WO2015050080A1 - 熱可塑性液晶ポリマーフィルム、回路基板、およびそれらの製造方法 - Google Patents
熱可塑性液晶ポリマーフィルム、回路基板、およびそれらの製造方法 Download PDFInfo
- Publication number
- WO2015050080A1 WO2015050080A1 PCT/JP2014/075875 JP2014075875W WO2015050080A1 WO 2015050080 A1 WO2015050080 A1 WO 2015050080A1 JP 2014075875 W JP2014075875 W JP 2014075875W WO 2015050080 A1 WO2015050080 A1 WO 2015050080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit board
- liquid crystal
- crystal polymer
- polymer film
- thermoplastic liquid
- Prior art date
Links
- 229920000106 Liquid crystal polymer Polymers 0.000 title claims abstract description 400
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 title claims abstract description 399
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 271
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 270
- 238000000034 method Methods 0.000 title claims abstract description 131
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 63
- 239000000463 material Substances 0.000 claims abstract description 109
- 239000000758 substrate Substances 0.000 claims abstract description 78
- 229910000679 solder Inorganic materials 0.000 claims abstract description 20
- 239000004020 conductor Substances 0.000 claims description 165
- 238000007872 degassing Methods 0.000 claims description 109
- 239000000853 adhesive Substances 0.000 claims description 82
- 238000010438 heat treatment Methods 0.000 claims description 81
- 230000008569 process Effects 0.000 claims description 79
- 230000001070 adhesive effect Effects 0.000 claims description 71
- 238000002844 melting Methods 0.000 claims description 62
- 230000008018 melting Effects 0.000 claims description 62
- 230000004888 barrier function Effects 0.000 claims description 18
- 239000005022 packaging material Substances 0.000 claims description 12
- 238000010030 laminating Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000005476 soldering Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 428
- 239000010410 layer Substances 0.000 description 198
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 63
- 239000011889 copper foil Substances 0.000 description 52
- 239000011229 interlayer Substances 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 32
- 239000002184 metal Substances 0.000 description 28
- 239000011888 foil Substances 0.000 description 23
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 18
- 230000003647 oxidation Effects 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 18
- 230000000704 physical effect Effects 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 13
- -1 aliphatic dicarboxylic acids Chemical class 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 10
- 238000003825 pressing Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 9
- 238000003475 lamination Methods 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 239000006087 Silane Coupling Agent Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 238000005065 mining Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012787 coverlay film Substances 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- UOBYKYZJUGYBDK-UHFFFAOYSA-N 2-naphthoic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC=C21 UOBYKYZJUGYBDK-UHFFFAOYSA-N 0.000 description 1
- 125000005274 4-hydroxybenzoic acid group Chemical group 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 238000003109 Karl Fischer titration Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IMHDGJOMLMDPJN-UHFFFAOYSA-N dihydroxybiphenyl Natural products OC1=CC=CC=C1C1=CC=CC=C1O IMHDGJOMLMDPJN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000717 platinum sputter deposition Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/04—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/05—Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
- C09K19/3804—Polymers with mesogenic groups in the main chain
- C09K19/3809—Polyesters; Polyester derivatives, e.g. polyamides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
- H05K1/0298—Multilayer circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0326—Organic insulating material consisting of one material containing O
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4632—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0141—Liquid crystal polymer [LCP]
Definitions
- the present invention relates to a thermoplastic liquid crystal polymer film that forms an optically anisotropic melt phase (hereinafter sometimes referred to as a thermoplastic liquid crystal polymer film or simply a liquid crystal polymer film), and has excellent thermal adhesiveness.
- the present invention relates to a plastic liquid crystal polymer film and a manufacturing method thereof, and a circuit board and a manufacturing method thereof.
- a circuit board usually has a substrate made of an insulating material and a layer made of a conductive material formed on the substrate, and a circuit is formed in this conductive layer.
- Various electronic components are installed on a circuit board by a process such as soldering.
- laminated circuit boards having a plurality of conductive layers are also widely used.
- a circuit board which is formed by laminating a substrate in which a conductor circuit is formed on a polyimide film and a coverlay film composed of a polyimide film and an adhesive layer.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-103269
- a conductor layer made of a metal layer such as copper and a liquid crystal polymer layer are bonded together, and when a circuit board is formed by stacking, by forming irregularities on the conductor layer, A process for improving the pressure-bonding property between the conductor layer and the insulating layer and ensuring the peel strength (peeling resistance) has been performed, and the optimization of the uneven shape has been studied.
- JP 2010-103269 A International Publication WO2012 / 020818
- the first configuration of the present invention is as follows. Preparing a thermoplastic liquid crystal polymer film that forms an optically anisotropic melt phase and has a molecular orientation SOR of 0.8 to 1.4;
- the thermoplastic liquid crystal polymer film is (i) degassed under vacuum at a vacuum degree of 1500 Pa or less for 30 minutes or more and / or (ii) degassed under heating in the range of 100 ° C. to 200 ° C.
- a thermoplastic liquid crystal polymer film having a molecular orientation SOR of 0.8 to 1.4 and a moisture content of 300 ppm or less are examples of the thermoplastic liquid crystal polymer film that forms an optically anisotropic melt phase and has a molecular orientation SOR of 0.8 to 1.4.
- the present invention also includes a thermoplastic liquid crystal polymer film having excellent thermal adhesiveness as the second configuration.
- a thermoplastic liquid crystal polymer film has a molecular orientation SOR of 0.8 to 1.4 and a moisture content of 300 ppm or less. Further, the thickness of the film may be about 10 to 200 ⁇ m.
- the thermoplastic liquid crystal polymer film may be manufactured by the manufacturing method.
- the thermoplastic liquid crystal polymer film may be a thermoplastic liquid crystal polymer film packaged with a gas barrier packaging material.
- the gas barrier packaging material may have, for example, an oxygen permeability of 10 mL / m 2 ⁇ day ⁇ MPa or less. Moreover, the gas barrier packaging material may have a moisture permeability of 10 g / m 2 / day or less, for example.
- At least one selected from a bonding sheet and a coverlay may be composed of a thermoadhesive thermoplastic liquid crystal polymer film.
- At least two kinds of circuit board materials selected from an insulating substrate, a bonding sheet, and a coverlay are a high melting point liquid crystal polymer film having high heat resistance and a low melting point liquid crystal having lower heat resistance.
- the melting point difference between the high melting point liquid crystal polymer film and the low melting point liquid crystal polymer film may be within 70 ° C.
- the thermocompression bonding step may include a step of thermocompression bonding the circuit board material by heating under a pressing pressure of 5 MPa or less (preferably 0.5 to 2.5 MPa).
- the circuit board material may be thermocompression-bonded by heating at (Tm ⁇ 60) ° C. or more and (Tm + 40) ° C. or less with respect to the melting point Tm of the thermoplastic liquid crystal polymer film to be thermocompression bonded.
- the draw ratio of such extrusion molding may be, for example, about 1.0 to 10, preferably about 1.2 to 7, more preferably about 1 as the draw ratio (or draw ratio) in the MD direction. It may be about 3-7. Further, the draw ratio (or blow ratio) in the TD direction may be, for example, about 1.5 to 20, preferably about 2 to 15, and more preferably about 2.5 to 14.
- thermoplastic liquid crystal polymer film may be known or conventional heat treatment to adjust the melting point and / or the thermal expansion coefficient of the thermoplastic liquid crystal polymer film.
- the heat treatment conditions can be appropriately set according to the purpose.
- the melting point (Tm 0 ) of the liquid crystal polymer is ⁇ 10 ° C. or higher (for example, about Tm 0 ⁇ 10 to Tm 0 + 30 ° C., preferably about Tm 0 to Tm 0 + 20 ° C.)
- the melting point (Tm) of the thermoplastic liquid crystal polymer film may be increased by heating for several hours.
- thermoplastic liquid crystal polymer film of the present invention thus obtained has excellent dielectric properties, gas barrier properties, low hygroscopicity, and the like, and therefore can be suitably used as a circuit board material.
- the melting point (Tm) of the thermoplastic liquid crystal polymer film can be selected within the range of about 200 to 400 ° C., preferably about 250 to 360 ° C., for the purpose of obtaining the desired heat resistance and processability of the film. Preferably, it may be about 260 to 350 ° C. (for example, 260 to 340 ° C.).
- the melting point of the film can be obtained by observing the thermal behavior of the film using a differential scanning calorimeter. That is, after the sample film was heated at a rate of 20 ° C./min to be completely melted, the melt was rapidly cooled to 50 ° C. at a rate of 50 ° C./min, and then again heated at a rate of 20 ° C./min. The position of the endothermic peak that appears later may be recorded as the melting point of the film.
- the thermoplastic liquid crystal polymer film used in the present invention may have any thickness. However, when used for a high-frequency transmission line, the transmission loss decreases as the thickness increases, so it is preferable to increase the thickness as much as possible.
- the film thickness is preferably in the range of 10 to 500 ⁇ m, more preferably in the range of 15 to 200 ⁇ m. When the thickness of the film is too thin, the rigidity and strength of the film are reduced. Therefore, a method of obtaining an arbitrary thickness by laminating films having a film thickness in the range of 10 to 200 ⁇ m may be used.
- thermoplastic liquid crystal polymer film thus obtained is subjected to a deaeration process for removing air and moisture present in the film.
- the degassing step may be performed in a method for producing a thermoplastic liquid crystal polymer film excellent in thermal adhesiveness, or may be performed as one step in a method for producing a circuit board.
- the thermal adhesion of the thermoplastic liquid crystal polymer film can be improved by the deaeration step, and the interlayer adhesion between the thermoplastic liquid crystal polymer film and the adherend can be improved.
- the thickness width (W) of the film portion in the roll-shaped product may be 1000 mm or less (for example, about 10 to 900 mm), preferably 800 mm or less, More preferably, it may be 600 mm or less.
- thermoplastic liquid crystal polymer film is degassed under a specific vacuum (for example, vacuum drying) and / or degassed under a heat (for example, heat drying) to thereby obtain a thermoplastic liquid crystal polymer. It becomes possible to extremely reduce the air and moisture present inside and on the surface of the film. Surprisingly, the thermoplastic liquid crystal polymer film that has undergone such a degassing step can improve its thermal adhesiveness.
- thermoplastic liquid crystal polymer film it is possible to achieve high adhesiveness without performing a softening treatment such as breaking the skin layer.
- the present invention does not deny the softening process.
- the thermoplastic liquid crystal polymer film may be subjected to a surface treatment such as a softening treatment as necessary.
- the thermoplastic liquid crystal polymer film is heated (i) by degassing under vacuum at a vacuum degree of 1500 Pa or less for 30 minutes or more and / or (ii) in the range of 100 ° C. to 200 ° C.
- the thermoplastic liquid crystal polymer film can be degassed by degassing with.
- degassing may be performed under a condition satisfying either (i) the degassing step under vacuum or (ii) the degassing step under heating, but the above (i) and (ii) ) Is preferably degassed under conditions that satisfy both.
- degassing under conditions satisfying both (i) and (ii) is a degassing step performed under conditions where both (i) and (ii) are satisfied simultaneously (ie under vacuum heating). Or a degassing step in which the conditions of (i) and (ii) are separately performed on the thermoplastic liquid crystal polymer film, that is, in the order of (i) to (ii), or (ii) to (i The deaeration process performed separately in the order of).
- the deaeration process is performed separately, it is different between (i) and (ii) or between (ii) and (i) as long as it does not adversely affect the thermal adhesiveness of the thermoplastic liquid crystal polymer film.
- a process may be performed.
- Deaeration under heating is performed in the range of 100 to 200 ° C., preferably in the range of 105 to 190 ° C., more preferably in the range of 110 to 180 ° C. Further, the deaeration under heating may set a predetermined temperature range with respect to the melting point Tm of the thermoplastic liquid crystal polymer film. In that case, for example, it may be heated in the range of (Tm-235) ° C. to (Tm-50) ° C. (for example, the range of (Tm-200) ° C. to (Tm-50) ° C.), preferably A range of (Tm-225) ° C. to (Tm-60) ° C.
- the time required for the degassing step can be appropriately set according to various conditions such as the state of the thermoplastic liquid crystal polymer film, the degree of vacuum and / or the heating temperature. From the viewpoint of removing moisture and air from the entire thermoplastic liquid crystal polymer film, each degassing step (under vacuum, under heating, under vacuum heating) may be the same or different and may be 30 minutes or more, 40 minutes or more, or 50 minutes or more, and may be 6 hours or less, 4 The time may be 3 hours or less, 2 hours or less, or 1.5 hours or less.
- the time required for the deaeration step may be appropriately set in view of the time when the moisture content of the thermoplastic liquid crystal polymer film falls within a predetermined range described below (for example, 300 ppm or less, or 200 ppm or less).
- the thermal adhesiveness of the thermoplastic liquid crystal polymer film can be improved.
- (I) Degassing under vacuum and (ii) Degassing under heating may be performed first, but preferably, degassing under heating is performed as the first degassing step.
- deaeration under vacuum may be performed as a second deaeration step.
- the circuit board material is heated in a range of 100 ° C. to 200 ° C.
- thermoplastic liquid crystal polymer film with excellent thermal adhesion Surprisingly, it is possible to obtain a thermoplastic liquid crystal polymer film having excellent thermal adhesiveness through such a degassing step. The reason for this is not clear, but the following mechanisms are conceivable.
- a thermoplastic liquid crystal polymer film having excellent gas barrier properties may be in a state where moisture contained in the film and air existing on the surface of the film are difficult to escape.
- the main component of the gas released from the resin is water, and the volume of water becomes several thousand times when it becomes water vapor.
- the degree of vacuum progresses, the discharge amount from the resin and the discharge amount of the vacuum pump increase. After reaching the equilibrium state, water is hardly discharged from the inside. Therefore, when thermocompression bonding is performed under vacuum, there is a possibility that water molecules taken into the film are not easily released.
- thermoplastic liquid crystal polymer film obtained by a specific degassing method can achieve a very low moisture content while maintaining isotropy.
- the molecular orientation degree SOR which is an isotropic index, is 0.8 to 1.4, preferably 0.9 to 1.3, more preferably 1.0 to 1.2, and particularly preferably 1 0.0 to 1.1.
- the dielectric loss tangent at 25 GHz of the thermoplastic liquid crystal polymer film may be, for example, 0.0025 or less (for example, about 0.0001 to 0.0023), preferably about 0.0010 to 0.0022. By having such a dielectric loss tangent, it is possible to reduce power consumption and noise.
- the relative dielectric constant of the thermoplastic liquid crystal polymer film varies depending on the thickness of the film.
- the relative dielectric constant in the TD direction of the thermoplastic liquid crystal polymer film at 25 GHz is 3.25 or less (for example, 1.8 to 3).
- the dielectric constant measurement may be performed by a resonance perturbation method at a frequency of 10 GHz.
- a 1 GHz cavity resonator (Kanto Electronics Co., Ltd.) was connected to a network analyzer (Agilent Technology “E8362B”), and a minute material (width: 2.7 mm ⁇ length: 45 mm) was connected to the cavity resonator.
- the dielectric constant and dielectric loss tangent of the material can be measured from the change in resonance frequency before and after insertion for 96 hours in an environment of temperature insertion of 20 ° C. and humidity of 65% RH.
- the present invention comprises a thermoplastic liquid crystal polymer film
- the thermoplastic liquid crystal polymer film may be included in a packaging body of a thermoplastic liquid crystal polymer film composed of a gas barrier packaging material that wraps the thermoplastic liquid crystal polymer film.
- the thermoplastic liquid crystal polymer film has a gas barrier property.
- packaged with packaging material is packaged with packaging material.
- the gas barrier packaging material may have, for example, a moisture permeability of 10 g / m 2 / day or less (eg 0.5 to 10 g / m 2 / day), preferably 8 g / m 2 / day or less, more preferably It may be 6 g / m 2 / day or less.
- the gas barrier packaging material may have, for example, an oxygen permeability of 10 mL / m 2 ⁇ day ⁇ MPa or less (eg, 0.5 to 10 mL / m 2 / day / MPa), preferably 8 mL / m 2. / Day / MPa or less, more preferably 5 mL / m 2 / day / MPa or less.
- gas barrier packaging material examples include various gas barrier films, a laminate of a gas barrier film and a walliff / paper / nonwoven fabric, and the like.
- gas barrier film examples include various aluminum foil laminate films, aluminum vapor deposited films, silica vapor deposited films, polyvinylidene chloride coated films, and the like, and film bases include polyester films, polyethylene films, polypropylene films, and the like. It may be used as appropriate.
- these films and laminates may be packaged on the outside with paper or may be housed in a carton box, a wooden box, a metal case, a frame, or the like.
- circuit board manufacturing method One embodiment of the present invention also includes a method for manufacturing a circuit board having excellent interlayer adhesion without using an adhesive.
- the manufacturing method includes at least one type of circuit board selected from an insulating substrate, a bonding sheet, and a coverlay on which a conductor layer (for example, a conductor circuit or a conductor pattern, a conductor foil, or a conductor film) is formed on at least one surface.
- a conductor layer for example, a conductor circuit or a conductor pattern, a conductor foil, or a conductor film
- a preparation step of preparing a plurality of materials A thermocompression bonding step of laminating the prepared circuit board material in accordance with a structure of a predetermined circuit board and heating the circuit board material by thermocompression bonding under a predetermined pressure;
- a circuit board manufacturing method comprising at least (I) At least one selected from an insulating substrate, a bonding sheet and a coverlay is composed of a thermoadhesive thermoplastic liquid crystal polymer film subjected to the degassing step, and / or (II) an insulating substrate and bonding
- at least one of the sheet and the coverlay is formed of a thermoplastic liquid crystal polymer film, and the degassing step is performed before the thermocompression bonding step.
- an insulating substrate having a conductor layer for example, a conductor circuit or a conductor pattern, a conductor foil, a conductor film, etc.
- a plurality of at least one circuit board material selected from the coverlay is prepared.
- a plurality of insulating substrates having a conductor layer formed on at least one surface may be prepared, or from an insulating substrate having a conductor circuit formed on at least one surface, a bonding sheet, and a coverlay. You may prepare at least 1 type selected.
- thermoadhesive thermoplastic liquid crystal polymer film that has been subjected to the above-described degassing treatment. It consists of By using such a thermoplastic liquid crystal polymer film with improved thermal adhesion, the interlayer adhesion of the circuit board can be improved even in a thermocompression bonding process performed on a normal circuit board.
- an insulating substrate having a conductor layer formed on at least one surface A unit circuit board in which a conductor circuit or a conductor pattern is formed on one side of an insulating substrate; A unit circuit board in which a conductor circuit or a conductor pattern is formed on both sides of an insulating substrate; A unit circuit board in which a conductor circuit or a conductor pattern is formed on one surface of an insulator and a conductor film or a conductor foil is formed on the other surface; A conductor-clad laminate with a conductor film or conductor foil formed on one side of an insulating substrate; Examples thereof include a conductor-clad laminate in which a conductor film or a conductor foil is formed on both surfaces of an insulating substrate.
- the conductor layer is formed of, for example, a metal having at least conductivity, and a circuit is formed on the conductor layer using a known circuit processing method.
- the conductor forming the conductor layer may be various conductive metals such as gold, silver, copper, iron, nickel, aluminum, or alloy metals thereof.
- a known method can be used as a method for forming a conductor layer on an insulating substrate made of a thermoplastic liquid crystal polymer film.
- a metal layer may be deposited, and a metal layer can be formed by electroless plating or electrolytic plating.
- a layer may be formed.
- a metal foil for example, copper foil
- the metal foil that constitutes the conductor layer is preferably a metal foil used for electrical connection, and can include various metal foils such as gold, silver, nickel, and aluminum in addition to copper foil. In particular (for example, 98% by mass or more), an alloy foil composed of these metals may be included.
- copper foil is preferably used.
- the copper foil is not particularly limited as long as it is a copper foil that can be used in a circuit board, and may be a rolled copper foil or an electrolytic copper foil.
- the surface of the conductor layer is preferably smooth.
- the surface roughness of the conductor layer may be 1.25 ⁇ m or less, preferably 1.2 ⁇ m or less, more preferably, as a ten-point average roughness (Rz JIS ) by a method according to ISO 4287-1997. It may be 1.15 ⁇ m or less.
- the lower limit of Rz JIS is not particularly limited, but may be, for example, about 0.5 ⁇ m.
- the arithmetic average roughness (Ra) by a method based on ISO 4287-1997 may be, for example, 0.15 ⁇ m or less, or 0.14 ⁇ m or less.
- the lower limit of Ra is not particularly limited, but may be, for example, about 0.05 ⁇ m or about 0.11 ⁇ m.
- the thickness of the conductor layer is preferably in the range of 1 to 50 ⁇ m (for example, about 5 to 50 ⁇ m), more preferably in the range of 8 to 35 ⁇ m (for example, 10 to 35 ⁇ m).
- the unit circuit board preparation step is A thermocompression bonding step in which a metal foil is thermocompression bonded to one or both sides of the thermoplastic liquid crystal polymer film; An oxidation resistant film forming step for forming an oxidation resistant film on the thermocompressed metal foil surface; and May be provided.
- the step of preparing the unit circuit board may further include a silane coupling agent attaching step of attaching a silane coupling agent to the surface of the conductor layer.
- the oxidation-resistant film examples include an oxidation-resistant alloy layer, an oxidation-resistant plating layer, and a rust preventive agent layer such as benzotriazoles.
- the oxidation resistant film may be formed either before or after circuit processing, depending on the type of the conductor layer and the oxidation resistant film.
- the oxidation-resistant alloy layer is preferably an alloy including at least a metal that forms the metal foil, for example, from the viewpoint of improving adhesion.
- the metal foil constituting the conductor layer is a copper foil
- the alloy layer may be an alloy containing at least copper.
- the oxidation resistant alloy layer is preferably formed before circuit processing.
- an alloy part that does not contain copper in the part away from the copper foil there may be an alloy part that does not contain copper in the part away from the copper foil.
- an etchant include “Mekkuri Mover S-651A” (manufactured by Mec Co., Ltd.), “Espac H-150” (manufactured by Sasaki Chemical Co., Ltd.), and an aqueous solution containing an inorganic acid such as nitric acid. Is mentioned.
- a known or conventional silane coupling agent may be attached to the surface of the conductor layer (particularly the alloy layer).
- a silane coupling agent By attaching a silane coupling agent to the surface of the alloy layer, the adhesion between the conductor layer and the liquid crystal polymer film is further improved, and the surface state is kept smooth without forming irregularities having an anchor effect on the surface of the conductor layer. Even if thermocompression bonding is performed as it is, an adhesive strength indicated by a high peel strength can be obtained.
- a liquid crystal polymer film that has been subjected to a deaeration process is referred to as a heat-adhesive liquid crystal polymer film
- a liquid crystal polymer film that has not been subjected to a deaeration process is referred to as an undeaerated liquid crystal polymer film
- A a circuit board comprising an undegassed liquid crystal polymer film as an insulating substrate, a thermoadhesive liquid crystal polymer film as a bonding sheet, and an undegassed liquid crystal polymer film as an optional coverlay
- B a circuit board comprising a non-degassed liquid crystal polymer film as an insulating substrate, a heat-adhesive liquid crystal polymer film as a bonding sheet, and a heat-adhesive liquid crystal polymer film as an optional coverlay
- C a circuit board comprising a thermally adhesive liquid crystal polymer film as an insulating substrate, an undegassed
- the thermal adhesion of the liquid crystal polymer film can be manifested after the deaeration process. May also be an undegassed liquid crystal polymer film.
- thermoplastic liquid crystal polymer films When at least two of the circuit board materials are thermoplastic liquid crystal polymer films and have a structure in which a conductor layer is sandwiched between the first thermoplastic liquid crystal polymer film and the second thermoplastic liquid crystal polymer film, the first The difference in melting point between the thermoplastic liquid crystal polymer film 1 and the second thermoplastic liquid crystal polymer film may be, for example, 0 to 70 ° C., preferably about 0 to 60 ° C. (eg about 10 to 50 ° C.) It may be.
- the first liquid crystal polymer film may be a high melting point liquid crystal polymer film having high heat resistance
- the second liquid crystal polymer film is a low melting point liquid crystal having lower heat resistance than the first liquid crystal polymer film.
- the film may be a polymer film.
- at least two circuit board materials selected from an insulating substrate, a bonding sheet, and a coverlay are high-melting-point liquid crystal polymer films having high heat resistance (for example, about 300 to 350 ° C.) And a low melting point liquid crystal polymer film (for example, about 250 to 300 ° C.).
- both liquid crystal polymer films that adhere to each other may be a combination of a high melting point liquid crystal polymer film and a low melting point liquid crystal polymer film, in which case the melting point difference exceeds 20 ° C. It may be 30 ° C to 70 ° C.
- the heat-adhesive liquid crystal polymer film may be used as a high melting point liquid crystal polymer film or a low melting point liquid crystal polymer film.
- liquid crystal polymer films that adhere to each other for example, a combination of high melting point liquid crystal polymer films, a combination of low melting point liquid crystal polymer films, or a combination of a high melting point liquid crystal polymer film and a low melting point liquid crystal polymer film). At least one of these may be a heat-adhesive liquid crystal polymer film, and both may be heat-adhesive liquid crystal polymer films.
- at least the low melting point liquid crystal polymer film may be a heat adhesive liquid crystal polymer film.
- the melting point of the liquid crystal polymer film used as the adhesive material may be the same as the melting point of the base material of the unit circuit board, but from the liquid crystal polymer film forming the unit circuit board Alternatively, a material having a low melting point may be used. In this case, the difference between the melting points of the two may be, for example, about 0 to 70 ° C., and more preferably about 0 to 60 ° C.
- the thermal adhesiveness of the thermoplastic liquid crystal polymer film may be improved by performing the above-described degassing step.
- a deaeration process may be performed before a thermocompression bonding process, and may be performed between the preparatory process of a circuit board material, and a thermocompression bonding process.
- the deaeration step heats the circuit board material in a range of 100 ° C. to 200 ° C. for a predetermined time to perform deaeration.
- the deaeration process may be performed as a preheating process before the thermocompression bonding process.
- the preheating step may be performed at a heating temperature in the range of 50 ° C. to 150 ° C., for example, under a vacuum with a vacuum degree of 1500 Pa or less.
- the heating temperature during the preheating step is preferably about 60 to 120 ° C., more preferably 70 to 110 ° C.
- the preheating step is performed under a vacuum with a degree of vacuum of 1500 Pa or less, preferably 1300 Pa or less, more preferably 1100 Pa or less. Further, during the preheating step, the pressure may be applied within a range of 0.8 MPa or less, more preferably about 0.6 MPa or less as long as the effect of the invention is not hindered, but it is preferable that no pressure is applied as much as possible.
- the preheating step may be performed, for example, for about 30 to 120 minutes, preferably about 40 to 100 minutes, more preferably about 45 to 75 minutes.
- the unit circuit board and the adhesive Degassing is performed by heating the liquid crystal polymer film for the material, for example, under atmospheric pressure (or under normal pressure).
- the heating temperature is 100 to 200 ° C, preferably 110 to 190 ° C.
- the heating time can be appropriately adjusted according to the heating temperature, and may be, for example, 30 minutes to 4 hours, preferably 1 hour to 3 hours.
- the deaeration under heating may be performed under conditions that do not include a degree of vacuum of 1500 Pa or less.
- the deaeration may be performed under atmospheric pressure (or normal pressure) without adjusting the pressure.
- the heating may be performed under a pressure reduced from atmospheric pressure (for example, more than 1500 Pa and less than 100,000 Pa, preferably about 3000 to 50000 Pa).
- an inert gas atmosphere such as nitrogen in order to prevent oxidation of the conductor (such as copper foil).
- membrane For example, rust preventive layers, such as an oxidation-resistant alloy layer, an oxidation-resistant plating layer, benzotriazole, etc. was formed in the conductor surface.
- Step 2 it is preferable to further deaerate the unit circuit board and the liquid crystal polymer film for adhesive material in a vacuum atmosphere.
- This step may be performed at a degree of vacuum of 1500 Pa or less, preferably 1300 Pa or less, more preferably 1100 Pa or less.
- the deaeration time can be appropriately adjusted according to the degree of vacuum, but may be, for example, 30 minutes or more, 40 minutes or more, or 50 minutes or more, and is 6 hours or less, 4 hours or less, 3 hours or less. It may be 2 hours or less, or 1.5 hours or less.
- Degassing under vacuum may be performed at room temperature (for example, in the range of 10 to 50 ° C., preferably in the range of 15 to 45 ° C.), but may be performed under heating from the viewpoint of increasing the degassing efficiency.
- the heating temperature is 80 ° C to 200 ° C, preferably 100 ° C to 200 ° C, more preferably 115 ° C to 200 ° C. .
- the heating temperature is 80 ° C to 200 ° C, preferably 100 ° C to 200 ° C, more preferably 115 ° C to 200 ° C.
- degassing may be performed under no pressure (under pressure release) in which pressure is not substantially applied from the viewpoint of improving the degassing property.
- no pressure under pressure release
- the unit circuit board and the liquid crystal polymer film for adhesive material are degassed in the first degassing step, and then stacked alternately and installed in the apparatus.
- degassing may be performed under no pressure.
- a liquid crystal polymer film having an extremely low moisture content and air amount is used as a substrate material.
- air is trapped due to insufficient degassing during multi-layer lamination, resulting in local poor adhesion. Can be suppressed.
- insufficient deaeration of the film at the center can be suppressed.
- thermocompression bonding process In the thermocompression bonding process, the circuit board material prepared in the preparation process is laminated in accordance with the structure of a predetermined circuit board and heated under a predetermined pressure to thermocompression bond the circuit board material.
- the structure of the circuit board to be laminated can be appropriately set according to the desired structure of the circuit board, and is not particularly limited.
- the circuit board material is stacked so as to sandwich the conductor layer (or conductor circuit). Laminated together.
- the circuit board material may be in a laminated state when thermocompression bonding is performed, and the process of laminating the circuit board material is a preparatory process depending on the state of the prepared circuit board material, work procedure, and the like.
- the degassing step and the thermocompression bonding step may be performed at any stage.
- a bonding sheet may be disposed between at least two insulating substrates having conductor circuits formed on at least one surface, and a coverlay may be disposed on the outermost layer as necessary.
- at least two insulating substrates having conductor circuits formed on at least one surface may be disposed without a bonding sheet, and a coverlay may be disposed on the outermost layer as necessary.
- Thermocompression bonding can be performed using a vacuum hot press apparatus or a heating roll laminating equipment depending on the type of circuit board material, etc., but from the viewpoint of further reducing air from the liquid crystal polymer film, It is preferable to use a pressing device.
- a vacuum hot press apparatus it is preferable to perform thermocompression bonding while maintaining the deaerated state of the laminate by vacuum deaeration, and the degree of vacuum at the time of thermocompression bonding is approximately the same as in the second deaeration process (for example, (1500 Pa or less).
- the heating temperature at the time of thermocompression bonding is such that the thermoadhesive thermoplastic liquid crystal polymer film to be bonded (thermoplastic liquid crystal polymer film having different temperatures)
- the melting point of the lower temperature thermoplastic liquid crystal polymer film is Tm
- Tm melting point of the lower temperature thermoplastic liquid crystal polymer film
- it may be in the range of (Tm ⁇ 60) ° C. to (Tm + 40) ° C., preferably (Tm ⁇ 55) ° C. It can be selected from a wide temperature range of about (Tm + 30) ° C., more preferably about (Tm ⁇ 50) ° C. to (Tm + 25) ° C.
- thermocompression bonding when thermocompression bonding is performed at a high temperature, it may be in the range of (Tm ⁇ 20) ° C. to (Tm + 40) ° C. (eg, in the range of (Tm ⁇ 20) ° C. to (Tm + 20) ° C.), preferably It may be in the range of (Tm ⁇ 10) ° C. to (Tm + 30) ° C., more preferably in the range of (Tm ⁇ 10) ° C. to (Tm + 10) ° C.
- thermocompression bonding may be performed at (Tm-60) ° C. or more and less than (Tm-20) ° C., (Tm-50) ° C. or more and (Tm-30) ° C. or more.
- thermocompression bonding may be performed at (Tm-40) ° C. to (Tm-32) ° C.
- the pressure applied at the time of thermocompression bonding can be selected from a wide range of 0.5 to 6 MPa, for example, depending on the properties of the liquid crystal polymer film.
- the liquid crystal having excellent thermal adhesiveness after the deaeration step is used. Good adhesion between the liquid crystal polymer film layers even when the pressing pressure is 5 MPa or less, particularly 4.5 MPa or less (for example, 0.5 MPa to 3 MPa, preferably 1 to 2.5 MPa) because the polymer film is used for adhesion. It becomes possible to prevent a local adhesion failure caused by air entrapment even after the adhesion.
- the thermocompression bonding step may include a thermocompression bonding step under a low pressure.
- Thermocompression bonding may be performed in the range of 5 to 2.5 MPa, preferably thermocompression bonding may be performed in the range of 0.6 to 2 MPa, and more preferably in the range of 0.7 to 1.5 MPa.
- thermocompression bonding may be performed by a single-stage press, or a multi-stage press such as a two-stage press may be performed.
- temporary bonding is performed by pressing under high pressure (for example, in the range of more than 2.5 MPa to 5 MPa or less) as a pre-process of thermocompression bonding, and then main bonding is performed under the above-described low pressure. May be performed.
- the thermocompression bonding under a low pressure may be longer than the thermocompression bonding under a high pressure.
- the heating temperature under low pressure may be higher than the heating temperature under high pressure.
- the time required for the thermocompression bonding process is not particularly limited as long as the interlayer adhesion of the circuit board can be improved satisfactorily. For example, it may be performed for about 15 to 60 minutes. The reaction may be performed preferably for about 20 to 50 minutes, more preferably for about 20 to 40 minutes. In addition, when performing by a multistage press, the total time of each holding time may be sufficient.
- circuit board When manufacturing a circuit board, various manufacturing processes (for example, a circuit formation process, a through-connection process, an interlayer connection process, etc.) that are known or commonly used may be performed as necessary.
- various manufacturing processes for example, a circuit formation process, a through-connection process, an interlayer connection process, etc.
- a circuit board for example, one or more unit circuit boards made of a thermoplastic liquid crystal polymer film having a conductor layer formed on one side or both sides, and the conductor layer of the unit circuit board.
- the circuit board manufacturing method may have a ten-point average roughness (Rz JIS ) of 1.25 ⁇ m or less by a method based on ISO 4287-1997 on the surface of the conductor layer on the side to be bonded to the circuit board material. .
- FIG. 2A is a schematic cross-sectional view showing a state before stacking circuit boards when insulating boards are stacked without using a bonding sheet.
- a first unit circuit board (double-sided copper-clad plate) 10 in which copper foils 4 and 4 are attached to both sides of the first thermoplastic liquid crystal polymer film 5 and a second plastic liquid crystal polymer film 6 are provided on one side.
- a second unit circuit board (single-sided copper-clad board) 20 to which the copper foil 4 is attached is prepared.
- the first thermoplastic liquid crystal polymer film 1 and the second thermoplastic liquid crystal polymer film 2 may be made of the same material having the same or different thickness.
- first unit circuit board 10 and the second unit circuit board 20 are heated for a predetermined time, preferably in a nitrogen gas atmosphere (first deaeration step).
- first deaeration step a predetermined time, preferably in a nitrogen gas atmosphere.
- the first unit circuit board 10 and the second unit circuit board 20 are stacked and placed in a chamber (not shown) of the vacuum hot press apparatus to obtain a stacked body 30 shown in FIG. 2B.
- heating is performed for a predetermined time while vacuuming is performed to maintain a vacuum degree of 1500 Pa or less (second degassing step).
- second degassing step As the temperature and time conditions at that time, those described above can be used.
- thermocompression bonding conditions the layers of the laminate 30 are pressure bonded by pressurization.
- the conditions described above can be used as the temperature and pressure conditions during thermocompression bonding.
- the inside of the apparatus is returned to the normal temperature and normal pressure condition, and then the circuit board 30 is recovered from the apparatus.
- the first unit circuit board 10 and the second unit circuit board 20 are directly bonded.
- the first unit circuit board 10 and the second unit circuit board 10 are directly bonded to the second unit circuit board 10 as necessary.
- a bonding sheet may be used between the unit circuit board 20 and the unit circuit board 20.
- the conductor circuit may be a microstrip line pattern, and a coverlay may be used in place of the second unit circuit board 20.
- the circuit board has three conductor layers, but the number of conductor layers can be set as appropriate in one or more layers (for example, 2 to 10 layers). it can.
- FIG. 3A is a schematic cross-sectional view illustrating a state before stacking circuit boards when insulating boards are stacked using a bonding sheet.
- the first unit circuit board (double-sided copper-clad plate) 70 in which the copper foil 40 is pasted on both sides of the first thermoplastic liquid crystal polymer film 7 and the copper foil on one side of the second plastic liquid crystal polymer film 8 are used.
- a bonding sheet (liquid crystal polymer film for adhesive material) 90 made of the film 9 is prepared.
- the first thermoplastic liquid crystal polymer film 7 and the second thermoplastic liquid crystal polymer film 8 may be made of the same material having the same or different thickness.
- the copper foil surface of the first unit circuit board is subjected to FlatBONDGT (MEC Co., Ltd.) treatment and an oxidation-resistant alloy layer (Fig. (Not shown), followed by FlatBONDGC (MEC Co., Ltd.) treatment to attach a silane coupling agent to form a conductor layer.
- FlatBONDGT MEC Co., Ltd.
- Fig. oxidation-resistant alloy layer
- FlatBONDGC MEC Co., Ltd.
- the first unit circuit board 70, the bonding sheet 90, and the second unit circuit board 80 are stacked and placed in a chamber (not shown) of the vacuum hot press apparatus, and the stacked body 50 shown in FIG. 3B. And Next, heating is performed for a predetermined time while vacuuming is performed to maintain a vacuum degree of 1500 Pa or less (second degassing step). As the temperature and time conditions at that time, those described above can be used.
- thermocompression bonding conditions the layers of the laminate 50 are pressure bonded by pressurization.
- the conditions described above can be used as the temperature and pressure conditions during thermocompression bonding.
- the inside of the apparatus is returned to normal temperature and normal pressure conditions, and then the circuit board 50 is recovered from the apparatus.
- the conductor is formed on one surface (upper surface) of the insulating layer on the first unit circuit board having the conductor layer (copper foil) bonded to both surfaces of the insulating layer, with or without a bonding sheet.
- the second unit circuit board on which the layers are formed is laminated, but the illustrated configuration does not limit the circuit board of the present invention.
- the circuit board may have only two conductor layers, or may have four or more conductor layers.
- the circuit board may be provided with a cover lay made of a liquid crystal polymer film in the outermost layer in order to cover the conductor layer.
- a circuit board (preferably a multilayer circuit board) according to a fourth configuration includes a plurality of at least one circuit board material selected from an insulating board having a conductor layer formed on at least one surface, a bonding sheet, and a coverlay. Prepared, At least one selected from an insulating substrate, a bonding sheet, and a coverlay is a circuit board that is a thermoplastic liquid crystal polymer film.
- the circuit board is excellent in heat resistance, and is a circuit board having solder heat resistance when the circuit board is left for 60 seconds in an environment of a solder bath of 290 ° C. according to a method conforming to JIS C 5012.
- the solder heat resistance is evaluated in accordance with JIS C 5012 by performing a solder float test with a solder bath temperature of 290 ° C. and a float time of 60 seconds, and whether the substrate after the float test has a bulge with a height of 100 ⁇ m or more. May be observed and evaluated visually and using an optical microscope ( ⁇ 5 times or more).
- the circuit board of the present invention may be a circuit board having the following configuration.
- a unit circuit board having an insulating layer (base material layer) made of a thermoplastic liquid crystal polymer film (first liquid crystal polymer film), and a conductor layer formed on one or both surfaces of the film, and bonding A circuit board (multilayer or laminated circuit board) in which two or more unit circuit boards are laminated via a bonding sheet,
- a circuit board (single layer or double layer circuit board) comprising a coverlay for covering the conductor layer of the unit circuit board;
- a circuit board (I) a unit circuit
- the ten-point average roughness (Rz JIS ) by the method in conformity with ISO 4287-1997 on the surface of the conductor layer on the side to be bonded to the circuit board material is, for example, It may be 1.25 ⁇ m or less.
- the circuit board can improve the adhesion of the liquid crystal polymer film, for example, it conforms to JIS-C5016-1994 between the thermoplastic liquid crystal polymer film and the circuit board material adhered to the film.
- 0.8 kN / m or more for example, 0.8 to 3 kN / m
- the thermoplastic liquid crystal polymer film and the insulating substrate material preferably other thermoplastic liquid crystal polymer film.
- 0.9 kN / m or more Preferably 0.9 kN / m or more, more preferably 1 kN / m or more, and even more preferably 1.1 kN / m or more.
- the adhesive strength was determined in accordance with JIS C5016-1994 at a speed of 50 mm per minute while peeling the adherends in the direction of 90 °, while using a tensile tester [Nidec Sympo Co., Ltd., Digital The peel strength measured by the force gauge FGP-2] may be used.
- the circuit board can improve the adhesion of the liquid crystal polymer film, for example, it conforms to JIS-C5016-1994 between the thermoplastic liquid crystal polymer film and the circuit board material adhered to the film.
- the adhesive strength between the thermoplastic liquid crystal polymer film and the conductor layer may be, for example, 0.3 kN / m or more (for example, 0.3 to 2 kN / m), preferably 0.5 kN / m. It may be the above. In determining interlayer adhesion, it is generally possible to determine that adhesion is good when cohesive peeling occurs. On the other hand, when the adhesiveness is not good, interface peeling often occurs.
- the adhesive strength of the circuit board is improved overall regardless of the direction.
- the adhesive strength is measured in four directions of A forward direction, A reverse direction, B forward direction, and B reverse direction by peeling, the minimum value of the adhesive strength is (I)
- the thermoplastic liquid crystal polymer film and the insulating substrate material for example, it may be 0.5 kN / m or more (for example, 0.5 to 3 kN / m), preferably 0.6 kN / m.
- / or (ii) may be, for example, 0.25 kN / m or more (for example, 0.25 to 2 kN / m) between the thermoplastic liquid crystal polymer film and the conductor layer, and preferably It may be 28 kN / m or more, more preferably 0.5 kN / m or more.
- the circuit board has a structure in which at least two of the circuit board materials are thermoplastic liquid crystal polymer films, and a conductor layer is sandwiched between the first thermoplastic liquid crystal polymer film and the second thermoplastic liquid crystal polymer film. You may have.
- the above-mentioned range may be sufficient as the melting
- the insulating substrates or the insulating substrate and the coverlay may be bonded to each other without using a bonding sheet according to the thermal adhesiveness of the thermoplastic liquid crystal polymer film.
- a bonding sheet when a bonding sheet is not used, the thickness of the circuit board can be reduced.
- the circuit board includes n conductor layers 4 sandwiched between insulating layers, and n + 1 insulating layers (or thermoplastic liquid crystal polymer film layers) 3 sandwiching each layer of the conductor layers. May be provided.
- the circuit board may include a conductor layer as the outermost layer as necessary.
- the conductor layers are the same layers as long as they are sandwiched between the same insulating layers, even if they are formed on the upper and lower insulating layers, respectively.
- the circuit board uses a thermoplastic liquid crystal polymer film having high adhesiveness, it is possible to perform thermocompression bonding under low pressure (preferably low temperature and low pressure). Therefore, it is possible to reduce the amount of sinking of the conductor circuit that occurs during thermocompression bonding and improve the reliability of the circuit board.
- the conductor circuit 4 is not formed in the cross-sectional sample obtained by cutting the laminate including the conductor circuit 4 and the liquid crystal polymer films 5 and 6 perpendicularly to the conductor circuit.
- the thickness L2 may be measured as the distance L2 between the lower surface of the conductor circuit 4 and the lower surface of the liquid crystal polymer film 5.
- L1 is the distance between the adjacent liquid crystal polymer film interface and the top surface of the ground conductor 4b
- L2 is the circuit board. The distance between the lower surface of the conductor circuit 4a and the upper surface of the ground conductor 4b may be grasped.
- the circuit board of the present invention uses a thermoplastic liquid crystal polymer having excellent dielectric properties as an insulating material, it can be suitably used particularly as a high-frequency circuit board.
- a high-frequency circuit is not only a circuit that transmits only a high-frequency signal, but also a transmission path that converts a high-frequency signal to a low-frequency signal and outputs the generated low-frequency signal to the outside, and driving of high-frequency compatible components
- a transmission line for transmitting a signal that is not a high-frequency signal, such as a transmission line for supplying power supplied for the purpose, is also included.
- the relative dielectric constant ( ⁇ r ) of the circuit board may be, for example, 2.6 to 3.5, and more preferably 2.6 to 3.4.
- the dielectric loss tangent (Tan ⁇ ) of the circuit board may be, for example, 0.001 to 0.01, and more preferably 0.001 to 0.008.
- the film was obtained by observing the thermal behavior of the film using a differential scanning calorimeter. In other words, the sample film was heated at a rate of 20 ° C./min to be completely melted, and then the melt was rapidly cooled to 50 ° C. at a rate of 50 ° C./min, and again raised at a rate of 20 ° C./min. The position of the endothermic peak that appeared when the film was recorded was recorded as the melting point of the film.
- m (Zo / ⁇ z) X [1- ⁇ max / ⁇ o]
- Zo is an apparatus constant
- ⁇ z is an average thickness of the object
- ⁇ max is a frequency that gives the maximum microwave transmission intensity when the microwave frequency is changed
- ⁇ o is an average thickness of zero (ie, the object is zero). Is the frequency that gives the maximum microwave transmission intensity.
- the rotation angle of the object with respect to the vibration direction of the microwave is 0 °, that is, the vibration direction of the microwave and the direction in which the molecules of the object are best oriented
- the minimum microwave transmission intensity is given.
- the orientation ratio SOR is calculated by m 0 / m 90.
- the film thickness was measured using a digital thickness meter (manufactured by Mitutoyo Corporation) at an interval of 1 cm in the TD direction, and an average value of 10 points arbitrarily selected from the center and the end was taken as the film thickness. .
- solder float test was performed in accordance with JIS C 5012 to examine the solder heat resistance of the circuit board.
- the temperature of the solder bath was 290 ° C.
- the float time was 60 seconds
- the presence or absence of blistering of the substrate after the float test (having an area of 100 ⁇ m ⁇ 100 ⁇ m or more) was observed visually and with an optical microscope ( ⁇ 5 times or more).
- five 5 cm square circuit board samples are prepared by cutting out any five parts of a 30 cm square circuit board sample to 5 cm squares, and each of the five 5 cm square circuit board samples is subjected to solder float.
- the test was performed, and the presence or absence of swelling was observed visually and with an optical microscope ( ⁇ 5 times or more). It was evaluated as having good solder heat resistance when no blisters were found on all five 5 cm square circuit board samples, and any one of the five 5 cm square circuit board samples was swollen. The case was evaluated as defective.
- one direction (MD direction) of the circuit board and the direction orthogonal to the direction (TD direction) are peeled off from both sides, respectively, so that the MD forward direction (or MD traveling direction), MD reverse direction (or MD non-progressing) Direction), TD forward direction (or TD right direction), and TD reverse direction (or TD left direction).
- the adhesive strength was measured, and the average value was used as the representative value of the adhesive strength of the circuit board.
- the adhesive strength is measured as the adhesive strength between the liquid crystal polymer film and the conductor layer, and when the conductor layer adheres to the liquid crystal polymer film with a contact area of less than 30%, the adhesive strength is the liquid crystal polymer film and the liquid crystal polymer film. It was measured as the adhesive strength between.
- Ra indicates the average value of the absolute value deviation from the average line
- the surface roughness (Rz JIS ) is obtained by extracting the reference length from the roughness curve in the direction of the average line
- the difference between the average value of the altitude at the top (convex apex) from the 5th to the 5th and the average value of the altitude at the bottom (concave bottom) from the deepest to the 5th is expressed in ⁇ m.
- the roughness is shown.
- the laminate was cut to obtain a cross-sectional sample perpendicular to the conductor circuit.
- the sample was placed on Pt sputtering, and a 20-mm Pt film was formed on the surface.
- a scanning electron microscope (SU-70, manufactured by Hitachi High-Technologies Corporation)
- SEM image secondary electron image of the cross section of the laminate was taken at an acceleration voltage of 5 kV, and the degree of sinking was observed.
- FIG. 5B the distance L1 between the adjacent liquid crystal polymer film interface and the ground conductor and the distance L2 between the lower surface of the conductor circuit of the circuit board and the ground conductor are respectively measured, and the percentage ratio of L2 / L1. And evaluated according to the following criteria.
- L1 L2 and therefore 100%.
- thermoplastic liquid crystal polymer film A thermoplastic liquid crystal polymer having a melting point of 280 ° C. is melted with a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27).
- the thermoplastic liquid crystal polymer film in the roll was moisture content: 400 ppm.
- the roll of the thermoplastic liquid crystal polymer film was subjected to a heat treatment at 120 ° C.
- thermoplastic liquid crystal polymer film in the roll after degassing had a moisture content of 200 ppm and a molecular orientation SOR of 1.02.
- Thermoplastic liquid crystal having a melting point of 280 ° C. and a thickness of 50 ⁇ m, a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27).
- the polymer film was heat-treated in a nitrogen atmosphere at 260 ° C. for 4 hours, and further at 280 ° C.
- a unit circuit board was produced in which wiring was processed so that the copper-clad laminate had a stripline structure.
- the thermoplastic liquid crystal polymer film in the unit circuit board had a moisture content of 400 ppm.
- circuit board As a bonding sheet, it is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27) that has not been deaerated and has a melting point of 280.
- Two unit circuit boards are stacked on both sides in the same manner as in Example 1 except that a thermoplastic liquid crystal polymer film having a temperature of 50 ° C., a moisture content of 400 ppm, and a molecular orientation SOR of 1.02 is used. Together, it was set in a vacuum hot press machine. Then, as a deaeration step under vacuum, the delamination process was performed on the stacked laminates at 120 ° C.
- Example 7 Various physical properties of the obtained circuit board were evaluated and are shown in Table 7.
- Example 3 (1) Production of Circuit Board A circuit board was obtained in the same manner as in Example 2 except that the adhesive thermoplastic liquid crystal polymer film obtained in Example 1 was used as the bonding sheet. Various physical properties of the obtained circuit board were evaluated and are shown in Table 7.
- circuit board As a bonding sheet, it is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27) that has not been deaerated and has a melting point of 280.
- a circuit board was obtained in the same manner as in Example 1 except that a thermoplastic liquid crystal polymer film having a temperature of 50 ° C., a moisture content of 400 ppm, and a molecular orientation SOR of 1.02 was used.
- Various physical properties of the obtained circuit board were evaluated and are shown in Table 7.
- the interlayer adhesiveness of the circuit board can be improved even in a normal thermocompression bonding process. it can.
- these circuit boards have excellent heat resistance, and can suppress swelling at high temperatures.
- Example 2 a thermoadhesive liquid crystal polymer film is not used as the circuit board material, but before the thermocompression bonding, a degassing step of the laminate is performed under vacuum. By the process, the interlayer adhesion of the circuit board can be improved. In addition, these circuit boards have excellent heat resistance, and can suppress swelling at high temperatures.
- Example 3 uses a liquid crystal polymer film excellent in thermal adhesiveness as a bonding sheet and performs a specific degassing step, and thus is particularly excellent in adhesiveness.
- Comparative Example 1 does not use a heat-adhesive liquid crystal polymer film and does not perform a deaeration process. Therefore, the interlayer adhesion is lower than that of the example, and swelling occurs at a high temperature. There is a sample to do.
- Example 4 (1) Production of unit circuit board Rolled copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) against a thermoplastic liquid crystal polymer film having a melting point of 335 ° C. (manufactured by Kuraray Co., Ltd., CT-Z, thickness 25 ⁇ m) BHYX-T-12, 12 ⁇ m thick), using a vacuum hot press machine, set the heating plate at 295 ° C. and press-bond for 10 minutes under a pressure of 4 MPa. A first copper-clad laminate with a plastic liquid crystal polymer film / copper foil configuration was prepared.
- a rolled copper foil (manufactured by JX Nippon Mining & Metals, BHYX-T-12) is used for a thermoplastic liquid crystal polymer film having a melting point of 280 ° C. (manufactured by Kuraray Co., Ltd., CT-F, thickness 50 ⁇ m). , Thickness 12 ⁇ m), using a vacuum hot press machine, set the heating plate at 275 ° C., and press-bond for 10 minutes under a pressure of 4 MPa to form a copper foil / second thermoplastic liquid crystal polymer film A second copper-clad laminate was prepared. Next, a circuit pattern (less than 30% of the remaining conductor ratio) is formed on one copper foil of the first copper-clad laminate by a chemical etching method so as to have a stripline structure, thereby obtaining a first unit circuit board. It was.
- the first unit circuit board and the second copper-clad laminate are stacked so that the circuit pattern is sandwiched between the first and second thermoplastic liquid crystal polymer films, and a press pressure of 0 MPa under atmospheric pressure, Heat treatment was performed at 100 ° C. for 1 hour, and the laminate was degassed (first degassing step: degassing step under heating).
- the first unit circuit board and the second copper clad laminate are overlaid in the chamber of the vacuum hot press apparatus. And heated at 100 ° C. under a pressure of 1000 Pa and 0 MPa for 1 hour (second degassing step: degassing step under vacuum).
- a circuit board having a laminated structure represented by copper foil / first thermoplastic liquid crystal polymer layer / circuit layer / second thermoplastic liquid crystal polymer layer / copper foil by crimping (post-process) and performing two-stage pressing was made.
- Various physical properties of the obtained circuit board were evaluated and are shown in Table 8.
- the imaged SEM image is shown in FIG.
- the white part is the liquid crystal polymer, but the interface between the first thermoplastic liquid crystal polymer layer and the second thermoplastic liquid crystal polymer layer can be observed.
- the cross section of the copper stripe or the copper foil can be observed as a white or black and white high contrast region. From the figure, it can be observed that the sinking of the circuit layer is suppressed.
- Example 5 As a second copper-clad laminate, a rolled copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) is used for a thermoplastic liquid crystal polymer film having a melting point of 335 ° C. (manufactured by Kuraray Co., Ltd., CT-Z, thickness 25 ⁇ m). , BHYX-T-12, 12 ⁇ m thick), using a vacuum hot press machine, set the heating plate at 295 ° C., and press-bond for 10 minutes under a pressure of 4 MPa. A copper clad laminate having a thermoplastic liquid crystal polymer film configuration was prepared.
- a circuit board was produced in the same manner as in Example 4 except that the copper-clad laminate was used as the second copper-clad laminate.
- Various physical properties of the obtained circuit board were evaluated and are shown in Table 8.
- the imaged SEM image is shown in FIG. From the figure, it can be observed that the sinking of the circuit layer is suppressed.
- the heat resistance is excellent. Further, even when the post-process performed as the main bonding process in the thermocompression bonding process is performed under a low pressure of 1 MPa, the interlayer adhesion of the circuit board (between the thermoplastic liquid crystal polymer film and between the thermoplastic liquid crystal polymer film and the conductive film) (Interlayer) can be improved.
- the unit circuit boards can be directly bonded well without using the bonding sheets used in the first to third embodiments.
- the post-process performed as the main bonding process in the thermocompression bonding process is performed under a low pressure of 1 MPa, so that not only the resin flow does not occur when the circuit board is manufactured, but the conductor layer is heated. It is possible to suppress sinking into the plastic liquid crystal polymer film.
- Example 5 even if both the thermoplastic liquid crystal polymer films are high melting point films, both circuit board materials can be bonded well. Particularly surprisingly, Example 5 shows good interlayer adhesion even when the temperature during thermocompression bonding is lower than the melting point of these high melting point films.
- Comparative Example 2 and Comparative Example 3 since the deaeration process was not performed, not only the heat resistance was inferior, but also the interlayer adhesion was reduced by about 40% compared to Example 5.
- Comparative Example 4 since the thermocompression bonding was performed under a high temperature and high pressure press in the post-process performed as the main bonding process, the adhesive strength was improved, but the heat resistance was inferior. In addition, a resin flow is generated during production, and the conductive layer sinks into the thermoplastic liquid crystal polymer film.
- Example 6 Rolled copper foil (JX Nippon Mining & Metals Co., Ltd., BHYX-T-12, 12 ⁇ m thick) on the top and bottom of the film against a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., CT-Z) with a melting point of 335 ° C. ), Using a vacuum hot press machine, set the heating plate to 295 ° C., press for 10 minutes under a pressure of 4 MPa, the first of the configuration of copper foil / thermoplastic liquid crystal polymer film / copper foil And a second unit circuit board having a configuration of a copper foil / thermoplastic liquid crystal polymer film.
- the film thickness of the thermoplastic liquid crystal polymer film is 100 ⁇ m
- the film thickness of the thermoplastic liquid crystal polymer film is 75 ⁇ m.
- the first unit circuit board, the bonding sheet [a thermoplastic liquid crystal polymer film having a melting point of 280 ° C. and a film thickness of 25 ⁇ m (manufactured by Kuraray Co., Ltd., CT-F)], and the second unit circuit board are arranged in this order.
- Stacking, deaeration treatment was performed under heating at 115 ° C. for 2 hours under a pressure of 0 MPa under atmospheric pressure (first deaeration step).
- FIG. 3B in a state where a bonding sheet is sandwiched between the first unit circuit board and the second unit circuit board, it is installed in the chamber of the vacuum heat press apparatus, and the degree of vacuum is 1000 Pa, It heated at 100 degreeC under the pressure of 0 Mpa for 1 hour (2nd deaeration process). Thereafter, the temperature of the heating platen is set at 295 ° C., and pressure bonding is performed under a pressure of 1 MPa for 30 minutes, and the copper foil / first thermoplastic liquid crystal polymer layer / second as shown in FIG. 3B.
- a circuit board having a laminated structure represented by two thermoplastic liquid crystal polymer layers / circuit layer / first thermoplastic liquid crystal polymer layer / copper foil was prepared.
- circuit board was evaluated for heat resistance, adhesive strength, flowability, and circuit layer sinkability. These results are shown in Table 9.
- Example 7 A circuit board was prepared in the same manner as in Example 6 except that the FlatBOND process was not performed on the copper foil of the first unit circuit board, and the heat resistance, adhesive strength, flow property, and sinking property of the circuit layer were evaluated. .
- the results are shown in Table 9.
- the surface roughness of the copper foil forming the conductor layer was 0.14 ⁇ m for Ra and 1.09 ⁇ m for Rz JIS .
- Example 8 instead of the FlatBOND process, the surface treatment of the first unit circuit board is performed by the blackening process belonging to the surface roughening process of the prior art, and the pressure at the time of thermocompression bonding is set to 4 MPa.
- a circuit board was prepared, and the heat resistance, adhesive strength, flowability, and sinking property of the circuit layer were evaluated. The results are shown in Table 9.
- a blackening treatment solution aqueous solution
- a blackening treatment solution containing 31 g / L of sodium sulfite, 15 g / L of sodium hydroxide, and 12 g / L of sodium phosphate is maintained at 95 ° C. in a heat insulating bath,
- the circuit board was immersed for 2 minutes, then washed with water and dried.
- the surface roughness of the copper foil in this case was as follows: Ra was 0.18 ⁇ m and Rz JIS was 1.31 ⁇ m.
- the occurrence of blistering on the circuit board can be effectively suppressed by combining the deaeration process under specific conditions.
- the copper foil surface is smoothed by performing FlatBOND treatment on the surface of the copper foil, and the deaeration process under specific conditions is combined, so that the heat resistance is also excellent.
- the adhesive strength in the circuit board can be improved.
- Example 9 A circuit board was obtained in the same manner as in Example 4 except that only the second degassing step was performed without performing the first degassing step. Various physical properties of the obtained circuit board were evaluated and are shown in Table 10.
- Example 10 A circuit board was obtained in the same manner as in Example 4 except that only the first degassing step was performed without performing the second degassing step. Various physical properties of the obtained circuit board were evaluated and are shown in Table 10.
- a rolled copper foil (manufactured by JX Nippon Mining & Metals, BHYX-T-12) is used for a thermoplastic liquid crystal polymer film having a melting point of 280 ° C. (manufactured by Kuraray Co., Ltd., CT-F, thickness 50 ⁇ m). , Thickness 12 ⁇ m), using a vacuum hot press machine, set the heating plate at 275 ° C., and press-bond for 10 minutes under a pressure of 4 MPa to form a copper foil / second thermoplastic liquid crystal polymer film A second copper-clad laminate was prepared. Next, a circuit pattern (less than 30% of the remaining conductor ratio) is formed on one copper foil of the first copper-clad laminate by a chemical etching method so as to have a stripline structure, thereby obtaining a first unit circuit board. It was.
- the first unit circuit board and the second copper clad laminate are overlaid in the chamber of the vacuum hot press apparatus.
- the pressure of the heating panel is set to 150 Pa
- the pressure of the heating panel is set to 150 ° C.
- pressurization is performed under pressure of 4 MPa for 5 minutes
- the pressure of the heating panel is set to 320 ° C.
- Pressed and pressed for 30 minutes under pressure shown by copper foil / first thermoplastic liquid crystal polymer layer / circuit layer / second thermoplastic liquid crystal polymer layer / copper foil by two-stage press
- a circuit board having a laminated structure was manufactured.
- Various physical properties of the obtained circuit board were evaluated and are shown in Table 10.
- Comparative Example 6 since the deaeration process was not performed, not only the maximum value and the minimum value of the adhesive strength were low, but also the overall average value was low. Particularly in Comparative Example 6, it is difficult to improve the adhesive strength despite the fact that the thermocompression bonding temperature is set as high as 320 ° C. in order to increase the adhesive strength. For example, when compared with Example 4, The typical value of the adhesive strength is 1/3 or less, and the minimum value of the adhesive strength is only 1/5 or less.
- Example 9 since the second deaeration process is performed, the maximum value, the minimum value, and the average value of the adhesive strength can be increased as compared with Comparative Example 6. Moreover, in Example 10, since the 1st deaeration process is performed, compared with the comparative example 6, the maximum value of adhesive strength, the minimum value, and an average value can be increased. In these Examples 9 and 10, when the adhesive strength of the circuit board is evaluated from four directions, even the lowest value can satisfy 0.7 kN / m, which is the minimum value obtained in Comparative Example 6. The adhesive strength is more than doubled.
- the liquid crystal polymer film of the present invention is excellent in thermal adhesion, it can be usefully used as various circuit board materials. Further, the circuit board of the present invention can be used as a board for various electric and electronic products. In particular, since the liquid crystal polymer film has excellent dielectric properties at high frequencies, the circuit board of the present invention can be effectively used as a high frequency circuit board or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
前記熱可塑性液晶ポリマーフィルムの少なくとも一方の表面に対して、物理的な研磨または紫外線照射を行うことにより、このフィルム表面が、ナノインデンテーション法によって測定された硬度0.01~0.1GPaを有するように軟化させて、接着面を形成する軟化工程と、
前記接着面を、光学的異方性の溶融相を形成する熱可塑性液晶ポリマーフィルムの少なくとも一方の面に導体回路が形成された基板の回路形成面に対向させ、全体を熱圧着により接着させる熱圧着工程と、
を含む多層回路基板の製造方法が開示されている。
本発明の別の目的は、層間接着性を向上させた回路基板およびその製造方法を提供することにある。
光学的異方性の溶融相を形成し、分子配向度SORが0.8~1.4である熱可塑性液晶ポリマーフィルムを準備する準備工程と、
前記熱可塑性液晶ポリマーフィルムを、(i)真空度1500Pa以下で30分以上真空下で脱気することにより、および/または(ii)100℃~200℃の範囲で加熱下で脱気することより、前記熱可塑性液晶ポリマーフィルム中の熱可塑性液晶ポリマーフィルムを脱気する脱気工程と、
を少なくとも備え、分子配向度SORが0.8~1.4であり、且つ水分率300ppm以下である熱可塑性液晶ポリマーフィルムを製造する方法である。
前記回路基板材料に対して、真空度1500Pa以下で、さらに所定の時間脱気を行う第二の脱気工程と、を備えていてもよい。また、真空下での脱気(i)または第二の脱気工程は、真空度1500Pa以下で、80~200℃の範囲で加熱することにより行われてもよい。
少なくとも一方の面に導体層が形成された絶縁基板、ボンディングシート、およびカバーレイから選択される少なくとも一種の回路基板材料を複数枚準備する準備工程と、
前記準備された回路基板材料を、所定の回路基板の構造に合わせて積層し、所定の圧力下で加熱して回路基板材料を熱圧着する熱圧着工程と、
を少なくとも備える回路基板の製造方法であって、
(I)絶縁基板、ボンディングシートおよびカバーレイから選択された少なくとも1枚が、前記脱気工程が行われた熱接着性熱可塑性液晶ポリマーフィルムで構成され、および/または
(II)絶縁基板、ボンディングシートおよびカバーレイの少なくとも1枚が、熱可塑性液晶ポリマーフィルムで構成されるとともに、熱圧着工程の前に、前記脱気工程が行われる製造方法である。
絶縁基板、ボンディングシートおよびカバーレイから選択された少なくとも1枚が、熱可塑性液晶ポリマーフィルムである回路基板であって、
回路基板をJIS C 5012に準拠した方法によるはんだ浴290℃の環境下に60秒間静置した場合に、はんだ耐熱性を有する回路基板を包含する。前記回路基板は、前記製造方法で製造された回路基板であってもよい。
なお、液晶ポリマーフィルムに対して導体層が接する部分の表面積の割合(すなわち、残導体率=接触面におけるユニット回路基板上の回路パターンの面積/ユニット回路基板の総面積x100)が30%以上である場合、接着強度は液晶ポリマーフィルムと導体層との間の接着強度として測定され、導体層の表面積が30%未満の割合で液晶ポリマーフィルムに接触している場合、接着強度は液晶ポリマーフィルムと液晶ポリマーフィルムとの間の接着強度として測定される。
(i)熱可塑性液晶ポリマーフィルムと絶縁性基板材料との間で0.5kN/m以上であってもよいし、または
(ii)熱可塑性液晶ポリマーフィルムと導体層との間で0.25kN/m以上であってもよい。
本発明は、前記製造方法で製造された回路基板を包含することができる。本発明の回路基板は、上述するように導体層を1層有する単層回路基板であっても、導体層を複数層有する多層回路基板であっても、いずれでもよい。
第5の構成は、導体層が片面または両面に形成された熱可塑性液晶ポリマーフィルムからなる一以上のユニット回路基板と、このユニット回路基板の導体層に対して接着するための熱可塑性液晶ポリマーフィルムからなる一以上の回路基板材料とを、準備する工程と、
前記ユニット回路基板と前記回路基板材料とを、例えば大気圧下で、100℃~200℃の範囲で所定の時間加熱して、脱気を行う第一の脱気工程と、
前記ユニット回路基板と前記回路基板材料に対して、真空度1500Pa以下で、さらに所定の時間脱気を行う第二の脱気工程と、
前記回路基板材料と前記ユニット回路基板とを積層して形成した積層体に加熱及び加圧を行い、熱圧着により前記積層体を一体化する工程とを備えるとともに、
前記回路基板材料と接着する側における前記導体層表面のISO4287-1997に準拠した方法による十点平均粗度(RzJIS)が、1.25μm以下である、回路基板の製造方法である。
熱可塑性液晶ポリマーフィルムの片面または両面に金属箔を熱圧着する熱圧着工程と、
前記熱圧着された金属箔表面に、耐酸化被膜を形成する皮膜形成工程と、を備えていてもよい。
前記導体層は、銅箔からなる銅層を含むのが好ましく、さらに銅を含む合金層を耐酸化性皮膜として含んでいてもよい。
さらに、ユニット回路基板の準備工程は、導体層表面に、シランカップリング剤を付着する、シランカップリング剤付着工程をさらに備えていてもよい。
また、本発明の第6の構成では、前記回路基板は、導体層が片面または両面に形成された熱可塑性液晶ポリマーフィルムからなる一以上のユニット回路基板と、このユニット回路基板の導体層に対して接着するための熱可塑性液晶ポリマーフィルムからなる一以上の回路基板材料とを有する回路基板であって、
前記回路基板材料と接着する側における前記導体層表面のISO4287-1997に準拠した方法による十点平均粗度(RzJIS)が、1.25μm以下であり、かつ
回路基板を、JIS C 5012に準拠した方法によるはんだ浴290℃の環境下に60秒間静置した場合に、はんだ耐熱性を有する回路基板とすることができる。
本発明の一実施態様は、熱可塑性液晶ポリマーフィルムの製造方法であり、この製造方法は、光学的異方性の溶融相を形成し、分子配向度SORが0.8~1.4である熱可塑性液晶ポリマーフィルムを準備する準備工程と、
前記熱可塑性液晶ポリマーフィルムを、
(i)真空度1500Pa以下で30分以上真空下で脱気させることにより、および/または
(ii)100℃~200℃の範囲で加熱下で脱気させることより、前記熱可塑性液晶ポリマーフィルムを脱気する脱気工程と、
を少なくとも備え、分子配向度SORが0.8~1.4であり、且つ水分率300ppm以下である熱可塑性液晶ポリマーフィルムを製造する。
準備される熱可塑性液晶ポリマーフィルムは、溶融成形できる液晶性ポリマーから形成される。この熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマーであれば特にその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、又はこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。
このようにして得られた熱可塑性液晶ポリマーフィルムは、フィルムに存在するエアーや水分を除去するための脱気工程へ供せられる。
脱気工程は、熱接着性に優れる熱可塑性液晶ポリマーフィルムの製造方法において行われてもよいし、回路基板の製造方法の一工程として行われてもよい。
脱気工程により熱可塑性液晶ポリマーフィルムの熱接着性を向上することができ、熱可塑性液晶ポリマーフィルムと被着体との層間接着性を向上することができる。
脱気工程では、上記(i)真空下での脱気工程または(ii)加熱下での脱気工程のいずれか一方を充足する条件で脱気すればよいが、上記(i)および(ii)の双方を充足する条件で脱気するのが好ましい。
真空下での脱気を独立して行う場合、常温下(例えば10~50℃、好ましくは15~45℃の範囲)において行われてもよいが、脱気効率を高める観点から加熱下で行ってもよい。その場合の加熱温度は、例えば、50~200℃(例えば、50~150℃)、好ましくは80~200℃、より好ましくは90~190℃程度であってもよい。
また、加熱下での脱気は、熱可塑性液晶ポリマーフィルムの融点Tmに対して、所定の温度範囲を設定してもよい。その場合は、例えば、(Tm-235)℃~(Tm-50)℃の範囲(例えば、(Tm-200)℃~(Tm-50)℃の範囲)で加熱してもよく、好ましくは、(Tm-225)℃~(Tm-60)℃の範囲(例えば、(Tm-190)℃~(Tm-60)℃の範囲)、より好ましくは、(Tm-215)℃~(Tm-70)℃の範囲(例えば、(Tm-180)℃~(Tm-70)℃の範囲)で行われてもよい。
上述のような、特定の温度範囲において加熱することにより、フィルムから急激に水分が発生することを抑制しつつ、フィルム中(例えば、フィルム内部やフィルム表面)の水を水蒸気として脱気したり、表面に存在するエアーの運動エネルギーを高めてフィルム表面から脱気することが可能となる。
なお、加熱下での脱気を単独で行う場合、真空度1500Pa以下を含まない条件下で行われてもよく、例えば、圧力を調整しない大気圧下(または常圧下)で行ってもよいが、必要に応じて、大気圧から減圧された条件下(例えば、1500Paを超えて100000Pa未満、好ましくは3000~50000Pa程度)で加熱してもよい。
また、脱気工程に要する時間は、例えば、熱可塑性液晶ポリマーフィルムの水分率が、後述する所定の範囲(例えば、300ppm以下、または200ppm以下)になる時点を見計らって適宜設定してもよい。
具体的には、例えば、脱気工程が、前記回路基板材料を、100℃~200℃の範囲で所定の時間加熱して、脱気を行う第一の脱気工程と、前記回路基板材料に対して、真空度1500Pa以下で、さらに所定の時間脱気を行う第二の脱気工程とを備えていてもよい。これらの脱気工程を行う際には、上述した条件を適宜組み合わせて行うことができる。
このような脱気工程を経ることにより、驚くべきことに熱接着性に優れる熱可塑性液晶ポリマーフィルムを得ることが可能となる。その理由については定かではないが、以下のメカニズムが考えられる。ガスバリア性に優れる熱可塑性液晶ポリマーフィルムは、フィルム内部に含まれた水分や、その表層に存在するエアーがかえって抜けにくい状態になる可能性がある。
水分率は、好ましくは200ppm以下、より好ましくは180ppm以下、さらに好ましくは150ppm以下であってもよい。なお、ここで水分率は、後述する実施例に記載された方法により測定された値を示す。
前記熱可塑性液晶ポリマーフィルムを包装している、ガスバリア性包装材と、で構成された熱可塑性液晶ポリマーフィルムの包装体についても包含してもよく、この場合、熱可塑性液晶ポリマーフィルムは、ガスバリア性包装材で包装されている。
熱可塑性液晶ポリマーフィルムの形状は、上述したシート物、多層積層物、ロール状物のいずれであってもよい。熱可塑性液晶ポリマーフィルムには、必要に応じて導体層または導電層が形成されていてもよい。
持ち運び性の観点から、熱可塑性液晶ポリマーフィルムの包装体で包装される熱可塑性液晶ポリマーフィルムは、ロール状物であるのが好ましい。
ガスバリア性フィルムとしては、例えば、各種アルミニウム箔ラミネートフィルム、アルミニウム蒸着フィルム、シリカ蒸着フィルム、ポリ塩化ビニリデンコートフィルムなどが挙げられ、これらのフィルム基材としては、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが適宜用いられてもよい。
さらにまた、これらのフィルムや積層体は、その外側を紙などで包装してもよいし、カートンボックス、木箱、金属ケース、架台などに収容してもよい。
本発明の一実施形態は、接着剤を用いなくとも層間接着性に優れた回路基板の製造方法についても包含する。
前記製造方法は、少なくとも一方の面に導体層(例えば、導体回路または導体パターン、導体箔、導体膜など)が形成された絶縁基板、ボンディングシート、およびカバーレイから選択される少なくとも一種の回路基板材料を複数枚準備する準備工程と、
前記準備された回路基板材料を、所定の回路基板の構造に合わせて積層し、所定の圧力下で加熱して回路基板材料を熱圧着する熱圧着工程と、
を少なくとも備える回路基板の製造方法であって、
(I)絶縁基板、ボンディングシートおよびカバーレイから選択された少なくとも1枚が、前記脱気工程が行われた熱接着性熱可塑性液晶ポリマーフィルムで構成され、および/または
(II)絶縁基板、ボンディングシートおよびカバーレイの少なくとも1枚が、熱可塑性液晶ポリマーフィルムで構成されるとともに、熱圧着工程の前に、前記脱気工程が行われる製造方法である。
準備工程では、回路基板材料(または絶縁性基板材料)として、少なくとも一方の面に導体層(例えば、導体回路または導体パターン、導体箔、導体膜など)が形成された絶縁基板、ボンディングシート、およびカバーレイから選択される少なくとも一種の回路基板材料を、複数枚準備する。
準備工程では、例えば、少なくとも一方の面に導体層が形成された絶縁基板を複数枚準備してもよいし、少なくとも一方の面に導体回路が形成された絶縁基板と、ボンディングシートおよびカバーレイから選択される少なくとも一種とを準備してもよい。
絶縁基板の片面に導体回路または導体パターンが形成されたユニット回路基板、
絶縁基板の両面に導体回路または導体パターンが形成されたユニット回路基板、
絶縁体の一方の面に導体回路または導体パターン、他方の面に導体膜または導体箔が形成されたユニット回路基板、
絶縁基板の片面に導体膜または導体箔が形成された導体張積層板、
絶縁基板の両面に導体膜または導体箔が形成された導体張積層板が挙げられる。
導体層は、例えば、少なくとも導電性を有する金属から形成され、この導体層に公知の回路加工方法を用いて回路が形成される。導体層を形成する導体としては、導電性を有する各種金属、例えば、金、銀、銅、鉄、ニッケル、アルミニウムまたはこれらの合金金属などであってもよい。
熱可塑性液晶ポリマーフィルムからなる絶縁性基材上に導体層を形成する方法としては、公知の方法を用いることができ、例えば金属層を蒸着してもよく、無電解めっき、電解めっきにより、金属層を形成してもよい。また、金属箔(例えば銅箔)を熱圧着により、熱可塑性液晶ポリマーフィルムの表面に圧着してもよい。
導体層を構成する金属箔は、電気的接続に使用されるような金属箔が好適であり、銅箔、のほか金、銀、ニッケル、アルミニウムなどの各種金属箔を挙げることができ、また実質的に(例えば、98質量%以上)これらの金属で構成される合金箔を含んでいてもよい。
好ましくは、導体層の表面粗度は、ISO4287-1997に準拠した方法による十点平均粗度(RzJIS)として、1.25μm以下であってもよく、好ましくは1.2μm以下、より好ましくは1.15μm以下であってもよい。RzJISの下限は特に限定されないが、例えば、0.5μm程度であってもよい。
また、ISO4287-1997に準拠した方法による算術平均粗さ(Ra)として、例えば、0.15μm以下であってもよく、0.14μm以下であってもよい。Raの下限は特に限定されないが、例えば、0.05μm程度であってもよく、0.11μm程度であってもよい。
例えば、その場合、ユニット回路基板の準備工程が、
熱可塑性液晶ポリマーフィルムの片面または両面に金属箔を熱圧着する熱圧着工程と、
前記熱圧着された金属箔表面に、耐酸化性皮膜を形成する耐酸化性皮膜形成工程と、
を備えていてもよい。
また、ユニット回路基板の準備工程は、前記導体層表面に、シランカップリング剤を付着する、シランカップリング剤付着工程をさらに備えていてもよい。
なお、耐酸化性皮膜は、導体層および耐酸化性皮膜の種類に応じて、回路加工前、回路加工後のいずれに形成してもよい。
導体層に対して接着するための回路基板材料(接着性材料)として、上記ユニット回路基板とは別に、ユニット回路基板の導体層と接着させるための回路基板材料を一以上準備してもよい。接着性材料は、熱可塑性液晶ポリマーフィルムであるのが好ましく、例えば、具体的には、ボンディングシートおよびカバーレイから選択される少なくとも一種が挙げられる。なお、カバーレイは、通常、導体層を被覆するために用いられ、ボンディングシートは、回路基板材料間を接着するために用いられる。ボンディングシートおよび/またはカバーレイが液晶ポリマーフィルムで構成されていてもよく、好ましくは、ボンディングシートおよびカバーレイから選択された少なくとも一種が熱接着性液晶ポリマーフィルムで構成されていてもよい。
(a)絶縁基板として未脱気液晶ポリマーフィルム、ボンディングシートとして熱接着性液晶ポリマーフィルム、および任意で設けられるカバーレイとして未脱気液晶ポリマーフィルムを備える回路基板;
(b)絶縁基板として未脱気液晶ポリマーフィルム、ボンディングシートとして熱接着性液晶ポリマーフィルム、および任意で設けられるカバーレイとして熱接着性液晶ポリマーフィルムを備える回路基板;
(c)絶縁基板として熱接着性液晶ポリマーフィルム、ボンディングシートとして未脱気液晶ポリマーフィルム、および任意で設けられるカバーレイとして未脱気液晶ポリマーフィルムを備える回路基板;
(d)絶縁基板として熱接着性液晶ポリマーフィルム、ボンディングシートとして熱接着性液晶ポリマーフィルム、および任意で設けられるカバーレイとして未脱気液晶ポリマーフィルムを備える回路基板;
(e)絶縁基板として熱接着性液晶ポリマーフィルム、ボンディングシートとして熱接着性液晶ポリマーフィルム、および任意で設けられるカバーレイとして熱接着性液晶ポリマーフィルムを備える回路基板;
(f)絶縁基板として熱接着性液晶ポリマーフィルム、およびカバーレイとして未脱気液晶ポリマーフィルムを備える回路基板;
(g)絶縁基板として未脱気液晶ポリマーフィルム、およびカバーレイとして熱接着性液晶ポリマーフィルムを備える回路基板;
(h)絶縁基板として熱接着性液晶ポリマーフィルム、およびカバーレイとして熱接着性液晶ポリマーフィルムを備える回路基板;
(i)第1の絶縁基板として熱接着性液晶ポリマーフィルム、第2の絶縁基板として熱接着性液晶ポリマーフィルム、および任意で設けられるカバーレイとして未脱気液晶ポリマーフィルムを備える回路基板;
(j)第1の絶縁基板として熱接着性液晶ポリマーフィルム、第2の絶縁基板として熱接着性液晶ポリマーフィルム、および任意で設けられるカバーレイとして熱接着性液晶ポリマーフィルムを備える回路基板;などの組み合わせを例示することができる。
回路基板の製造方法において、上述した脱気工程を行うことにより、熱可塑性液晶ポリマーフィルムの熱接着性を向上させてもよい。
回路基板の製造方法において脱気工程を行う場合、脱気工程を熱圧着工程の前に行ってもよいし、回路基板材料の準備工程と熱圧着工程との間に行ってもよい。
回路基板の製造方法において脱気工程を行う場合、好ましくは、脱気工程が、前記回路基板材料を、100℃~200℃の範囲で所定の時間加熱して、脱気を行う第一の脱気工程と、前記回路基板材料に対して、真空度1500Pa以下で、さらに所定の時間脱気を行う第二の脱気工程とを備えていてもよい。
また、予熱工程中、発明の効果を阻害しない範囲で、圧力を例えば、0.8MPa以下、より好ましくは0.6MPa以下程度で加えてもよいが、極力圧力を加えないのが好ましい。
(第一の脱気工程:加熱下での脱気工程)
回路基板の積層時またはその後の工程で、回路基材と接着性材料用の液晶ポリマーフィルム、および導体層の金属層から脱ガスが生じることを防止するため、予め、ユニット回路基板と、接着性材料用の液晶ポリマーフィルムを、例えば、大気圧下(または常圧下)で加熱することにより脱気を行う。
加熱温度は、100~200℃の範囲で行われ、好ましくは110~190℃の範囲で行われてもよい。また、加熱時間は、加熱温度に応じて適宜調節することができるが、例えば30分~4時間、好ましくは1時間~3時間であってもよい。
また、加熱下での脱気は、真空度1500Pa以下を含まない条件下で行われてもよく、例えば、圧力を調整しない大気圧下(または常圧下)で行ってもよいが、必要に応じて、大気圧から減圧された条件下(例えば、1500Paを超えて100000Pa未満、好ましくは3000~50000Pa程度)で加熱してもよい。
なお、第一の脱気工程は、導体(銅箔など)の酸化を防止するため、窒素などの不活性ガス雰囲気下で加熱することが好ましい。あるいは、導体表面に耐酸化性皮膜(例えば、耐酸化性合金層、耐酸化性メッキ層、ベンゾトリアゾール類などの防錆剤層など)が形成された状態で行ってもよい。
次いで、真空雰囲気下で、さらにユニット回路基板、および接着性材料用液晶ポリマーフィルムの脱気を行うことが好ましい。この工程は、真空度1500Pa以下で行われ、好ましくは1300Pa以下、より好ましくは1100Pa以下で行われてもよい。また、脱気時間は、真空度に応じて適宜調節することができるが、例えば30分以上、40分以上、または50分以上であってもよく、6時間以下、4時間以下、3時間以下、2時間以下、または1.5時間以下であってもよい。
熱圧着工程では、準備工程で準備された回路基板材料を、所定の回路基板の構造に合わせて積層し、所定の圧力下で加熱して回路基板材料を熱圧着する。
積層される回路基板の構造は、回路基板の所望の構造に応じて適宜設定することが可能であり特に限定されないが、通常、回路基板材料が、導体層(または導体回路)を挟むように重ね合わせて積層される。
重ね合わせる際は、例えば、少なくとも一方の面に導体回路が形成された少なくとも2枚の絶縁基板の間にボンディングシートが配設され、必要に応じて最外層にカバーレイが配設されてもよいし、少なくとも一方の面に導体回路が形成された少なくとも2枚の絶縁基板がボンディングシートを介せずに配設され、必要に応じて最外層にカバーレイが配設されてもよい。絶縁基板同士をボンディングシートを介せずに直接配設することができる場合、回路基板全体の厚みを低減することができる。
また、本発明では、脱気工程(i)および(ii)を組み合わせる場合、驚くべきことに、接着される熱接着性熱可塑性液晶ポリマーフィルムの融点未満で接着しても、良好な層間接着性を達成することが可能であり、例えば、(Tm-60)℃以上(Tm-20)℃未満で熱圧着を行ってもよく、(Tm-50)℃以上(Tm-30)℃未満、より好ましくは(Tm-40)℃~(Tm-32)℃で熱圧着を行ってもよい。
前記ユニット回路基板と前記回路基板材料とを、例えば大気圧下(または常圧下)、100℃~200℃の範囲で30分以上加熱して、脱気を行う第一の脱気工程と、
前記ユニット回路基板と前記回路基板材料に対して、真空度1500Pa以下で、さらに所定の時間脱気を行う第二の脱気工程と、
前記回路基板材料と前記ユニット回路基板とを積層して形成した積層体に加熱及び加圧を行い、熱圧着により前記積層体を一体化する工程とを備えるとともに、
前記回路基板材料と接着する側における前記導体層表面のISO4287-1997に準拠した方法による十点平均粗度(RzJIS)が、1.25μm以下である、回路基板の製造方法であってもよい。
図2Aは、ボンディングシートを使用せずに、絶縁基板を積層する場合の回路基板の積層前の状態を示す模式断面図である。ここでは、第一の熱可塑性液晶ポリマーフィルム5の両面に銅箔4,4を貼り付けた第一のユニット回路基板(両面銅張板)10と、第二の塑性液晶ポリマーフィルム6の片面に銅箔4を張り付けた第二のユニット回路基板(片面銅張基板)20と、を準備する。ここで、第一の熱可塑性液晶ポリマーフィルム1と第二の熱可塑性液晶ポリマーフィルム2は、同一または異なる厚みを有する同じ素材からなるものであってもよい。
また、図2Bに示す例では、回路基板は、導体層を3層形成しているが、導体層の数は、1層または複数層(例えば、2~10層)において、適宜設定することができる。
これらに示す例では、絶縁層の両面に導体層(銅箔)が接合された第一のユニット回路基板の上に、ボンディングシートを介してまたは介さずに、絶縁層の片面(上面)に導体層が形成された第二のユニット回路基板を積層しているが、図示された構成は、本発明の回路基板を限定するものではない。例えば、回路基板は、導体層を二枚のみ有するものであってもよく、四枚以上の導体層を有するものであってもよい。また、回路基板は、導体層をカバーするために、最外層に液晶ポリマーフィルムからなるカバーレイを備えていてもよい。
第4の構成にかかる回路基板(好ましくは多層回路基板)は、少なくとも一方の面に導体層が形成された絶縁基板、ボンディングシート、およびカバーレイから選択される少なくとも一種の回路基板材料を複数枚備え、
絶縁基板、ボンディングシートおよびカバーレイから選択された少なくとも1枚が、熱可塑性液晶ポリマーフィルムである回路基板である。
(i)熱可塑性の液晶ポリマーフィルム(第一の液晶ポリマーフィルム)からなる絶縁層(基材層)と、前記フィルムの片面または両面上に形成された導体層とを有するユニット回路基板と、ボンディングシートとを備え、ボンディングシートを介してユニット回路基板が二枚以上積層した回路基板(多層または積層回路基板)、
(ii)熱可塑性の液晶ポリマーフィルム(第一の液晶ポリマーフィルム)からなる絶縁層(基材層)と、前記フィルムの片面または両面上に形成された導体層とを有するユニット回路基板と、このユニット回路基板の導体層をカバーするためのカバーレイとを備える回路基板(単層または二層回路基板)、
(iii)上記(i)および(ii)を組み合わせた構成であり、ユニット回路基板と、ボンディングシートと、カバーレイとを備え、二枚以上のユニット回路基板がボンディングシートを介して積層され、回路基板の最外層が、ユニット回路基板の導体層をカバーするカバーレイで構成されている回路基板(多層または積層回路基板)、
(iv)熱可塑性の液晶ポリマーフィルムからなる絶縁層(基材層)を備えるユニット回路基板を複数枚備え、二枚以上のユニット回路基板が、ボンディングシートを介することなく直接積層した回路基板(多層または積層回路基板)、および
(v)上記(ii)および(iv)を組み合わせた構成であり、二枚以上のユニット回路基板と、カバーレイとを備え、二枚以上のユニット回路基板がボンディングシートを介することなく直接積層され、回路基板の最外層が、ユニット回路基板の導体層をカバーするカバーレイで構成されている回路基板(多層または積層回路基板)。
なお、層間接着性を判断するに当たり、凝集剥離が生じる場合、一般的に接着性が良好であると判断することが可能である。一方、接着性が良好でない場合は、界面剥離が生じる場合が多い。
(i)熱可塑性液晶ポリマーフィルムと絶縁性基板材料との間で、例えば、0.5kN/m以上(例えば、0.5~3kN/m)であってもよく、好ましくは0.6kN/m以上であってもよく、より好ましくは0.7kN/m以上であってもよく、さらに好ましくは0.8kN/m以上であってもよく、特に好ましくは0.9kN/m以上であってもよく、および/または
(ii)熱可塑性液晶ポリマーフィルムと導体層との間で、例えば、0.25kN/m以上(例えば、0.25~2kN/m)であってもよく、好ましくは0.28kN/m以上であってもよく、より好ましくは0.5kN/m以上であってもよい。
示差走査熱量計を用いて、フィルムの熱挙動を観察して得た。つまり、供試フィルムを20℃/分の速度で昇温して完全に溶融させた後、溶融物を50℃/分の速度で50℃まで急冷し、再び20℃/分の速度で昇温した時に現れる吸熱ピークの位置を、フィルムの融点として記録した。
水分の測定法としてカールフィッシャー法(カール・フィッシャー滴定の原理を利用し、水分を溶媒に吸収させ電位差の変化により水分を測定する)を使用した。
1)微量水分測定装置名:(株)三菱化学アナリテック社製(VA-07,CA-07)
2)加熱温度: 260(℃)
3)N2パージ圧: 150(ml/min)
4)測定準備(自動)
Purge 1分
Preheat 2分 試料ボード空焼き
Cooling 2分 試料ボード冷却
5)測定
滴定セル内溜め込み時間(N2で水分を送り出す時間): 3分
6)試料量: 1.0~1.3g
マイクロ波分子配向度測定機において、液晶ポリマーフィルムを、マイクロ波の進行方向にフィルム面が垂直になるように、マイクロ波共振導波管中に挿入し、該フィルムを透過したマイクロ波の電場強度(マイクロ波透過強度)を測定する。そして、この測定値に基づいて、次式により、m値(屈折率と称する)を算出する。
m=(Zo/△z) X [1-νmax/νo]
ここで、Zoは装置定数、△zは物体の平均厚、νmaxはマイクロ波の振動数を変化させたとき、最大のマイクロ波透過強度を与える振動数、νoは平均厚ゼロのとき(すなわち物体がないとき)の最大マイクロ波透過強度を与える振動数である。
膜厚は、デジタル厚み計(株式会社ミツトヨ製)を用い、得られたフィルムをTD方向に1cm間隔で測定し、中心部および端部から任意に選んだ10点の平均値を膜厚とした。
JIS C 5012に準拠して半田フロート試験を実施し、回路基板のはんだ耐熱性を調べた。はんだ浴の温度は290℃、フロート時間は60秒として、フロート試験後の基板のふくれ(100μmx100μm以上の面積を有するもの)の有無を目視および光学顕微鏡(×5倍以上)にて観察した。
具体的には、30cm四方の回路基板サンプルの任意の5箇所をそれぞれ5cm四方に切り取って5個の5cm四方の回路基板サンプルを作成し、この5個の5cm四方の回路基板サンプルそれぞれについて半田フロート試験を実施し、目視および光学顕微鏡(×5倍以上)により膨れの有無を観察した。5個の5cm四方の回路基板サンプル全てに膨れが見られない場合を良としてはんだ耐熱性を有すると評価し、5個の5cm四方の回路基板サンプルのうちいずれか一つでも膨れが見られた場合は不良として評価した。
JIS C5016-1994に準拠して、毎分50mmの速度で、隣接する回路基板材料間において、一方を、他方に対し90°の方向に引きはがしながら、引っ張り試験機[日本電産シンポ(株)製、デジタルフォースゲージFGP-2]により、引きはがし強さを測定し、得られた値を接着強度(ピール強度)とした。
なお、回路基板の一方向(MD方向)と、それに対する直交方向(TD方向)について、それぞれ、両側から引きはがすことにより、MD順方向(またはMD進行方向)、MD逆方向(またはMD非進行方向)、TD順方向(またはTD右方向)、TD逆方向(またはTD左方向)の4方向について接着強度を測定し、その平均値を回路基板の接着強度の代表値とした。
また、液晶ポリマーフィルムに対して導体層が接する表面積の割合(すなわち、残導体率=接触面におけるユニット回路基板上の回路パターンの面積/ユニット回路基板の総面積x100)が30%以上である場合、接着強度は液晶ポリマーフィルムと導体層との間の接着強度として測定され、導体層が30%未満の接触面積で液晶ポリマーフィルムに接着している場合、接着強度は液晶ポリマーフィルムと液晶ポリマーフィルムとの間の接着強度として測定された。
接触式表面粗さ計(ミツトヨ(株)製、型式 SJ-201)を用い、積層体(B)で粗化処理された銅箔表面の算術平均粗さ(Ra)と十点平均粗さ(RzJIS)を測定した。測定はISO4287-1997に準拠した方法により行った。より詳細には、Raは、平均線から絶対値偏差の平均値を示したものであり、表面粗度(RzJIS)は、粗さ曲線からその平均線の方向に基準長さを抜き取り、最高から5番目までの山頂(凸の頂点)の標高の平均値と、最深から5番目までの谷底(凹の底点)の標高の平均値との差をμmで表わしたもので、十点平均粗さを示したものである。
積層体を切断し、導体回路に対して垂直な断面サンプルを得た。サンプルをPtスパッタに設置し、表面に20ÅのPt膜を形成した。次いで、走査型電子顕微鏡(日立ハイテクノロジーズ製 SU-70)を用い、加速電圧5kVで、積層体断面の二次電子像(SEM像)を撮像し、沈み込みの度合いを観察した。
図5Bに示すように、隣接する液晶ポリマーフィルム界面と地導体との距離L1と、回路基板の導体回路の下面と地導体との間の距離L2とをそれぞれ測定し、L2/L1のパーセント比率で把握し、下記の基準に従って評価した。全く沈み込まない場合は、L1=L2となるため100%であり、沈み込みが大きいほど数値が低下する。
良好:L2/L1のパーセント比率が80%以上である。
不良:L2/L1のパーセント比率が80%未満である。
回路基板を目視により観察し、長さ10cmにおいて1mm以下の樹脂流れが観察されたものを良好とし、1mmを超える樹脂流れが観察されたものを不良として評価した。
(1)接着性液晶ポリマーフィルムの製造
p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃である熱可塑性液晶ポリマーを溶融押出し、インフレーション製膜法により融点が280℃、厚さが50μm、分子配向度SORが1.02である熱可塑性液晶ポリマーフィルムのロール状物(フィルム層の厚み幅W=600mm)を準備した。このロール状物中の、熱可塑性液晶ポリマーフィルムは、水分率:400ppmであった。
この熱可塑性液晶ポリマーフィルムのロール状物を、120℃において60分間加熱処理を行うことにより、熱可塑性液晶ポリマーフィルムのロール状物の脱気を行った。脱気後のロール状物中の熱可塑性液晶ポリマーフィルムは、水分率:200ppm、分子配向度SOR:1.02であった。
(2)ユニット回路基板の製造
p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃、厚さが50μmである熱可塑性液晶ポリマーフィルムを窒素雰囲気下で260℃4時間、さらに280℃2時間熱処理することで融点を325℃に増加させ、フィルム上下に圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)をセットし、一対のロールでの連続プレス機にてロール温度290℃、線圧100kg/cm、ライン速度2m/分の条件にて銅張積層板を得た後、この銅張積層板がストリップライン構造となるように配線加工したユニット回路基板を作製した。なお、ユニット回路基板中の熱可塑性液晶ポリマーフィルムは、水分率:400ppmであった。
(3)多層回路基板の製造
上記(1)で得られた接着性液晶ポリマーフィルムをボンディングシートとして、その両側に2枚のユニット回路基板を重ね合わせて真空熱プレス装置にセットした。その後、この積層体を真空度1300Pa下、加圧力4MPaで300℃30分間熱圧着することによりそれぞれを接着し、ユニット回路基板/ボンディングシート/ユニット回路基板で構成された回路基板を得た。得られた回路基板の各種物性を評価し、表7に示す。
(1)回路基板の製造
ボンディングシートとして、脱気工程が行われていないp-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃、厚さが50μm、水分率400ppm、分子配向度SORが1.02である熱可塑性液晶ポリマーフィルムを用いる以外は、実施例1と同様にして、その両側に2枚のユニット回路基板を重ね合わせて真空熱プレス装置にセットした。
その後、真空下での脱気工程として、真空度1000Pa下、加圧(プレス圧)0.5MPa下で120℃、60分間の状態で、重ね合わせた積層体に脱気処理を行った。
真空下での脱気工程後、この積層体を実施例(1)と同様に熱圧着することによりそれぞれを接着し、ユニット回路基板/ボンディングシート/ユニット回路基板で構成された回路基板を得た。得られた回路基板の各種物性を評価し、表7に示す。
(1)回路基板の製造
ボンディングシートとして、実施例1で得られた接着性熱可塑性液晶ポリマーフィルムを用いる以外は、実施例2と同様にして、回路基板を得た。得られた回路基板の各種物性を評価し、表7に示す。
(1)回路基板の製造
ボンディングシートとして、脱気工程が行われていないp-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃、厚さが50μm、水分率400ppm、分子配向度SORが1.02である熱可塑性液晶ポリマーフィルムを用いる以外は、実施例1と同様にして、回路基板を得た。得られた回路基板の各種物性を評価し、表7に示す。
(1)ユニット回路基板の製造
融点335℃の熱可塑性液晶ポリマーフィルム((株)クラレ製、CT-Z、厚さ25μm)に対して、圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を295℃に設定し、4MPaの圧力下、10分間、圧着して、銅箔/第一の熱可塑性液晶ポリマーフィルム/銅箔の構成の第一の銅張積層板を作製した。一方で、融点280℃の熱可塑性液晶ポリマーフィルム((株)クラレ製、CT-F、厚さ50μm)に対して、圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を275℃に設定し、4MPaの圧力下、10分間圧着して、銅箔/第二の熱可塑性液晶ポリマーフィルムの構成の第二の銅張積層板を作製した。
ついで、第一の銅張積層板の一方の銅箔に対し、ストリップライン構造となるように化学エッチング法により回路パターン(残導体率30%未満)を形成し、第1のユニット回路基板を得た。
なお、得られた回路基板について、撮像されたSEM像を図6に示す。図中、白色の部分は液晶ポリマーであるが、第一の熱可塑性液晶ポリマー層と第二の熱可塑性液晶ポリマー層との界面を観察できる。銅ストライプまたは銅箔の断面は、白色または白黒の高コントラストの部位として観察できる。図からは、回路層の沈み込みが抑制されているのが観察できる。
第二の銅張積層板として、融点335℃の熱可塑性液晶ポリマーフィルム((株)クラレ製、CT-Z、厚さ25μm)に対して、圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を295℃に設定し、4MPaの圧力下、10分間、圧着して、銅箔/第二の熱可塑性液晶ポリマーフィルムの構成の銅張積層板を作製した。第二の銅張積層板として、上記銅張積層板を用いる以外は、実施例4と同様にして回路基板を作製した。得られた回路基板の各種物性を評価し、表8に示す。
なお、得られた回路基板について、撮像されたSEM像を図6に示す。図からは、回路層の沈み込みが抑制されているのが観察できる。
加熱下での脱気工程および真空下での脱気工程を双方とも行わない以外は、実施例4と同様にして回路基板を作製した。得られた回路基板の各種物性を評価し、表8に示す。
加熱下での脱気工程および真空下での脱気工程を双方とも行わない以外は、実施例5と同様にして回路基板を作製した。得られた回路基板の各種物性を評価し、表8に示す。
加熱下での脱気工程および真空下での脱気工程を双方とも行わないこと、および熱圧着工程において、加熱盤の温度を150℃に設定し4MPaの圧力下5分間加圧して圧着し(前工程)、次いで、加熱盤の温度を320℃に設定し、3MPaの圧力下、30分間加圧して圧着し(後工程)、2段プレスを行うこと以外は、実施例5と同様にして回路基板を作製した。得られた回路基板の各種物性を評価し、表8に示す。
なお、得られた回路基板について、撮像されたSEM像を図6に示す。図からは、回路層が液晶ポリマー層に沈み込んでいるのが観察できる。
また、これらの回路基板では、熱圧着工程において本接着工程として行われる後工程が1MPaという低圧下で行われるため、回路基板を製造する際に樹脂流れが生じないだけでなく、導体層が熱可塑性液晶ポリマーフィルム内部へ沈み込むのを抑制することができる。
また比較例4では、本接着工程として行われる後工程において高温、高圧プレス下で熱圧着を行ったため、接着強度は向上しているが、耐熱性は劣っている。また、製造する際に樹脂流れが発生するとともに、導電層が熱可塑性液晶ポリマーフィルム内部へ沈み込んでいる。
融点335℃の熱可塑性液晶ポリマーフィルム((株)クラレ製、CT-Z)に対して、フィルム上下に圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を295℃に設定し、4MPaの圧力下、10分間、圧着して、銅箔/熱可塑性液晶ポリマーフィルム/銅箔の構成の第一のユニット回路基板、および銅箔/熱可塑性液晶ポリマーフィルムの構成の第二のユニット回路基板を作製した。第一のユニット回路基板では熱可塑性液晶ポリマーフィルムの膜厚は100μm、第二のユニット回路基板では、熱可塑性液晶ポリマーフィルムの膜厚は75μmである。ついで、それぞれの銅箔に化学エッチング法により回路加工(残導体率30%以上)を行った。
その後、加熱盤の温度を295℃に設定し、1MPaの圧力下、30分間加圧の条件で圧着して、図3Bに示されるような、銅箔/第一の熱可塑性液晶ポリマー層/第二の熱可塑性液晶ポリマー層/回路層/第一の熱可塑性液晶ポリマー層/銅箔で示される積層構造を有する回路基板を作製した。
第一のユニット回路基板の銅箔に対し、FlatBOND処理を行わない以外は実施例6と同様にして回路基板を作製し、耐熱性、接着強度、フロー性および回路層の沈み込み性を評価した。その結果を表9に示す。なお、この場合の導体層を形成する銅箔の表面粗度はRaが0.14μm、RzJISが1.09μmであった。
FlatBOND処理に代えて、従来技術の表面粗化処理に属する黒化処理で第一のユニット回路基板の表面処理を行うとともに、熱圧着時の圧力を4MPaにした以外は、実施例6と同様にして回路基板を作製し、耐熱性、接着強度、フロー性および回路層の沈み込み性を評価した。その結果を表9に示す。
なお黒化処理では、亜硫酸ナトリウム31g/L、水酸化ナトリウム15g/L、リン酸ナトリウム12g/Lを含む黒化処理液(水溶液)を保温槽で95℃に保持し、これに第一のユニット回路基板を2分間浸漬させた後、水洗、乾燥させることにより行った。この場合の銅箔の表面粗度は、Raが0.18μm、RzJISが1.31μmであった。
加熱下での脱気工程および真空下での脱気工程を双方とも行わない以外は、実施例8と同様にして回路基板を作製した。得られた回路基板の各種物性を評価し、表9に示す。
第一の脱気工程を行わず、第二の脱気工程のみを行う以外は、実施例4と同様にして、回路基板を得た。得られた回路基板の各種物性を評価し、表10に示す。
第二の脱気工程を行わず、第一の脱気工程のみを行う以外は、実施例4と同様にして、回路基板を得た。得られた回路基板の各種物性を評価し、表10に示す。
(1)ユニット回路基板の製造
融点335℃の熱可塑性液晶ポリマーフィルム((株)クラレ製、CT-Z、厚さ25μm)に対して、圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を295℃に設定し、4MPaの圧力下、10分間、圧着して、銅箔/第一の熱可塑性液晶ポリマーフィルム/銅箔の構成の第一の銅張積層板を作製した。一方で、融点280℃の熱可塑性液晶ポリマーフィルム((株)クラレ製、CT-F、厚さ50μm)に対して、圧延銅箔(JX日鉱日石金属(株)製、BHYX-T-12、厚さ12μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を275℃に設定し、4MPaの圧力下、10分間圧着して、銅箔/第二の熱可塑性液晶ポリマーフィルムの構成の第二の銅張積層板を作製した。
ついで、第一の銅張積層板の一方の銅箔に対し、ストリップライン構造となるように化学エッチング法により回路パターン(残導体率30%未満)を形成し、第1のユニット回路基板を得た。
2…コア
3,5,6,7,8,9…熱可塑性液晶ポリマーフィルム
4,4a,4b,40…銅箔または回路層
10,20,70,80…ユニット回路基板
30…積層体(回路基板)
W…フィルム部分の厚み
Claims (16)
- 光学的異方性の溶融相を形成し、分子配向度SORが0.8~1.4である熱可塑性液晶ポリマーフィルムを準備する準備工程と、
前記熱可塑性液晶ポリマーフィルムを、
(i)真空度1500Pa以下で30分以上真空下で脱気することにより、および/または(ii)100℃~200℃の範囲で加熱下で脱気することより、前記熱可塑性液晶ポリマーフィルムを脱気する脱気工程と、
を少なくとも備え、
分子配向度SORが0.8~1.4であり、且つ水分率300ppm以下である熱可塑性液晶ポリマーフィルムを製造する方法。 - 請求項1の熱可塑性液晶ポリマーフィルムの製造方法において、脱気工程が、
準備された熱可塑性液晶ポリマーフィルムを、100℃~200℃の範囲で所定の時間加熱して、脱気を行う第一の脱気工程と、
前記回路基板材料に対して、真空度1500Pa以下で、さらに所定の時間脱気を行う第二の脱気工程と、を備える製造方法。 - 請求項1または2の熱可塑性液晶ポリマーフィルムの製造方法において、真空下での脱気(i)または第二の脱気工程が、真空度1500Pa以下で、80~200℃の範囲で加熱することにより行われる製造方法。
- 分子配向度SORが0.8~1.4であり、且つ水分率300ppm以下である熱可塑性液晶ポリマーフィルム。
- 請求項4に記載された熱可塑性液晶ポリマーフィルムにおいて、フィルムの厚みが10~200μmである熱可塑性液晶ポリマーフィルム。
- 請求項4または5に記載された熱可塑性液晶ポリマーフィルムにおいて、ガスバリア性包装材で包装されている熱可塑性液晶ポリマーフィルム。
- 少なくとも一方の面に導体層が形成された絶縁基板、ボンディングシート、およびカバーレイから選択される少なくとも一種の回路基板材料を複数枚準備する準備工程と、
前記準備された回路基板材料を、所定の回路基板の構造に合わせて積層し、所定の圧力下で加熱して回路基板材料を熱圧着する熱圧着工程と、
を少なくとも備える回路基板の製造方法であって、
(I)絶縁基板、ボンディングシートおよびカバーレイから選択された少なくとも1枚が、請求項1~3のいずれか一項に記載される脱気工程が行われた熱接着性熱可塑性液晶ポリマーフィルムで構成され、および/または
(II)絶縁基板、ボンディングシートおよびカバーレイから選択された少なくとも1枚が、熱可塑性液晶ポリマーフィルムで構成されるとともに、熱圧着工程の前に、請求項1~3のいずれか一項に記載された脱気工程が行われる、
製造方法。 - 請求項7の回路基板の製造方法において、熱圧着工程が、プレス圧5MPa以下で加熱して回路基板材料を熱圧着する、製造方法。
- 請求項8の回路基板の製造方法において、熱圧着工程が、プレス圧0.5~2.5MPa下で加熱して回路基板材料を熱圧着する、製造方法。
- 請求項7~9のいずれか一項の回路基板の製造方法において、熱圧着工程で、熱圧着される熱可塑性液晶ポリマーフィルムの融点Tmに対して、(Tm-60)℃以上(Tm+40)℃以下で加熱して回路基板材料を熱圧着する製造方法。
- 少なくとも一方の面に導体層が形成された絶縁基板、ボンディングシート、およびカバーレイから選択される少なくとも一種の回路基板材料を複数枚備え、所定の回路基板構造を有している回路基板であって、
前記回路基板材料の少なくとも1枚が、熱可塑性液晶ポリマーフィルムである回路基板であって、
回路基板をJIS C 5012に準拠した方法によるはんだ浴290℃の環境下に60秒間静置した場合に、はんだ耐熱性を有する回路基板。 - 請求項11の回路基板において、熱可塑性液晶ポリマーフィルムと、このフィルムに対して接着している回路基板材料との間におけるJIS-C5016-1994に準拠した接着強度が、
(i)熱可塑性液晶ポリマーフィルムと絶縁性基板材料との間で0.8kN/m以上であるか、または
(ii)熱可塑性液晶ポリマーフィルムと導体層との間で0.3kN/m以上である、回路基板。 - 請求項11または12の回路基板において、熱可塑性液晶ポリマーフィルムと、このフィルムに対して接着している回路基板材料との間におけるJIS-C5016-1994に準拠した接着強度が、回路基板の一方向(A方向)と、それに対する直交方向(B方向)について、それぞれ、両側から引きはがすことにより、A順方向、A逆方向、B順方向、B逆方向の4方向について接着強度を測定した場合、接着強度の最小値が、
(i)熱可塑性液晶ポリマーフィルムと絶縁性基板材料との間で0.5kN/m以上であるか、または
(ii)熱可塑性液晶ポリマーフィルムと導体層との間で0.25kN/m以上である、回路基板。 - 請求項11~13のいずれか一項の回路基板において、第1の熱可塑性液晶ポリマーフィルムと、第2の熱可塑性液晶ポリマーフィルムとで導体層を挟む構造を有しており、前記第1の熱可塑性液晶ポリマーフィルムと、第2の熱可塑性液晶ポリマーフィルムとの融点差が、0~70℃である回路基板。
- 請求項11~14のいずれか一項の回路基板において、導体層の少なくとも一方の表面のISO4287-1997に準拠した方法による十点平均粗度(RzJIS)が、1.25μm以下である回路基板。
- 請求項11~15のいずれか一項の回路基板において、
上面と底面を有する絶縁基板の上面側に導体回路が形成されている絶縁基板において、
導体回路が形成されていない箇所における絶縁基板の厚みL1と、導体回路が形成されている箇所における絶縁基板の厚みL2をそれぞれ測定する場合、L2/L1のパーセント比率が、80~100%である回路基板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167011566A KR102339434B1 (ko) | 2013-10-03 | 2014-09-29 | 열가소성 액정 폴리머 필름, 회로 기판, 및 그들의 제조 방법 |
JP2015540482A JP6499584B2 (ja) | 2013-10-03 | 2014-09-29 | 熱可塑性液晶ポリマーフィルム、回路基板、およびそれらの製造方法 |
CN201480054977.XA CN105637019B (zh) | 2013-10-03 | 2014-09-29 | 热塑性液晶聚合物膜、电路基板、及它们的制造方法 |
US15/084,554 US10765001B2 (en) | 2013-10-03 | 2016-03-30 | Thermoplastic liquid crystal polymer film, circuit board, and methods respectively for manufacturing said film and said circuit board |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013208209 | 2013-10-03 | ||
JP2013-208209 | 2013-10-03 | ||
JP2014065751 | 2014-03-27 | ||
JP2014-065751 | 2014-03-27 | ||
JP2014119850 | 2014-06-10 | ||
JP2014-119850 | 2014-06-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/084,554 Continuation US10765001B2 (en) | 2013-10-03 | 2016-03-30 | Thermoplastic liquid crystal polymer film, circuit board, and methods respectively for manufacturing said film and said circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015050080A1 true WO2015050080A1 (ja) | 2015-04-09 |
Family
ID=52778670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075875 WO2015050080A1 (ja) | 2013-10-03 | 2014-09-29 | 熱可塑性液晶ポリマーフィルム、回路基板、およびそれらの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10765001B2 (ja) |
JP (2) | JP6499584B2 (ja) |
KR (1) | KR102339434B1 (ja) |
CN (2) | CN105637019B (ja) |
TW (1) | TWI644950B (ja) |
WO (1) | WO2015050080A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016114262A1 (ja) * | 2015-01-13 | 2016-07-21 | 宇部エクシモ 株式会社 | フレキシブル積層板及び多層回路基板 |
JP2018130959A (ja) * | 2017-02-16 | 2018-08-23 | 佳勝科技股▲ふん▼有限公司 | 高周波複合基板及び液晶組成物 |
WO2020153391A1 (ja) * | 2019-01-25 | 2020-07-30 | デンカ株式会社 | 両面金属張積層体とその製造方法、絶縁フィルムおよび電子回路基板 |
US10743423B2 (en) | 2017-09-15 | 2020-08-11 | Azotek Co., Ltd. | Manufacturing method of composite substrate |
CN112566364A (zh) * | 2020-11-24 | 2021-03-26 | 中国科学技术大学 | 无胶粘层热塑性液晶聚合物高频基板及其制备方法和应用 |
JPWO2021060455A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
WO2021112088A1 (ja) * | 2019-12-03 | 2021-06-10 | デンカ株式会社 | 硬化性組成物及びその硬化体 |
US11044802B2 (en) | 2017-02-16 | 2021-06-22 | Azotek Co., Ltd. | Circuit board |
US11225563B2 (en) | 2017-02-16 | 2022-01-18 | Azotek Co., Ltd. | Circuit board structure and composite for forming insulating substrates |
EP3910091A4 (en) * | 2019-01-08 | 2022-01-19 | Imtechnology. Co., Ltd. | COATING METHOD FOR PREVENTING THE DEGASING OF A RESIN AEROSPACE PART |
KR20220077158A (ko) * | 2016-03-08 | 2022-06-08 | 주식회사 쿠라레 | 금속 피복 적층판 및 회로 기판 |
JP2023143623A (ja) * | 2022-03-24 | 2023-10-06 | 佳勝科技股▲ふん▼有限公司 | 多層基板 |
US11877395B2 (en) | 2018-11-08 | 2024-01-16 | Kuraray Co., Ltd. | Thermoplastic liquid crystal polymer film and circuit board using same |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102339434B1 (ko) * | 2013-10-03 | 2021-12-14 | 주식회사 쿠라레 | 열가소성 액정 폴리머 필름, 회로 기판, 및 그들의 제조 방법 |
WO2016035629A1 (ja) * | 2014-09-03 | 2016-03-10 | 株式会社村田製作所 | モジュール部品 |
JP6728760B2 (ja) * | 2016-02-25 | 2020-07-22 | 味の素株式会社 | 支持体付き樹脂シート |
JP2018018935A (ja) * | 2016-07-27 | 2018-02-01 | イビデン株式会社 | プリント配線板及びその製造方法 |
TWI625082B (zh) * | 2016-08-26 | 2018-05-21 | 佳勝科技股份有限公司 | 多層式電路板製造方法 |
CN110290921B (zh) * | 2017-03-06 | 2021-09-14 | 株式会社村田制作所 | 覆金属箔层压板、电路基板、以及多层电路基板 |
CN108859316B (zh) * | 2017-05-10 | 2020-02-21 | 昆山雅森电子材料科技有限公司 | 复合式lcp高频高速双面铜箔基板及其制备方法 |
WO2020080190A1 (ja) * | 2018-10-18 | 2020-04-23 | 株式会社クラレ | 熱可塑性液晶ポリマー構造体の製造方法 |
JP7407732B2 (ja) * | 2018-12-04 | 2024-01-04 | 株式会社クラレ | 高電圧用回路基板およびそれを用いた高電圧デバイス |
US20200267844A1 (en) * | 2019-02-18 | 2020-08-20 | Jabil Inc. | Adhesive Circuit Patterning Process |
WO2021039769A1 (ja) * | 2019-08-29 | 2021-03-04 | 株式会社クラレ | 熱可塑性液晶ポリマー成形体およびその製造方法 |
CN110752428A (zh) * | 2019-09-19 | 2020-02-04 | 深圳市长盈精密技术股份有限公司 | 微带线 |
CN110767975A (zh) * | 2019-09-19 | 2020-02-07 | 深圳市长盈精密技术股份有限公司 | 微带线 |
TWI740515B (zh) | 2019-12-23 | 2021-09-21 | 長春人造樹脂廠股份有限公司 | 液晶高分子膜及包含其之積層板 |
TWI697549B (zh) | 2019-12-23 | 2020-07-01 | 長春人造樹脂廠股份有限公司 | 液晶高分子膜及包含其之積層板 |
CN112569881B (zh) * | 2020-07-24 | 2021-07-20 | 苏州恒瑞宏远医疗科技有限公司 | 一种反应装置及其加工方法 |
CN212046250U (zh) * | 2020-02-20 | 2020-12-01 | 瑞声科技(沭阳)有限公司 | 液晶聚合物复合层结构 |
WO2021193195A1 (ja) * | 2020-03-24 | 2021-09-30 | 株式会社クラレ | 金属張積層体の製造方法 |
KR20220156004A (ko) * | 2020-03-24 | 2022-11-24 | 주식회사 쿠라레 | 금속 피복 적층체의 제조 방법 |
CN112433405B (zh) * | 2020-11-24 | 2022-04-19 | 中国科学技术大学 | 一种液晶高分子基板及其加工方法 |
TW202249544A (zh) * | 2021-05-31 | 2022-12-16 | 日商富士軟片股份有限公司 | 配線基板及配線基板之製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001270032A (ja) * | 2000-03-24 | 2001-10-02 | Kuraray Co Ltd | 易放熱性回路基板 |
JP2003221456A (ja) * | 2002-01-29 | 2003-08-05 | Japan Gore Tex Inc | 高接着性液晶ポリマーフィルム |
JP2006192903A (ja) * | 1998-04-09 | 2006-07-27 | Kuraray Co Ltd | 金属箔積層体の製造方法 |
JP2007131724A (ja) * | 2005-11-10 | 2007-05-31 | Toray Ind Inc | 液晶性樹脂組成物からなる接合成形品、液晶性樹脂成形品の処理方法および接合方法 |
JP2011071815A (ja) * | 2009-09-28 | 2011-04-07 | Kuraray Co Ltd | 伝送線路用熱可塑性液晶ポリマーフィルムおよび伝送線路 |
JP2013084847A (ja) * | 2011-10-12 | 2013-05-09 | Sumitomo Chemical Co Ltd | 金属ベース回路基板の製造方法 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4561922A (en) * | 1984-11-19 | 1985-12-31 | Henkel Corporation | Polyurethane adhesives with improved water resistance containing a hydroxymethyl fatty polyol |
JPH0296101A (ja) * | 1987-12-28 | 1990-04-06 | Mitsui Petrochem Ind Ltd | 偏光性フィルムの製造方法 |
US5235008A (en) * | 1990-08-03 | 1993-08-10 | The Dow Chemical Company | Polymer modified adducts of epoxy resins and active hydrogen containing compounds containing mesogenic moieties |
US5995361A (en) * | 1997-01-10 | 1999-11-30 | Foster-Miller, Inc. | Liquid crystalline polymer capacitors |
JP3493983B2 (ja) * | 1997-11-18 | 2004-02-03 | 住友化学工業株式会社 | 液晶ポリエステル樹脂組成物、それを用いてなるシートもしくはフィルム、および該シートもしくはフィルムの製造方法 |
CN1116164C (zh) | 1998-04-09 | 2003-07-30 | 可乐丽股份有限公司 | 使用聚合物薄膜的涂层方法和由此得到的涂层体 |
JP4138995B2 (ja) * | 1999-03-31 | 2008-08-27 | 株式会社クラレ | 回路基板およびその製造方法 |
JP3870232B2 (ja) * | 1999-04-21 | 2007-01-17 | 株式会社ワコール | 衣料 |
JP2002307617A (ja) * | 2001-04-16 | 2002-10-23 | Toray Ind Inc | 液晶性樹脂積層フィルムおよびその製造方法 |
US20040040651A1 (en) * | 2002-08-28 | 2004-03-04 | Kuraray Co., Ltd. | Multi-layer circuit board and method of making the same |
US6989194B2 (en) * | 2002-12-30 | 2006-01-24 | E. I. Du Pont De Nemours And Company | Flame retardant fabric |
JP3968068B2 (ja) * | 2003-09-30 | 2007-08-29 | 株式会社クラレ | 液晶ポリマーフィルムの製造方法 |
US6964884B1 (en) * | 2004-11-19 | 2005-11-15 | Endicott Interconnect Technologies, Inc. | Circuitized substrates utilizing three smooth-sided conductive layers as part thereof, method of making same, and electrical assemblies and information handling systems utilizing same |
JP2006165269A (ja) * | 2004-12-07 | 2006-06-22 | Nitto Denko Corp | 配線回路基板 |
US8021426B2 (en) * | 2005-06-15 | 2011-09-20 | Ouroboros Medical, Inc. | Mechanical apparatus and method for artificial disc replacement |
CN101223835B (zh) * | 2005-07-27 | 2012-07-04 | 株式会社可乐丽 | 热塑性液晶聚合物薄膜覆盖的线路板的制造方法 |
JP4760643B2 (ja) * | 2006-09-22 | 2011-08-31 | 住友化学株式会社 | 両面基材付芳香族液晶ポリエステルフィルム |
JP5154055B2 (ja) * | 2006-10-19 | 2013-02-27 | 株式会社プライマテック | 電子回路基板の製造方法 |
JP2008205413A (ja) | 2007-02-23 | 2008-09-04 | Kuraray Co Ltd | カバーレイ付きプリント配線基板の製造方法 |
JP4383487B2 (ja) * | 2007-03-19 | 2009-12-16 | 古河電気工業株式会社 | 金属張積層体及び金属張積層体の製造方法 |
US20090006524A1 (en) * | 2007-06-26 | 2009-01-01 | International Business Machines Corporation | Method for providing user feedback to content provider during delayed playback media files on portable player |
JP4530089B2 (ja) | 2008-03-12 | 2010-08-25 | 株式会社デンソー | 配線基板の製造方法 |
JP4998414B2 (ja) | 2008-09-05 | 2012-08-15 | 株式会社デンソー | 多層基板の製造方法 |
JP2010103269A (ja) | 2008-10-23 | 2010-05-06 | Kuraray Co Ltd | 多層回路基板およびその製造方法 |
KR101443293B1 (ko) * | 2009-10-15 | 2014-09-19 | 주식회사 엘지화학 | 알칼리 수용액으로 현상 가능한 감광성 수지 조성물 및 이에 의해 제조된 드라이 필름 |
JP5479858B2 (ja) * | 2009-11-16 | 2014-04-23 | 住友化学株式会社 | 金属箔積層体の製造方法 |
JP5611355B2 (ja) | 2010-08-12 | 2014-10-22 | 新日鉄住金化学株式会社 | 金属張積層板 |
CN105934104B (zh) * | 2010-12-27 | 2019-04-23 | 株式会社可乐丽 | 电路基板及其制造方法 |
JP2012186315A (ja) * | 2011-03-04 | 2012-09-27 | Nitto Denko Corp | 薄膜基板の製造方法 |
DE102011112476A1 (de) * | 2011-09-05 | 2013-03-07 | Epcos Ag | Bauelement und Verfahren zum Herstellen eines Bauelements |
JP2013108190A (ja) * | 2011-11-21 | 2013-06-06 | Sumitomo Chemical Co Ltd | 繊維製造用材料および繊維 |
KR102339434B1 (ko) * | 2013-10-03 | 2021-12-14 | 주식회사 쿠라레 | 열가소성 액정 폴리머 필름, 회로 기판, 및 그들의 제조 방법 |
-
2014
- 2014-09-29 KR KR1020167011566A patent/KR102339434B1/ko active IP Right Grant
- 2014-09-29 CN CN201480054977.XA patent/CN105637019B/zh active Active
- 2014-09-29 WO PCT/JP2014/075875 patent/WO2015050080A1/ja active Application Filing
- 2014-09-29 CN CN201910763514.5A patent/CN110628059A/zh active Pending
- 2014-09-29 JP JP2015540482A patent/JP6499584B2/ja active Active
- 2014-10-02 TW TW103134333A patent/TWI644950B/zh active
-
2016
- 2016-03-30 US US15/084,554 patent/US10765001B2/en active Active
-
2019
- 2019-03-15 JP JP2019048134A patent/JP6860604B2/ja active Active
-
2020
- 2020-08-04 US US16/984,942 patent/US20200375030A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006192903A (ja) * | 1998-04-09 | 2006-07-27 | Kuraray Co Ltd | 金属箔積層体の製造方法 |
JP2001270032A (ja) * | 2000-03-24 | 2001-10-02 | Kuraray Co Ltd | 易放熱性回路基板 |
JP2003221456A (ja) * | 2002-01-29 | 2003-08-05 | Japan Gore Tex Inc | 高接着性液晶ポリマーフィルム |
JP2007131724A (ja) * | 2005-11-10 | 2007-05-31 | Toray Ind Inc | 液晶性樹脂組成物からなる接合成形品、液晶性樹脂成形品の処理方法および接合方法 |
JP2011071815A (ja) * | 2009-09-28 | 2011-04-07 | Kuraray Co Ltd | 伝送線路用熱可塑性液晶ポリマーフィルムおよび伝送線路 |
JP2013084847A (ja) * | 2011-10-12 | 2013-05-09 | Sumitomo Chemical Co Ltd | 金属ベース回路基板の製造方法 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11985762B2 (en) | 2015-01-13 | 2024-05-14 | Ube Exsymo Co., Ltd. | Flexible laminated board and multilayer circuit board |
WO2016114262A1 (ja) * | 2015-01-13 | 2016-07-21 | 宇部エクシモ 株式会社 | フレキシブル積層板及び多層回路基板 |
KR102624247B1 (ko) * | 2016-03-08 | 2024-01-12 | 주식회사 쿠라레 | 금속 피복 적층판 및 회로 기판 |
KR20220077158A (ko) * | 2016-03-08 | 2022-06-08 | 주식회사 쿠라레 | 금속 피복 적층판 및 회로 기판 |
US11044802B2 (en) | 2017-02-16 | 2021-06-22 | Azotek Co., Ltd. | Circuit board |
JP2018130959A (ja) * | 2017-02-16 | 2018-08-23 | 佳勝科技股▲ふん▼有限公司 | 高周波複合基板及び液晶組成物 |
US10813213B2 (en) | 2017-02-16 | 2020-10-20 | Azotek Co., Ltd. | High-frequency composite substrate and insulating structure thereof |
US11225563B2 (en) | 2017-02-16 | 2022-01-18 | Azotek Co., Ltd. | Circuit board structure and composite for forming insulating substrates |
US10743423B2 (en) | 2017-09-15 | 2020-08-11 | Azotek Co., Ltd. | Manufacturing method of composite substrate |
US11877395B2 (en) | 2018-11-08 | 2024-01-16 | Kuraray Co., Ltd. | Thermoplastic liquid crystal polymer film and circuit board using same |
EP3910091A4 (en) * | 2019-01-08 | 2022-01-19 | Imtechnology. Co., Ltd. | COATING METHOD FOR PREVENTING THE DEGASING OF A RESIN AEROSPACE PART |
WO2020153391A1 (ja) * | 2019-01-25 | 2020-07-30 | デンカ株式会社 | 両面金属張積層体とその製造方法、絶縁フィルムおよび電子回路基板 |
EP3915779A4 (en) * | 2019-01-25 | 2022-10-19 | Denka Company Limited | LAMINATE CLADDED WITH METAL ON BOTH SIDES AND ITS PRODUCTION METHOD, INSULATING FILM AND ELECTRONIC CIRCUIT BASE BOARD |
JPWO2021060455A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
WO2021060455A1 (ja) * | 2019-09-27 | 2021-04-01 | 富士フイルム株式会社 | 液晶ポリマーフィルム及び高速通信用基板 |
JP7316366B2 (ja) | 2019-09-27 | 2023-07-27 | 富士フイルム株式会社 | 液晶ポリマーフィルム及び高速通信用基板 |
WO2021112088A1 (ja) * | 2019-12-03 | 2021-06-10 | デンカ株式会社 | 硬化性組成物及びその硬化体 |
JPWO2021112088A1 (ja) * | 2019-12-03 | 2021-06-10 | ||
JP7465894B2 (ja) | 2019-12-03 | 2024-04-11 | デンカ株式会社 | 硬化性組成物及びその硬化体 |
US12091531B2 (en) | 2019-12-03 | 2024-09-17 | Denka Company Limited | Copolymer and laminate containing same |
US12104047B2 (en) | 2019-12-03 | 2024-10-01 | Denka Company Limited | Curable composition and cured product thereof |
CN112566364A (zh) * | 2020-11-24 | 2021-03-26 | 中国科学技术大学 | 无胶粘层热塑性液晶聚合物高频基板及其制备方法和应用 |
JP2023143623A (ja) * | 2022-03-24 | 2023-10-06 | 佳勝科技股▲ふん▼有限公司 | 多層基板 |
JP7507502B2 (ja) | 2022-03-24 | 2024-06-28 | 佳勝科技股▲ふん▼有限公司 | 多層基板 |
US12058811B2 (en) | 2022-03-24 | 2024-08-06 | Azotek Co., Ltd. | Multilayer board and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110628059A (zh) | 2019-12-31 |
US20160212845A1 (en) | 2016-07-21 |
TW201518353A (zh) | 2015-05-16 |
US10765001B2 (en) | 2020-09-01 |
TWI644950B (zh) | 2018-12-21 |
KR102339434B1 (ko) | 2021-12-14 |
CN105637019A (zh) | 2016-06-01 |
JP6860604B2 (ja) | 2021-04-14 |
JP6499584B2 (ja) | 2019-04-10 |
JP2019135301A (ja) | 2019-08-15 |
CN105637019B (zh) | 2019-09-10 |
JPWO2015050080A1 (ja) | 2017-03-09 |
US20200375030A1 (en) | 2020-11-26 |
KR20160065942A (ko) | 2016-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6499584B2 (ja) | 熱可塑性液晶ポリマーフィルム、回路基板、およびそれらの製造方法 | |
JP6792668B2 (ja) | 熱可塑性液晶ポリマーフィルムの製造方法、並びに回路基板及びその製造方法 | |
KR102478200B1 (ko) | 회로 기판 및 그 제조 방법 | |
JP4866853B2 (ja) | 熱可塑性液晶ポリマーフィルムで被覆した配線基板の製造方法 | |
TWI760302B (zh) | 電路基板 | |
JP6907123B2 (ja) | 誘電体層を有するプリント配線板の製造方法 | |
JP5234647B2 (ja) | 複合接着フィルムおよびそれを用いた多層回路基板並びにその製造方法 | |
JP6743324B1 (ja) | 熱可塑性液晶ポリマー構造体の製造方法 | |
KR100620474B1 (ko) | 내열성 플랙서블 적층판의 제조 방법 및 그에 따라제조되는 내열성 플랙서블 적층판 | |
WO2021193385A1 (ja) | 多層回路基板の製造方法 | |
JP2004111942A (ja) | 多層回路基板およびその製造方法 | |
JP4598408B2 (ja) | 接着シート | |
JP4689263B2 (ja) | 積層配線基板およびその製造法 | |
JP5226035B2 (ja) | 積層配線基板の製造法 | |
JP2007258697A (ja) | 多層プリント配線板の製造方法 | |
WO2006118211A1 (ja) | 回路基板およびその製造方法 | |
KR20210043710A (ko) | 금속 피복 적층체의 제조 방법 | |
JP2008177243A (ja) | 多層プリント配線板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14851265 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015540482 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167011566 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14851265 Country of ref document: EP Kind code of ref document: A1 |