焼結することで基材1にフッ素樹脂を密着させる方法は、薄層転写用シート10の表面粗さRa(日本工業規格(JIS) B 0601-1994)を容易に1μm以下にすることができるため、特に好ましい。この場合、薄層転写用シート10の製造方法は、例えば、基材1を準備する工程と、浸漬塗布工程と、加熱乾燥工程と、焼結工程と、を備えている。ここで、浸漬塗布工程は、基材1をフッ素樹脂のディスパージョン中に浸漬する工程である。加熱乾燥工程は、浸漬塗布工程後に、ディスパージョンの分散媒を除去するようにフッ素樹脂で被覆された基材1からなるシートを加熱する工程である。焼結工程は、加熱乾燥工程後に、フッ素樹脂で被覆された基材1からなるシートをフッ素樹脂の融点以上の温度で加熱する工程である。
 基材1をフッ素樹脂のディスパージョン中に浸漬して基材1の両面に同時に塗布するように浸漬塗布工程を行った後、乾燥及び焼結する場合、基材1の端面部もフッ素樹脂で被覆することができるため、フッ素樹脂層2と基材層1との間の密着性がより高い薄層転写用シート10を得ることができる。このときのフッ素樹脂による基材1の端面部の被覆は、基材1の平面部の上下両面を被覆しているフッ素樹脂層2を接続している限り部分的なものであってもよい。基材1の端面部の2か所以上がフッ素樹脂によって被覆されていることが好ましく、基材1の端面部の全体がフッ素樹脂によって被覆されていることがより好ましい。このときのフッ素樹脂の塗布量は、必要とするフッ素樹脂層2の厚さに応じてフッ素樹脂のディスパージョンにおける固形分濃度等を適宜調整することによって、定まる。基材1の片面のみにフッ素樹脂を被覆する場合には、基材1の片面に保護テープを貼着して浸漬塗布工程を行った後、保護テープを剥離する方法を用いてもよい。また、基材1の端面部に形成されたフッ素樹脂被覆は必要に応じて切削や研磨により取り除かれてもよい。
 フッ素樹脂のディスパージョンを塗布した後は分散媒を蒸発させるための加熱乾燥工程を行う。加熱乾燥工程における加熱温度は分散媒の沸点や量に応じて適宜決定すればよいが、分散媒に水を用いた場合には80~150℃程度である。
 加熱乾燥工程の後、焼結工程を行うが、加熱乾燥工程を省略し、焼結工程において分散媒を蒸発させても良い。焼結工程ではフッ素樹脂成分の融点以上にフッ素樹脂を加熱する必要があるため、焼結温度は、300℃以上が好ましく、330℃以上がより好ましい。一方で、焼結温度が高すぎるとフッ素樹脂の熱劣化や分子量の低減が生じやすくなるため、焼結温度は、450℃以下が好ましく、400℃以下がより好ましい。焼結工程における加熱時間は焼結する対象物と加熱温度に応じて適宜決定すればよいが、5秒~30分間程度である。
 浸漬塗布工程、加熱乾燥工程および焼結工程からなる一連の工程が2回以上繰り返されて複数のフッ素樹脂層2が積層されることが好ましい。この方法により、薄層転写用シート10の表面の凹凸を低減できるとともに、より強固なフッ素樹脂層2を得ることができる。その一連の工程の繰り返し回数としては2~5回程度である。この繰り返し回数が多すぎるとフッ素樹脂層が厚くなり、薄層転写用シート10の表面の凹凸が大きくなってしまうため好ましくない。
 薄層転写用シート10は、好ましくは引張弾性率がMD方向(長さ方向)およびTD方向(幅方向)ともに60MPa以上であることが好ましく、70MPa以上であることがより好ましい。これにより、耐久性が高く、連続製造のロール搬送時にも安定走行が可能な薄層転写用シート10を得ることができる。
 また、薄層転写用シート10の表面の算術平均粗さRa(JIS B 0601-1994)は、1.5μm以下が好ましく、1μm以下がより好ましく、0.7μm以下がさらに好ましい。これにより、精密且つ高性能な薄層の転写が可能となる。ここで、薄層転写用シート10のMD方向及びTD方向における薄層転写用シート10の表面の算術平均粗さは、1.5μm以下が好ましく、1.0μm以下がより好ましく、0.7μm以下がさらに好ましい。
 本発明の薄層転写用シート10を利用して製造可能な製品の一例としては、固体高分子型燃料電池の膜電極接合体(MEA)が挙げられる。この膜電極接合体の電極触媒層を転写形成する用途において、薄層転写用シート10を好適に用いることができる。次にこの膜電極接合体の具体例を示す。
 膜電極接合体は、これに限定されるものではないが、高分子電解質膜等の電解質膜と、この電解質膜を挟持する電極触媒層により構成される。電極触媒層は直径1μm以下の細孔を有する多孔質薄層であって、主に触媒物質担持粒子と高分子電解質とを含有する。電解質膜としての高分子電解質膜には、フッ素系高分子電解質膜や炭化水素系高分子電解質膜等の公知の高分子電解質膜を用いることができる。
 このような膜電極接合体の製造方法は、例えば、触媒層積層工程と、電解質膜積層工程と、加熱圧着工程と、剥離工程と、を備える。触媒層積層工程は、薄層転写用シート10に、少なくとも高分子電解質と触媒物質担持粒子とを含む電極触媒層を積層する工程である。電解質膜積層工程は、薄層転写用シート10に積層された電極触媒層に電解質膜を接触させる工程である。加熱圧着工程は、電極触媒層と電解質膜とを加熱圧着する工程である。剥離工程は、薄層転写用シート10を電極触媒層から剥離する工程である。
 電極触媒層の製造方法の一例を示す。まず薄層転写用シート10のフッ素樹脂層2で形成された面に、触媒物質担持粒子と高分子電解質とを溶媒中に分散させた触媒溶液を塗布し、30~180℃程度の温度で加熱乾燥して、図3に示すように、薄層転写用シート10と電極触媒層3の積層体(電極触媒層付薄層転写用シート11)を得る。この工程を触媒層積層工程という。触媒溶液の塗布方法としては、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などの公知の方法を用いることができる。中でもスプレー法が均一且つ分散性の良い電極触媒層3が得られるため好ましい。このようにして、薄層転写用シート10と、薄層転写用シート10に積層された、燃料電池の膜電極接合体用の電極触媒層3とを備えた、電極触媒層付薄層転写用シート11が製造される。電極触媒層3は、上記の通り、少なくとも高分子電解質と触媒物質担持粒子とを含む。
 次に、電解質膜積層工程として、この積層体の電極触媒層3と電解質膜を密着させる。その後、熱プレスや一対の熱ロールを通過させる方法で電極触媒層3と電解質膜を接合する加熱圧着工程が行われる。このときの加熱圧着の温度は、電解質膜の種類にもよるため特に限定されるものではないが、80~150℃程度である。電解質膜の両面を電極触媒層付薄層転写用シート11で挟持して一対の熱ロールを通すことにより電解質膜の両面に電極触媒層3を一度に形成する方法を用いてもよい。
 その後、剥離工程として、薄層転写用シート10を電極触媒層3から剥離することで、図4に示すような、膜電極接合体5が得られる。このときの剥離方法は特に限定されるものではないが、薄層転写用シート10を巻き取るロールを用いて連続的且つ自動的に剥離する方法を好ましく用いることができる。この薄層転写用シート10は、繰返し利用することができる。
 これらの一連の工程の一例を図5に示す。図5に示すように、繰出しロール12から繰り出された電極触媒層付薄層転写用シート11の電極触媒層3側の面を電解質膜4と接触させて一対の加熱ロール14間を通過させることで密着させる。薄層転写用シート10のみを剥離し、回収ロール13で巻き取ることで、電解質膜4の片面に電極触媒層3が接合された膜電極接合体5bを連続的に製造することができる。
 触媒物質担持粒子に用いられる触媒物質としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウム等の白金族元素、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属若しくはこれらの合金、またはこれらの金属の酸化物若しくは複酸化物等が使用できる。また、これらの触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5~20nmが好ましく、1~5nmがより好ましい。特に触媒が、白金、金、パラジウム、ロジウム、ルテニウム、および、イリジウムから選ばれた1種または2種以上の金属の粒子であると、電極反応性に優れ、電極反応が効率よく安定して行われる。このため、このような触媒を含む電極触媒層を備えた固体高分子型燃料電池が高い発電特性を示す。従って、このような触媒を用いることが好ましい。
 触媒物質を担持する粒子としては、カーボン粒子が用いられる。カーボン粒子としては、微粒子状で導電性を有し、触媒におかされないものであれば特に限定されるものではないが、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、またはフラーレンを使用できる。カーボン粒子の粒径は、小さすぎると電子伝導パスが形成されにくくなり、大きすぎると電極触媒層のガス拡散性が低下したり、触媒の利用率が低下したりするので、10~1000nm程度が好ましく、より好ましくは10~100nmである。
 高分子電解質としては、プロトン伝導性を有するものであればよく、フッ素系高分子電解質材料や炭化水素系高分子電解質材料が挙げられる。フッ素系高分子電解質としては、例えばデュポン社製Nafion(登録商標)などを用いることができる。炭化水素系高分子電解質としては、例えばスルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質材料を用いることができる。特に電解質膜との密着性を考慮すると、高分子電解質としては電解質膜と同じ材料を用いることが好ましい。
 触媒溶液に用いられる溶媒としては、触媒物質担持粒子や高分子電解質を侵食することがなく、高分子電解質を流動性の高い状態で溶解または微細ゲルとして分散できるものあれば特に限定されない。触媒溶液に用いられる溶媒としては、例えば、メタノール、エタノール、1-プロパノ―ル、2-プロパノ―ル、1-ブタノ-ル、2-ブタノ-ル、イソブチルアルコール、tert-ブチルアルコール、ペンタノ-ルなどのアルコール;アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン系溶剤;テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテルなどのエーテル系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1-メトキシ-2-プロパノールなどの溶剤が挙げられる。触媒溶液に用いられる溶媒には、特に揮発性の有機溶媒が少なくとも含まれることが望ましく、極性溶剤などが使用される。また、触媒溶液に用いられる溶媒として、これらの溶剤のうち二種以上を混合させたものを使用してもよい。
 触媒物質担持粒子を分散させるためには、触媒溶液に分散剤が含まれていてもよい。この分散剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などを挙げることができる。中でもアルキルベンゼンスルホン酸、油溶性アルキルベンゼンスルホン酸、α-オレフィンスルホン酸、アルキルベンゼンスルホン酸ナトリウム、油溶性アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩などのスルホン酸型の界面活性剤が好ましく用いられる。
 以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (実施例1)
 市販の乳化重合PTFE樹脂(数平均分子量:1.71×107(示差走査熱量計より求めた分子量))の水性分散物(固形分濃度60重量%、比重1.52)を準備し、この水性分散物に、前記PTFE樹脂の固形分に対してフッ素系界面活性剤(CF3(CF27CH2CH2-(OCH2CH2OH:m=3~5)を0.67重量%添加することでフッ素樹脂ディスパージョンを調製した。このフッ素樹脂ディスパージョン中にアルミニウム箔(三菱アルミニウム(株)製:厚さ60μm)を0.7m/分でロール搬送しながら浸漬し、その後、100℃で乾燥し、350℃で焼結を行った。さらにもう1度、このアルミニウム箔を含むシートを1回目の浸漬と同一の条件で前記フッ素樹脂ディスパージョンに浸漬し、1回目の乾燥及び焼結と同一の条件で乾燥、焼結を行い、浸漬工程、乾燥工程、及び焼結工程からなる一連の工程を2回繰り返すことでアルミニウム箔をフッ素樹脂で被覆したシート(厚さ90μm)を得た。このようにして、実施例1に係る薄層転写用シートを得た。
 (実施例2)
 実施例1で用いたアルミニウム箔の代わりにポリイミドシート(宇部興産社製、商品名:ユーピレックス-75S)を用いた以外は、実施例1と同様にして実施例2に係る薄層転写用シートを得た。実施例2に係る薄層転写用シートの厚さは105μmであった。
 (比較例1)
 比較例1に係る薄層転写用シートとして、円柱状のPTFE樹脂のブロックを切削によりシート化したPTFE樹脂シート:No.900L-T(日東電工社製、厚さ:100μm)を準備した。
 (比較例2)
 比較例1に係る薄層転写用シートとして、PFAからなる樹脂シート:ネオフロンAF-0050(ダイキン工業社製、厚さ:50μm)を準備した。
 上記の実施例及び比較例の薄層転写用シートについて以下の評価を行った。その結果を表1に示す。
 (算術平均粗さRaの測定)
 各実施例及び各比較例の薄層転写用シートの表面の算術平均粗さRaを、表面粗さ測定機サーフテストSV-2100(ミツトヨ社製)を用いて、JIS B 0601-1994準拠して測定した。測定条件は測定速度2mm/秒、測定長さ40mm、測定区間数5で測定を行い、MD方向(長さ方向)とTD方向(幅方向)での表面粗さRaを求めた。
(引張強度測定)
 各実施例及び各比較例の薄層転写用シートの引張強度(引張弾性率)を引張試験機AG-1(島津製作所社製)を用いて測定した。測定条件はサンプルサイズ:ダンベル3号打ち抜き品、引張速度:200mm/分で測定を行い、MD方向(長さ方向)とTD方向(幅方向)の引張強度(引張弾性率)を求めた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1及び実施例2に係る薄層転写用シートを比較例1及び比較例2に係る薄層転写用シートと比較すると、実施例1及び実施例2に係る薄層転写用シートの表面は、MD方向及びTD方向の少なくともいずれかの方向において比較例1及び比較例2に係る薄層転写用シートの表面の算術平均粗さRaよりも小さい算術平均粗さを有していた。実施例1及び実施例2に係る薄層転写用シートの引張強度は、MD方向及びTD方向において、比較例1及び比較例2に係る薄層転写用シートの引張強度より強かった。
 薄層転写用シートの表面の算術平均粗さRaはMD方向及びTD方向のいずれにおいても1μm以下であることが好ましく、0.75μm以下であることがより好ましい。実施例1及び実施例2に係る薄層転写用シートではその表面の算術平均粗さRaを著しく低くすることができる。このため、転写された薄膜における表面の凹凸が減少することで電気的短絡等の不具合が生じにくくなる。
 さらに、本発明の薄層転写用シートの前記引張強度は、MD方向及びTD方向のいずれにおいても60MPa以上であることが好ましく、70MPa以上であることがより好ましい。実施例1及び実施例2に係る薄層転写用シートでは、この引張強度を高くすることができているため、ロール搬送や熱加圧の繰り返しによる薄層転写用シートの変形や劣化が抑えられるとともに、シート搬送時の微細なブレ(揺れ)も抑えることができる。
 本発明の薄層転写用シートは、例えば、加熱圧着により転写される、MEA用電極触媒層の転写などに好ましく用いることができる。

Claims (14)

  1.  金属薄膜または耐熱性樹脂薄膜からなる基材と、
     前記基材の少なくとも片面に設けられたフッ素樹脂層と、を備えた、
     薄層転写用シート。
  2.  前記フッ素樹脂層は、前記基材の両面に設けられている、請求項1に記載の薄層転写用シート。
  3.  前記フッ素樹脂層は、前記フッ素樹脂層のうち前記基材の両面に設けられている部分が互いに接続されるように形成されている、請求項2に記載の薄層転写用シート。
  4.  前記基材は、アルミニウム薄膜またはステンレス鋼薄膜である、請求項1に記載の薄層転写用シート。
  5.  前記基材は、ポリイミド薄膜である、請求項1に記載の薄層転写用シート。
  6.  前記フッ素樹脂層は、ポリテトラフルオロエチレンまたはテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体であるフッ素樹脂によって形成されている、請求項1に記載の薄層転写用シート。
  7.  前記フッ素樹脂層は、フッ素樹脂が前記基材に直接密着することによって形成されている、請求項1に記載の薄層転写用シート。
  8.  前記フッ素樹脂層によって形成された前記薄層転写用シートの表面の算術平均粗さRa(JIS B 0601-1994)が1μm以下である、請求項1に記載の薄層転写用シート。
  9.  前記薄層転写用シートの引張強度が60MPa以上である、請求項1に記載の薄層転写用シート。
  10.  請求項1に記載の薄層転写用シートと、
     前記薄層転写用シートに積層された、燃料電池の膜電極接合体用の電極触媒層と、を備えた、
     電極触媒層付薄層転写用シート。
  11.  前記電極触媒層は、少なくとも高分子電解質と触媒物質担持粒子とを含む、請求項10に記載の電極触媒層付薄層転写用シート。
  12.  金属薄膜または耐熱性樹脂薄膜からなる基材を準備する工程と、
     前記基材をフッ素樹脂のディスパージョン中に浸漬する浸漬塗布工程と、
     前記浸漬塗布工程後に、前記ディスパージョンの分散媒を除去するように前記フッ素樹脂で被覆された前記基材からなるシートを加熱する加熱乾燥工程と、
     前記加熱乾燥工程後に、前記シートを前記フッ素樹脂の融点以上の温度で加熱する焼結工程と、を備えた、
     薄層転写用シートの製造方法。
  13.  前記浸漬塗布工程、前記加熱乾燥工程および前記焼結工程からなる一連の工程が2~5回繰り返される、請求項12に記載の薄層転写用シートの製造方法。
  14.  請求項1に記載の薄層転写用シートに、少なくとも高分子電解質と触媒物質担持粒子とを含む電極触媒層を積層する触媒層積層工程と、
     前記薄層転写用シートに積層された前記電極触媒層に電解質膜を接触させる電解質膜積層工程と、
     前記電極触媒層と前記電解質膜とを加熱圧着する加熱圧着工程と、
     前記薄層転写用シートを前記電極触媒層から剥離する剥離工程と、を備えた、
     膜電極接合体の製造方法。
PCT/JP2014/003822 2013-10-11 2014-07-18 薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法 WO2015052860A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167011895A KR102239198B1 (ko) 2013-10-11 2014-07-18 박층 전사용 시트, 전극 촉매층을 갖는 박층 전사용 시트, 박층 전사용 시트의 제조 방법 및 막 전극 접합체의 제조 방법
CN201480055980.3A CN105636784B (zh) 2013-10-11 2014-07-18 薄层转印用片及其制造方法、膜电极组件的制造方法
EP14853026.4A EP3056344B1 (en) 2013-10-11 2014-07-18 Sheet for thin layer transfer, electrode catalyst layer-carrying sheet for thin layer transfer, method for producing sheet for thin layer transfer, and method for producing membrane electrode assembly.
US15/027,955 US10224551B2 (en) 2013-10-11 2014-07-18 Sheet for thin layer transfer, electrode catalyst layer-carrying sheet for thin layer transfer, method for producing sheet for thin layer transfer, and method for producing membrane electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-213979 2013-10-11
JP2013213979 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015052860A1 true WO2015052860A1 (ja) 2015-04-16

Family

ID=52812699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003822 WO2015052860A1 (ja) 2013-10-11 2014-07-18 薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法

Country Status (6)

Country Link
US (1) US10224551B2 (ja)
EP (1) EP3056344B1 (ja)
JP (1) JP6396706B2 (ja)
KR (1) KR102239198B1 (ja)
CN (1) CN105636784B (ja)
WO (1) WO2015052860A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181403A1 (ja) * 2017-03-30 2018-10-04 日東電工株式会社 耐熱離型シートとその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6553962B2 (ja) * 2015-07-06 2019-07-31 日東電工株式会社 層を転写するためのシート及びそれを用いた電極触媒層付きシート
JP6755951B2 (ja) * 2016-07-12 2020-09-16 シャープ株式会社 防汚性フィルムの製造方法
US11456476B2 (en) * 2016-07-20 2022-09-27 W. L. Gore & Associates, Inc Roll construction of laminated material and method for producing
KR101921876B1 (ko) * 2016-11-29 2018-11-23 닛토덴코 가부시키가이샤 층을 전사하기 위한 전사 시트 및 전극 촉매층이 부착된 시트
TWI739785B (zh) * 2017-01-04 2021-09-21 日商日東電工股份有限公司 用於將層轉印之轉印片及附有電極觸媒層之片材
JP6859881B2 (ja) * 2017-07-13 2021-04-14 トヨタ自動車株式会社 膜電極接合体の製造方法
JP6848777B2 (ja) * 2017-09-12 2021-03-24 トヨタ自動車株式会社 触媒転写方法
CN112203855A (zh) * 2018-05-30 2021-01-08 日东电工株式会社 用于转印层的转印片和带有电极催化剂层的片
CN109521643A (zh) * 2018-11-21 2019-03-26 合肥联宝信息技术有限公司 一种纳米压印材料的制造方法
CN110808392B (zh) * 2019-10-25 2021-02-23 山东魔方新能源科技有限公司 一种燃料电池膜电极及其制备工艺
JP2023062208A (ja) * 2020-02-07 2023-05-08 三井化学東セロ株式会社 離型フィルムおよび電子装置の製造方法
CN114083917B (zh) * 2021-10-14 2023-02-17 谢璐 一种热转印膜及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100807A (ja) * 2001-09-27 2003-04-04 Nitto Denko Corp 導電接続方法及びそれに用いる離型シート
JP2003285396A (ja) * 2002-03-28 2003-10-07 Mitsubishi Plastics Ind Ltd 電極膜及び/又は電解質膜の製造用基材フィルム並びに電極膜と電解質膜の接合体の製造方法
JP2006100092A (ja) * 2004-09-29 2006-04-13 Nissan Motor Co Ltd 触媒層前駆体、台紙及びこれらを用いた電解質膜−触媒層接合方法
JP2007048701A (ja) * 2005-08-12 2007-02-22 Dainippon Printing Co Ltd 転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体及びこれらの製造方法
JP2007103020A (ja) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd 触媒層転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体、固体高分子型燃料電池、およびこれらの製造方法
JP2008103251A (ja) 2006-10-20 2008-05-01 Toyota Motor Corp 電解質膜への触媒層の熱転写方法および装置
JP2008226540A (ja) * 2007-03-09 2008-09-25 Dainippon Printing Co Ltd 触媒層保護フィルム及び触媒層転写シート
JP2009080974A (ja) * 2007-09-25 2009-04-16 Toyota Motor Corp 燃料電池
JP2010073503A (ja) * 2008-09-19 2010-04-02 Kaneka Corp 燃料電池用触媒層、燃料電池用触媒層転写シート、燃料電池用ガス拡散電極、燃料電池用膜電極接合体、および燃料電池
JP2010257987A (ja) * 2010-06-09 2010-11-11 Dainippon Printing Co Ltd 触媒層−電解質膜積層体製造用転写シート及びその製造方法
JP2013073892A (ja) 2011-09-29 2013-04-22 Toppan Printing Co Ltd 燃料電池用膜電極接合体の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193529A (ja) * 1997-01-16 1998-07-28 Nitto Denko Corp 鋼鈑被覆用フィルム
US6136412A (en) * 1997-10-10 2000-10-24 3M Innovative Properties Company Microtextured catalyst transfer substrate
JP3165114B2 (ja) * 1998-07-31 2001-05-14 エヌ・ティ・ティ・アドバンステクノロジ株式会社 四フッ化エチレン樹脂シリコーン樹脂混合塗料及びその塗膜
US6579620B2 (en) * 1998-07-31 2003-06-17 Ntt Advanced Technology Corp. Water-repellent coating and coating film
JP2000297249A (ja) * 1999-02-09 2000-10-24 Ntt Advanced Technology Corp はっ水性塗料及びその塗膜
JP4659241B2 (ja) * 2001-03-19 2011-03-30 ジャパンゴアテックス株式会社 ポリテトラフルオロエチレン膜及びその製造方法
US6726078B2 (en) * 2001-07-03 2004-04-27 Avery Dennison Corporation System for dispensing plastic fasteners
JP3600598B2 (ja) * 2002-06-12 2004-12-15 株式会社東芝 半導体装置及びその製造方法
JP2004170950A (ja) * 2002-11-06 2004-06-17 Canon Inc 像加熱装置
KR101353211B1 (ko) * 2006-02-13 2014-01-17 가부시키가이샤 구라레 고분자 전해질막, 막-전극 접합체 및 고체 고분자형 전해질연료 전지
US8168025B2 (en) * 2006-04-21 2012-05-01 Bdf Ip Holdings Ltd. Methods of making components for electrochemical cells
US8518597B2 (en) * 2007-01-16 2013-08-27 Dai Nippon Printing Co., Ltd. Catalytic layer-electrolytic membrane assembly, transfer sheet, and production process thereof
US7785752B2 (en) * 2007-03-07 2010-08-31 Panasonic Corporation Fuel cell electrode and method for producing the same
JP5196988B2 (ja) * 2007-12-21 2013-05-15 スリーエム イノベイティブ プロパティズ カンパニー インク組成物、その製造方法、そのインク組成物を用いて形成した電極触媒層及びこれらの用途
JP5276925B2 (ja) * 2008-08-25 2013-08-28 中興化成工業株式会社 複合シート及び複合体
US20130045438A1 (en) * 2010-03-26 2013-02-21 Yasuhiro Haba Producing method of fuel cell membrane electrode assembly and producing apparatus of the same
CN103477399B (zh) 2011-04-07 2016-07-06 日本写真印刷株式会社 具备以石墨烯为主成分的透明导电膜的转印片及其制造方法、透明导电物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100807A (ja) * 2001-09-27 2003-04-04 Nitto Denko Corp 導電接続方法及びそれに用いる離型シート
JP2003285396A (ja) * 2002-03-28 2003-10-07 Mitsubishi Plastics Ind Ltd 電極膜及び/又は電解質膜の製造用基材フィルム並びに電極膜と電解質膜の接合体の製造方法
JP2006100092A (ja) * 2004-09-29 2006-04-13 Nissan Motor Co Ltd 触媒層前駆体、台紙及びこれらを用いた電解質膜−触媒層接合方法
JP2007048701A (ja) * 2005-08-12 2007-02-22 Dainippon Printing Co Ltd 転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体及びこれらの製造方法
JP2007103020A (ja) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd 触媒層転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体、固体高分子型燃料電池、およびこれらの製造方法
JP2008103251A (ja) 2006-10-20 2008-05-01 Toyota Motor Corp 電解質膜への触媒層の熱転写方法および装置
JP2008226540A (ja) * 2007-03-09 2008-09-25 Dainippon Printing Co Ltd 触媒層保護フィルム及び触媒層転写シート
JP2009080974A (ja) * 2007-09-25 2009-04-16 Toyota Motor Corp 燃料電池
JP2010073503A (ja) * 2008-09-19 2010-04-02 Kaneka Corp 燃料電池用触媒層、燃料電池用触媒層転写シート、燃料電池用ガス拡散電極、燃料電池用膜電極接合体、および燃料電池
JP2010257987A (ja) * 2010-06-09 2010-11-11 Dainippon Printing Co Ltd 触媒層−電解質膜積層体製造用転写シート及びその製造方法
JP2013073892A (ja) 2011-09-29 2013-04-22 Toppan Printing Co Ltd 燃料電池用膜電極接合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3056344A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181403A1 (ja) * 2017-03-30 2018-10-04 日東電工株式会社 耐熱離型シートとその製造方法
JP2018171917A (ja) * 2017-03-30 2018-11-08 日東電工株式会社 耐熱離型シートとその製造方法
JP2018184008A (ja) * 2017-03-30 2018-11-22 日東電工株式会社 耐熱離型シートとその製造方法
US11123967B2 (en) 2017-03-30 2021-09-21 Nitto Denko Corporation Heat resistant release sheet and method for manufacturing same

Also Published As

Publication number Publication date
EP3056344B1 (en) 2020-11-25
CN105636784A (zh) 2016-06-01
JP2015096325A (ja) 2015-05-21
US20160276676A1 (en) 2016-09-22
JP6396706B2 (ja) 2018-09-26
KR20160068850A (ko) 2016-06-15
EP3056344A1 (en) 2016-08-17
KR102239198B1 (ko) 2021-04-09
US10224551B2 (en) 2019-03-05
CN105636784B (zh) 2019-08-06
EP3056344A4 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6396706B2 (ja) 薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法
JP5122149B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP5196717B2 (ja) 触媒層転写シート、触媒層−電解質膜積層体の製造方法、電極−電解質膜接合体の製造方法、および燃料電池の製造方法
JPWO2008093802A1 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法および固体高分子形燃料電池の製造方法
JP7027704B2 (ja) 膜-電極接合体
WO2021132138A1 (ja) 膜・電極接合体の製造方法、及び製造装置
KR101921876B1 (ko) 층을 전사하기 위한 전사 시트 및 전극 촉매층이 부착된 시트
JP2019083113A (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2011076907A (ja) 触媒転写フィルム及びその製造方法、並びに該転写フィルムを用いて製造される触媒層−電解質膜積層体、膜−電極接合体及び固体高分子形燃料電池
WO2021132137A1 (ja) 膜・触媒接合体の製造方法、及び製造装置
JP2019021437A (ja) 膜電極接合体の製造方法
JP6553962B2 (ja) 層を転写するためのシート及びそれを用いた電極触媒層付きシート
WO2018122888A1 (ja) 層を転写するための転写シート及び電極触媒層付きシート
JP2016076366A (ja) 燃料電池膜−電極接合体の製造方法及び膜−電極接合体
TWI739785B (zh) 用於將層轉印之轉印片及附有電極觸媒層之片材
JP6746994B2 (ja) 燃料電池の膜電極接合体の製造方法
JP7110961B2 (ja) 燃料電池用膜電極ガス拡散層接合体の製造方法
WO2019230610A1 (ja) 層を転写するための転写シート及び電極触媒層付きシート
US20210273236A1 (en) Method of manufacturing and device for manufacturing membrane-catalyst assembly
JP6149695B2 (ja) 燃料電池用膜−電極アッセンブリの製造方法
JP2015053201A (ja) 触媒層転写用シート
JP2008204700A (ja) 触媒層転写シート及び触媒層−電解質膜積層体
JP2018022587A (ja) 膜電極接合体製造方法
JP2018077980A (ja) 膜電極接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15027955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167011895

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014853026

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853026

Country of ref document: EP