WO2021132138A1 - 膜・電極接合体の製造方法、及び製造装置 - Google Patents

膜・電極接合体の製造方法、及び製造装置 Download PDF

Info

Publication number
WO2021132138A1
WO2021132138A1 PCT/JP2020/047642 JP2020047642W WO2021132138A1 WO 2021132138 A1 WO2021132138 A1 WO 2021132138A1 JP 2020047642 W JP2020047642 W JP 2020047642W WO 2021132138 A1 WO2021132138 A1 WO 2021132138A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
membrane
electrolyte membrane
liquid
gas diffusion
Prior art date
Application number
PCT/JP2020/047642
Other languages
English (en)
French (fr)
Inventor
新宅有太
坂下竜太
出原大輔
箕浦潔
熊谷五月
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US17/785,183 priority Critical patent/US12062824B2/en
Priority to CN202080085975.2A priority patent/CN114788057A/zh
Priority to AU2020413172A priority patent/AU2020413172A1/en
Priority to JP2021512599A priority patent/JPWO2021132138A1/ja
Priority to EP20907638.9A priority patent/EP4084159A1/en
Publication of WO2021132138A1 publication Critical patent/WO2021132138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is one embodiment of a member in which a polymer electrolyte membrane and a catalyst layer are bonded, that is, a membrane / catalyst assembly, which is used in an electrochemical device such as a polymer electrolyte fuel cell.
  • the present invention relates to a manufacturing method of an "electrode assembly" and a manufacturing apparatus.
  • a fuel cell is a kind of power generation device that extracts electrical energy by electrochemically oxidizing fuels such as hydrogen and methanol, and has been attracting attention as a clean energy supply source in recent years.
  • polymer electrolyte fuel cells have a low standard operating temperature of around 100 ° C and a high energy density, so they are relatively small-scale distributed power generation facilities and power generation devices for mobile objects such as automobiles and ships. It is expected to have a wide range of applications.
  • Polymer electrolyte membranes (hereinafter sometimes referred to simply as “electrolyte membranes”) are key materials for polymer electrolyte fuel cells, and in recent years, they have been further referred to as solid polymer electrolyte membrane water electrolyzers and electrochemical hydrogen pumps. The application to hydrogen infrastructure related equipment is also under consideration.
  • a member in which the electrolyte membrane and the catalyst layer are bonded is used.
  • a typical example of such a member is a membrane-electrode assembly (MEA) in which a gas diffusion layer with a catalyst layer is formed on the surface of an electrolyte membrane.
  • MEA membrane-electrode assembly
  • the following method is known as a method for manufacturing MEA.
  • a sheet called a gas diffusion layer made of carbon paper or the like having gas permeability is used as a base material, and a catalyst solution is applied to the surface of this sheet.
  • the solvent in the applied catalyst solution is evaporated to form a dry gas diffusion layer with a catalyst layer.
  • the dried gas diffusion layer with a catalyst layer and the electrolyte membrane are thermocompression bonded using a surface press or a roll press to bond the gas diffusion layer with a catalyst layer to the polymer electrolyte membrane.
  • the catalyst layer is once dried and then bonded to the electrolyte membrane.
  • the solvent in the catalyst solution adheres to the electrolyte membrane, the electrolyte membrane swells, wrinkles occur, and the shape collapses. This is because it will be stored.
  • the adhesion between the catalyst layer and the electrolyte membrane may be insufficient unless it is pressed at high temperature and high pressure for a long time.
  • the catalyst layer may be compressed and deformed, resulting in reduced gas diffusivity and poor power generation performance.
  • the electrolyte membrane will be damaged by thermal stress and the durability will be lowered, and further, the gas diffusion layer will be compressively deformed and the gas diffusibility will be lowered or damaged.
  • the temperature and pressure of the press are simply lowered in order to reduce the damage to the gas diffusion layer with the catalyst layer and the electrolyte membrane, the press time needs to be extended by that amount, which greatly reduces the productivity. ..
  • Patent Document 1 a method in which the catalyst solution is semi-dried and bonded to the electrolyte membrane in a state where a small amount of the solvent component remains in the catalyst layer, or as in Patent Document 2, on the surface of the dried catalyst layer.
  • Patent Document 2 A method in which a solution containing a binder resin having proton conductivity is applied and bonded to an electrolyte membrane before the solution is completely dried.
  • Patent Document 3 a laminate containing an electrolyte membrane and a catalyst layer is placed in a liquid. A method of crimping in a soaked state has been proposed.
  • Patent No. 4240272 Japanese Unexamined Patent Publication No. 2013-69535 JP-A-2009-140652
  • wrinkles are generated in the electrolyte membrane by leaving a solvent component in the catalyst layer that can soften only the bonding surface of the electrolyte membrane with the catalyst layer. It is possible to improve the adhesion between the electrolyte membrane and the catalyst layer under the relaxed thermocompression bonding conditions. However, it is difficult to control the drying so that the residual amount of the solvent is the same on the entire surface of the catalyst layer while partially removing the solvent in the catalyst solution by heating. There is a problem that the quality is not stable due to a mixture of those having a large interfacial resistance of the catalyst layer and those having wrinkles or cracks on the surface of the catalyst layer due to deformation of the electrolyte film.
  • a solution of a binder resin having proton conductivity is applied to the bonding surface of the catalyst layer with the electrolyte membrane, and the solution is bonded before the solution is completely dried. Acts as an adhesive, and the adhesion between the electrolyte film and the catalyst layer can be improved even at low temperature and low pressure.
  • a solution of a binder resin having proton conductivity is used for bonding the electrolyte membrane and the catalyst layer, the manufacturing cost is increased.
  • the binder resin is a component similar to that of the electrolyte membrane, and the electric resistance is increased by substantially increasing the film thickness of the electrolyte membrane, and the organic solvent in the solution remains at the interface between the electrolyte membrane and the catalyst layer. By doing so, there is also a problem that the power generation performance may be deteriorated.
  • the electrolyte in the electrolyte membrane and the catalyst layer is subjected to a crimping step in which the assembly including the electrolyte membrane and the assembly including the catalyst layer are pressure-bonded while being immersed in the liquid. Absorbs liquid sufficiently and is pressed in a softened state, and penetrates into the uneven parts of the bonding surface of the catalyst layer and gas diffusion layer that are the bonding partners to obtain strong bonding properties, and raises the temperature and pressure during pressing. It is possible to improve the bondability between the layers constituting the membrane-electrode assembly without doing so.
  • An object of the present invention is the thermocompression bonding conditions (press pressure, press temperature, etc.) in manufacturing a member (hereinafter referred to as "membrane / electrode assembly") in which a polymer electrolyte membrane and a gas diffusion layer with a catalyst layer are bonded. It is an object of the present invention to provide a manufacturing method capable of achieving both relaxation of press time) and improvement of adhesion between a gas diffusion layer with a catalyst layer and an electrolyte membrane with high productivity.
  • the method for producing a membrane / electrode assembly of the present invention has the following configuration. That is, A method for manufacturing a membrane / electrode assembly in which a gas diffusion layer with a catalyst layer is bonded to an electrolyte membrane, a liquid application step in which a liquid is applied only to the surface of the catalyst layer before bonding in an air atmosphere, and a liquid It is a method for manufacturing a membrane / electrode assembly having a thermocompression bonding step of bonding the provided gas diffusion layer with a catalyst layer and an electrolyte membrane by thermocompression bonding.
  • the membrane / electrode assembly manufacturing apparatus of the present invention has the following configuration. That is, A membrane / electrode assembly manufacturing apparatus in which a gas diffusion layer with a catalyst layer is bonded to an electrolyte membrane, which is a liquid application means for applying a liquid to the surface of the catalyst layer before bonding, and a catalyst layer to which the liquid is applied. It is a membrane / electrode assembly manufacturing apparatus having a thermocompression bonding means for bonding a gas diffusion layer with a catalyst and an electrolyte membrane by thermocompression bonding.
  • the liquid to be applied in the liquid application step is a liquid containing water.
  • the content ratio of water in the liquid containing water is preferably 90% by mass or more and 100% by mass or less.
  • the liquid to be applied in the liquid application step is pure water.
  • the amount of the liquid in the thermocompression bonding step is preferably 0.1 ⁇ L or more and 5 ⁇ L or less per 1 cm 2 of the surface of the catalyst layer.
  • the method for producing a membrane-electrode assembly of the present invention preferably includes bonding a gas diffusion layer with a catalyst layer to the surface of the electrolyte membrane by any of the above methods.
  • the method for producing a membrane-electrode assembly of the present invention comprises a step of applying and drying a catalyst solution on one surface of an electrolyte membrane to form a first catalyst layer, and any of the above on the other surface of the electrolyte membrane. It is preferable to have a step of joining the gas diffusion layer with a catalyst layer to form a second catalyst layer by the above method.
  • the method for producing a membrane-electrode assembly of the present invention further comprises a step of coating the first catalyst layer with a cover film, and the first catalyst layer is subjected to a step of forming the second catalyst layer. It is preferably carried out in a state of being covered with a cover film.
  • the method for producing a membrane-electrode assembly of the present invention includes a step of applying a catalyst solution to one surface of an electrolyte membrane to form a first catalyst layer, and a gas diffusion before the first catalyst layer dries.
  • the liquid applying means is a means for applying the liquid to the surface of the catalyst layer in the form of droplets.
  • the liquid applying means is a spray.
  • membrane-electrode assembly while achieving both relaxation of thermocompression bonding conditions (press pressure, press temperature, press time) and improvement of adhesion between a gas diffusion layer with a catalyst layer and an electrolyte membrane with high productivity.
  • the body can be manufactured.
  • the air existing at the interface is released by sandwiching the electrolyte membrane and the gas diffusion layer with the catalyst layer in a state where the liquid is applied to the joint surface of the gas diffusion layer with the catalyst layer with the electrolyte membrane. It is expelled and almost only liquid exists between the electrolyte membrane and the gas diffusion layer with the catalyst layer.
  • the liquid evaporates and the interface is evacuated, so that the adhesion between the gas diffusion layer with the catalyst layer and the electrolyte membrane is improved. Further, since the electrolyte membrane comes into contact with the liquid and softens, the adhesion between the two is further improved.
  • the electrolyte membrane is held by the pinching pressure during thermocompression bonding while it is in contact with the liquid, it is possible to prevent the occurrence of swelling.
  • the liquid evaporated at the interface is discharged to the outside of the membrane-electrode assembly by passing through the pores of the gas diffusion layer with a catalyst layer having a porous structure.
  • the "membrane / electrode assembly" in the present specification means, for example, gas diffusion with a catalyst layer in which a catalyst layer is formed on one side of a base material (gas diffusion layer) made of carbon paper or the like having gas permeability.
  • Layer refers to a member to which a so-called gas diffusion electrode and an electrolyte membrane are bonded, and is included in the technical field of "membrane / catalyst assembly” because it focuses on the bonding surface between the electrolyte membrane and the catalyst layer. ..
  • the operation of joining the gas diffusion layer with the catalyst layer to the other surface from the state where the catalyst layer is already formed on one surface of the electrolyte membrane and the gas diffusion layer with the catalyst layer on one surface of the electrolyte membrane are joined.
  • the operation of forming a catalyst layer on the other surface is also included in the "production of the membrane / electrode assembly".
  • a method for forming the catalyst layer on one surface or the other surface of the electrolyte membrane described above for example, a method of directly applying the catalyst layer or a method of transferring the catalyst layer using the catalyst layer transfer sheet is adopted. Can be done.
  • the membrane-electrode junction manufacturing method and the electrolyte membrane used in the manufacturing equipment of the present invention have proton conductivity, and are a solid polymer fuel cell, a solid polymer electrolyte membrane type water electrolyzer, and an electrochemical hydrogen pump.
  • the present invention is not particularly limited, and a known or commercially available one can be used.
  • a polymer electrolyte membrane is preferable.
  • a fluorine-based electrolyte membrane made of perfluorosulfonic acid or a hydrocarbon-based electrolyte membrane made of a hydrocarbon-based polymer imparting proton conductivity to a hydrocarbon-based skeleton is preferable.
  • hydrocarbon-based electrolyte membranes have a higher glass transition temperature and larger shrinkage deformation during heating than fluorine-based electrolyte membranes, so it is difficult to find transfer conditions with excellent productivity by ordinary thermocompression bonding methods.
  • the manufacturing method and manufacturing apparatus of the present invention can be preferably applied.
  • electrolyte membrane a composite electrolyte membrane in which a polymer electrolyte and a porous base material are composited can be used.
  • the composite electrolyte membrane is a composite of a polymer electrolyte and a porous base material, and is obtained, for example, by filling (impregnating) the porous base material with a polymer electrolyte.
  • the porous base material include a hydrocarbon-based porous base material containing a hydrocarbon-based polymer compound as a main component, a fluorine-based porous base material containing a fluorine-based polymer compound as a main component, and the like.
  • hydrocarbon-based polymer compound examples include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyacrylate, polymethacrylate, polyvinyl chloride (PVC), polyvinylene sulfide (PVdC), polyester, and polycarbonate (PC).
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PVC polyvinyl chloride
  • PVdC polyvinylene sulfide
  • polyester examples of the hydrocarbonate (PC).
  • PC polycarbonate
  • Polysulfone PSU
  • Polyethersulfone PES
  • Polyphenylene oxide PPO
  • Polyarylene ether polymer Polyphenylene sulfide (PPS)
  • Polyphenylene sulfide sulfone Polyparaphenylene
  • PPP Polyarylene polymer
  • Polyarylene ketone Polyether ketone
  • PEK Polyether ketone
  • polyarylene sulfide polyether phosphin oxide
  • polybenzoxazole PBO
  • polybenzthiazole PBT
  • polybenzimidazole PBI
  • PA polyimide
  • PI polyimide
  • polyimide PEI
  • PIS polyimide sulfone
  • fluoropolymer compound examples include polytetrafluoroethylene (PTFE), polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), and polyfluorovinylidene.
  • PVdF polychlorotrifluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PFA perfluoroalkoxy alkane resin
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • PE, PP, PPS, PEK, PBI, PTFE, polyhexafluoropropylene, FEP, and PFA are preferable from the viewpoint of water resistance, chemical resistance, and mechanical properties, and PTFE is further preferable from the viewpoint of chemical resistance and chemical durability.
  • Polyhexafluoropropylene, FEP, PFA are more preferable, and PTFE is particularly preferable because it has high mechanical strength due to molecular orientation.
  • the composite electrolyte membrane a composite of a hydrocarbon-based electrolyte and a fluorine-based porous substrate is particularly preferable.
  • the hydrocarbon-based electrolyte can be easily filled (impregnated) in the fluorine-based porous substrate without gaps with high efficiency.
  • the composite electrolyte membrane can be produced, for example, by impregnating the porous base material with a polymer electrolyte solution and then drying the porous base material to remove the solvent contained in the polymer electrolyte solution.
  • impregnation method include the following methods.
  • a method of controlling the film thickness by removing excess solution while pulling up a porous base material immersed in a polymer electrolyte solution (2) A method of casting and coating a polymer electrolyte solution on a porous substrate, (3) A method in which a porous base material is adhered and impregnated on a polymer electrolyte solution cast and coated on a support base material.
  • the catalyst layer used in the manufacturing method and manufacturing apparatus of the membrane-electrode assembly of the present invention is used as a catalyst layer used in a polymer electrolyte fuel cell, a solid polymer electrolyte membrane type water electrolyzer, an electrochemical hydrogen pump, and the like. As long as it works, it is not particularly limited. Generally, a porous structure composed of conductive particles such as carbon particles, catalyst particles such as platinum particles or platinum alloy particles supported on the conductive particles, and an electrolyte component such as ionomer having proton conductivity. The provided catalyst layer can be used.
  • the conductive particles carbon such as oil furnace black, gas furnace black, acetylene black, thermal black, graphite, carbon nanotubes and graphene, and metal oxides such as tin oxide and titanium oxide are preferably used.
  • the catalyst particles include precious metals such as platinum, iridium, ruthenium, rhodium, and palladium, alloys of manganese, iron, cobalt, nickel, copper, zinc, etc. with platinum, platinum, ternary alloys of ruthenium, and iridium oxide. Etc. are preferably used.
  • the perfluorocarbon sulfonic acid polymer "Nafion” (registered trademark, manufactured by Chemers), "Aquivion” (registered trademark, manufactured by Solvay), “Flemion” (registered trademark, manufactured by Asahi Glass Co., Ltd.) ), “Aciplex” (registered trademark, manufactured by Asahi Kasei Co., Ltd.), “Fumion” F (registered trademark, manufactured by FuMA-Tech), etc., and hydrocarbon-based polymers such as polysulfone sulfonic acid and polyaryl ether ketone sulfonic acid.
  • Polybenzimidazole alkyl sulfonic acid, polybenzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone sulfonic acid, polyphenyl sulfonic acid and the like are preferably used.
  • the catalyst solution is not particularly limited as long as these catalyst layer materials are dispersed in a solvent that evaporates by drying and is sufficient for forming the catalyst layer on the electrolyte membrane.
  • a solvent water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, tert-butanol, ethylene glycol, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like are preferable. Used for.
  • the gas diffusion layer used in the manufacturing method and manufacturing apparatus of the membrane-electrode assembly of the present invention is a gas diffusion used in a polymer electrolyte fuel cell, a solid polymer electrolyte membrane type water electrolyzer, an electrochemical hydrogen pump, and the like. It is not particularly limited as long as it operates as a layer. In general, a catalyst layer having a low electrical resistance, capable of collecting or supplying power and forming a catalyst layer can be used. Examples of the constituent material of the gas diffusion layer include carbonaceous substances and conductive inorganic substances.
  • a calcined product from polyacrylonitrile, a calcined product from pitch, a carbon material such as graphite and expanded graphite, stainless steel and molybdenum. , Titanium and the like are exemplified.
  • These forms are not particularly limited and are used in the form of fibers or particles, for example, but fibrous conductive substances (conductive fibers) such as carbon fibers are preferable from the viewpoint of fuel permeability.
  • a woven fabric or a non-woven fabric structure can be used as such a woven fabric, plain weave, twill weave, satin weave, crest weave, binding weave and the like are used without particular limitation.
  • the non-woven fabric is not particularly limited, such as a papermaking method, a needle punching method, a spunbonding method, a water jet punching method, and a melt blowing method. It may also be a knit. In these fabrics, especially when carbon fibers are used, a woven fabric obtained by carbonizing or graphiteizing a plain woven fabric using flame-resistant spun yarn, or a non-woven fabric processing of flame-resistant yarn by a needle punch method or a water jet punch method is then carbonized. Alternatively, a graphitized non-woven fabric, a flame-resistant yarn, a carbide yarn, or a matte non-woven fabric by a papermaking method using a graphite yarn is preferably used.
  • the carbon fibers used for the gas diffusion layer include polyacrylonitrile (PAN) -based carbon fibers, phenol-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers and the like.
  • PAN polyacrylonitrile
  • carbon fibers for example, carbon paper TGP series and SO series manufactured by Toray Industries, Inc., carbon cloth manufactured by E-TEK, etc. are used.
  • the gas diffusion layer is treated with water repellency to prevent deterioration of gas diffusion / permeability due to retention of water, partial water repellency treatment for forming a water discharge path, hydrophilic treatment, and reduction of resistance. It is also possible to add carbon powder for this purpose, platinum plating for imparting potential corrosion resistance, and the like.
  • a conductive intermediate layer containing at least an inorganic conductive substance and a hydrophobic polymer can be provided between the electrode base material and the catalyst layer.
  • the electrode base material is a carbon fiber woven fabric or a non-woven fabric having a large porosity, the performance deterioration due to the catalyst solution permeating into the gas diffusion layer can be suppressed by providing the conductive intermediate layer.
  • the gas diffusion layer with a catalyst layer used in the method for producing a membrane / electrode assembly and the production apparatus of the present invention is not limited as long as the catalyst layer is formed on the gas diffusion layer.
  • the gas diffusion layer is directly coated with the catalyst solution and dried.
  • the catalyst solution is once applied on a temporary base material different from the gas diffusion layer, dried and formed into a sheet, and then thermocompression bonded to the gas diffusion layer to remove the temporary base material. be able to.
  • the liquid application step is a step of applying a liquid to the catalyst layer surface of the gas diffusion layer with a catalyst layer before bonding, that is, the bonding surface with the electrolyte membrane.
  • the application of the liquid means forming a state in which the liquid is attached to the surface of the catalyst layer of the gas diffusion layer with the catalyst layer in an exposed state. It is preferable that the liquid does not substantially penetrate into the catalyst layer. If the liquid does not permeate into the catalyst layer, there is no possibility that the electrolyte component in the catalyst layer will dissolve, the strength of the catalyst layer will not decrease, and crack generation in the thermocompression bonding step can be effectively prevented.
  • the liquid is applied only to the surface of the catalyst layer in the air atmosphere.
  • the number of process control parameters is smaller than when the liquid is applied to both the catalyst layer and the electrolyte membrane, so that the production conditions are more stable and the liquid on the joint surface is easier to stabilize.
  • the liquid in the air atmosphere it is possible to apply the liquid only to the surface of the catalyst layer, and it is possible to suppress the permeation of the liquid into the catalyst layer.
  • By suppressing the permeation of the liquid into the catalyst layer it is possible to effectively suppress the decrease in strength and the occurrence of cracks in the catalyst layer.
  • the liquid that has permeated inside the catalyst layer does not contribute to improving the adhesion of the interface, but rather increases the energy consumption for evaporation. Therefore, suppressing the permeation of the liquid into the catalyst layer is a manufacturing cost. It is also effective from the point of view.
  • the liquid is not particularly limited as long as it is a material that evaporates by heating in the thermocompression bonding step, which is a subsequent step, and is not toxic to the electrolyte membrane and the gas diffusion layer with the catalyst layer.
  • water alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and tert-butanol, or a mixture thereof can be used, but it is desirable to use a liquid containing at least water. If the liquid undergoes a sudden temperature change during heat crimping, wrinkles may occur in the electrolyte membrane. However, water has a higher boiling point and specific heat than the above alcohol, and the temperature rises slowly during heat crimping.
  • any liquid containing the above can suppress their damage. Further, since water has a lower permeability to the catalyst layer than alcohol, it is possible to prevent the occurrence of cracks due to the permeation of the liquid into the catalyst layer. Further, by using a liquid containing water, the present invention can be carried out at low cost, and the environmental load in manufacturing can be reduced. Even if the liquid remains in the membrane / electrode assembly joined by the manufacturing method and the manufacturing apparatus of the present invention, water does not affect the performance of the equipment using the liquid. As the liquid containing water, the content ratio of water is more preferably 50% by mass to 100% by mass, further preferably 90% by mass to 100% by mass, and even more preferably 100% by mass. That is, it is most preferable to use pure water as the liquid.
  • pure water is high-purity water that does not contain impurities, and is of JIS K 0557 (1998) A4 level obtained by a commercially available pure water production device that collects water through a reverse osmosis membrane and an ion exchange resin. Refers to water or water of equivalent quality.
  • the liquid may be contained in a state in which the solid content material is dissolved or dispersed as long as it has fluidity as a whole and the effect of the present invention can be obtained.
  • the method of applying the liquid is not particularly limited, and a method of forming a uniform coating film on the surface of the catalyst layer using a gravure coater, a die coater, a comma coater, or the like.
  • examples thereof include a method of applying the liquid, and a method of applying the liquid to the surface of the catalyst layer in the form of droplets is particularly preferable.
  • the term “droplet-like” refers to a state in which innumerable droplets are attached to the surface of the catalyst layer and exist. The droplet is a mass of liquid collected by surface tension, and its size is 1 cm 2 or less on the catalyst layer.
  • the applied droplets are uniform means that the total amount of the applied liquid around 1 cm 2 of the joint surface is the same at any position. Further, even a liquid such as water, which easily repels the catalyst layer and makes it difficult to form a uniform coating film, can be easily applied if it is in the form of droplets. Further, if it is in the form of droplets, the contact area with the catalyst layer is small, so that it is possible to minimize the permeation of the liquid into the catalyst layer until it is thermocompression bonded. Since the droplets are spread at the interface and combined with the surrounding droplets due to the sandwiching pressure in the thermocompression bonding step, it is possible to soften the electrolyte membrane on all surfaces of the interface.
  • the liquid application step it is preferable to apply the liquid so that the amount of liquid at the start of thermocompression bonding in the thermocompression bonding step is 0.1 ⁇ L or more and 5 ⁇ L or less per 1 cm 2 of the catalyst layer surface.
  • the amount of liquid in the thermocompression bonding step is within the above-mentioned preferable range, the electrolyte membrane can be sufficiently softened, the adhesion is sufficient, and the droplets do not partially bond during the pressing force in the thermocompression bonding step, and the electrolyte membrane is formed.
  • the amount of liquid is more preferably 0.1 ⁇ L or more and 0.8 ⁇ L or less per 1 cm 2 of the catalyst layer surface. The amount of liquid is determined after a sample piece such as a PET film whose weight has been measured is attached to the surface of the catalyst layer of the gas diffusion layer with a catalyst layer so as to be laminated with the catalyst layer, and the liquid is applied in the liquid application step.
  • the sample piece with liquid is taken out immediately before the sample piece and the electrolyte membrane come into contact with each other, the weight thereof is measured, and the volume of the liquid around 1 cm 2 is calculated from the weight difference.
  • the size of the sample piece at this time can be a square with a side of 1 cm to 10 cm.
  • the average diameter of the applied droplets is small, and specifically, it is preferably 300 ⁇ m or less in a state of being attached to the surface of the catalyst layer.
  • the smaller the average diameter the shorter the distance between the droplets, so that the droplets can be bonded with a smaller amount of liquid during thermocompression bonding.
  • the means for applying the liquid in the form of droplets is not particularly limited, and is a method of spraying the liquid droplets by spraying or inkjet, a method of dew condensation on the joint surface in a humidified atmosphere, and an ultrasonic transducer.
  • a method of spraying a mist-ized liquid or the like can be used, but a method of spraying droplets by spraying is preferable in that the liquid can be efficiently applied while controlling the amount of the liquid.
  • the spray for spraying droplets is not particularly limited, and a two-fluid spray nozzle or the like that atomizes and sprays a liquid by compressed air can be used.
  • the means for applying the liquid in the form of droplets it is preferable to surround the liquid applying means such as a spray nozzle with a chamber in order to prevent the droplets from scattering to the surroundings. Further, although it is not necessary to reduce the pressure inside the chamber, by slightly reducing the pressure to a negative pressure with respect to the atmospheric pressure, it is possible to prevent droplets from scattering to the surroundings from the gap between the chamber and the catalyst layer. preferable.
  • thermocompression bonding process The gas diffusion layer with a catalyst layer that has undergone the liquid application step is then subjected to a thermocompression bonding step of thermocompression bonding with the electrolyte membrane.
  • the thermocompression bonding step is to join the gas diffusion layer with catalyst layer and the electrolyte membrane by heating and sandwiching them in a laminated state where the surface of the gas diffusion layer with catalyst layer to which the liquid is applied and the electrolyte membrane are in contact with each other. It is a process to do.
  • the time from the contact between the gas diffusion layer with the catalyst layer and the electrolyte membrane until the pinching pressure acts on them is preferably 0.1 seconds or less.
  • this time is within the above-mentioned preferable range, the possibility that the electrolyte membrane swells due to the adhesion of the liquid is low, and the swelling can be suppressed because the adhesion of the liquid and the fixation of the electrolyte membrane by thermocompression bonding are performed substantially at the same time.
  • the heating temperature in the thermocompression bonding step is not particularly limited, but is preferably 220 ° C. or higher than the boiling point of the liquid applied to the gas diffusion layer with the catalyst layer (hereinafter referred to as “liquid boiling point”).
  • the heating temperature is the maximum temperature reached at the joint surface between the electrolyte film and the catalyst layer during the thermocompression bonding step, and a thermocouple can be used for the measurement.
  • the heating temperature in the thermocompression bonding step is more preferably liquid boiling point or higher and 160 ° C. or lower.
  • the liquid boiling point is the boiling point when the external pressure is 1 atm.
  • the evaporating liquid has a single composition, it means the boiling point of the liquid.
  • it is the most single component of the mixture. It means the value of the one having a high boiling point.
  • the pressure applied to the electrolyte membrane and the catalyst layer in the thermocompression bonding step can be appropriately set, but is preferably 1 MPa or more and 20 MPa or less. In the above preferable range, the electrolyte membrane and the gas diffusion layer with the catalyst layer can be sufficiently adhered to each other, but the structure of the gas diffusion layer with the catalyst layer is not destroyed because excessive pressure is not applied to the gas diffusion layer with the catalyst layer and the electrolyte membrane. , The mechanical damage to the electrolyte membrane is not increased, and there is no risk of deterioration of durability and power generation performance.
  • the pressure in the thermocompression bonding step is more preferably 1 MPa to 10 MPa.
  • the form of pressing in the thermocompression bonding step is not particularly limited, and the mode of linear contact in which the electrolyte membrane and the gas diffusion layer with the catalyst layer are in single linear contact like a thermal press roll, or a double belt press mechanism.
  • the surface contact mode in which the electrolyte membrane and the gas diffusion layer with the catalyst layer come into contact with each other in a plane shape with a width in the transport direction can be used.
  • the method for producing the membrane-electrode assembly of the present invention is preferably a roll-to-roll method. That is, it is a method in which the liquid application process and the thermocompression bonding process are continuously performed by a roll-to-roll method.
  • a long roll-shaped electrolyte membrane and a long roll-shaped gas diffusion layer with a catalyst layer are continuously unwound and conveyed, and a liquid application step and heating are performed.
  • This is a manufacturing method in which a membrane-electrode assembly obtained by carrying out a crimping step is wound into a roll.
  • the membrane / electrode assembly manufacturing apparatus described later is an example of a manufacturing apparatus capable of carrying out a roll-to-roll manufacturing method.
  • a membrane / electrode assembly manufacturing apparatus in which a gas diffusion layer with a catalyst layer is bonded to an electrolyte membrane, and a liquid application means for applying a liquid to the surface of the catalyst layer before bonding and a liquid application means.
  • An apparatus for manufacturing a membrane / electrode assembly having a thermocompression bonding means for bonding a gas diffusion layer with a catalyst layer and an electrolyte membrane by thermocompression bonding.
  • liquid applying means is a means for applying the liquid to the surface of the catalyst layer in the form of droplets.
  • liquid applying means is a spray.
  • FIG. 1 is a side view showing a schematic configuration of the membrane / electrode assembly manufacturing apparatus of the present invention.
  • the membrane / electrode assembly is manufactured as follows.
  • the electrolyte membrane 10 is unwound from the electrolyte membrane supply roll 11 and supplied to the thermocompression bonding portion P through the guide roll 12.
  • Gas diffusion layer supply rolls 21A and 21B with a catalyst layer are installed above and below the unwound electrolyte membrane 10, respectively.
  • the gas diffusion layer with a catalyst layer bonded to the upper surface of the electrolyte membrane 10 is formed by using the gas diffusion layer 20A with a catalyst layer.
  • the gas diffusion layer 20A with a catalyst layer is prepared in advance on the gas diffusion layer by, for example, applying a catalyst solution, and is unwound from the gas diffusion layer supply roll 21A with a catalyst layer, and the backup roll 31A and the guide roll 22A are in this order, respectively.
  • the gas diffusion layer side opposite to the catalyst layer forming surface is carried while being supported.
  • the gas diffusion layer 20B with a catalyst layer for forming the gas diffusion layer with a catalyst layer formed on the lower surface of the electrolyte film 10 is unwound from the gas diffusion layer supply roll 21B with a catalyst layer, and is formed on the backup roll 31B and the guide roll 22B. In order, they are conveyed while being supported on the gas diffusion layer side. In this way, the surfaces of the gas diffusion layers 20A and 20B with the catalyst layer on which the catalyst layers are formed are supplied to the thermocompression bonding portion P so as to face the electrolyte membrane 10.
  • the gas diffusion layer is breathable.
  • Having air permeability means having a property of allowing gas to permeate, and examples thereof include a case where it has pores communicating in the thickness direction. By having air permeability, it is possible to effectively discharge the liquid vapor generated during thermocompression bonding.
  • the membrane / electrode assembly manufacturing apparatus 100 is configured to bond a gas diffusion layer with a catalyst layer to both sides of the electrolyte membrane 10, but the catalyst layer is formed only on one side of the electrolyte membrane 10. It may be configured to join the attached gas diffusion layer.
  • the gas diffusion layer with a catalyst layer By bonding the gas diffusion layer with a catalyst layer to only one side of the electrolyte membrane, a film hollowed out in a frame shape is sandwiched before the gas diffusion layer with a catalyst layer is further bonded to the other side of the electrolyte membrane. It becomes possible to add a function.
  • the gas diffusion layer with a catalyst layer is bonded to only one side of the electrolyte membrane, cut to a desired size, and further bonded to a frame-shaped film material or a gas diffusion layer with a catalyst layer to form a single-wafer MEA. It becomes possible to do.
  • the spray nozzle 30A is provided so as to face the gas diffusion layer 20A with the catalyst layer supported on the backup roll 31A.
  • the spray nozzle 30A has a discharge port directed toward the central axis of the backup roll 31A, and is provided at a position separated from the backup roll 31A by a predetermined distance.
  • One or more spray nozzles 30A are provided in the width direction of the gas diffusion layer 20A with a catalyst layer according to the width of the base material of the gas diffusion layer 20A with a catalyst layer.
  • the spray nozzle 30A is supplied with water from a water supply tank (not shown), discharges the supplied water from a discharge port, and imparts droplets to the joint surface of the gas diffusion layer with a catalyst layer with the electrolyte membrane.
  • the spray nozzle 30A and the space S in which the droplets fly from the discharge port of the spray nozzle 30A to the gas diffusion layer with the catalyst layer are surrounded by the nozzle chamber 32A, and the space S is depressurized in the nozzle chamber 32A.
  • the pressure reducing tank 34A is connected by a pipe via a valve 33A that switches the pressure reduction.
  • the pressure reducing tank 34A By making the space S negative with respect to the environmental pressure of the manufacturing apparatus by the pressure reducing tank 34A, the outside air is slightly sucked and sprayed from the gap provided between the nozzle chamber 32A and the gas diffusion layer 20A with the catalyst layer. Prevents excess droplets from the nozzle 30A from scattering around.
  • the water collected in the nozzle chamber 32A is discharged from a drain (not shown) provided in the nozzle chamber 32A, returned to the water supply tank, and reused.
  • liquid application means for the gas diffusion layer 20A with a catalyst layer
  • liquid application means spray nozzle 30B, nozzle chamber 32B, valve 33B, pressure reducing tank 34B
  • the description thereof will be omitted.
  • the nozzle chambers 32A and 32B do not have to be depressurized, but it is preferable to depressurize the nozzle chambers 32A and 32B because it is possible to prevent the droplets from scattering around. In this case, if the degree of decompression is too large, the amount of outside air sucked into the nozzle chambers 32A and 32B becomes large, so that the air flow in the nozzle chambers 32A and 32B is turbulent, and the accuracy of applying droplets may decrease.
  • the degree of decompression of the nozzle chambers 32A and 32B is preferably in the range of -50.0 kPa, preferably in the range of -10.0 kPa, with respect to the environmental pressure (atmospheric pressure) of the manufacturing apparatus, for example, -5.
  • a range up to 0.0 kPa is more preferred.
  • the electrolyte membrane 10 and the gas diffusion layers 20A and 20B with the catalyst layer in which the liquid is applied to the joint surface with the electrolyte membrane 10 are supplied to the thermocompression bonding portion P and pass between the thermal press rolls 40A and 40B.
  • the radiant heat radiated from the heat press rolls 40A and 40B can prevent the liquid applied to the gas diffusion layers 20A and 20B with the catalyst layer from evaporating before the heat press.
  • the thermal press rolls 40A and 40B are connected to a driving means (not shown) and can rotate while controlling the speed.
  • the hot press rolls 40A and 40B rotate at a constant speed while applying heat and pressure to the electrolyte membrane 10 and the gas diffusion layers 20A and 20B with the catalyst layer, so that the electrolyte membrane 10 and the gas diffusion layers 20A and 20B with the catalyst layer are rotated.
  • a gas diffusion layer with a catalyst layer is thermally pressure-bonded to both sides of the electrolyte membrane 10 while transporting the electrolyte membrane 10 in synchronization with each other to form a membrane-electrode assembly 13a.
  • the heating device, the pressurizing device, and the like are not shown.
  • the materials of the hot press rolls 40A and 40B are not particularly limited, but one roll is made of a metal such as stainless steel, and the other roll is made of an elastic body such as a resin or an elastomer material typified by rubber as a surface layer. It is preferable to have a coated structure.
  • one of the hot press rolls 40A and 40B as a metal, it is possible to sufficiently heat the electrolyte membrane and the gas diffusion layer with the catalyst layer, and the surface layer of the other press roll is an elastic body. Therefore, the press roll is flexibly deformed with respect to the gas diffusion layers 20A and 20B with a catalyst layer, and by maintaining good line contact, it is possible to make the line pressure in the width direction of the base material uniform.
  • the material of the elastic body for example, fluorine rubber, silicon rubber, EPDM (ethylene / propylene / diene rubber), neoprene, CSM (chlorosulfonated polyethylene rubber), urethane rubber, NBR (nitrile rubber) , Ebonite and the like can be used.
  • the rubber hardness of the elastic body is preferably in the range of 70 to 97 ° according to the Shore A standard.
  • the amount of deformation of the elastic body is appropriate, the sandwiching contact width between the gas diffusion layers 20A and 20B with the catalyst layer does not become too large, and the electrolyte film 10 and the catalyst layer are joined. On the other hand, the pinching contact width does not become too small, and the pinching time required for joining can be secured.
  • heating means for the heat press rolls 40A and 40B various heaters, steam, oil and other heat media can be used, but the heating means are not particularly limited. Further, the heating temperature may be the same temperature for the upper and lower rolls, or may be different temperatures.
  • the method of controlling the pinching pressure in the hot press rolls 40A and 40B is not particularly limited, and the pinching pressure may be controlled by using a pressurizing means such as a hydraulic cylinder, or the hot pressing may be performed by position control using a servomotor or the like.
  • a gap may be provided between the rolls 40A and 40B at regular intervals, and the pinching pressure may be controlled by the size of the gap.
  • thermocompression bonding portions P use the thermal press rolls 40A and 40B, which are wire contact mechanisms, but the present invention is not limited to this.
  • a mechanism for sandwiching the electrolyte membrane 10 and the gas diffusion layers 20A and 20B with a catalyst layer by a plurality of line contacts by a plurality of rolls may be used, or a double belt press mechanism for sandwiching the pressure by surface contact may be used.
  • the number of rolls installed is not particularly limited, but is preferably 2 to 10 sets.
  • the gas diffusion layer with the catalyst layer is bonded to both sides of the electrolyte membrane 10 through the thermocompression bonding portion P to form a membrane / electrode assembly 13a.
  • the delivery roll 14 can be connected to a driving means (not shown), and when the press rolls 40A and 40B do not sandwich the electrolyte membrane 10 and the gas diffusion layers 20A and 20B with the catalyst layer, the speed is controlled to control the electrolyte membrane. 10 can be transported.
  • a heating means for heating the membrane / electrode assembly 13a in which the catalyst layer is bonded to both sides of the electrolyte membrane can be installed at the thermocompression bonding portion P.
  • the heating means can be installed, for example, between the thermocompression bonding portion P and the delivery roll 14.
  • hot air or a heating roll can be used as the heating means.
  • the hot air temperature and the surface temperature of the heating roll for example, 120 ° C. to 250 ° C. are suitable, and 150 ° C. to 230 ° C. is preferable.
  • the catalyst layer forming apparatus 101 shown in FIG. 2 first forms the first catalyst layer on one side of the electrolyte membrane.
  • the formation of the first catalyst layer is carried out as follows.
  • the electrolyte membrane 10' is supplied to the catalyst layer forming apparatus 101 in a state of being supported on the support.
  • the material of the support of the electrolyte membrane is not particularly limited, but for example, a PET film can be used.
  • the electrolyte membrane 10'with the support is unwound from the electrolyte membrane supply roll 11 and supplied to the catalyst solution coating means 72 through the guide roll 12.
  • the catalyst solution coating means 72 is provided so as to face the electrolyte membrane 10'supported on the backup roll 73.
  • the catalyst solution coating means 72 forms a coating film by supplying a catalyst solution from the catalyst solution tank 70 using the catalyst solution feeding pump 71 and applying the supplied catalyst solution onto the electrolyte membrane.
  • the method for applying the catalyst solution in the catalyst solution application means 72 is not particularly limited. Methods such as a gravure coater, a die coater, a comma coater, a roll coater, a spray coater, and a screen printing method can be used.
  • the catalyst solution is applied to the electrolyte membrane 10'to form the catalyst layer, but the catalyst layer may be transferred and formed on the electrolyte membrane 10'using a catalyst layer transfer sheet. ..
  • the coating film of the catalyst solution formed on the electrolyte membrane is dried by the drying means 74, and the solvent in the catalyst solution is evaporated to form the dried first catalyst layer.
  • the method for drying the catalyst solution in the drying means 74 is not particularly limited. A method of blowing a heat medium such as hot air or a heat oven method using a heat heater can be used.
  • the membrane in which the first catalyst layer is formed on the electrolyte membrane and the first catalyst layer junction 16 are sent out by the delivery roll 14 and wound into a roll by the winding roll 17 with the support attached. Taken.
  • the membrane / electrode assembly manufacturing apparatus 102 forms a second catalyst layer on the back surface of the surface on which the first catalyst layer of the electrolyte membrane is formed.
  • the formation of the second catalyst layer is carried out as follows.
  • the membrane / first catalyst layer junction 16 is unwound from the supply roll 18, passes through the guide roll 12, and the support 51 is peeled off from the interface with the electrolyte membrane via the guide rolls 26A and 26B. At this time, the peeled support 51 is wound around the support winding roll 50.
  • the cover film 61 unwound from the cover film supply roll 60 is laminated on the first catalyst layer surface via the guide rolls 27A and 27B on the film / first catalyst layer joint 16 from which the support 51 has been peeled off. After that, it is supplied to the thermocompression bonding portion P.
  • the cover film 61 may be laminated before the support 51 is peeled off.
  • the cover film 61 is used to protect the first catalyst layer during the process of forming the second catalyst layer, and the material is particularly limited as long as it does not interfere with the function of the catalyst layer by attachment / detachment. It is not something that is done.
  • sheets of natural fibers typified by paper, etc., and carbonized typified by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polypropylene (PP), polyimide, polyphenylene sulfide, etc.
  • Fluorine-based films such as hydrogen-based plastic films, perfluoroalkoxy alkanes (PFA), polytetrafluoroethylene (PTFE), and ethylene tetrafluoroethylene copolymers (ETFE), or acrylic adhesives and urethanes for these materials. It is possible to use a material to which an acrylate-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like is applied to improve the adhesion to the adherend. If the material has improved adhesion, the electrolyte membrane can be supported while the electrolyte membrane is in contact with the liquid, so that the effect of preventing the swelling of the electrolyte membrane can be further obtained.
  • PFA perfluoroalkoxy alkanes
  • PTFE polytetrafluoroethylene
  • ETFE ethylene tetrafluoroethylene copolymers
  • the membrane / first catalyst layer assembly 16 supplied to the thermocompression bonding portion P is in a state where the first catalyst layer is covered with a cover film by the same liquid application step and thermocompression bonding step as in the first embodiment.
  • the second catalyst layer is thermocompression bonded as a gas diffusion layer with a catalyst layer to form a membrane-electrode assembly 13c.
  • the membrane-electrode assembly 13c that has passed through the thermocompression bonding portion P is wound into a roll by the winding roll 15.
  • the cover film 61 may be wound in a state of being bonded to the membrane / electrode assembly 13c, or may be peeled off from the membrane / electrode assembly 13c with a hot press roll 40B immediately after pressing. By winding the cover film 61 in a state of being bonded to the membrane-electrode assembly 13c, it is possible to suppress wrinkles and elongation of the electrolyte membrane with a catalyst layer and protect the catalyst layer from physical damage due to external factors.
  • the liquid vapor generated in the thermocompression bonding step can be effectively discharged.
  • the catalyst layer can be protected with a new cover film before winding.
  • the surface on which the first catalyst layer is formed on the electrolyte membrane is cut to a desired size without the gas diffusion layer, and further bonded to a frame-shaped film material or gas diffusion layer to form a single-wafer MEA. It becomes possible to do.
  • the gas diffusion layer is laminated through a series of steps of applying the catalyst solution for forming the first catalyst layer to the electrolyte membrane, coating with a gas diffusion layer before drying, and drying the catalyst layer through the gas diffusion layer. You may.
  • the membrane / electrode assembly manufacturing apparatus 103 forms a gas diffusion layer with a first catalyst layer on one side of the electrolyte membrane.
  • the formation of the first gas diffusion layer with a catalyst layer is carried out as follows.
  • the electrolyte membrane 10' is supplied to the catalyst layer forming apparatus 103 in a state of being supported on the support.
  • the electrolyte membrane 10'with a support is unwound from the electrolyte membrane supply roll 11 and supplied to the thermocompression bonding portion P.
  • the electrolyte membrane 10'supplied to the thermocompression bonding portion P is thermocompression-bonded to the gas diffusion layer with the first catalyst layer by the same liquid application step and thermocompression bonding step as in the first embodiment, and the film and the first catalyst are bonded. It becomes a layered body 16'.
  • the membrane / first gas diffusion layer bonded body 16'with a catalyst layer is sent out by a feeding roll 14 with a support attached, and is wound into a roll by a winding roll 17.
  • the catalyst layer forming apparatus 104 forms a second catalyst layer on the back surface of the surface on which the gas diffusion layer with the first catalyst layer of the electrolyte membrane is formed.
  • the formation of the second catalyst layer is carried out as follows.
  • the membrane / first catalyst layer junction 16' is unwound from the supply roll 18, and the support 51 is peeled off from the interface with the electrolyte membrane via the guide rolls 26A and 26B. At this time, the peeled support 51 is wound around the support winding roll 50.
  • the membrane from which the support 51 has been peeled off-The gas diffusion layer assembly 16'with the first catalyst layer has a second catalyst layer formed by the catalyst solution coating means 72 and the drying means 74 as in the third embodiment.
  • -The electrode assembly is 13d.
  • the membrane / electrode assembly 13d is sent out by the sending roll 14, and is wound into a roll by the winding roll 15.
  • the gas diffusion layer does not exist on the surface where the second catalyst layer is formed on the electrolyte membrane, but before further joining the gas diffusion layer, it functions by sandwiching a film hollowed out in a frame shape. Can be given.
  • the surface on which the second catalyst layer is formed on the electrolyte membrane is cut to a desired size without the gas diffusion layer, and further bonded to a frame-shaped film material or gas diffusion layer to form a single-wafer MEA. It becomes possible to do.
  • the gas diffusion layer with a catalyst layer is a Pt-supported carbon catalyst TEC10E50E and "Nafion" (registered trademark) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. on a gas diffusion layer 28BC manufactured by SGL Co., Ltd., which is a base material.
  • electrolyte membranes in Examples 2 to 6 were produced with reference to the production method described in JP-A-2018-60789.
  • Example 1 One of a commercially available "Nafion” (registered trademark) membrane, product name NR211 (thickness 25 ⁇ m), which was used as an electrolyte membrane according to the method described in the first embodiment described above using the apparatus having a schematic configuration shown in FIG. The catalyst layer of the gas diffusion layer with the catalyst layer described above was bonded to the surface of.
  • Nafion registered trademark
  • 100% pure water was applied to the catalyst layer in the form of droplets in an amount of 0.4 ⁇ L per 1 cm 2 using a fan-shaped spray nozzle CBIMV 80055S manufactured by Ikeuchi Co., Ltd.
  • thermocompression bonding step a pair of thermal press rolls having a diameter of 250 mm were used, and one of the rolls was a stainless steel roll and the other was a fluorine rubber roll having a hardness of 90 ° (shore A).
  • the pressure of the hot press roll was 3.0 MPa.
  • the pressure is a measured value using a prescale manufactured by FUJIFILM Corporation.
  • the roll surface temperature was 160 ° C., and the heating temperature was measured with a thermocouple provided at the bonding interface and found to be 115 ° C.
  • the transport speed of the electrolyte membrane and the gas diffusion layer with the catalyst layer was 4.0 m / min.
  • Example 2 Using the apparatus having a schematic configuration shown in FIG. 1, according to the method described in the first embodiment described above, on one surface of a polyetherketone-based polymer electrolyte membrane made of a polymer represented by the following formula (G1). , The catalyst layer of the same gas diffusion layer with a catalyst layer as used in Example 1 described above was bonded.
  • thermocompression bonding step a pair of thermal press rolls having a diameter of 250 mm were used, and one of the rolls was a stainless steel roll and the other was a fluorine rubber roll having a hardness of 90 ° (shore A).
  • the pressure of the hot press roll was set to 4.8 MPa. The pressure is a measured value using a prescale manufactured by FUJIFILM Corporation.
  • the temperature of the roll surface was 160 ° C., and the heating temperature was measured by a thermocouple provided at the bonding interface and found to be 115 ° C.
  • the transport speed of the electrolyte membrane and the gas diffusion layer with the catalyst layer was 4.0 m / min.
  • the gas diffusion layer with the catalyst layer was not damaged, and the electrolyte membrane was not swollen or wrinkled, and the quality was high.
  • Example 3 Using the apparatus having a schematic configuration shown in FIG. 1, according to the method described in the first embodiment described above, on one surface of a polyarylene-based polymer electrolyte membrane made of a polymer represented by the following formula (G2), The catalyst layer of the gas diffusion layer with the catalyst layer described above was bonded.
  • Example 4 Using the apparatus having a schematic configuration shown in FIG. 1, a polyether composed of a segment represented by the following formula (G3) and a segment represented by the following formula (G4) according to the method described in the first embodiment described above.
  • the catalyst layer of the gas diffusion layer with the catalyst layer described above was bonded to one surface of the sulfone-based polymer electrolyte membrane.
  • thermocompression bonding step (In equations (G3) and (G4), p, q and r are integers, p is 170, q is 380, and r is 4.)
  • the liquid application step and the thermocompression bonding step were carried out in the same manner as in Example 2.
  • the gas diffusion layer with the catalyst layer was not damaged, and the electrolyte membrane was not swollen or wrinkled, and the quality was high.
  • Example 5 A membrane-electrode assembly was manufactured according to the method described in the second embodiment described above.
  • a catalyst solution was applied to one surface of a polyetherketone-based polymer electrolyte membrane made of a polymer represented by the formula (G1), dried, and the first catalyst was used. A layer was formed.
  • a catalyst coating solution consisting of a Pt-supported carbon catalyst TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. and a "Nafion" (registered trademark) solution was used. Drying at 120 ° C. for 5 minutes gave a catalyst layer having a layer thickness of 5 ⁇ m.
  • the gas diffusion layer with the second catalyst layer was placed on the other surface of the polyether ketone polymer electrolyte membrane on which the first catalyst layer was formed.
  • the catalyst layer of the gas diffusion layer with a catalyst layer was joined to form a second gas diffusion layer with a catalyst layer.
  • a PET film "Lumirror" (registered trademark) film thickness of 75 ⁇ m manufactured by Toray Industries, Inc. was used as the cover film to be laminated on the first catalyst layer surface.
  • the same method as in Example 2 was used for the liquid application step and the thermocompression bonding step.
  • Example 6 A membrane-electrode assembly was manufactured according to the method described in the third embodiment described above.
  • the gas diffusion layer with a catalyst layer described above is first on one surface of a polyetherketone-based polymer electrolyte membrane made of a polymer represented by the formula (G1).
  • the catalyst layer was bonded.
  • the same method as in Example 2 was used for the liquid application step and the thermocompression bonding step.
  • Example 5 using the apparatus having the schematic configuration shown in FIG. 5, the same catalyst solution as in Example 5 was applied to and dried on the other surface of the electrolyte membrane on which the gas diffusion layer with the first catalyst layer was formed. A second catalyst layer was formed.
  • the gas diffusion layer with the catalyst layer was not damaged, and the electrolyte membrane was not swollen or wrinkled, and the quality was high.
  • Example 7 A membrane-electrode assembly was produced in the same manner as in Example 1 except that the following composite electrolyte membrane was used as the electrolyte membrane. As a result of visual evaluation of the obtained membrane-electrode assembly, the gas diffusion layer with the catalyst layer was not damaged, and the electrolyte membrane was not swollen or wrinkled, and the quality was high.
  • ⁇ Composite electrolyte membrane> A composite electrolyte membrane obtained by impregnating a 6 ⁇ m-thick PTFE porous substrate (registered trademark of “Tetra Latex” manufactured by Donaldson) with the following fluorine-based electrolyte solution.
  • Example 8 A membrane-electrode assembly was produced in the same manner as in Example 5 except that the following composite electrolyte membrane was used as the electrolyte membrane. As a result of visual evaluation of the obtained membrane-electrode assembly, the gas diffusion layer with the catalyst layer was not damaged, and the electrolyte membrane was not swollen or wrinkled, and the quality was high.
  • ⁇ Composite electrolyte membrane> A composite electrolyte membrane obtained by impregnating a 6 ⁇ m-thick PTFE porous substrate (registered trademark of “Tetra Latex” manufactured by Donaldson) with the following hydrocarbon-based electrolyte solution.
  • a nonionic fluorine-based surfactant (Neos (Neos (Neos)) is added to 100 parts by mass of an N-methylpyrrolidone (NMP) solution (electrolyte concentration: 13% by mass) in which a polyether ketone polymer electrolyte represented by the formula (G1) is dissolved.
  • NMP N-methylpyrrolidone
  • G1 polyether ketone polymer electrolyte represented by the formula (G1) is dissolved.
  • Example 9 In the manufacturing apparatus of FIG. 1, a membrane-electrode assembly was manufactured in the same manner as in Example 1 except that the nozzle chambers 32A and 32B were not depressurized. As a result of visual evaluation of the obtained membrane-electrode assembly, the gas diffusion layer with the catalyst layer was not damaged, and the electrolyte membrane was not swollen or wrinkled, and the quality was high.
  • Example 1 A catalyst layer is bonded to one surface of the electrolyte membrane from the same gas diffusion layer with a catalyst layer as that used in Example 1 above, except that the liquid application step is not performed. As a result of visual evaluation of the obtained membrane-electrode assembly, poor adhesion between the electrolyte membrane and the catalyst layer was observed.
  • the membrane-electrode assembly of the present invention can be applied to, for example, a polymer electrolyte fuel cell, a polymer electrolyte membrane water electrolyzer, an electrochemical hydrogen pump, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

電解質膜に触媒層付きガス拡散層が接合されてなる膜・電極接合体の製造方法であって、 接合前の触媒層の表面のみに大気雰囲気下において液体を付与する液体付与工程と、液体が付与された触媒層付きガス拡散層と電解質膜とを熱圧着により接合する熱圧着工程と、を有する膜・電極接合体の製造方法。 高分子電解質膜と触媒層付きガス拡散層が接合されてなる膜・電極接合体を製造するに際し、熱圧着条件の緩和と、触媒層付きガス拡散層と電解質膜との密着性向上の両立を、高い生産性で実現できる製造方法を提供する。 

Description

膜・電極接合体の製造方法、及び製造装置
 本発明は、固体高分子形燃料電池等の電気化学装置に利用される、高分子電解質膜と触媒層が接合されてなる部材、すなわち膜・触媒接合体の一つの実施態様である「膜・電極接合体」の製造方法、及び製造装置に関する。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子形燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。高分子電解質膜(以下、単に「電解質膜」ということがある)は、固体高分子形燃料電池のキーマテリアルであり、近年ではさらに、固体高分子電解質膜型水電解装置や電気化学式水素ポンプといった水素インフラ関連機器への適用についても検討が進んでいる。
 高分子電解質膜をこうした電気化学機器に適用するに際し、電解質膜と触媒層を接合した部材が利用される。このような部材の例としては、電解質膜の表面に触媒層付きガス拡散層を形成した膜・電極接合体(MEA)が代表である。
 MEAの製造方法としては例えば以下の方法が知られている。まず、ガス透過性を有するカーボンペーパー等からなる、ガス拡散層と称されるシートを基材として用いて、このシートの表面に触媒溶液を塗布する。そして、塗布された触媒溶液中の溶媒を蒸発させて乾燥した触媒層付きガス拡散層を形成する。さらに、この乾燥した触媒層付きガス拡散層と電解質膜とを面プレスやロールプレスを用いて熱圧着して触媒層付きガス拡散層を高分子電解質膜に接合する。このように一旦触媒層を乾燥状態とした上で電解質膜に接合する方法を採るのは、触媒溶液中の溶媒が電解質膜に付着すると電解質膜が膨潤してシワが発生し、形が崩れてしまうためである。
 しかし乾燥状態にある触媒層付きガス拡散層を電解質膜に熱圧着する場合には、長時間高温高圧のプレスにかけないと触媒層と電解質膜との密着性が不充分となるおそれがある。一方で触媒層と電解質膜との密着性を向上させるために過酷な熱圧着条件を与えると、触媒層が圧縮変形することでガス拡散性が低下してしまい良好な発電性能が得られないおそれや、電解質膜への熱応力によるダメージが生じて耐久性が低下するおそれ、さらにはガス拡散層が圧縮変形することでガス拡散性が低下したり破損してしまうおそれがある。一方、触媒層付きガス拡散層や電解質膜へのダメージを低減するために単純にプレスの温度と圧力を低くするだけでは、その分プレス時間を伸ばす必要があるため生産性が大きく低下してしまう。
 そこで、熱圧着条件を緩和しつつ電解質膜と触媒層との良好な密着性を実現するために様々な技術が提案されている。
 例えば特許文献1のように、触媒溶液を半乾燥させて触媒層に溶媒成分をわずかに残留させた状態で電解質膜と接合させる方法や、特許文献2のように、乾燥した触媒層の表面に、プロトン伝導性を有するバインダー樹脂を含む溶液を塗布し、溶液が完全に乾燥する前に電解質膜と接合させる方法、特許文献3のように、電解質膜と触媒層を含む積層体を液体中に浸漬した状態で圧着する方法が提案されている。
特許第4240272号明細書 特開2013-69535号公報 特開2009-140652号公報
 特許文献1に記載の方法によれば、触媒層に、電解質膜の触媒層との接合面のみを軟化することができる程度の溶媒成分を残存させておくことで電解質膜にシワを発生させることなく、緩和した熱圧着条件で電解質膜と触媒層との密着性を良好にすることができる。しかし、触媒溶液中の溶媒を加熱により部分的に除去しつつ、溶媒残存量を触媒層の全面で同一な状態とする乾燥制御は困難であり、触媒層面内の乾燥状態の違いによって、電解質膜と触媒層の界面抵抗が大きいものや、電解質膜の変形によるシワや触媒層表面にクラックが生じたものが混在して品質が安定しないという問題を有している。また、溶媒残存量のマージンが狭く、生産性低下によるコストアップにつながるという問題も有している。さらには触媒溶液の溶媒構成に制限を受けるため、触媒層の品種変更に柔軟に対応することが困難である。
 また、特許文献2に記載の方法によれば、プロトン伝導性を有するバインダー樹脂の溶液を触媒層の電解質膜との接合面に塗布して、溶液が完全に乾燥する前に接合することで溶液が接着剤の役割を果たし、低温低圧でも電解質膜と触媒層の密着性を良好にすることができる。しかし、電解質膜と触媒層の接合に、プロトン伝導性を有するバインダー樹脂の溶液を使用するため製造コストアップにつながる。さらに、バインダー樹脂が電解質膜と同様の成分であり、実質上電解質膜の膜厚が増大することによって電気抵抗が増加すること、また溶液中の有機溶媒が電解質膜と触媒層との界面に残存することによって、発電性能の低下を引き起こす可能性があるといった問題も有している。
 また、特許文献3に記載の方法によれば、電解質膜を含む被接合体と触媒層を含む被接合体を液体中に浸漬した状態で圧着する圧着工程により、電解質膜や触媒層中の電解質が液体を充分に吸収し、柔らかくなった状態でプレスされ、接合相手である触媒層やガス拡散層の接合面の凹凸部に入りこんで強い接合性が得られ、プレス時の温度や圧力を高くすることなく、膜・電極接合体を構成する層間の接合性を高めることができる。しかし、接合に関与する界面以外の部材全体を液体に浸漬させるため、電解質膜の膨潤を抑制して形態を保持することが困難である。さらに、圧着後の乾燥による部材ごとの変形挙動が異なるため均一で平坦な接合体を得ることが困難であり、ロール状の長尺部材を用いた連続的な加工による生産性の向上が難しいという問題も有している。
 本発明の課題は、高分子電解質膜と触媒層付きガス拡散層が接合されてなる部材(以下、「膜・電極接合体」という)を製造するに際し、熱圧着条件(プレス圧力、プレス温度、プレス時間)の緩和と、触媒層付きガス拡散層と電解質膜との密着性向上の両立を、高い生産性で実現できる製造方法を提供することにある。
 上記課題を解決するため、本発明の膜・電極接合体の製造方法は、次の構成を有する。すなわち、
電解質膜に触媒層付きガス拡散層が接合されてなる膜・電極接合体の製造方法であって、接合前の触媒層の表面のみに大気雰囲気下において液体を付与する液体付与工程と、液体が付与された触媒層付きガス拡散層と電解質膜とを熱圧着により接合する熱圧着工程と、を有する膜・電極接合体の製造方法、である。
 また本発明の膜・電極接合体の製造装置は、次の構成を有する。すなわち、
電解質膜に触媒層付きガス拡散層が接合されてなる膜・電極接合体の製造装置であって、接合前の触媒層の表面に液体を付与する液体付与手段と、液体が付与された触媒層付きガス拡散層と電解質膜とを熱圧着により接合する熱圧着手段と、を有する膜・電極接合体の製造装置、である。
 本発明の膜・電極接合体の製造方法は、前記液体付与工程において付与する液体が水を含む液体であることが好ましい。
 本発明の膜・電極接合体の製造方法は、前記水を含む液体における水の含有割合が90質量%以上、100質量%以下であることが好ましい。
 本発明の膜・電極接合体の製造方法は、前記液体付与工程において付与する液体が純水であることが好ましい。
 本発明の膜・電極接合体の製造方法は、前記液体付与工程において、触媒層付きガス拡散層の触媒層表面に液滴状に前記液体を付与することが好ましい。
 本発明の膜・電極接合体の製造方法は、前記液体付与工程において、前記液体をスプレーによって付与することが好ましい。
 本発明の膜・電極接合体の製造方法は、前記液体付与工程において、前記熱圧着工程における前記液体の量が前記触媒層の表面1cm辺り0.1μL以上5μL以下であることが好ましい。
 本発明の膜・電極接合体の製造方法は、前記電解質膜として炭化水素系電解質膜を用いることが好ましい。
 本発明の膜・電極接合体の製造方法は、前記電解質膜の表面に、前記いずれかの方法により触媒層付きガス拡散層を接合することを含むことが好ましい。
 本発明の膜・電極接合体の製造方法は、電解質膜の一方の面に触媒溶液を塗布・乾燥して第1の触媒層を形成する工程と、前記電解質膜の他方の面に、前記いずれかの方法により触媒層付きガス拡散層を接合して第2の触媒層を形成する工程と、を有することが好ましい。
 本発明の膜・電極接合体の製造方法は、前記第1の触媒層をカバーフィルムで被覆する工程を更に有し、かつ前記第2の触媒層を形成する工程を、第1の触媒層がカバーフィルムで被覆された状態で行うことが好ましい。
 本発明の膜・電極接合体の製造方法は、電解質膜の一方の面に触媒溶液を塗布して第1の触媒層を形成する工程と、前記第1の触媒層が乾燥する前にガス拡散層で被覆する工程と、前記ガス拡散層を通して触媒層を乾燥する工程と、前記電解質膜の他方の面に、前記いずれかに記載の方法により触媒層付きガス拡散層を接合して第2の触媒層を形成する工程と、を有することが好ましい。
 本発明の膜・電極接合体の製造装置は、前記液体付与手段は、触媒層の表面に液滴状に前記液体を付与する手段であることが好ましい。
 本発明の膜・電極接合体の製造装置は、前記液体付与手段がスプレーであることが好ましい。
 本発明によれば、熱圧着条件(プレス圧力、プレス温度、プレス時間)の緩和と、触媒層付きガス拡散層と電解質膜との密着性向上を、高い生産性で両立しながら膜・電極接合体を製造することができる。
本発明の膜・電極接合体製造装置の第一の実施形態の概略構成を示す側面図である。 本発明の膜・電極接合体製造装置の第二の実施形態において第一の触媒層を形成するための概略構成を示す側面図である。 本発明の膜・電極接合体製造装置の第二の実施形態において第二の触媒層を形成するための概略構成を示す側面図である。 本発明の膜・電極接合体製造装置の第三の実施形態において第一の触媒層を形成するための概略構成を示す側面図である。 本発明の膜・電極接合体製造装置の第三の実施形態において第二の触媒層を形成するための概略構成を示す側面図である。 本発明の膜・電極接合体製造装置の第一の実施形態において遮熱板を説明するための概略構成を示す側面図である。
 何ら本発明を限定するものではないが、本発明の作用としては、以下のようなことが考えられる。熱圧着工程において、触媒層付きガス拡散層の電解質膜との接合面に液体が付与された状態で電解質膜と触媒層付きガス拡散層とが挟圧されることで、界面に存在する空気が追い出されて電解質膜と触媒層付きガス拡散層の間にほぼ液体のみが存在する状態となる。この状態でさらに熱が加えられることで液体が蒸発し界面が真空化するため触媒層付きガス拡散層と電解質膜との密着性が向上する。さらに電解質膜が液体と接触して軟化するため、両者の密着性はより一層向上する。なお電解質膜は液体と接触している間、熱圧着時の挟圧によって保持されているため、膨潤の発生を防止することができる。また界面で蒸発した液体は、多孔質構造を有した触媒層付きガス拡散層の空孔部を通過することで膜・電極接合体の外に排出される。
 なお、本明細書における「膜・電極接合体」とは、例えば、ガス透過性を有するカーボンペーパー等からなる基材(ガス拡散層)の片面に触媒層が形成されてなる触媒層付きガス拡散層いわゆるガス拡散電極と電解質膜が接合された部材を指すものであり、また、電解質膜と触媒層との接合面に着目していることから「膜・触媒接合体」の技術分野に含まれる。
 また、すでに電解質膜の一方の面に触媒層が形成されている状態からさらに他方の面に触媒層付きガス拡散層を接合する操作や電解質膜の一方の面に触媒層付きガス拡散層を接合した後さらに他方の面に触媒層を形成する操作も「膜・電極接合体の製造」に含むものとする。上記した電解質膜の一方の面あるいは他方の面に触媒層を形成する方法としては、例えば、直接に触媒層を塗布する方法、触媒層転写シートを用いて触媒層を転写する方法を採用することができる。
 〔電解質膜〕
 本発明の膜・電極接合体の製造方法及び製造装置に供される電解質膜は、プロトン伝導性を有し、固体高分子形燃料電池、固体高分子電解質膜型水電解装置、電気化学式水素ポンプなどに用いられる電解質膜として作動する限り特に限定されるものではなく、公知または市販のものを使用できる。このような電解質膜としては、高分子電解質膜が好ましく、例えば、パーフルオロスルホン酸からなるフッ素系電解質膜や炭化水素系骨格にプロトン伝導性を付与した炭化水素系ポリマーからなる炭化水素系電解質膜も用いることができる。
 特に炭化水素系電解質膜は、フッ素系電解質膜に比べガラス転移温度が高い上に加熱時の収縮変形が大きいため、通常の熱圧着方法では優れた生産性を持つ転写条件を見出すことが困難な場合が多く、本発明の製造方法、製造装置を好適に適用できる。
 また、電解質膜として、高分子電解質と多孔質基材とが複合化された複合電解質膜を用いることができる。
 〔複合電解質膜〕
 複合電解質膜は、高分子電解質と多孔質基材とを複合化したものであり、例えば、多孔質基材に高分子電解質を充填(含浸)することによって得られる。多孔質基材としては、例えば、炭化水素系高分子化合物を主成分とする炭化水素系多孔質基材、フッ素系高分子化合物を主成分とするフッ素系多孔質基材などが挙げられる。
 炭化水素系高分子化合物としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアクリレート、ポリメタクリレート、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVdC)、ポリエステル、ポリカーボネート(PC)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリフェニレンオキシド(PPO)、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィドスルホン、ポリパラフェニレン(PPP)、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン(PEK)、ポリアリーレンホスフィンオキシド、ポリエーテルホスフィンオキシド、ポリベンズオキサゾール(PBO)、ポリベンズチアゾール(PBT)、ポリベンズイミダゾール(PBI)、ポリアミド(PA)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリイミドスルホン(PIS)などが挙げられる。
 フッ素系高分子化合物としては、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVdF)、ポリクロロトリフルオロエチレン(PCTFE)、パーフルオロアルコキシフッ素樹脂(PFA)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)などが挙げられる。
 耐水性や耐薬品性、機械特性の観点から、PE、PP、PPS、PEK、PBI、PTFE、ポリヘキサフルオロプロピレン、FEP、PFAが好ましく、さらに、耐薬品性、化学的耐久性の観点からPTFE、ポリヘキサフルオロプロピレン、FEP、PFAがより好ましく、分子配向により高い機械強度を有することから、PTFEが特に好ましい。
 複合電解質膜としては、炭化水素系電解質とフッ素系多孔質基材とを複合化したものが、特に好ましい。この場合、複合化に際し、炭化水素系電解質溶液にノニオン性フッ素系界面活性剤を加えることによって、フッ素系多孔質基材に炭化水素系電解質を隙間なく高効率で充填(含浸)させやすくなる。
 複合電解質膜は、例えば、多孔質基材に高分子電解質溶液を多孔質基材に含浸した後に、乾燥させて高分子電解質溶液に含まれる溶媒を除去することによって製造することができる。上記含浸方法としては、次のような方法が挙げられる。
 (1)高分子電解質溶液に浸漬した多孔質基材を引き上げながら余剰の溶液を除去して膜厚を制御する方法、
 (2)多孔質基材上に高分子電解質溶液を流延塗布する方法、
 (3)支持基材上に流延塗布された高分子電解質溶液の上に多孔質基材を貼り合わせて含浸させる方法。
 〔触媒層〕
 本発明の膜・電極接合体の製造方法及び製造装置に供される触媒層は、固体高分子形燃料電池、固体高分子電解質膜型水電解装置、電気化学式水素ポンプなどに用いられる触媒層として作動する限り特に限定されるものではない。一般的には、カーボン粒子などの導電性粒子と、導電性粒子に担持された白金粒子または白金合金粒子などの触媒粒子と、プロトン伝導性を有するイオノマーなどの電解質成分とからなる多孔質構造を有した触媒層を用いることができる。
 一例として、導電性粒子としては、オイルファーネスブラック、ガスファーネスブラック、アセチレンブラック、サーマルブラック、黒鉛、カーボンナノチューブ、グラフェンなどのカーボン、酸化錫、酸化チタンなどの金属酸化物、などが好適に用いられる。触媒粒子としては、白金、イリジウム、ルテニウム、ロジウム、パラジウムなどの貴金属単体か、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などと白金との合金または白金、ルテニウムとの3元系合金、酸化イリジウムなどが好適に用いられる。また、電解質成分としては、パーフルオロカーボンスルホン酸系ポリマーの“ナフィオン”(登録商標、ケマーズ社製)、“アクイヴィオン”(登録商標、Solvay社製)、“フレミオン”(登録商標、旭硝子(株)製)、“アシプレックス”(登録商標、旭化成(株)製)、“フミオン”F(登録商標、FuMA-Tech社製)などや、炭化水素系ポリマーのポリスルホンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸、ポリスチレンスルホン酸、ポリエーテルエーテルケトンスルホン酸、ポリフェニルスルホン酸などが好適に用いられる。
 触媒溶液は、これらの触媒層材料が、乾燥によって蒸発する溶媒に分散されたもので、電解質膜上に触媒層を形成するに足るものであれば特に限定されるものでない。一般的には、溶媒として、水や、メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブタノール、エチレングリコール等のアルコール、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどが好適に用いられる。
 〔ガス拡散層〕
 本発明の膜・電極接合体の製造方法及び製造装置に供されるガス拡散層は、固体高分子形燃料電池、固体高分子電解質膜型水電解装置、電気化学式水素ポンプなどに用いられるガス拡散層として作動する限り特に限定されるものではない。一般的には、電気抵抗が低く、集電あるいは給電を行うことができ触媒層を形成できるものを用いることができる。ガス拡散層の構成材としては、例えば、炭素質、導電性無機物質が挙げられ、例えば、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛及び膨張黒鉛などの炭素材、ステンレススチール、モリブデン、チタンなどが例示される。これらの、形態は特に限定されず、例えば繊維状あるいは粒子状で用いられるが、燃料透過性の点から炭素繊維などの繊維状導電性物質(導電性繊維)が好ましい。導電性繊維を用いたガス拡散層としては、織布あるいは不織布いずれの構造も使用可能である。かかる織布としては、平織、斜文織、朱子織、紋織、綴織など、特に限定されること無く用いられる。また、不織布としては、抄紙法、ニードルパンチ法、スパンボンド法、ウォータージェットパンチ法、メルトブロー法によるものなど特に限定されること無く用いられる。また編物であってもよい。これらの布帛において、特に炭素繊維を用いた場合、耐炎化紡績糸を用いた平織物を炭化あるいは黒鉛化した織布、耐炎化糸をニードルパンチ法やウォータージェットパンチ法などによる不織布加工した後に炭化あるいは黒鉛化した不織布、耐炎化糸あるいは炭化糸あるいは黒鉛化糸を用いた抄紙法によるマット不織布などが好ましく用いられる。特に、薄く強度のある布帛が得られる点から不織布、やクロスを用いるのが好ましい。かかるガス拡散層に用いられる炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、フェノール系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などがあげられる。こうした炭素繊維として、たとえば、東レ(株)製カーボンペーパーTGPシリーズ、SOシリーズ、E-TEK社製カーボンクロスなどが用いられる。
 また、かかるガス拡散層には、水の滞留によるガス拡散・透過性の低下を防ぐための撥水処理や、水の排出路を形成するための部分的撥水、親水処理や、抵抗を下げるための炭素粉末の添加、耐電位腐食性を付与するための白金めっき等を行うこともできる。また、電極基材と触媒層の間に、少なくとも無機導電性物質と疎水性ポリマーを含む導電性中間層を設けることもできる。特に、電極基材が空隙率の大きい炭素繊維織物や不織布である場合、導電性中間層を設けることで、触媒溶液がガス拡散層にしみ込むことによる性能低下を抑えることができる。
 〔触媒層付きガス拡散層〕
 本発明の膜・電極接合体の製造方法及び製造装置に供される触媒層付きガス拡散層は、前記ガス拡散層に前記触媒層を形成したものである限り限定されるものではない。一般的には、前記ガス拡散層に前記触媒溶液を直接塗布、乾燥したものを用いることができる。または、前記触媒溶液を一度ガス拡散層とは別の仮基材上に塗布、乾燥してシート状に成形したのち、前記ガス拡散層と熱圧着し、前記仮基材を除去したものを用いることができる。
 〔液体付与工程〕
 液体付与工程は、接合前の触媒層付きガス拡散層の触媒層表面、すなわち電解質膜との接合面に液体を付与する工程である。液体の付与とは、触媒層付きガス拡散層の触媒層表面に液体が露出した状態で付着している状態を形成することを意味する。液体は実質的に触媒層内部へ浸透させないことが好ましい。液体が触媒層内部へ浸透させないと、触媒層中の電解質成分が溶解するおそれがなく、触媒層の強度が低下せず、熱圧着工程におけるクラック発生を有効に防止することができる。
 液体付与工程において、液体は大気雰囲気下で触媒層表面のみに付与される。触媒層の表面のみに液体が付与されることによって、触媒層と電解質膜の両方に液体を付与するのに比べて、工程制御のパラメータが少なくなるため製造条件が安定しやすく、接合面の液体付与量を制御・管理しやすくなるという利点、および熱圧着工程の前に液滴同士が接触することによる接合面内の液量のばらつきが抑制できるという利点がある。
 また、大気雰囲気下で液体を付与することによって、触媒層表面のみへの液体付与が可能となり、触媒層内部への液体の浸透を抑制することができる。触媒層内部への液体の浸透を抑制することによって、触媒層の強度低下やクラック発生を有効に抑制することができる。触媒層内部に浸透した液体は、界面の密着性向上には寄与せず、むしろ蒸発させるためのエネルギー消費量が増大することから、触媒層内部への液体の浸透を抑制することは製造コストの点からも有効である。
 液体付与工程において、液体は、後工程である熱圧着工程での加熱によって蒸発し、かつ電解質膜と触媒層付きガス拡散層に対して毒性を持たない材料であれば特に限定されない。例えば水や、メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブタノール等のアルコールや、それらの混合液を用いることができるが、少なくとも水を含む液体を用いることが望ましい。熱圧着時に液体が急激な温度変化を起こすと、電解質膜にシワが発生する場合があるが、水は上記アルコールに比べ沸点、比熱が高く、熱圧着時の温度上昇が緩やかであるため、水を含む液体であればそれらのダメージを抑制することができる。また水はアルコールに比べ触媒層への浸透性が低いため、触媒層に液体が浸透することによるクラックの発生を防ぐことができる。さらに水を含む液体を用いることで低コストに本発明を実施できる上、製造上の環境負荷も小さくできる。なお本発明の製造方法、及び製造装置によって接合した膜・電極接合体に液体が残留した場合でも、水であればこれを用いた機器性能への影響がない。水を含む液体としては、水の含有割合が50質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましく、一層好ましくは100質量%である。すなわち液体として純水を用いることが最も好ましい。ここで純水とは、不純物を含まない高純度の水のことであり、逆浸透膜とイオン交換樹脂を通じて採水される市販の純水製造装置で得られるJIS K 0557(1998)A4レベルの水か、それと同等の品質を有するものを指す。
 なお液体には、全体として流動性を有しており本発明の効果が得られる限り、固形分材料が溶解、もしくは分散した状態で含まれていてもよい。
 液体付与工程において、液体の付与方法は特に限定されず、グラビアコーター、ダイコーター、コンマコーター等を用いて触媒層表面に一様な塗布膜を形成する方法触媒層表面に液体を液滴状に付与する方法が挙げられるが、触媒層表面に液体を液滴状に付与する方法が特に好ましい。ここで液滴状とは、液滴が触媒層表面に無数に付着して存在する様子を指す。なお液滴とは、表面張力によってまとまった液体のかたまりの内、その大きさが触媒層上で1cm以下であるものとする。液滴状の付与であれば、接合時に電解質膜を軟化させるための必要最低限の少量の液体を、接合面に均一に付与することが可能である。なお付与された液滴が均一であるとは、接合面1cm辺りに付与された液体の総量がいずれの位置においても同等であることを意味する。また、水のように触媒層に対してはじきやすく一様な塗布膜の形成が難しい液体であっても、液滴状であれば容易に付与することが可能である。さらに液滴状であれば触媒層との接触面積が小さいため熱圧着されるまでの液体の触媒層内部へ浸透を最小限に抑えることが可能である。なお、液滴は熱圧着工程における挟圧によって液滴が界面で押し広げられて周囲の液滴と結合するため、界面の全ての面で電解質膜を軟化させることが可能である。
 液体付与工程においては、熱圧着工程において圧着が開始される時の液量が、触媒層表面1cm辺り0.1μL以上5μL以下となるように液体を付与しておくことが好ましい。熱圧着工程における液量が上記好ましい範囲の場合、電解質膜を十分に軟化することができ、密着性が十分で、熱圧着工程における挟圧時に部分的に液滴が結合せずに電解質膜の軟化されない部分が生じるおそれは無く、一方、搬送中に液だれが生じることはなく、熱圧着時の加熱で略全量の液体が蒸発するので界面に残存する液体によって挟圧が除荷された瞬間に電解質膜が膨潤したりするおそれは無い。液量について、より好ましくは触媒層表面1cm辺り0.1μL以上0.8μL以下である。なお液量は、触媒層付きガス拡散層の触媒層の表面に、重量を測定したPETフィルム等のサンプル片を触媒層と積層するように貼り付けておき、液体付与工程で液体を付与した後、熱圧着工程においてサンプル片と電解質膜が接触する直前に液体付きサンプル片を取り出してその重量を測定し、重量差から1cm辺りの液体の体積を計算することで測定することができる。このときのサンプル片の大きさは一辺1cmから10cmの正方形とすることができる。
 また、付与される液滴の平均直径は小さい程好ましく、具体的には触媒層表面に付着した状態で300μm以下であることが好ましい。平均直径が小さい程、液滴間距離を短くできるため熱圧着工程での挟圧時に、より少ない液量で液滴の結合ができる。
 液体付与工程において、液体を液滴状に付与する手段としては、特に限定されず、スプレーやインクジェットによって液滴を吹き付ける方法、加湿雰囲気下で接合面に液滴を結露させる方法、超音波振動子等によってミスト化した液体を吹き付ける方法等を用いることができるが、液量を制御しつつ効率的に液体を付与することができる点で、スプレーによって液滴を吹き付ける方法が好ましい。また、液滴を吹き付けるスプレーとしては特に限定されず、圧搾空気によって液体を微細化して噴霧する2流体スプレーノズル等を用いることができる。
 上記したような液体を液滴状に付与する手段を使用する場合、液滴が周囲に飛散することを抑制するために、スプレーノズル等の液体付与手段をチャンバーで囲むことが好ましい。また、チャンバー内は減圧しなくてもよいが、少し減圧して大気圧に対して負圧にすることによって、チャンバーと触媒層との空隙から液滴が周囲に飛散することが抑制されるので好ましい。
 〔熱圧着工程〕
 液体付与工程を経た触媒層付きガス拡散層は、次に電解質膜と熱圧着する熱圧着工程を行う。熱圧着工程とは、触媒層付きガス拡散層と電解質膜を、触媒層付きガス拡散層の液体が付与された面と電解質膜が接触する積層状態で、加熱、挟圧することで、それらを接合する工程である。
 熱圧着工程において、触媒層付きガス拡散層と電解質膜とが接触してから、それらに挟圧力が作用するまでの時間は0.1秒以下が好ましい。この時間が上記好ましい範囲であると電解質膜が液体の付着によって膨潤する可能性が低く、液体の付着と熱圧着による電解質膜の固定が略同時に行われるので膨潤を抑制することができる。
 熱圧着工程における加熱温度は、特に制限されるものではないが、触媒層付きガス拡散層に付与した液体の沸点(以下、「液体沸点」と言う)以上220℃以下が好ましい。加熱温度とは、熱圧着工程中の電解質膜と触媒層の接合面での最高到達温度であり、測定には熱電対を用いることができる。加熱温度が上記好ましい範囲の場合、液体の蒸発に時間を要さず生産性に優れる一方、電解質膜が熱によるダメージを受けるおそれはない。熱圧着工程における加熱温度は、より好ましくは液体沸点以上160℃以下である。なお、液体沸点とは、外圧が1気圧のときの沸点とし、蒸発する液体が単一組成である場合はその液体の沸点を意味し、混合物である場合は混合物の各成分のうち単体として最も沸点が高いものの値を意味することとする。
 熱圧着工程において電解質膜と触媒層に与えられる圧力は適宜設定され得るが、1MPa以上20MPa以下であることが好ましい。上記好ましい範囲の場合、電解質膜と触媒層付きガス拡散層を十分に密着できる一方、触媒層付きガス拡散層や電解質膜に過剰な圧力がかからないので触媒層付きガス拡散層の構造が破壊されず、電解質膜への機械的ダメージが大きくならず、耐久性や発電性能が低下したりするおそれはない。熱圧着工程における圧力は、より好ましくは1MPaから10MPaである。
 熱圧着工程における挟圧形態は、特に限定されず、熱プレスロールのように電解質膜と触媒層付きガス拡散層とが単一の線状に接触する線接触の態様や、ダブルベルトプレス機構のように電解質膜と触媒層付きガス拡散層とが面状に搬送方向に幅をもって接触する面接触の態様であることができる。
 〔ロール・ツー・ロール方式による製造方法〕
 本発明の膜・電極接合体の製造方法は、ロール・ツー・ロール方式で行うことが好ましい。すなわち、液体付与工程、熱圧着工程を、ロール・ツー・ロール方式で連続的に行う方式である。
 ロール・ツー・ロール方式の製造方法は、例えば、長尺ロール状の電解質膜および長尺ロール状の触媒層付きガス拡散層をそれぞれ連続的に、巻き出し、搬送して、液体付与工程、加熱圧着工程を実施して得られた膜・電極接合体をロール状に巻き取る製造方法である。
 後述する、膜・電極接合体の製造装置は、ロール・ツー・ロール方式の製造方法を実施することができる製造装置の一例である。
 なお、上記は本発明の製造方法についての説明であるが、上記の説明及び下記の実施形態の記載から容易に理解されるように、本明細書は当該製造方法を実施するための下記のような製造装置も開示するものである。
(1)電解質膜に触媒層付きガス拡散層が接合されてなる膜・電極接合体の製造装置であって、接合前の触媒層の表面に液体を付与する液体付与手段と、液体が付与された触媒層付きガス拡散層と電解質膜とを熱圧着により接合する熱圧着手段と、を有する膜・電極接合体の製造装置、
(2)前記液体付与手段は、触媒層の表面に液滴状に前記液体を付与する手段である、(1)に記載の膜・電極接合体の製造装置、
(3)前記液体付与手段がスプレーである、(2)に記載の膜・電極接合体の製造装置。
 以下、本発明の具体的な実施形態について、本発明の製造方法を実現する製造装置の模式図を参照しながら説明する。なお、以下の説明は本発明の理解を容易にするために記載したものであり、本発明を何ら限定するものではないが、当業者には容易に理解されるように、個々の実施形態における好ましい態様や態様の変形についての言及は、同時に上位概念としての本発明の製造方法または製造装置の説明と解釈し得るものである。なお、本明細書においては、便宜上各図面の上方を「上」、下方を「下」として説明するが、各図面の上下方向は必ずしも地面に対する垂直方向に限定されるものではない。
 [第一の実施形態:膜・電極接合体の製造1]
 図1は、本発明の膜・電極接合体製造装置の概略構成を示す側面図である。
 本実施形態に係る膜・電極接合体製造装置100においては、膜・電極接合体の製造は次の様に実施される。
 電解質膜10は、電解質膜供給ロール11より巻き出され、ガイドロール12を通して熱圧着部Pに供給される。巻き出された電解質膜10の上方及び下方には、それぞれ触媒層付きガス拡散層供給ロール21A、21Bが設置されている。電解質膜10の上面に接合される触媒層付きガス拡散層は触媒層付きガス拡散層20Aを用いて形成される。触媒層付きガス拡散層20Aは、予めガス拡散層に、例えば触媒溶液の塗布等により作製され、触媒層付きガス拡散層供給ロール21Aから巻き出され、バックアップロール31A、ガイドロール22Aの順に、それぞれ、触媒層形成面とは反対側のガス拡散層側を担持されながら搬送される。電解質膜10の下面に形成される触媒層付きガス拡散層を形成するための触媒層付きガス拡散層20Bは触媒層付きガス拡散層供給ロール21Bから巻き出され、バックアップロール31B、ガイドロール22Bの順に、それぞれガス拡散層側を担持されながら搬送される。このようにして触媒層付きガス拡散層20A、20Bの触媒層の形成された面が電解質膜10と対向するように熱圧着部Pに供給される。
 なお、ガス拡散層は、通気性を有している。通気性を有するとは、気体を透過し得る性質を持つことを意味し、例えば厚み方向に連通した空孔を有している場合等が挙げられる。通気性を持つことで熱圧着時に生じる液体の蒸気を効果的に排出することができる。
 ガイドロール12、及び22A、22Bには、熱圧着部Pに供給される電解質膜10、及び触媒層付きガス拡散層20A、21Bのシワやたるみを除去するために、エキスパンダーロールを用いることが好ましい。
 なお、本実施形態に係る膜・電極接合体の製造装置100においては、電解質膜10の両面に触媒層付きガス拡散層を接合するよう構成されているが、電解質膜10の片面のみに触媒層付きガス拡散層を接合するように構成してもよい。
 電解質膜の片面のみに触媒層付きガス拡散層を接合することにより、電解質膜のもう一方の面にさらに触媒層付きガス拡散層を接合する前に、額縁状にくりぬかれたフィルムを挟持させるなどして機能を付与することが可能となる。または、電解質膜の片面のみに触媒層付きガス拡散層を接合させた状態で所望の寸法に裁断し、さらに額縁状のフィルム材料や触媒層付きガス拡散層と接合することにより枚葉のMEAとすることが可能となる。
 本実施形態においては、バックアップロール31Aに担持された触媒層付きガス拡散層20Aに対向してスプレーノズル30Aが設けられている。スプレーノズル30Aは吐出口がバックアップロール31Aの中心軸に向けられており、バックアップロール31Aから所定の間隔を隔てた位置に設けられている。なお、スプレーノズル30Aは触媒層付きガス拡散層20Aの基材幅に応じて、触媒層付きガス拡散層20Aの幅方向に1つ以上備えられるものである。
 スプレーノズル30Aは図示しない水供給タンクから水が供給されて、供給された水を吐出口から吐出し、触媒層付きガス拡散層の電解質膜との接合面に液滴を付与する。
 さらにスプレーノズル30Aと、スプレーノズル30Aの吐出口から触媒層付きガス拡散層までの液滴が飛翔する空間Sは、ノズルチャンバー32Aによって囲われており、ノズルチャンバー32Aには、空間Sを減圧する減圧タンク34Aが減圧の切換を行うバルブ33Aを介して配管で接続されている。減圧タンク34Aによって、空間Sを製造装置の環境圧に対して負圧にすることで、ノズルチャンバー32Aと触媒層付きガス拡散層20Aの間に設けられた隙間から外気をわずかに吸引してスプレーノズル30Aからの余分な液滴が周囲に飛散することを防止する。なおノズルチャンバー32A内に溜まった水は、ノズルチャンバー32Aに設けられた図示しないドレンから排出されて水供給タンクに戻り再利用される。
 なお上記は触媒層付きガス拡散層20Aに対する液体付与手段の説明であるが、触媒層付きガス拡散層20Bに対して設けられる液体付与手段(スプレーノズル30B、ノズルチャンバー32B、バルブ33B、減圧タンク34B)も同様の構成であるため説明を省略する。
 ノズルチャンバー32A、32Bは減圧しなくてもよいが、少し減圧することによって液滴の周囲への飛散を防止することができるので好ましい。この場合、減圧度が大きすぎると、ノズルチャンバー32A、32B内への外気吸引量が大きくなるため、ノズルチャンバー32A、32B内の気流が乱れ、液滴の付与精度が低下するおそれがある。したがって、ノズルチャンバー32A、32Bの減圧度は、例えば、製造装置の環境圧(大気圧)に対して-50.0kPaまでの範囲が適当であり、-10.0kPaまでの範囲が好ましく、-5.0kPaまでの範囲がより好ましい。
 このように、電解質膜10、及び電解質膜10との接合面に液体が付与された触媒層付きガス拡散層20A、20Bは熱圧着部Pに供給されて熱プレスロール40A、40Bの間を通過する。なお、図6に示すように触媒層付きガス拡散層20Aと熱プレスロール40A、触媒層付きガス拡散層20Bと熱プレスロール40Bの間に、それぞれ遮熱板41A、41Bを設けることが好ましい。遮熱板41A、41Bを設けることで、熱プレスロール40A、40Bから放射される輻射熱によって、触媒層付きガス拡散層20A、20Bに付与された液体の熱プレス前の蒸発を防止できる。
 熱プレスロール40A、40Bは、図示しない駆動手段と連結されており、速度を制御しながら回転可能である。この熱プレスロール40A、40Bが電解質膜10、触媒層付きガス拡散層20A、20Bに熱と圧力をかけながら一定速度で回転することで、電解質膜10と触媒層付きガス拡散層20A、20Bの搬送速度を同期させて搬送しながら、電解質膜10の両面に触媒層付きガス拡散層を熱圧着させて膜・電極接合体13aを形成する。なお熱ロールプレス40A、40Bについて、加熱装置、加圧装置等の図示は省略した。
 熱プレスロール40A、40Bの材質は特に限定されるものではないが、一方のロールをステンレス等の金属とし、もう一方のロールは、ゴムに代表される樹脂もしくはエラストマー材質等の弾性体を表層に被覆した構造とすることが好ましい。熱プレスロール40A、40Bの一方のロールを金属とすることで、電解質膜と触媒層付きガス拡散層を十分に加熱することが可能であり、もう一方のプレスロールの表層を弾性体とすることで、プレスロールが触媒層付きガス拡散層20A、20Bに対して柔軟に変形し、良好な線接触を維持することで基材幅方向の線圧を均一にすることが可能である。
 弾性体の材質としては、例えばゴムを用いる場合には、フッ素ゴムや、シリコンゴム、EPDM(エチレン・プロピレン・ジエンゴム)、ネオプレン、CSM(クロロスルホン化ポリエチレンゴム)、ウレタンゴム、NBR(ニトリルゴム)、エボナイトなどを用いることができる。また、弾性体のゴム硬度はショアA規格で70~97°の範囲であることが好ましい。弾性体のゴム硬度が上記好ましい範囲であると弾性体の変形量が適度で、触媒層付きガス拡散層20A、20Bとの挟圧接触幅が大きくなりすぎず、電解質膜10と触媒層の接合に必要な圧力を確保することができ、一方、挟圧接触幅が小さくなりすぎず、接合に必要な挟圧時間を確保できる。
 熱プレスロール40A、40Bの加熱手段としては、各種ヒーター、蒸気、オイル等の熱媒を使用することができるが、特に限定されるものではない。また加熱温度は上下のロールで同じ温度であっても良いし、異なる温度であっても良い。
 熱プレスロール40A、40Bにおける挟圧力の制御方法は、特に限定されず、油圧シリンダー等の加圧手段を用いて挟圧力を制御しても良いし、サーボモーター等を用いた位置制御によって熱プレスロール40A、40B間に一定間隔の隙間を設け、隙間の大きさによって挟圧力を制御しても良い。
 なお本実施形態においては、熱圧着部Pに線接触機構である熱プレスロール40A、40Bを用いたが、これに限定されるものではない。複数のロールにより複数の線接触で電解質膜10、触媒層付きガス拡散層20A、20Bを挟圧する機構であってもよいし、面接触で挟圧を行うダブルベルトプレス機構を用いても良い。複数組のロールを用いる場合、ロール設置数は特に限定されないが、2~10組であることが好ましい。
 このように、熱圧着部Pを通過し、電解質膜10の両面に触媒層付きガス拡散層が接合されて、膜・電極接合体13aとなる。
 なお送り出しロール14は、図示しない駆動手段と連結可能であり、プレスロール40A、40Bが電解質膜10、触媒層付きガス拡散層20A、20Bを挟圧していない状態では、速度制御を行って電解質膜10を搬送することができる。
 また、熱圧着部Pで電解質膜の両面に触媒層が接合された膜・電極接合体13aを加熱するための加熱手段(不図示)を設置することができる。加熱手段は、例えば、熱圧着部Pから送り出しロール14までの間に設置することができる。加熱手段としては、熱風や加熱ロールを用いることができる。熱風温度や加熱ロールの表面温度、例えば、120℃~250℃が適当であり、150℃~230℃が好ましい。
 [第二の実施形態:膜・電極接合体の製造2]
 第二の実施形態においては、まず図2に示す触媒層形成装置101によって電解質膜の片面に第1の触媒層を形成する。第1の触媒層の形成は次の様に実施される。
 本実施形態においては、電解質膜10’は支持体上に支持された状態で触媒層形成装置101に供給される。電解質膜の支持体の材質は特に限定されるものではないが、例えばPETフィルムを用いることができる。
 支持体付きの電解質膜10’は、電解質膜供給ロール11より巻き出され、ガイドロール12を通して触媒溶液塗布手段72に供給される。触媒溶液塗布手段72は、バックアップロール73に担持される電解質膜10’に対向して備えられている。触媒溶液塗布手段72は、触媒溶液タンク70から触媒溶液送液ポンプ71を用いて触媒溶液が供給され、供給された触媒溶液を電解質膜上に塗布することで塗布膜を形成する。触媒溶液塗布手段72における触媒溶液の塗布方法は特に限定されるものではない。グラビアコーター、ダイコーター、コンマコーター、ロールコーター、スプレーコーター、スクリーン印刷法などの方法を用いることができる。
 なお、本実施形態においては、電解質膜10’に触媒溶液を塗布して触媒層を形成しているが、触媒層転写シートを用いて触媒層を電解質膜10’に転写・形成してもよい。
 次に電解質膜上に形成された触媒溶液の塗布膜を、乾燥手段74によって乾燥し、触媒溶液中の溶媒を蒸発させて乾燥した第1の触媒層を形成する。乾燥手段74における触媒溶液の乾燥方法は特に限定されるものではない。熱風などの熱媒体を送風する方法や熱ヒーターを用いる熱オーブン方式などを用いることができる。
 このように電解質膜上に第1の触媒層が形成された膜・第1の触媒層接合体16は送り出しロール14によって送り出されて、支持体付きの状態で巻取ロール17によってロール状に巻き取られる。
 次いで、図3に示す実施形態に係る膜・電極接合体製造装置102によって電解質膜の第1の触媒層が形成された面の裏面に第2の触媒層を形成する。第2の触媒層の形成は次の様に実施される。
 膜・第1の触媒層接合体16は、供給ロール18より巻き出され、ガイドロール12を通り、さらにガイドロール26A、26Bを介して支持体51が電解質膜との界面から剥離される。このとき剥離された支持体51は支持体巻取ロール50に巻き取られる。
 支持体51が剥離された膜・第1の触媒層接合体16に、ガイドロール27A、27Bを介して、カバーフィルム供給ロール60から巻き出されたカバーフィルム61が第1の触媒層面にラミネートされ、その後、熱圧着部Pに供給される。なお、カバーフィルム61のラミネートは支持体51の剥離を行う前に行っても良い。
 カバーフィルム61は、第2の触媒層を形成する工程中第1の触媒層を保護するために用いられるものであり、着脱によって触媒層の機能に支障をきたさないものであれば材質は特に限定されるものでない。一般的には、紙などに代表される天然繊維のシートや、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリイミド、ポリフェニレンスルフィドなどに代表される炭化水素系プラスチックフィルム、パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、エチレンテトラフルオロエチレンコポリマー(ETFE)などに代表されるフッ素系フィルム、または、これらの材料にアクリル系粘着剤、ウレタンアクリレート系粘着剤、ゴム系粘着剤、シリコーン系粘着剤などを付与し、被着体との密着性を高めた材料を用いることができる。密着性を高めた材料であれば電解質膜が液体と接触している間、電解質膜を担持することができるため電解質膜の膨潤を防止する効果をさらに得ることができる。
 熱圧着部Pに供給された膜・第1の触媒層接合体16は第一の実施形態と同様の液体付与工程、熱圧着工程によって、第1の触媒層がカバーフィルムで被覆された状態で第2の触媒層が触媒層付きガス拡散層として熱圧着されて膜・電極接合体13cとなる。
 熱圧着部Pを通過した膜・電極接合体13cは巻取ロール15によってロール状に巻き取られる。なお、カバーフィルム61は膜・電極接合体13cに接合された状態で巻き取っても良いし、プレス直後に熱プレスロール40Bにおいて膜・電極接合体13cから剥離しても良い。カバーフィルム61が膜・電極接合体13cに接合された状態で巻き取ることにより触媒層付電解質膜のシワや伸びを抑制し触媒層を外的要因による物理的ダメージから保護することができる。また、熱圧着直後にカバーフィルム61を剥離し触媒層を露出させることにより熱圧着工程で生じる液体の蒸気を効果的に排出することができる。この場合、巻き取る前に触媒層を新たなカバーフィルムで保護することもできる。
 この状態では、電解質膜に第1の触媒層が形成された面にガス拡散層がないが、さらにガス拡散層を接合する前に、額縁状にくりぬかれたフィルムを挟持させるなどして機能を付与することが可能となる。または、電解質膜に第1の触媒層が形成された面にガス拡散層がない状態で所望の寸法に裁断し、さらに額縁状のフィルム材料やガス拡散層と接合することにより枚葉のMEAとすることが可能となる。またさらに、電解質膜に第1の触媒層形成用触媒溶液を塗布し、乾燥する前にガス拡散層で被覆し、ガス拡散層を通して触媒層を乾燥するという一連の工程を経てガス拡散層を積層してもよい。
 [第三の実施形態:膜・電極接合体の製造3]
 第三の実施形態においては、まず図4に示す実施形態に係る膜・電極接合体製造装置103によって電解質膜の片面に第1の触媒層付きガス拡散層を形成する。第1の触媒層付きガス拡散層の形成は次の様に実施される。
 本実施形態においては、電解質膜10’は支持体上に支持された状態で触媒層形成装置103に供給される。支持体付きの電解質膜10’は、電解質膜供給ロール11より巻き出され、熱圧着部Pに供給される。熱圧着部Pに供給された電解質膜10’は第一の実施形態と同様の液体付与工程、熱圧着工程によって第1の触媒層付きガス拡散層が熱圧着されて、膜・第1の触媒層接合体16’となる。
 膜・第1の触媒層付きガス拡散層接合体16’は支持体が付いた状態で送り出しロール14によって送り出され、巻取ロール17によってロール状に巻き取られる。
 次いで図5に示す実施形態に係る触媒層形成装置104によって電解質膜の第1の触媒層付きガス拡散層が形成された面の裏面に第2の触媒層を形成する。第2の触媒層の形成は、次の様に実施される。
 膜・第1の触媒層接合体16’は、供給ロール18より巻き出され、ガイドロール26A、26Bを介して支持体51が電解質膜との界面から剥離される。このとき剥離された支持体51は支持体巻取ロール50に巻き取られる。
 支持体51が剥離された膜・第1の触媒層付きガス拡散層接合体16’は第三の実施形態と同様の触媒溶液塗布手段72、乾燥手段74によって第2の触媒層が形成され膜・電極接合体13dとなる。
 膜・電極接合体13dは送り出しロール14によって送り出されて、巻取ロール15によってロール状に巻き取られる。
 この状態では、電解質膜に第2の触媒層が形成された面にガス拡散層が存在しないが、さらにガス拡散層を接合する前に、額縁状にくりぬかれたフィルムを挟持させるなどして機能を付与することが可能となる。または、電解質膜に第2の触媒層が形成された面にガス拡散層がない状態で所望の寸法に裁断し、さらに額縁状のフィルム材料やガス拡散層と接合することにより枚葉のMEAとすることが可能となる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 実施例1~6において、触媒層付きガス拡散層には、基材であるSGL社製ガス拡散層28BC上に、田中貴金属工業(株)製Pt担持カーボン触媒TEC10E50Eと “ナフィオン”(登録商標)溶液からなる触媒塗液を塗工し、乾燥して作製した触媒層付きガス拡散層をロール体とした触媒層付きガス拡散層ロール(基材幅100mm、厚み240μm)を使用した(白金担持量:0.3mg/cm)。
 また、実施例2~6における電解質膜の製造は、特開2018-60789号公報に記載の製法を参照して行った。
 [実施例1]
 図1に示す概略構成の装置を用いて、前述の第一の実施形態に記載の方法に従い、電解質膜として用いた市販の“ナフィオン”(登録商標)膜、品名NR211(膜厚25μm)の一方の面に、前述の触媒層付きガス拡散層の触媒層を接合した。
 液体付与工程においては、(株)いけうち製の扇形スプレーノズルCBIMV 80005Sを用いて純度100%の水を触媒層に1cm辺り0.4μLの量にて、液滴状に付与させた。
 熱圧着工程においては、直径250mmの一対の熱プレスロールを用い、ロールの一方をステンレスロール、もう一方を硬度90°(ショアA)のフッ素ゴムロールとした。また熱プレスロールの圧力は3.0MPaとした。なお圧力は富士フイルム(株)製のプレスケールを用いた測定値である。ロール表面温度は160℃とし、接合界面に備えた熱電対によって加熱温度を測定した結果115℃であった。電解質膜と触媒層付きガス拡散層の搬送速度は4.0m/minとした。
 得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
[実施例2]
 図1に示す概略構成の装置を用いて、前述の第一の実施形態に記載の方法に従い、下記式(G1)で表されるポリマーからなるポリエーテルケトン系高分子電解質膜の一方の面に、前述の実施例1で用いたものと同じ触媒層付きガス拡散層の触媒層を接合した。
Figure JPOXMLDOC01-appb-C000001
 液体付与工程においては、(株)いけうち製の扇形スプレーノズルCBIMV 80005Sを用いて純度100%の水を触媒層に1cm辺り0.4μL付与させた。
 熱圧着工程においては、直径250mmの一対の熱プレスロールを用い、ロールの一方をステンレスロール、もう一方を硬度90°(ショアA)のフッ素ゴムロールとした。また熱プレスロールの圧力は4.8MPaとした。なお圧力は富士フイルム(株)製のプレスケールを用いた測定値である。ロール表面の温度は160℃とし、接合界面に備えた熱電対によって加熱温度を測定した結果115℃であった。電解質膜と触媒層付きガス拡散層の搬送速度は4.0m/minとした。
 得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 [実施例3]
 図1に示す概略構成の装置を用いて、前述の第一の実施形態に記載の方法に従い、下記式(G2)で表されるポリマーからなるポリアリーレン系高分子電解質膜の一方の面に、前述の触媒層付きガス拡散層の触媒層を接合した。
Figure JPOXMLDOC01-appb-C000002
(式(G2)において、k、m及びnは整数であり、kは25、mは380、nは8である。)
 液体付与工程および熱圧着工程は、実施例2と同様に行った。
 得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
[実施例4]
 図1に示す概略構成の装置を用いて、前述の第一の実施形態に記載の方法に従い、下記式(G3)で表されるセグメントと下記式(G4)で表されるセグメントからなるポリエーテルスルホン系高分子電解質膜の一方の面に、前述の触媒層付きガス拡散層の触媒層を接合した。
Figure JPOXMLDOC01-appb-C000003
(式(G3)、(G4)において、p、q及びrは整数であり、pは170、qは380、rは4である。)
 液体付与工程および熱圧着工程は、実施例2と同様に行った。
 得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 [実施例5]
 前述の第二の実施形態に記載の方法に従い、膜・電極接合体を製造した。
 図2に示す概略構成の装置を用いて、前記式(G1)で表されるポリマーからなるポリエーテルケトン系高分子電解質膜の一方の面に、触媒溶液を塗布、乾燥し、第1の触媒層を形成した。触媒溶液には、田中貴金属工業(株)製Pt担持カーボン触媒TEC10E50Eと“ナフィオン”(登録商標)溶液からなる触媒塗液を用いた。120℃で5分間乾燥させ、層厚5μmの触媒層が得られた。
 次いで、図3に示す概略構成の装置を用いて、第2の触媒層付きガス拡散層を第1の触媒層が形成されたポリエーテルケトン系高分子電解質膜のもう一方の面に、前述の触媒層付きガス拡散層の触媒層を接合し、第2の触媒層付きガス拡散層を形成した。第1の触媒層面にラミネートするカバーフィルムには、東レ(株)製PETフィルムの“ルミラー”(登録商標)膜厚75μmを用いた。液体付与工程および熱圧着工程は実施例2と同様の方法を用いた。
 得られた膜・電極接合体からカバーフィルムを剥離したところ、カバーフィルム上に付着物等は認められなかった。また得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 [実施例6]
 前述の第三の実施形態に記載の方法に従い、膜・電極接合体を製造した。
 図4に示す概略構成の装置を用いて、前記式(G1)で表されるポリマーからなるポリエーテルケトン系高分子電解質膜の一方の面に、前述の触媒層付きガス拡散層から第1の触媒層を接合した。液体付与工程および熱圧着工程は実施例2と同様の方法を用いた。
 次いで、図5に示す概略構成の装置を用いて、第1の触媒層付きガス拡散層が形成された電解質膜のもう一方の面に、実施例5と同様の触媒溶液を塗布、乾燥し、第2の触媒層を形成した。
 得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 [実施例7]
 電解質膜として下記複合電解質膜を用いること以外は、実施例1と同様にして膜・電極接合体を製造した。得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 <複合電解質膜>
 厚みが6μmのPTFE多孔質基材(ドナルドソン社製の“テトラテックス”登録商標)に、下記フッ素系電解質溶液を含浸させた複合電解質膜。
 <フッ素系電解質溶液>
 20%“ナフィオン(登録商標)”n-プロパノール溶液100質量部に、エチレングリコールを80質量部添加し、減圧下でn-プロパノールを除去することにより溶媒置換し、“ナフィオン”のエチレングリコール溶液を得た。
 [実施例8]
 電解質膜として下記の複合電解質膜を用いること以外は、実施例5と同様にして膜・電極接合体を製造した。得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 <複合電解質膜>
 厚みが6μmのPTFE多孔質基材(ドナルドソン社製の“テトラテックス”登録商標)に、下記の炭化水素系電解質溶液を含浸させた複合電解質膜。
 <炭化水素系電解質溶液>
 前記式(G1)で表されるポリエーテルケトン系高分子電解質を溶解したN-メチルピロリドン(NMP)溶液(電解質濃度13質量%)の100質量部に、ノニオン性フッ素系界面活性剤(ネオス(株)製のポリオキシエチレンエーテル系界面活性剤“フタージェント”(登録商標)FTX-218)0.26質量部を溶解して調製した。
 [実施例9]
 図1の製造装置において、ノズルチャンバー32Aおよび32Bを減圧しないこと以外は、実施例1と同様にして膜・電極接合体を製造した。得られた膜・電極接合体を目視評価した結果、触媒層付きガス拡散層の破損や、電解質膜の膨潤やシワの発生はなく、高品位であった。
 [比較例1]
 液体付与工程を実施しない以外は、実施例2と同様にして、電解質膜の一方の面に、前述の実施例1で用いたものと同じ触媒層付きガス拡散層から触媒層を接合し、得られた膜・電極接合体を目視評価した結果、電解質膜と触媒層の密着不良が見られた。
 本発明の膜・電極接合体は、例えば、固体高分子形燃料電池、固体高分子電解質膜型水電解装置、電気化学式水素ポンプなどに適用することができる。
100、102、103:膜・電極接合体製造装置
101、104:触媒層形成装置
10、10’:電解質膜
11、18:電解質膜供給ロール
13a、13b、13c、13d:膜・電極接合体
14:送り出しロール
15、17:巻取ロール
16:膜・第1の触媒層接合体
16’:膜・第1の触媒層付きガス拡散層接合体
12、22A、22B、26A、26B、27A、27B:ガイドロール
20A、20B:触媒層付きガス拡散層
21A、21B:触媒層付きガス拡散層供給ロール
30A、30B:スプレーノズル
31A、31B、73:バックアップロール
32A、32B:ノズルチャンバー
33A、33B:バルブ
34A、34B:減圧タンク
40A、40B:熱プレスロール
41A、41B:遮熱板
50:支持体巻取ロール
51:支持体
60:カバーフィルム供給ロール
70:触媒溶液タンク
71:触媒溶液送液ポンプ
72:塗布手段
74:乾燥手段
P:熱圧着部
S:空間

Claims (15)

  1.  電解質膜に触媒層付きガス拡散層が接合されてなる膜・電極接合体の製造方法であって、
    接合前の触媒層の表面のみに大気雰囲気下において液体を付与する液体付与工程と、
    液体が付与された触媒層付きガス拡散層と電解質膜とを熱圧着により接合する熱圧着工程と、
    を有する膜・電極接合体の製造方法。
  2.  前記液体付与工程において付与する液体が水を含む液体である請求項1に記載の膜・電極接合体の製造方法。
  3.  前記水を含む液体における水の含有割合が90質量%以上、100質量%以下である請求項2に記載の膜・電極接合体の製造方法。
  4.  前記液体付与工程において付与する液体が純水である請求項3に記載の膜・電極接合体の製造方法。
  5.  前記液体付与工程において、触媒層付きガス拡散層の触媒層表面に液滴状に前記液体を付与する請求項1~4のいずれかに記載の膜・電極接合体の製造方法。
  6.  前記液体付与工程において、前記液体をスプレーによって付与する請求項5に記載の膜・電極接合体の製造方法。
  7.  前記液体付与工程において、前記熱圧着工程における前記液体の量が前記触媒層の表面1cm辺り0.1μL以上5μL以下である請求項1~6のいずれかに記載の膜・電極接合体の製造方法。
  8.  前記電解質膜として炭化水素系電解質膜を用いる請求項1~7のいずれかに記載の膜・電極接合体の製造方法。
  9.  前記電解質膜の表面に、請求項1~8のいずれかに記載の方法により触媒層付きガス拡散層を接合することを含む膜・電極接合体の製造方法。
  10.  電解質膜の一方の面に触媒溶液を塗布・乾燥して第1の触媒層を形成する工程と、
    前記電解質膜の他方の面に、請求項1~9のいずれかに記載の方法により触媒層付きガス拡散層を接合して第2の触媒層を形成する工程と、
    を有する膜・電極接合体の製造方法。
  11.  前記第1の触媒層をカバーフィルムで被覆する工程を更に有し、かつ前記第2の触媒層を形成する工程を、第1の触媒層がカバーフィルムで被覆された状態で行う請求項10に記載の膜・電極接合体の製造方法。
  12.  電解質膜の一方の面に触媒溶液を塗布して第1の触媒層を形成する工程と、
    前記第1の触媒層が乾燥する前にガス拡散層で被覆する工程と、
    前記ガス拡散層を通して触媒層を乾燥する工程と、
    前記電解質膜の他方の面に、請求項1~10のいずれかに記載の方法により触媒層付きガス拡散層を接合して第2の触媒層を形成する工程と、
    を有する膜・電極接合体の製造方法。
  13.  電解質膜に触媒層付きガス拡散層が接合されてなる膜・電極接合体の製造装置であって、
    接合前の触媒層の表面に液体を付与する液体付与手段と、
    液体が付与された触媒層付きガス拡散層と電解質膜とを熱圧着により接合する熱圧着手段と、
    を有する膜・電極接合体の製造装置。
  14.  前記液体付与手段は、触媒層の表面に液滴状に前記液体を付与する手段である請求項13に記載の膜・電極接合体の製造装置。
  15. 前記液体付与手段がスプレーである、請求項14に記載の膜・電極接合体の製造装置。
PCT/JP2020/047642 2019-12-23 2020-12-21 膜・電極接合体の製造方法、及び製造装置 WO2021132138A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/785,183 US12062824B2 (en) 2019-12-23 2020-12-21 Method and apparatus for producing membrane electrode assembly
CN202080085975.2A CN114788057A (zh) 2019-12-23 2020-12-21 膜·电极接合体的制造方法、及制造装置
AU2020413172A AU2020413172A1 (en) 2019-12-23 2020-12-21 Method and apparatus for producing membrane electrode assembly
JP2021512599A JPWO2021132138A1 (ja) 2019-12-23 2020-12-21
EP20907638.9A EP4084159A1 (en) 2019-12-23 2020-12-21 Method and apparatus for producing membrane electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231592 2019-12-23
JP2019-231592 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132138A1 true WO2021132138A1 (ja) 2021-07-01

Family

ID=76574753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047642 WO2021132138A1 (ja) 2019-12-23 2020-12-21 膜・電極接合体の製造方法、及び製造装置

Country Status (6)

Country Link
US (1) US12062824B2 (ja)
EP (1) EP4084159A1 (ja)
JP (1) JPWO2021132138A1 (ja)
CN (1) CN114788057A (ja)
AU (1) AU2020413172A1 (ja)
WO (1) WO2021132138A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048586A1 (ja) * 2022-08-30 2024-03-07 Toppanホールディングス株式会社 水電解槽用膜電極接合体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116936828B (zh) * 2023-07-19 2024-04-30 浙江海盐力源环保科技股份有限公司 一种高效的燃料电池膜电极涂覆装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253267A (ja) * 2003-02-20 2004-09-09 Jsr Corp 電解膜−電極基板複合体の製造方法
JP2005158518A (ja) * 2003-11-26 2005-06-16 Jsr Corp 電解質膜と電極の接合体の製造方法
JP2005222894A (ja) * 2004-02-09 2005-08-18 Aisin Seiki Co Ltd 膜電極接合体の製造方法
JP4240272B2 (ja) 2002-05-14 2009-03-18 トヨタ自動車株式会社 膜触媒層接合体の製造方法
JP2009140652A (ja) 2007-12-04 2009-06-25 Toyota Motor Corp 膜・電極接合体の製造方法
JP2013069535A (ja) 2011-09-22 2013-04-18 Nitto Denko Corp 高分子電解質型燃料電池用膜電極接合体の製造方法
JP2018060789A (ja) 2016-09-30 2018-04-12 東レ株式会社 高分子電解質組成物ならびにそれを用いた高分子電解質膜、触媒層付き電解質膜、膜電極複合体、固体高分子形燃料電池、電気化学式水素ポンプおよび水電解式水素発生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586336B2 (ja) * 2015-09-28 2019-10-02 株式会社Screenホールディングス 接続方法、塗工方法、接続装置および塗工装置
JP6751555B2 (ja) * 2015-09-28 2020-09-09 株式会社Screenホールディングス 膜・触媒層接合体の製造方法および製造装置
GB201914335D0 (en) * 2019-10-04 2019-11-20 Johnson Matthey Fuel Cells Ltd Membrane electrode assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240272B2 (ja) 2002-05-14 2009-03-18 トヨタ自動車株式会社 膜触媒層接合体の製造方法
JP2004253267A (ja) * 2003-02-20 2004-09-09 Jsr Corp 電解膜−電極基板複合体の製造方法
JP2005158518A (ja) * 2003-11-26 2005-06-16 Jsr Corp 電解質膜と電極の接合体の製造方法
JP2005222894A (ja) * 2004-02-09 2005-08-18 Aisin Seiki Co Ltd 膜電極接合体の製造方法
JP2009140652A (ja) 2007-12-04 2009-06-25 Toyota Motor Corp 膜・電極接合体の製造方法
JP2013069535A (ja) 2011-09-22 2013-04-18 Nitto Denko Corp 高分子電解質型燃料電池用膜電極接合体の製造方法
JP2018060789A (ja) 2016-09-30 2018-04-12 東レ株式会社 高分子電解質組成物ならびにそれを用いた高分子電解質膜、触媒層付き電解質膜、膜電極複合体、固体高分子形燃料電池、電気化学式水素ポンプおよび水電解式水素発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084159A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048586A1 (ja) * 2022-08-30 2024-03-07 Toppanホールディングス株式会社 水電解槽用膜電極接合体

Also Published As

Publication number Publication date
AU2020413172A1 (en) 2022-08-11
JPWO2021132138A1 (ja) 2021-07-01
US12062824B2 (en) 2024-08-13
EP4084159A1 (en) 2022-11-02
US20230027116A1 (en) 2023-01-26
CN114788057A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
JP5196717B2 (ja) 触媒層転写シート、触媒層−電解質膜積層体の製造方法、電極−電解質膜接合体の製造方法、および燃料電池の製造方法
JP6529982B2 (ja) 触媒コーティング型の膜シールアセンブリを製造する方法
KR20090116828A (ko) 막전극 접합체의 제조 방법, 막전극 접합체, 막전극 접합체의 제조 장치, 및 연료 전지
WO2021132138A1 (ja) 膜・電極接合体の製造方法、及び製造装置
WO2007136135A1 (ja) 燃料電池用電極及び燃料電池用電極の製造方法、膜-電極接合体及び膜-電極接合体の製造方法、並びに固体高分子型燃料電池
JP5401751B2 (ja) 転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体及びこれらの製造方法
CA2640961A1 (en) Method of making membrane electrode assemblies
WO2021132137A1 (ja) 膜・触媒接合体の製造方法、及び製造装置
JP5402662B2 (ja) 膜電極接合体及び膜電極接合体の製造方法
JP2016076366A (ja) 燃料電池膜−電極接合体の製造方法及び膜−電極接合体
JP7110961B2 (ja) 燃料電池用膜電極ガス拡散層接合体の製造方法
KR102295995B1 (ko) 막·촉매 접합체의 제조 방법, 및 제조 장치
JP2008166117A (ja) 燃料電池用膜・電極接合体の製造方法
JP2010062062A (ja) 膜電極接合体の製造方法、膜電極接合体、固体高分子型燃料電池
JP2010010036A (ja) 膜・電極接合体の製造方法
JP2010282934A (ja) 燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512599

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907638

Country of ref document: EP

Effective date: 20220725

ENP Entry into the national phase

Ref document number: 2020413172

Country of ref document: AU

Date of ref document: 20201221

Kind code of ref document: A