WO2015040738A1 - 色素増感型太陽電池用多孔質膜および色素増感型太陽電池 - Google Patents

色素増感型太陽電池用多孔質膜および色素増感型太陽電池 Download PDF

Info

Publication number
WO2015040738A1
WO2015040738A1 PCT/JP2013/075476 JP2013075476W WO2015040738A1 WO 2015040738 A1 WO2015040738 A1 WO 2015040738A1 JP 2013075476 W JP2013075476 W JP 2013075476W WO 2015040738 A1 WO2015040738 A1 WO 2015040738A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dye
porous film
solar cell
sensitized solar
Prior art date
Application number
PCT/JP2013/075476
Other languages
English (en)
French (fr)
Inventor
俊介 功刀
聡 與口
中嶋 節男
井上 毅
伸吾 廣瀬
幸敏 江塚
明渡 純
Original Assignee
積水化学工業株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 独立行政法人産業技術総合研究所 filed Critical 積水化学工業株式会社
Priority to JP2015537523A priority Critical patent/JPWO2015040738A1/ja
Priority to KR1020157025370A priority patent/KR102090978B1/ko
Priority to PCT/JP2013/075476 priority patent/WO2015040738A1/ja
Priority to CN201380074744.1A priority patent/CN105051849B/zh
Publication of WO2015040738A1 publication Critical patent/WO2015040738A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous film for a dye-sensitized solar cell and a dye-sensitized solar cell.
  • a porous film made of an oxide semiconductor such as titanium oxide to which a photosensitizing dye such as a ruthenium metal complex is adsorbed is used (for example, see Patent Document 1).
  • a method for forming a porous film for example, a method of forming a porous film by applying a slurry or paste containing oxide semiconductor particles on a substrate and baking the slurry or paste at a high temperature of 400 ° C. or higher. Is mentioned. Since this method for forming a porous film is fired at a high temperature, there is a problem that not only a heat-resistant base material is required but also the production energy is high.
  • a slurry composed of metal oxide fine particles and a dispersion medium is jetted onto a base material together with a high-speed frame from an injection nozzle of a high-speed flame spraying apparatus that mixes and burns fuel, oxygen, and air,
  • a method of forming a metal oxide film on a substrate see, for example, Patent Document 2.
  • This method of forming a porous film has a problem that the titanium oxide particles are burned, so that a thermal history remains in the titanium oxide particles and the titanium oxide particles are altered, resulting in low photoelectric conversion efficiency.
  • a slurry or paste containing oxide semiconductor particles is applied onto a base material, and this is fired at such a low temperature that a plastic base material can be used.
  • This method for forming a porous film has a problem that since the slurry or paste is fired at a relatively low temperature, the degree of adhesion of the porous film to the substrate is low, and the porous film is easily peeled off from the substrate.
  • a slurry or paste containing oxide semiconductor particles is applied on a heat-resistant substrate, and this is fired at a high temperature to form a porous film, and then a target is formed.
  • a method of forming a porous film on the substrate by transferring and bonding the porous film formed on the substrate and then peeling off the heat-resistant substrate is also included (see, for example, Patent Document 4).
  • This method for forming a porous film has a problem in that the manufacturing cost is high because the manufacturing process is complicated.
  • a metal foil is used as a substrate having a high heat resistance temperature
  • a slurry or paste containing oxide semiconductor particles is applied onto the metal foil, and this is fired at a high temperature.
  • a method of forming a porous film is also included (see, for example, Patent Document 5). This method for forming a porous film has a problem that not only the manufacturing energy is increased but also the cost of the substrate having a high heat-resistant temperature is high because the slurry or paste is fired at a high temperature.
  • the present invention has been made in view of the above circumstances, and includes a porous film made of titanium oxide formed on a film substrate, and the porous film is formed on a glass substrate with a high-temperature firing paste. It is an object of the present invention to provide a dye-sensitized solar cell porous film and a dye-sensitized solar cell exhibiting the same degree of adhesion.
  • the porous film for a dye-sensitized solar cell of the present invention is a porous film made of titanium oxide formed on a film substrate, and has a critical load of 8 mN or more, or Japanese Industrial Standard JIS K5600-
  • the pencil hardness according to 5-4 “Paint General Test Method—Part 5: Mechanical Properties of Coating Film—Section 4: Scratch Hardness (Pencil Method)” is characterized by being H or more.
  • the porous film is formed by a non-heating process, and the non-heating process is performed by spraying the raw material fine particles of the porous film onto the film substrate to form a porous material composed of the raw material fine particles.
  • a film forming method for forming a film may be used.
  • the non-heating process may be performed at room temperature.
  • the thickness of the porous film for a dye-sensitized solar cell is 8 to 12 ⁇ m, and the variation in the thickness is ⁇ 1 ⁇ m. May be.
  • the porosity of the porous film may be 15 to 50%.
  • the porous film is formed by a non-heating process, and the non-heating process sprays raw material fine particles of the porous film on the film substrate. And forming a porous film made of the raw material fine particles, wherein the raw material fine particles are a mixture of large particles having an average particle size of 0.2 to 2 ⁇ m and small particles having an average particle size of 1 to less than 200 nm. It may be.
  • the mixing ratio of the large particle and the small particle may be 99.9 parts by weight: 0.1 part by weight to 70 parts by weight: 30 parts by weight.
  • the glass transition temperature (Tg) of the film substrate may be less than 200 ° C.
  • the dye-sensitized solar cell of the present invention includes a pair of opposing substrates, a pair of electrode films disposed opposite to each other, and a photoelectric conversion layer formed between these electrode films. And the electrolyte layer, wherein the photoelectric conversion layer is a porous material for a dye-sensitized solar cell according to any one of (1) to (8). It is characterized by comprising a film.
  • the method for producing a porous film for a dye-sensitized solar cell according to the present invention is such that a critical load is 8 mN or more on the film substrate by a non-heating process in which raw material fine particles are sprayed on the film substrate, or Japanese Industrial Standard Forming a porous film with a pencil hardness of H or higher in accordance with JIS K5600-5-4 “Paint General Test Method—Part 5: Mechanical Properties of Coating Film—Section 4: Scratch Hardness (Pencil Method)” It is characterized by that.
  • the porous film for a dye-sensitized solar cell of the present invention is a porous film made of titanium oxide formed on a film substrate, and has a critical load of 8 mN or more, or Japanese Industrial Standard JIS K5600-5-4. Since the pencil hardness in accordance with "Paint General Test Method-Part 5: Mechanical Properties of Coating Film-Section 4: Scratch Hardness (Pencil Method)" is H or higher, it was formed on a glass substrate with a high-temperature firing paste. Adhesion comparable to that of the film can be exhibited. Moreover, the dye-sensitized solar cell using the porous film for a dye-sensitized solar cell of the present invention has excellent photoelectric conversion efficiency.
  • a porous film for a dye-sensitized solar cell and a dye-sensitized solar cell will be described as embodiments of the present invention. Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
  • FIG. 1 is a schematic cross-sectional view showing a porous film for a dye-sensitized solar cell as a first embodiment of the present invention.
  • the porous film for dye-sensitized solar cell (hereinafter sometimes abbreviated as “porous film”) 10 of the present embodiment is a film in the transparent electrode film 12 formed on one surface 11 a of the film substrate 11.
  • This is a porous film made of titanium oxide (TiO 2 ) formed on a surface opposite to the surface in contact with the substrate 11 (hereinafter referred to as “one surface”) 12a.
  • the porous film 10 has a function of receiving and transporting electrons from a sensitizing dye, which will be described later, is made of a porous semiconductor made of titanium oxide, and is formed in a substantially rectangular shape on one surface 12a of the transparent electrode film 12. .
  • the porous film 10 is formed by, for example, a non-heating process that does not use any heat during film formation.
  • a non-heating process a known method is used, and examples thereof include a thermal spraying method, a cold spray method, an aerosol deposition method (hereinafter abbreviated as “AD method”) and the like.
  • the thermal spraying method is a technique in which a thermal spray material (in this embodiment, titanium oxide fine particles) is heated and sprayed onto a substrate to form a thin film (in this embodiment, a porous film 10) on the substrate.
  • a thermal spray material in this embodiment, titanium oxide fine particles
  • a combustion flame or plasma is used as a heat source for heating the thermal spray material, and the thermal spray material made into droplets or fine particles by these heats is sprayed onto the substrate by a high-speed gas flow or the like.
  • a thin film is formed by the thermal spray material in the form of droplets or fine particles solidifying and adhering on the substrate.
  • a powder material in this embodiment, titanium oxide fine particles
  • a substrate in a solid state at a melting temperature or lower
  • a thin film in this embodiment, a porous film 10.
  • raw material particles in this embodiment, titanium oxide fine particles
  • a carrier gas composed of an inert gas such as helium, argon, nitrogen, etc.
  • the raw material particles and the substrate, or the raw material particles are bonded to each other to form a thin film on the substrate. At least part of the raw material particles that collide with the substrate surface bite into the substrate surface and are not easily peeled off. Furthermore, by continuing the spraying, another fine particle collides with the raw material particles that have digged into the substrate surface, and a new surface is formed on the surface of each raw material particle due to the collision between the raw material particles.
  • the raw material particles are bonded to each other.
  • the AD method for example, the ultrafine particle beam deposition method disclosed in “International Publication No. WO01 / 27348A1 pamphlet” and the brittle material ultrafine particle low temperature molding method disclosed in “Patent No. 32655481” are used. .
  • the raw material particles are pre-treated with a ball mill or the like so as to preliminarily apply an internal strain to the raw material particles to determine whether or not cracks will occur. By adding this internal strain, the sprayed fine particles can be easily crushed or deformed when colliding with the substrate or already deposited raw material particles, and as a result, a denser film can be formed. It is said.
  • the normal temperature refers to a temperature sufficiently lower than the melting point of the raw material fine particles of the porous film 10, and is substantially a temperature of 200 ° C. or lower.
  • the temperature of the room temperature environment is preferably equal to or lower than the melting point of the film substrate 11.
  • the temperature of the room temperature environment is preferably less than the glass transition temperature of the film substrate 11.
  • the porous film 10 formed by the non-heating process as described above has a critical load of 8 mN or more, preferably 10 mN or more, and more preferably 15 mN or more. Since the porous film 10 has a critical load of 8 mN or more, the adhesion strength to the transparent electrode film 12 is high, and when the dye-sensitized solar cell using the porous film 10 is bent, the porous film 10 is transparent. There is no peeling from the electrode film 12. Therefore, the dye-sensitized solar cell using the porous film 10 can be made flexible.
  • the porous film for a dye-sensitized solar cell of the present invention has a film thickness of 8 to 12 ⁇ m, preferably a variation in film thickness of ⁇ 1 ⁇ m, a film thickness of 8 to 12 ⁇ m, and The variation in film thickness is more preferably ⁇ 0.5 ⁇ m. If the film thickness is too thick, cracking or peeling due to film stress may occur. Therefore, the film thickness is preferably 12 ⁇ m or less. On the other hand, if the film thickness is too thin, the adhesion is good, but the dye adsorption amount is insufficient, the generated current is reduced, and the conversion efficiency may be lowered. Therefore, the film thickness is preferably 8 ⁇ m or more. Further, the smaller the variation in the film thickness, the less the stress is shifted or concentrated, which is preferable from the viewpoint of adhesion.
  • the porous film 10 formed by the non-heating process as described above is a Japanese Industrial Standard JIS K5600-5-4 “Paint General Test Method—Part 5: Mechanical Properties of Coating Film—Section 4: Scratch
  • the pencil hardness according to “Hardness (pencil method)” is H or higher, and preferably 4H or higher. Since the above-mentioned pencil hardness is H or more, the porous film 10 has a high adhesion strength to the transparent electrode film 12, and when the dye-sensitized solar cell using the porous film 10 is bent, the porous film 10 Does not peel from the transparent electrode film 12. Therefore, the dye-sensitized solar cell using the porous film 10 can be made flexible.
  • the porosity of the porous membrane 10 is preferably 15 to 50%, more preferably 15 to 40%, and further preferably 20 to 35%.
  • the porosity of the porous membrane 10 is less than 15%, the membrane is too dense and the dye is not sufficiently adsorbed, which may reduce the conversion efficiency.
  • the porosity of the porous membrane 10 is more than 50%, the membrane becomes brittle because there are too many voids, and there is a risk of cracking if the film is rolled.
  • “porosity” is a value calculated by image analysis from a cross-sectional SEM image of the porous membrane 10.
  • the porous film 10 is formed by the non-heating process as described above, the crystal structure of the raw material fine particles (titanium oxide fine particles) is not changed (deformed) by heat, and the crystal structure is distorted. And a porous film with few crystal defects.
  • the aerosol raw material fine particles
  • the aerosol is formed on the transparent electrode film 12 on the film substrate 11 by spraying the aerosol on the transparent electrode film 12 on the film substrate 11. Due to the impact at the time of collision, the transparent electrode film 12 on the film substrate 11 is bonded to the raw material fine particles and the raw material fine particles, and the adhesion of the porous film 10 to the transparent electrode film 12 is increased.
  • the dye-sensitized solar cell using the porous film 10 obtained as described above has excellent photoelectric conversion efficiency. Further, since the raw material fine particles collide with the transparent electrode film 12 at a speed, the adhesion strength of the raw material fine particles to the transparent electrode film 12 is increased. Therefore, when the porous film 10 is applied to a flexible device, the porous film 10 10 does not peel off.
  • the porous film 10 has no shrinkage or specific voids in the solvent or binder removal step, and there is no factor that hinders the adhesion, so that a film having high adhesion can be stably formed.
  • the film substrate 11 one having a high light transmittance is used.
  • the film substrate 11 is made of a transparent resin material such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), polyimide, and is flexible.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the glass transition temperature (Tg) of the film substrate 11 is preferably less than 200 ° C.
  • the glass transition temperature (Tg) of the film substrate 11 is 80 degreeC or more practically.
  • the transparent electrode film 12 is made of a conductive material such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or zinc oxide (ZnO), and is formed on one surface 11a of the film substrate 11 by sputtering or printing. Examples include membranes.
  • the manufacturing method of the porous film for dye-sensitized solar cells of this embodiment is demonstrated.
  • the porous film 10 made of titanium oxide is formed on one surface 11a of the film substrate 11 (one surface 12a of the transparent electrode film 12) by a non-heating process.
  • the non-heating process is performed by dispersing the raw material fine particles of the porous film 10 in a carrier gas to form an aerosol, and spraying the aerosol onto one surface 12 a of the transparent electrode film 12.
  • a film forming method for forming the porous film 10 made of the raw material fine particles that is, a case of performing the AD method will be described.
  • a film forming apparatus 20 shown in FIG. 2 is used.
  • the film forming apparatus 20 includes a film forming chamber 21 for accommodating the film substrate 11 provided with the transparent electrode film 12 and forming the porous film 10 on one surface 12 a of the transparent electrode film 12.
  • a stage 22 having an arrangement surface 22a for arranging the film substrate 11 is provided in the film forming chamber 21.
  • the stage 22 is movable in the horizontal direction with the film substrate 11 disposed.
  • a vacuum pump 23 is connected to the film forming chamber 21. The vacuum pump 23 creates a negative pressure in the film forming chamber 21.
  • a nozzle 24 having a rectangular opening 24a is disposed in the film forming chamber 21, a nozzle 24 having a rectangular opening 24a is disposed.
  • the nozzle 24 is arranged so that the opening 24 a faces the arrangement surface 22 a of the stage 22, that is, the one surface 12 a of the transparent electrode film 12 provided on the film substrate 11 disposed on the surface 22 a of the stage 22. It is installed.
  • the nozzle 24 is connected to the gas cylinder 26 via the transport pipe 25.
  • a mass flow controller 27, an aerosol generator 28, a crusher 29, and a classifier 30 are provided in the middle of the transport pipe 25 in order from the gas cylinder 26 side.
  • nitrogen gas which is a carrier gas
  • the aerosol generator 28 is charged with raw material fine particles for spraying, and the raw material fine particles are dispersed in nitrogen gas flowing through the conveying pipe 25, and the raw material fine particles are conveyed to the crusher 29 and the classifier 30. Then, the raw material fine particles 41 are injected from the nozzle 24 onto the one surface 12a of the transparent electrode film 12 at a subsonic to supersonic injection speed.
  • the film substrate 11 provided with the transparent electrode film 12 is arranged on the arrangement surface 22 a of the stage 22 in the film forming chamber 21.
  • the inside of the film forming chamber 21 is set to a negative pressure by the vacuum pump 23.
  • nitrogen gas is supplied from the gas cylinder 26 into the film forming chamber 21 via the transfer pipe 25, and the film forming chamber 21 is set to a nitrogen gas atmosphere.
  • the porous film 10 made of titanium oxide is formed on one surface 12a of the transparent electrode film 12 provided on the film substrate 11 by the AD method.
  • the aerosol generator 28 is loaded with raw material fine particles made of titanium oxide, and the raw material fine particles are dispersed in nitrogen gas flowing in the transport pipe 25, and the pulverizer 29 and the classification are performed.
  • the container 30 To the container 30. Then, the raw material fine particles 41 made of titanium oxide are sprayed from the opening 24 a of the nozzle 24 onto one surface 12 a of the transparent electrode film 12 provided on the film substrate 11.
  • the average particle diameter of TiO 2 is preferably 1.0 nm to 5.0 ⁇ m, more preferably 1.0 nm to 2.0 ⁇ m.
  • other TiO 2 particles may be used or used together.
  • the preferred average particle size of the other TiO 2 particles is the preferred average particle size of the TiO 2 particles.
  • the porous membrane 10 having pores (pores) that can more fully support the DSSC dye (sensitizing dye) can be formed.
  • the porous film 10 having a more suitable strength can be formed on the DSSC photoelectrode.
  • the average particle diameter of TiO 2 is a peak value of a particle diameter (volume average diameter) distribution obtained by a method of measuring a plurality of particle diameters by SEM observation and averaging them, or a measurement by a laser diffraction particle size distribution measuring device. There is a way to decide.
  • a plurality of particles having different particle diameters for example, a small particle and a large particle may be used in combination as the raw material fine particles.
  • the average particle diameter r of the small particles is preferably, for example, from 1 nm to less than 1000 nm (1 ⁇ m), more preferably from 1 nm to less than 500 nm, further preferably from 1 nm to less than 200 nm, and particularly preferably from 1 nm to 100 nm.
  • the average particle size R of the large particles is, for example, preferably from 0.2 ⁇ m to 100 ⁇ m, more preferably from 0.2 ⁇ m to 50 ⁇ m, further preferably from 0.2 ⁇ m to 5 ⁇ m, and particularly preferably from 0.2 ⁇ m to 2 ⁇ m. .
  • the relative ratio (r / R) between the average particle size r of the small particles and the average particle size R of the large particles is (1/1000) ⁇ (r / R) It is preferable to satisfy the relationship of ⁇ (1/5).
  • the relative ratio (r / R) preferably satisfies the relationship of (1/750) ⁇ (r / R) ⁇ (1/10), and (1/500) ⁇ (r / R) ⁇ (1 / 20) is more preferable, and (1/250) ⁇ (r / R) ⁇ (1/30) is particularly preferable.
  • the difference between the average particle size r of the small particles and the average particle size R of the large particles becomes clearer.
  • the small particle and the large particle are made of the same inorganic substance (for example, titanium oxide), the difference in the average particle size becomes clearer between the individual particles of the small particle and the individual particles of the large particle. This means that the difference in weight becomes clearer.
  • a mixed particle of small particles having an average particle size of 1 to less than 200 nm and large particles having an average particle size of 0.2 to 2 ⁇ m is preferable.
  • a mixed particle of 100 nm small particles and large particles having an average particle size of 0.5 to 2 ⁇ m is more preferable, and a mixed particle of small particles having an average particle size of 1 to 50 nm and large particles having an average particle size of 1 to 2 ⁇ m is more preferable. .
  • the difference in weight it is preferable to clarify the difference in weight, because it is possible to more easily set spraying conditions considering the difference in weight.
  • the difference in weight when the difference in weight is relatively large, when forming a film by spraying a mixed particle of small particles and large particles onto a substrate, the large particles are smaller than the collision energy between the small particles.
  • the collision energy given to can be significantly increased. That is, in the film forming process, the sprayed large-diameter particles collide with the small-diameter particles that have reached the substrate or other adjacent particles, so that the collided small-diameter particles are separated from the substrate or the adjacent other particles.
  • the particles can be pressed or rubbed against each other particle to more reliably join the small particle and the substrate, or another particle adjacent to the small particle.
  • the difference in weight is extremely large, the collided small-diameter particles may be shattered and it may be difficult to form a porous film.
  • the difference in weight is extremely small, the degree to which the energy that the large particle collides with the small particle when the small particle is bonded to the substrate or another adjacent particle contributes relatively. It gets smaller.
  • the mixing ratio of the large particles to the small particles is preferably 99.9 parts by weight: 0.1 parts by weight to 0.1 parts by weight: 99.9 parts by weight, and 99.9 parts by weight.
  • 0.1 to 50 parts by weight: 50 parts by weight is more preferable
  • 99.9 parts by weight: 0.1 to 70 parts by weight: 30 parts by weight is still more preferable
  • 99.5 parts by weight is preferably 99.9 parts by weight: 50 parts by weight.
  • the mixing ratio of the large particle: small particle is within the above range, the large particle can collide with the small particle more reliably on the substrate. As a result, the strength and electronic conductivity of the porous film formed on the substrate can be further enhanced.
  • the mixing ratio of large particles: small particles is in the range of 99.9 parts by weight: 0.1 parts by weight to 70 parts by weight: 30 parts by weight, in addition to the above effects, the adhesion is high.
  • a porous film can be formed on the substrate.
  • the large diameter particles and the small diameter particles may be sprayed by spraying the mixture from the same nozzle or by spraying the large diameter particles and the small diameter particles from separate nozzles. Alternatively, large particles and small particles may be alternately sprayed from separate nozzles.
  • the speed of the TiO 2 particles accelerated by the carrier gas is preferably 10 to 1000 m / s, and more preferably 10 to 250 m / s.
  • the carrier gas nitrogen gas
  • the speed of the TiO 2 particles accelerated by the carrier gas may be adjusted as appropriate according to the type of the transparent electrode film 12 within the above range.
  • the TiO 2 particles are preferably sprayed in a room temperature environment.
  • normal temperature refers to a temperature sufficiently lower than the melting point of the TiO 2 particles, and is substantially 200 ° C. or lower.
  • the temperature of the room temperature environment is preferably equal to or lower than the melting point of the film substrate 11 and is preferably lower than the glass transition temperature of the film substrate 11.
  • the porous membrane 10 when the porous membrane 10 is formed, it is not necessary to apply internal strain to the TiO 2 particles to be sprayed in advance. Since the TiO 2 particles have an appropriate strength, the TiO 2 particles are not crushed during film formation and the structure is easily maintained, and pores (pores) can be formed between the bonded TiO 2 particles. . Thereby, the porous membrane 10 having a large specific surface area can be formed. On the other hand, when the dense porous film 10 is formed, TiO 2 particles to which internal strain has been added in advance may be used.
  • the porosity is also affected by the spraying speed and the spraying angle, but the factor that mainly affects is the particle diameter of the TiO 2 particles to be sprayed.
  • the porosity increases as the particle diameter increases, and the porosity decreases as the particle diameter decreases.
  • the porous film 10 does not cause distortion or deformation due to heat in the film substrate 11. Can be formed. Therefore, the use of the AD method increases the types of material of the film substrate 11 that can be used. Further, since the film substrate 11 is not distorted or deformed by heat when the porous film 10 is formed, when manufacturing a dye-sensitized solar cell using the film substrate 11 on which the porous film 10 is formed, In the bonding step between the film substrate 11 and another member, it is difficult to cause a problem that the adhesion between them is deteriorated. In particular, when the film substrate 11 on which the porous film 10 is formed is applied to a roll-to-roll method by using the AD method, the porous film 10 peels from the transparent electrode film 12. There is an advantage that it becomes difficult to cause such problems.
  • the porous film is used as a photoelectric conversion layer of a dye-sensitized solar cell, so that it is easy to induce distortion and crystal defects in the crystal structure of the titanium oxide fine particles, resulting in a decrease in the electronic conductivity of the porous film. . Therefore, when the porous film is used as a photoelectric conversion layer of a dye-sensitized solar cell, the photoelectric conversion efficiency of the photoelectric conversion layer is lowered. Since the AD method is a process that does not require a high temperature, a porous film (photoelectric conversion layer) can be formed while maintaining the crystal structure of the raw material particles. Therefore, the electronic conductivity of the photoelectric conversion layer is improved, and if the photoelectric conversion layer is used as the photoelectrode of the dye-sensitized solar cell, the photoelectric conversion efficiency is improved.
  • the porous film 10 can be formed by a single film formation, but it is also preferable to perform the film formation a plurality of times. By depositing a plurality of thin films with good adhesion to form a film several times, the adhesion of the porous film 10 to the film substrate 11 can be ensured and the film thickness of the porous film 10 is uniform. It is also possible to ensure the property (variation suppression).
  • FIG. 3 is a schematic cross-sectional view showing a dye-sensitized solar cell as a second embodiment of the present invention.
  • the dye-sensitized solar cell 50 includes a pair of first substrate 51 and second substrate 52 facing each other, and a pair of transparent electrode films 53 disposed to face each other with a predetermined interval therebetween. And a counter electrode film 54, a photoelectric conversion layer 55 and an electrolyte layer 56 formed between these electrode films, and a sealing resin 57 surrounding the photoelectric conversion layer 55 and the electrolyte layer 56.
  • the transparent electrode film 53 is formed on a surface (hereinafter referred to as “one surface”) 51 a of the first substrate 51 facing the second substrate 52.
  • the counter electrode film 54 is formed on a surface (hereinafter referred to as “one surface”) 52 a of the second substrate 52 facing the first substrate 51.
  • the photoelectric conversion layer 55 is formed on a surface (hereinafter referred to as “one surface”) 53 a of the transparent electrode film 53 that faces the counter electrode film 54.
  • the sealing resin 57 is provided between the first substrate 51 provided with the transparent electrode film 53 and the second substrate 52 provided with the counter electrode film 54, and these substrates are bonded to each other at a predetermined interval. In addition, the gap formed by these substrates is sealed (sealed).
  • the electrolyte layer 56 is formed of an electrolyte filled in a gap formed by the first substrate 51 provided with the transparent electrode film 53, the second substrate 52 provided with the counter electrode film 54, and the sealing resin 57. Yes. The electrolyte layer 56 is in contact with the transparent electrode film 53, the counter electrode film 54, and the photoelectric conversion layer 55.
  • the first substrate 51, the transparent electrode film 53, and the photoelectric conversion layer 55 form a photoelectrode substrate 58.
  • the second substrate 52 and the counter electrode film 54 form a counter electrode substrate 59.
  • first substrate 51 and the second substrate 52 those similar to the film substrate 11 described above are used.
  • the transparent electrode film 53 is made of a conductive material such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or zinc oxide (ZnO), and is formed on one surface 51a of the first substrate 51 by sputtering or printing. The film-formed thing is mentioned.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • ZnO zinc oxide
  • the counter electrode film 54 is made of, for example, a conductive material such as platinum, polyaniline, polyethylenedioxythiophene (PEDOT), or carbon, and is formed on one surface 52a of the second substrate 52 by sputtering or printing. Is mentioned.
  • the porous film 10 described above is used as the photoelectric conversion layer 55.
  • a sensitizing dye is supported on the photoelectric conversion layer 55.
  • the sensitizing dye is composed of an organic dye or a metal complex dye.
  • organic dye for example, various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene are used.
  • metal complex dye for example, a ruthenium complex is preferably used.
  • Examples of the electrolyte forming the electrolyte layer 56 include non-aqueous electrolyte solvents such as acetonitrile or propionitrile, liquid components such as ionic liquids such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide, and lithium iodide and the like. Examples thereof include a solution in which a supporting electrolyte and iodine are mixed. Further, these electrolyte solutions may contain t-butylpyridine. In order to improve the durability of the solar cell, an ionic liquid electrolyte or a solid electrolyte may be used as the electrolyte. Note that iodine compounds such as dimethylpropylimidazolium iodide and butylmethylimidazolium iodide are materials (metal corrosive materials) having a property of corroding metals.
  • the resin for forming the sealing resin 57 for example, an ultraviolet curable resin, a thermosetting resin, a thermoplastic resin, or the like is used.
  • the thickness of the sealing resin 57 is not particularly limited, but is appropriately adjusted so that the transparent electrode film 53 and the counter electrode film 54 are separated from each other with a predetermined interval, and the electrolyte layer 56 has a required thickness. Is done.
  • the porous film 10 formed by a non-heating process is used as the photoelectric conversion layer 55. Therefore, the transparent electrode film 53 of the photoelectric conversion layer 55 is used.
  • the photoelectric conversion layer 55 does not peel from the transparent electrode film 53. Therefore, the dye-sensitized solar cell 50 can be made flexible.
  • the photoelectric conversion layer 55 does not change (altered) the crystal structure of titanium oxide due to heat, and there are few distortions or crystal defects in the crystal structure, the dye-sensitized solar cell 50 has photoelectric conversion. Efficiency is excellent.
  • the manufacturing method of the dye-sensitized solar cell according to the present embodiment includes (I) a substrate forming step for forming a photoelectrode substrate and a counter electrode substrate, and (II) a photoelectrode substrate and a counter electrode substrate formed by the substrate forming step. And a substrate laminating step for laminating the substrate.
  • a transparent electrode film 53 made of tin-doped indium oxide, fluorine-doped tin oxide, zinc oxide, or the like is formed on one surface 51a of the first substrate 51 by a sputtering method, a printing method, or the like ( (See FIG. 4).
  • the photoelectric conversion layer 55 (porous film 10) made of titanium oxide is formed on one surface 53a of the transparent electrode film 53 by a non-heating process.
  • the photoelectric conversion layer 55 is immersed in a sensitizing dye solution obtained by dissolving a sensitizing dye in a solvent, and the sensitizing dye is supported on the photoelectric conversion layer 55 to obtain a photoelectrode substrate 58.
  • the method of supporting the sensitizing dye on the photoelectric conversion layer 55 is not limited to the method of immersing the photoelectric conversion layer 55 in the sensitizing dye solution, and the sensitizing dye is continuously moved while moving the photoelectric conversion layer 55. A method of charging, dipping, and pulling up the photoelectric conversion layer 55 in the solution is also employed. Further, after the sensitizing dye is supported on the photoelectric conversion layer 55, the surface of the photoelectric conversion layer 55 may be washed with anhydrous alcohol or the like.
  • a sealing resin 57 is formed on one surface 53 a of the transparent electrode film 53 by an inkjet method or the like so as to leave a predetermined distance from the photoelectric conversion layer 55 and to surround the photoelectric conversion layer 55.
  • the sealing resin 57 may not be spaced from the photoelectric conversion layer 55 by a predetermined distance.
  • the photoelectrode substrate 58 and the counter electrode substrate 59 are bonded together, the transparent electrode film 53 and the counter electrode film 54 are separated from each other with a predetermined interval, and the electrolyte layer 56 has a required thickness. Thus, the thickness of the sealing resin 57 is adjusted.
  • a counter electrode film 54 made of platinum, polyaniline, polyethylenedioxythiophene (PEDOT), carbon, or the like is formed on one surface 52a of the second substrate 52 by a sputtering method, a printing method, or the like to obtain a counter electrode substrate 59 ( (See FIG. 5).
  • an electrolyte is injected into a gap between the photoelectrode substrate 58 and the counter electrode substrate 59 from an injection port (not shown) formed in the photoelectrode substrate 58 or the counter electrode substrate 59 in advance.
  • An electrolyte layer 56 is formed between the substrates 59.
  • the inlet is sealed to obtain a dye-sensitized solar cell 50 as shown in FIG.
  • Example 1 Preparation of porous film for dye-sensitized solar cell
  • a film substrate a PEN film (thickness: 125 ⁇ m) having a transparent electrode film made of tin-doped indium oxide (ITO) formed on one surface thereof was prepared.
  • a porous film made of titanium oxide was formed on the transparent electrode film provided on the film substrate by the AD method.
  • the resulting porous membrane had a thickness of about 10 ⁇ m.
  • titanium oxide rutile-type large-diameter particles having a particle diameter of 2 ⁇ m and anatase-type small-diameter particles having a particle diameter of 25 nm were mixed at a weight ratio of 90:10.
  • the porous film was formed by the AD method under the following conditions.
  • the dye-sensitized solar cell was produced using the film substrate provided with the porous film.
  • an N719 dye solution in which a dye N719 was dissolved in a mixed solvent of acetonitrile / tert-butanol (1/1, volume ratio) to a concentration of 0.3 mM was prepared.
  • the film substrate was immersed in an N719 dye solution for 18 hours to produce the photoelectrode substrate of Example 1. did.
  • the counter electrode substrate As the counter electrode substrate, a film substrate formed by laminating ITO, chromium, and platinum in this order on a film substrate made of a PEN film (thickness: 125 ⁇ m) was used.
  • the counter electrode substrate and the photoelectrode substrate are overlapped and clipped with a resin gasket (separator) having a thickness of 30 ⁇ m, and an electrolytic solution (AN50, manufactured by Solaronics) is injected between both electrodes. 1 dye-sensitized solar cell was obtained.
  • the photoelectric conversion efficiency of the dye-sensitized solar cell of Example 1 was measured as follows. The current-voltage characteristics were obtained by measuring the output current value while scanning the DC voltage at 50 mV / sec using a current-voltage measuring device under the condition of AM1.5 simulated sunlight with incident light of 100 mW / cm 2 . Based on this current-voltage characteristic, the photoelectric conversion efficiency was calculated. The results are shown in Table 1.
  • Example 2 to 4 Preparation of porous film for dye-sensitized solar cell
  • a dye was prepared in the same manner as in Example 1, except that rutile-type large-diameter particles having a particle diameter of 2 ⁇ m and anatase-type small-diameter particles having a particle diameter of 25 nm were mixed at a weight ratio shown in Table 1.
  • a porous film for a sensitized solar cell was produced.
  • the adhesion of the obtained porous membrane to the film substrate was evaluated. The results are shown in Table 1.
  • a dye-sensitized solar cell was produced using a film substrate provided with a porous film.
  • the photoelectric conversion efficiency of the dye-sensitized solar cell of Comparative Example 1 was measured. The results are shown in Table 1.
  • Example 1 A film substrate similar to that in Example 1 was prepared, and a low-temperature firing paste (Peccell) was applied on the transparent electrode film provided on the film substrate by screen printing, and then fired at 120 ° C. for 30 minutes. A porous film made of titanium oxide was formed. The resulting porous membrane had a thickness of about 10 ⁇ m.
  • the adhesion of the obtained porous membrane to the film substrate was evaluated. The results are shown in Table 1.
  • a dye-sensitized solar cell was produced using a film substrate provided with a porous film.
  • the photoelectric conversion efficiency of the dye-sensitized solar cell of Comparative Example 1 was measured. The results are shown in Table 1.
  • Comparative Example 2 A glass substrate having a thickness of 1.1 mm is prepared, and a high-temperature firing paste (manufactured by Solaronics) is applied to the transparent electrode film provided on the glass substrate by screen printing, and then fired at 500 ° C. to oxidize. A porous film made of titanium was formed. However, in Comparative Example 2, the porous film was broken by the film stress after high-temperature firing. Therefore, each evaluation measurement could not be performed.
  • a high-temperature firing paste manufactured by Solaronics
  • Example 3 A dye-sensitized solar cell porous film was produced in the same manner as in Comparative Example 2 except that the thickness of the porous film was about 5 ⁇ m. In the same manner as in Example 1, the adhesion of the obtained porous membrane to the film substrate was evaluated. The results are shown in Table 1. Further, in the same manner as in Example 1, a dye-sensitized solar cell was produced using a film substrate provided with a porous film. In the same manner as in Example 1, the photoelectric conversion efficiency of the dye-sensitized solar cell of Comparative Example 1 was measured. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 フィルム基板上に形成された酸化チタンからなる多孔質膜であって、 臨界荷重が8mN以上、または、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上であることを特徴とする色素増感型太陽電池用多孔質膜。

Description

色素増感型太陽電池用多孔質膜および色素増感型太陽電池
 本発明は、色素増感型太陽電池用多孔質膜および色素増感型太陽電池に関する。
 色素増感太陽電池(DSC)の光電極には、ルテニウム金属錯体等の光増感色素を吸着させた、酸化チタン等の酸化物半導体からなる多孔質膜が用いられる(例えば、特許文献1参照)。従来、多孔質膜の形成方法としては、例えば、酸化物半導体の粒子を含むスラリーまたはペーストを基板上に塗布し、これを400℃以上の高温で焼成することによって、多孔質膜を形成する方法が挙げられる。
 この多孔質膜の形成方法は、高温で焼成するため、耐熱性を有する基材を必要とするばかりでなく、製造エネルギーが高いという問題があった。
 多孔質膜の形成方法としては、金属酸化物微粒子と分散媒からなるスラリーを燃料と酸素、および空気を混合して燃焼する高速フレーム溶射装置の噴射ノズルから高速フレームとともに基材に噴射して、基材上に金属酸化物を成膜する方法も挙げられる(例えば、特許文献2参照)。
 この多孔質膜の形成方法は、酸化チタン粒子を燃焼させるため、酸化チタン粒子に熱履歴が残留し、酸化チタン粒子が変質してしまい、結果として、光電変換効率が低いという問題があった。
 また、多孔質膜の形成方法としては、酸化物半導体の粒子を含むスラリーまたはペーストを基材上に塗布して、これをプラスチック基材が使用できる程度の低温で焼成することによって、多孔質膜を形成する方法も挙げられる(例えば、特許文献3参照)。
 この多孔質膜の形成方法は、スラリーまたはペーストを比較的低温で焼成するため、基材に対する多孔質膜の密着度が低く、多孔質膜が基材から剥がれやすいという問題があった。
 また、多孔質膜の形成方法としては、耐熱基材上に酸化物半導体の粒子を含むスラリーまたはペーストを塗布し、これを高温で焼成することによって、多孔質膜を形成した後、目的とする基材に形成した多孔質膜を転写接着し、その後、耐熱基材を剥離することによって、基材上に多孔質膜を形成する方法も挙げられる(例えば、特許文献4参照)。
 この多孔質膜の形成方法は、製造プロセスが複雑であるため、製造コストが高くなるという問題があった。
 さらに、多孔質膜の形成方法としては、耐熱温度の高い基材として金属箔を用い、この金属箔上に酸化物半導体の粒子を含むスラリーまたはペーストを塗布し、これを高温で焼成することによって、多孔質膜を形成する方法も挙げられる(例えば、特許文献5参照)。
 この多孔質膜の形成方法は、スラリーまたはペーストを高温で焼成するため、製造エネルギーが高くなるばかりでなく、耐熱温度の高い基材の価格が高いという問題があった。
特許第3435459号公報 特開2007-265648号公報 特許第4562467号公報 特開2008-243425号公報 特開2006-286534号公報
 本発明は、上記事情に鑑みてなされたものであって、フィルム基板上に形成された酸化チタンからなる多孔質膜を備え、その多孔質膜がガラス基板上に高温焼成ペーストで形成した膜と同程度の密着性を示す色素増感型太陽電池用多孔質膜および色素増感型太陽電池を提供することを目的とする。
 (1)本発明の色素増感型太陽電池用多孔質膜は、フィルム基板上に形成された酸化チタンからなる多孔質膜であって、臨界荷重が8mN以上、または、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上であることを特徴とする。
 (2)前記(1)において、前記多孔質膜は、非加熱プロセスによって形成され、前記非加熱プロセスは、前記多孔質膜の原料微粒子を前記フィルム基板に吹き付けて、前記原料微粒子からなる多孔質膜を形成する成膜方法であってもよい。
 (3)前記(1)または(2)において、前記非加熱プロセスを常温で行ってもよい。
 (4)前記(1)~(3)のいずれか一項において、前記色素増感型太陽電池用多孔質膜の膜厚が8~12μmであり、かつ、膜厚のばらつきが±1μmであってもよい。
 (5)前記(1)~(4)のいずれか一項において、前記多孔質膜の空隙率が15~50%であってもよい。
 (6)前記(1)~(5)のいずれか一項において、前記多孔質膜は、非加熱プロセスによって形成され、前記非加熱プロセスは、前記多孔質膜の原料微粒子を前記フィルム基板に吹き付けて、前記原料微粒子からなる多孔質膜を形成する成膜方法であり、前記原料微粒子が、平均粒子径0.2~2μmの大径粒子と平均粒子径1~200nm未満の小径粒子の混合粒子であってもよい。
 (7)前記(6)において、前記大径粒子と前記小径粒子の混合比は、99.9重量部:0.1重量部~70重量部:30重量部であってもよい。
 (8)前記(1)~(7)のいずれか一項において、前記フィルム基板のガラス転移温度(Tg)は200℃未満であってもよい。
 (9)本発明の色素増感型太陽電池は、対向する一対の基板と、これらの基板の間に対向配置された一対の電極膜と、これらの電極膜の間に形成された光電変換層および電解質層と、を備えた色素増感型太陽電池であって、前記光電変換層が、前記(1)~(8)のいずれか一項の本発明の色素増感型太陽電池用多孔質膜からなることを特徴とする。
 (10)本発明の色素増感型太陽電池用多孔質膜の製造方法は、原料微粒子をフィルム基板に吹き付ける非加熱プロセスによって、該フィルム基板上に、臨界荷重が8mN以上、または、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上である多孔質膜を形成することを特徴とする。
 本発明の色素増感型太陽電池用多孔質膜は、フィルム基板上に形成された酸化チタンからなる多孔質膜であって、臨界荷重が8mN以上、または、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上であるので、ガラス基板上に高温焼成ペーストで形成した膜と同程度の密着性を示すことができる。また、本発明の色素増感型太陽電池用多孔質膜を用いた色素増感型太陽電池は、光電変換効率が優れている。
本発明の第一実施形態として色素増感型太陽電池用多孔質膜を示す概略断面図である。 本発明で用いられる製膜装置の一例を示す概略構成図である。 本発明の第二実施形態として色素増感型太陽電池を示す概略断面図である。 本発明の第二実施形態として示した色素増感型太陽電池の製造方法の基板形成工程の一部を示す概略断面図である。 本発明の第二実施形態として示した色素増感型太陽電池の製造方法の基板形成工程の一部を示す概略断面図である。 本発明の第二実施形態として示した色素増感型太陽電池の製造方法の基板貼合工程の一部を示す概略断面図である。
 本発明の実施形態として色素増感型太陽電池用多孔質膜および色素増感型太陽電池について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 (色素増感型太陽電池用多孔質膜)
 図1は、本発明の第一実施形態として色素増感型太陽電池用多孔質膜を示す概略断面図である。
 本実施形態の色素増感型太陽電池用多孔質膜(以下、「多孔質膜」と略すこともある。)10は、フィルム基板11の一方の面11aに形成された透明電極膜12におけるフィルム基板11と接する面とは反対側の面(以下、「一方の面」と言う。)12aに形成された酸化チタン(TiO)からなる多孔質膜である。
 多孔質膜10は、後述する増感色素から電子を受け取り輸送する機能を有し、酸化チタンからなる多孔質の半導体からなり、透明電極膜12の一方の面12aに略矩形に形成されている。
 多孔質膜10は、例えば、成膜時に熱を一切用いない非加熱プロセスによって形成されたものである。
 非加熱プロセスとしては、公知の方法が用いられるが、例えば、溶射法、コールドスプレー法、エアロゾルデポジション法(以下、「AD法」と略記する。)等が挙げられる。
 溶射法とは、溶射材(本実施形態では、酸化チタン微粒子)を加熱して基板に吹き付け、基板上に薄膜(本実施形態では、多孔質膜10)を形成する技術である。溶射材を加熱するための熱源としては、燃焼炎やプラズマが用いられ、これらの熱により液滴状あるいは微粒子状にされた溶射材が、高速のガス流等によって基板に吹き付けられる。液滴状あるいは微粒子状にされた溶射材が、基板上で凝固し密着することにより、薄膜が形成される。
 コールドスプレー法とは、粉末材料(本実施形態では、酸化チタン微粒子)を溶融温度以下の固相状態で基板に衝突させて、基板上に薄膜(本実施形態では、多孔質膜10)を形成する技術である。
 AD法とは、ヘリウム、アルゴン、窒素等の不活性ガスからなる搬送ガスによって、原料粒子(本実施形態では、酸化チタン微粒子)を亜音速~超音速程度まで加速させ、基板に原料粒子を高速で吹き付けて、原料粒子と基板、または、原料粒子同士を接合させて、基板上に薄膜を形成する技術である。
 基板表面に衝突した原料粒子は、少なくともその一部が基板表面に食い込んで、容易には剥離しない状態となる。さらに、吹き付けを継続することにより、基板表面に食い込んだ原料粒子に対して、別の微粒子が衝突し、原料粒子同士の衝突によって、互いの原料粒子表面に新生面が形成されて、主にこの新生面において原料粒子同士が接合する。この原料粒子同士の衝突においては、原料粒子が溶融するような温度上昇は生じ難いため、原料粒子同士が接合した界面には、ガラス質からなる粒界層は実質的に存在しない。そして、原料粒子の吹き付けを継続することにより、次第に、基板表面に多数の原料粒子が接合して、緻密な薄膜が形成される。形成された薄膜は、色素増感型太陽電池(DSSC)の光電変換層をなす多孔質膜として充分な強度を有するので、焼成による焼き締めが不要である。
 AD法としては、例えば、「国際公開第WO01/27348A1号パンフレット」に開示されている超微粒子ビーム堆積法、「特許第3265481号公報」に開示されている脆性材料超微粒子低温成形法が用いられる。
 これらの公知のAD法では、吹き付ける原料粒子をボールミル等で前処理することにより、クラックが入るか入らないか程度の内部歪を原料粒子に予め加えておくことが重要であるとしている。この内部歪を加えておくことによって、吹き付けられた微粒子が、基板または既に堆積した原料粒子に衝突する際に破砕や変形を起こし易くすることができ、この結果、より緻密な膜を形成できる、としている。
 なお、本実施形態では、前処理により、内部歪を原料粒子に予め加えておく必要はない。
 本実施形態では、非加熱プロセスを常温で行うことが好ましい。
 ここで、常温とは、多孔質膜10の原料微粒子の融点より十分低い温度のことを指し、実質的には200℃以下の温度である。
 常温環境の温度は、フィルム基板11の融点以下であることが好ましい。常温環境の温度はフィルム基板11のガラス転移温度未満であることが好ましい。
 上記のような非加熱プロセスによって形成された多孔質膜10は、臨界荷重が8mN以上であり、10mN以上であることが好ましく、15mN以上であることがより好ましい。
 多孔質膜10は、臨界荷重が8mN以上であるので、透明電極膜12に対する密着強度が高く、多孔質膜10を用いた色素増感型太陽電池を撓ませた場合、多孔質膜10が透明電極膜12から剥離することがない。したがって、多孔質膜10を用いた色素増感型太陽電池をフレキシブルなものとすることができる。
 本発明の色素増感型太陽電池用多孔質膜は、膜厚が8~12μmであり、かつ、膜厚のばらつきが±1μmであることが好ましく、膜厚が8~12μmであり、かつ、膜厚のばらつきが±0.5μmであることがより好ましい。
 膜厚が厚すぎると、膜応力による割れや剥がれが発生するおそれがある。そのため、膜厚は12μm以下が好ましい。一方、膜厚が薄すぎると、密着性は良いが、色素吸着量が足りなくなり、発生させる電流が減ってしまい、変換効率が下がってしまうおそれがある。そのため、膜厚は8μm以上が好ましい。
 また、膜厚のばらつきが小さい程、応力の片寄りや集中する箇所がなくなるため、密着性の観点から好ましい。
 また、上記のような非加熱プロセスによって形成された多孔質膜10は、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上であり、4H以上であることが好ましい。
 多孔質膜10は、前記の鉛筆硬度がH以上であるので、透明電極膜12に対する密着強度が高く、多孔質膜10を用いた色素増感型太陽電池を撓ませた場合、多孔質膜10が透明電極膜12から剥離することがない。したがって、多孔質膜10を用いた色素増感型太陽電池をフレキシブルなものとすることができる。
 また、多孔質膜10は、空隙率が15~50%であることが好ましく、15~40%であることがより好ましく、20~35%であることが更に好ましい。
 多孔質膜10の空隙率が15%未満の場合、膜が緻密過ぎて、色素が十分に吸着しにくくなるため変換効率が低くなるおそれがある。一方、多孔質膜10の空隙率が50%超の場合、空隙が多すぎるために膜がもろくなり、フィルムをまげると割れるおそれがある。
 なお、本発明において「空隙率」は、多孔質膜10の断面SEM画像より画像解析にて算出した値である。
 また、多孔質膜10は、上記のような非加熱プロセスによって形成されているので、熱によって、原料微粒子(酸化チタン微粒子)の結晶構造が変化(変質)することなく、かつ、結晶構造の歪みや結晶欠陥が少ない多孔質膜である。特に、非加熱プロセスとしては、上記のAD法を用いた場合、フィルム基板11上の透明電極膜12に対して、エアロゾルを吹き付けることによって、エアロゾル(原料微粒子)がフィルム基板11上の透明電極膜12に衝突した際の衝撃により、フィルム基板11上の透明電極膜12と原料微粒子及び原料微粒子同士が結合し、多孔質膜10の透明電極膜12に対する密着性が高くなる。したがって、上記により得られる多孔質膜10を用いた色素増感型太陽電池は、光電変換効率が優れている。また、透明電極膜12に速度を持って原料微粒子が衝突することにより、原料微粒子の透明電極膜12に対する密着強度が高くなるので、多孔質膜10をフレキシブルデバイスに適用したときに、多孔質膜10が剥離することがない。
 また、本発明においては、多孔質膜10の成膜の際に、溶剤やバインダーを使用する必要がない。そのため、多孔質膜10は、溶剤やバインダーの除去工程における収縮や特異的な空隙がなく、密着性を阻害する要因がないため、安定して密着性の高い膜を成膜できる。
 フィルム基板11としては、光の透過率が高いものが用いられ、例えば、ポリエチレンテフタレート(PET)、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)、ポリイミド等の透明の樹脂材料からなり、可撓性のあるフィルム状のものが挙げられる。
 フィルム基板11のガラス転移温度(Tg)は200℃未満であることが好ましい。また、フィルム基板11のガラス転移温度(Tg)は実用上、80℃以上であることが好ましい。
 透明電極膜12としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛(ZnO)等の導電材からなり、スパッタリングや印刷法により、フィルム基板11の一方の面11aに成膜されたものが挙げられる。
 (色素増感型太陽電池用多孔質膜の製造方法)
 次に、本実施形態の色素増感型太陽電池用多孔質膜の製造方法を説明する。
 色素増感型太陽電池用多孔質膜の製造方法では、フィルム基板11の一方の面11a(透明電極膜12の一方の面12a)に非加熱プロセスにより、酸化チタンからなる多孔質膜10を形成する。
 本実施形態では、多孔質膜の製造方法において、非加熱プロセスを、多孔質膜10の原料微粒子を搬送ガス中に分散させてエアロゾルとし、そのエアロゾルを透明電極膜12の一方の面12aに吹き付けて、原料微粒子からなる多孔質膜10を形成する成膜方法、すなわち、AD法で行う場合について説明する。
 本実施形態では、例えば、図2に示す製膜装置20が用いられる。
 製膜装置20は、透明電極膜12が設けられたフィルム基板11を収容して、透明電極膜12の一方の面12aに多孔質膜10を形成するための製膜室21を備えている。
 製膜室21内には、フィルム基板11を配置するための配置面22aを有するステージ22が設けられている。ステージ22は、フィルム基板11を配置した状態で水平方向に移動可能となっている。
 製膜室21には、真空ポンプ23が接続されている。この真空ポンプ23により、製膜室21内が陰圧にされる。
 また、製膜室21内には、長方形の開口部24aを持つノズル24が配設されている。
 ノズル24は、その開口部24aがステージ22の配置面22a、すなわち、ステージ22の面22a上に配置されたフィルム基板11に設けられた透明電極膜12の一方の面12aに対向するように配設されている。
 ノズル24は、搬送管25を介して、ガスボンベ26と接続されている。
 搬送管25の途中には、ガスボンベ26側から順に、マスフロー制御器27、エアロゾル発生器28、解砕器29および分級器30が設けられている。
 製膜装置20では、搬送ガスである窒素ガスを、ガスボンベ26から搬送管25へ供給し、その窒素ガスの流速をマスフロー制御器27で調整する。
 エアロゾル発生器28に吹き付け用の原料微粒子を装填し、搬送管25中を流れる窒素ガスに原料微粒子を分散させて、原料微粒子を解砕器29および分級器30へ搬送する。
 そして、ノズル24から、原料微粒子41が亜音速~超音速の噴射速度で、透明電極膜12の一方の面12aに噴射される。
 ここで、多孔質膜の製造方法の詳細を説明する。
 まず、製膜室21内のステージ22の配置面22aに、透明電極膜12が設けられたフィルム基板11を配置する。
 次いで、真空ポンプ23により、製膜室21内を陰圧にする。
 次いで、搬送管25を介して、ガスボンベ26から製膜室21内に窒素ガスを供給し、製膜室21内を窒素ガス雰囲気とする。
 次いで、AD法により、フィルム基板11に設けられた透明電極膜12の一方の面12aに、酸化チタンからなる多孔質膜10を形成する。
 多孔質膜10を形成するには、エアロゾル発生器28に、酸化チタンからなる原料微粒子を装填し、その原料微粒子を、搬送管25中を流れる窒素ガスに分散させて、解砕器29および分級器30へ搬送する。そして、ノズル24の開口部24aから、フィルム基板11に設けられた透明電極膜12の一方の面12aに、酸化チタンからなる原料微粒子41を吹き付ける。
 本実施形態では、原料微粒子として、TiO粒子を用いる場合を例に挙げて説明する。TiO2の平均粒子径としては、1.0nm~5.0μmが好ましく、1.0nm~2.0μmがさらに好ましい。
 本実施形態では、他のTiO粒子を用いても、あるいは併用してもよいが、その場合には、他のTiO粒子の好適な平均粒子径は、TiO粒子の好適な平均粒子径と同様であっても良いし、TiO粒子よりも小さくても大きくても良い。
 上記範囲の下限値以上であることにより、DSSCの色素(増感色素)をより充分に担持できるような空孔(細孔)を有する多孔質膜10を製膜できる。
 上記範囲の上限値以下であることにより、DSSCの光電極に、より適した強度を有する多孔質膜10を製膜できる。
 なお、TiO2の平均粒子径は、SEM観察により複数の粒子径を測定して平均する方法やレーザー回折式粒度分布測定装置の測定により得られた粒子径(体積平均径)分布のピーク値として決定する方法がある。
 本実施形態では、原料微粒子として、粒径の異なる複数の粒子、例えば、小径粒子と大径粒子とを併用してもよい。
 小径粒子の平均粒子径rは、例えば、1nm以上1000nm(1μm)未満が好ましく、1nm以上500nm未満がより好ましく、1nm以上200nm未満がさらに好ましく、1nm以上100nm以下が特に好ましい。
 大径粒子の平均粒子径Rは、例えば、0.2μm以上100μm以下が好ましく、0.2μm以上50μm以下がより好ましく、0.2μm以上5μm以下がさらに好ましく、0.2μm以上2μm以下が特に好ましい。
 小径粒子と大径粒子とを併用する場合、小径粒子の平均粒子径rと大径粒子の平均粒子径Rとの相対比(r/R)は、(1/1000)≦(r/R)≦(1/5)の関係を満たすことが好ましい。相対比(r/R)は、(1/750)≦(r/R)≦(1/10)の関係を満たすことがより好ましく、(1/500)≦(r/R)≦(1/20)の関係を満たすことがさらに好ましく、(1/250)≦(r/R)≦(1/30)の関係を満たすことが特に好ましい。
 相対比(r/R)が前記関係を満たすことによって、小径粒子の平均粒子径rと大径粒子の平均粒子径Rとの差がより明確となる。小径粒子と大径粒子とが同じ無機物質(例えば、酸化チタン)からなる場合、平均粒子径の差がより明確になることは、小径粒子の個々の粒子と大径粒子の個々の粒子との重量の差がより明確になることを意味する。
 原料微粒子として、小径粒子と大径粒子とを併用する場合、平均粒子径1~200nm未満の小径粒子と平均粒子径0.2~2μmの大径粒子の混合粒子が好ましく、平均粒子径1~100nmの小径粒子と平均粒子径0.5~2μmの大径粒子の混合粒子がより好ましく、平均粒子径1~50nmの小径粒子と平均粒子径1~2μmの大径粒子の混合粒子が更に好ましい。
 本発明において、前記重量の差をより明確にすることによって、前記重量の差を考慮した吹き付け条件の設定をより容易に行えるので好ましい。例えば、前記重量の差が比較的大きい場合であると、小径粒子と大径粒子の混合粒子を基材に吹き付けて製膜する際、小径粒子同士の衝突エネルギーよりも、大径粒子が小径粒子へ与える衝突エネルギーを格段に大きくすることができる。すなわち、製膜過程において、前記基板または隣接する別の粒子の上に到達した小径粒子に対して、吹き付けられた大径粒子が衝突することによって、衝突された小径粒子が前記基板または隣接する別の粒子に押し付けられるか、もしくは擦り付けられて、小径粒子と前記基板、または小径粒子と隣接する別の粒子へ、より確実に接合できる。
 しかし、前記重量の差が極端に大きいと、衝突された小径粒子が粉々に砕けてしまい、多孔質膜を形成することが困難になる場合がある。また、前記重量の差が極端に小さいと、小径粒子が前記基板または隣接する別の粒子に接合する際の、大径粒子が小径粒子に衝突して与えるエネルギーが寄与する程度は、相対的に小さくなってしまう。
 相対比(r/R)が前記関係を満たすものとすることによって、前記重量の差を適切な範囲とすることができ、強度および電子伝導性が一層優れた多孔質膜を前記基板上に製膜できる。
 前記混合粒子において、大径粒子:小径粒子の混合比が、99.9重量部:0.1重量部~0.1重量部:99.9重量部であることが好ましく、99.9重量部:0.1重量部~50重量部:50重量部であることがより好ましく、99.9重量部:0.1重量部~70重量部:30重量部であることが更に好ましく、99.5重量部:0.5重量部~70重量部:30重量部であることが更に好ましく、99重量部:1重量部~80重量部:20重量部であることがさらに好ましい。
 大径粒子:小径粒子の混合比が上記範囲であると、基板上において、小径粒子に対して大径粒子をより確実に衝突させることができる。この結果、基板上に製膜される多孔質膜の強度および電子伝導性を一層高められる。
 特に、大径粒子:小径粒子の混合比が、99.9重量部:0.1重量部~70重量部:30重量部の範囲内であることにより、上記効果に加えて、密着性が高い多孔質膜を前記基板上に製膜できる。
 大径粒子と小径粒子の吹きつけは、同一ノズルから混合物を吹き付けてもよいし、別々のノズルから大径粒子と小径粒子を吹き付けてもよい。また、別々のノズルから大径粒子と小径粒子とを交互に吹き付けてもよい。
 本実施形態において、搬送ガス(窒素ガス)によって加速するTiO粒子の速度としては、10~1000m/sが好ましく、10~250m/sがより好ましい。
 上記範囲の上限値以下であることにより、TiO粒子が、フィルム基板11または既に堆積しているTiO粒子に衝突した際に、過度に砕けることなく、吹き付け時の粒子径をほぼ保ったまま、薄膜を形成できる。
 上記範囲の下限値以上であることにより、TiO粒子がフィルム基板11または既に堆積しているTiO粒子に確実に接合して、充分な強度の多孔質膜10を形成できる。
 搬送ガスによって加速するTiO粒子の速度は、上記範囲内において、透明電極膜12の種類に応じて適宜調整すればよい。
 本実施形態において、TiO粒子の吹き付けは常温環境で行われることが好ましい。
 ここで常温とは、TiO粒子の融点より十分低い温度のことを指し、実質的には200℃以下である。
 常温環境の温度は、フィルム基板11の融点以下であることが好ましく、フィルム基板11のガラス転移温度未満であることが好ましい。
 本実施形態において、多孔質膜10を製膜する場合には、吹き付けるTiO2粒子に予め内部歪を加えておく必要はない。TiO2粒子が適度な強度を有していることにより、製膜時にTiO2粒子が破砕されずに構造を維持し易く、接合したTiO2粒子同士の間に空孔(細孔)を形成できる。これにより、大きな比表面積を有する多孔質膜10を製膜できる。
 一方、緻密な多孔質膜10を製膜する場合には、予め内部歪を加えた、TiO2粒子を用いてもよい。
 本実施形態において、多孔質膜10を製膜する場合、その空孔率は、吹き付け速度や吹き付け角度によっても影響を受けるが、主に影響する要因は、吹き付けるTiO2粒子の粒子径である。前述の好ましい粒子径の範囲内で、粒子径を大きくする程、空孔率は高くなり、粒子径を小さくする程、空孔率は低くなる。
 また、AD法を用いることにより、フィルム基板11として耐熱性の低い(融点の低い)材料を用いた場合であっても、フィルム基板11に熱による歪みや変形が生じることなく、多孔質膜10を形成することができる。したがって、AD法を用いることにより、利用可能なフィルム基板11の材質の種類が多くなる。
 さらに、多孔質膜10を形成する際、フィルム基板11に熱による歪みや変形が生じないので、多孔質膜10が形成されたフィルム基板11を用いて色素増感型太陽電池を製造する際、このフィルム基板11と他の部材との貼り合せ工程において、両者の密着性が悪くなるという不具合が生じ難い。特に、AD法を用いることにより、多孔質膜10が形成されたフィルム基板11をロール・ツー・ロール(Roll to Roll)工法に適用した場合に、多孔質膜10が透明電極膜12から剥離するといった不具合が生じ難くなるという利点がある。
 なお、従来法では、酸化チタンに熱を加えて多孔質膜を形成するため、酸化チタン微粒子の結晶構造の歪みや結晶欠陥を誘起しやすく、結果として、多孔質膜の電子伝導性を低下させる。したがって、その多孔質膜を色素増感型太陽電池の光電変換層として用いた場合、光電変換層の光電変換効率が低下する。
 AD法は高温を必要としないプロセスであるので、原料粒子の結晶構造を保持したまま多孔質膜(光電変換層)を形成することができる。したがって、光電変換層の電子伝導性が向上し、色素増感型太陽電池の光電極として、その光電変換層を用いれば、光電変換効率が向上する。
 また、本実施形態においては、多孔質膜10を1回の成膜により形成することができるが、複数回の成膜を行うことも好ましい。複数回の成膜を行って密着性の良い薄膜を重ねて成膜することにより、多孔質膜10のフィルム基板11に対する密着性を確保することができるとともに、多孔質膜10の膜厚の均一性(ばらつき抑制)も確保することが可能となる。
 「色素増感型太陽電池」 図3は、本発明の第二実施形態として色素増感型太陽電池を示す概略断面図である。
 本実施形態の色素増感型太陽電池50は、対向する一対の第一基板51および第二基板52と、これらの基板の間に所定の間隔を置いて対向配置された一対の透明電極膜53および対向電極膜54と、これらの電極膜の間に形成された光電変換層55および電解質層56と、光電変換層55および電解質層56を囲繞する封止樹脂57とから概略構成されている。
 透明電極膜53は、第一基板51の第二基板52と対向する面(以下、「一方の面」と言う。)51aに形成されている。
 対向電極膜54は、第二基板52の第一基板51と対向する面(以下、「一方の面」と言う。)52aに形成されている。
 光電変換層55は、透明電極膜53の対向電極膜54と対向する面(以下、「一方の面」と言う。)53aに形成されている。
 封止樹脂57は、透明電極膜53が設けられた第一基板51と、対向電極膜54が設けられた第二基板52との間に設けられ、これらの基板を所定の間隔を置いて接着するとともに、これらの基板によって形成される間隙を密閉(封止)している。
 電解質層56は、透明電極膜53が設けられた第一基板51、対向電極膜54が設けられた第二基板52および封止樹脂57によって形成される間隙内に充填された電解質によって形成されている。また、電解質層56は、透明電極膜53、対向電極膜54および光電変換層55に接している。
 第一基板51、透明電極膜53および光電変換層55は、光電極基板58を形成している。
 第二基板52および対向電極膜54は、対極基板59を形成している。
 第一基板51、第二基板52としては、上記のフィルム基板11と同様のものが用いられる。
 透明電極膜53としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛(ZnO)等の導電材からなり、スパッタリングや印刷法により、第一基板51の一方の面51aに成膜されたものが挙げられる。
 対向電極膜54としては、例えば、白金、ポリアニリン、ポリエチレンジオキシチオフェン(PEDOT)、カーボン等の導電材からなり、スパッタリングや印刷法により、第二基板52の一方の面52aに成膜されたものが挙げられる。
 光電変換層55としては、上述の多孔質膜10が用いられる。
 光電変換層55には、増感色素が担持されている。
 増感色素は、有機色素または金属錯体色素で構成されている。
 有機色素として、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等の各種有機色素が用いられる。
 金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
 電解質層56を形成する電解質としては、アセトニトリルまたはプロピオニトリル等の非水系電解質溶剤、ヨウ化ジメチルプロピルイミダゾリウムまたはヨウ化ブチルメチルイミダゾリウム等のイオン液体等の液体成分に、ヨウ化リチウム等の支持電解質と、ヨウ素とが混合された溶液等が挙げられる。また、これらの電解質溶液は、t-ブチルピリジンを含んでいてもよい。また、太陽電池の耐久性を向上させるために、電解質としては、イオン液体電解質または固体電解質が用いられることもある。
 なお、ヨウ化ジメチルプロピルイミダゾリウム、ヨウ化ブチルメチルイミダゾリウム等のヨウ素系化合物は金属を腐食する性質を有する材料(金属腐食性の材料)である。
 封止樹脂57を形成する樹脂としては、例えば、紫外線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等が用いられる。
 封止樹脂57の厚さは、特に限定されないが、透明電極膜53と対向電極膜54が所定の間隔を置いて離隔し、かつ、電解質層56が必要とされる厚さとなるように適宜調整される。
 色素増感型太陽電池50によれば、光電変換層55としては、上述のように、非加熱プロセスによって形成された多孔質膜10が用いられているので、光電変換層55の透明電極膜53に対する密着強度が高く、色素増感型太陽電池50を撓ませた場合、光電変換層55が透明電極膜53から剥離することがない。したがって、色素増感型太陽電池50をフレキシブルなものとすることができる。また、光電変換層55は、熱によって、酸化チタンの結晶構造が変化(変質)しておらず、かつ、結晶構造の歪みや結晶欠陥が少ないので、色素増感型太陽電池50は、光電変換効率が優れている。
 「色素増感型太陽電池の製造方法」 次に、図4~6を参照して、本実施形態の色素増感型太陽電池の製造方法を説明する。
本実施形態の色素増感型太陽電池の製造方法は、(I)光電極基板と対極基板とを形成する基板形成工程と、(II)基板形成工程により形成された光電極基板と対極基板とを貼り合せる基板貼合工程とを備えている。
 (I)基板形成工程
 まず、スパッタリング法や印刷法等により、第一基板51の一方の面51aに、スズドープ酸化インジウム、フッ素ドープ酸化スズ、酸化亜鉛等からなる透明電極膜53を成膜する(図4参照)。
 次いで、上述したように、透明電極膜53の一方の面53aに非加熱プロセスにより、酸化チタンからなる光電変換層55(多孔質膜10)を形成する。
 次いで、溶剤に増感色素を溶解してなる増感色素溶液に光電変換層55を浸漬し、光電変換層55に増感色素を担持させ、光電極基板58を得る。
 なお、光電変換層55に増感色素を担持させる方法としては、増感色素溶液に光電変換層55を浸漬する方法に限定されず、光電変換層55を移動させながら、連続的に増感色素溶液中に光電変換層55を投入・浸漬・引き上げを行う方法等も採用される。
 また、光電変換層55に増感色素を担持させた後、光電変換層55の表面を無水アルコール等で洗浄してもよい。
 次いで、光電変換層55と所定の間隔を置いて、かつ、光電変換層55を囲繞するように、インクジェット法等により、透明電極膜53の一方の面53aに封止樹脂57を形成する。
 上記封止樹脂57の光電変換層55に対する囲繞は、上記封止樹脂57が上記光電変換層55と所定の間隔が置かれなくても良い。
 ここでは、光電極基板58と対極基板59を貼り合せた際、透明電極膜53と対向電極膜54とが所定の間隔を置いて離隔し、かつ、電解質層56が必要とされる厚さとなるように封止樹脂57の厚さを調整する。
 スパッタリング法や印刷法等により、第二基板52の一方の面52aに、白金、ポリアニリン、ポリエチレンジオキシチオフェン(PEDOT)、カーボン等からなる対向電極膜54を成膜し、対極基板59を得る(図5参照)。
 (II)基板貼合工程 
 光電極基板58に形成された封止樹脂57を介して、光電極基板58と対極基板59とを貼り合わせ、封止樹脂57に加熱処理や光照射処理を施すことにより、封止樹脂57によって、光電極基板58と対極基板59とを接着、固定する(図6参照)。
 この基板貼合工程により、光電極基板58と対極基板59の間に間隙が形成される。
 次いで、予め光電極基板58または対極基板59に形成しておいた注入口(図示略)から、光電極基板58と対極基板59の間の間隙に電解質を注入して、光電極基板58と対極基板59の間に電解質層56を形成する。
 次いで、注入口を封止して、図3に示すような色素増感型太陽電池50を得る。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
 [実施例1]
 (色素増感型太陽電池用多孔質膜の作製)
 フィルム基板として、その一方の面に、スズドープ酸化インジウム(ITO)からなる透明電極膜が成膜されたPENフィルム(厚さ125μm)を用意した。
 次に、AD法により、フィルム基板に設けられた透明電極膜上に、酸化チタンからなる多孔質膜を形成した。得られた多孔質膜の厚さは約10μmであった。
 酸化チタンとしては、粒子径2μmのルチル型の大径粒子と、粒子径25nmのアナターゼ型の小径粒子とを重量比90:10の割合で混合して用いた。
 なお、AD法による多孔質膜の形成を、下記の条件で行った。
 ガス:窒素
 ガス量:2SLM
 温度:室温(約25℃)
 成膜室圧力:100Pa
 基材搬送速度:5mm/sec.
 成膜回数(スキャン回数):10~40回(膜厚が10μmになるように調整)
 (多孔質膜の密着性の評価)
 得られた多孔質膜のフィルム基板に対する密着性を、多孔質膜の臨界荷重と鉛筆硬度を測定することにより評価した。
 多孔質膜の臨界荷重(単位:mN)の測定を、日本工業規格JIS-R3255「ガラスを基板とした薄膜の付着性試験方法」に準拠し、超薄膜スクラッチ試験機(商品名:Model CSR-2000、RHESCA社製)を用いて行った。結果を表1に示す。
 多孔質膜の鉛筆硬度の測定は、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した方法により行った。結果を表1に示す。
 更に、多孔質膜が設けられたフィルム基板(成膜体)を直径80mmの円筒及び直径25mmの円筒に10回巻き付け、成膜体が剥離するか否かを目視で確認して曲げ耐性を評価した。結果を表1に示す。
 (色素増感型太陽電池の作製)
 また、多孔質膜が設けられたフィルム基板を用いて、色素増感型太陽電池を作製した。
 まず、アセトニトリル/tert-ブタノール(1/1、体積比)の混合溶媒に濃度が0.3mMとなるように色素N719を溶解させたN719色素溶液を調製した。
 次いで、窒素ガス雰囲気下、室温にて、多孔質膜が設けられたフィルム基板を100℃の乾燥雰囲気下で乾燥した後、N719色素溶液に18時間浸漬させ、実施例1の光電極基板を作製した。
 対極基板として、PENフィルム(厚さ125μm)からなるフィルム基板上に、ITO、クロム、白金をこの順で積層して成膜したものを用いた。
 この対極基板と光電極基板とを厚さ30μmの樹脂製ガスケット(セパレータ)を介して重ね合わせてクリップ止めし、両電極間に、電解液(AN50、ソラロニクス社製)を注入して、実施例1の色素増感太陽電池を得た。
 (色素増感型太陽電池の光電変換効率の評価)
 実施例1の色素増感型太陽電池の光電変換効率の測定を、次のように行った。
 入射光100mW/cm のAM1.5擬似太陽光の条件で、電流電圧測定装置を用いて、DC電圧を50mV/secで走査しながら出力電流値を計測し、電流-電圧特性を得た。
 この電流-電圧特性に基づいて、光電変換効率を算出した。結果を表1に示す。
 [実施例2~4]
 (色素増感型太陽電池用多孔質膜の作製)
 酸化チタンとして、粒子径2μmのルチル型の大径粒子と、粒子径25nmのアナターゼ型の小径粒子とを表1に示す重量比で混合して用いた以外は、実施例1と同様にして色素増感型太陽電池用多孔質膜を作製した。
 実施例1と同様にして、得られた多孔質膜のフィルム基板に対する密着性を評価した。結果を表1に示す。
 また、実施例1と同様にして、多孔質膜が設けられたフィルム基板を用いて、色素増感太陽電池を作製した。
 実施例1と同様にして、比較例1の色素増感太陽電池の光電変換効率を測定した。結果を表1に示す。
 [比較例1]
 実施例1と同様のフィルム基板を用意し、そのフィルム基板に設けられた透明電極膜上に、低温焼成ペースト(ペクセル社製)をスクリーン印刷で塗布し、それを120℃で30分焼成して、酸化チタンからなる多孔質膜を形成した。得られた多孔質膜の厚さは約10μmであった。
 実施例1と同様にして、得られた多孔質膜のフィルム基板に対する密着性を評価した。
 結果を表1に示す。
 また、実施例1と同様にして、多孔質膜が設けられたフィルム基板を用いて、色素増感太陽電池を作製した。
 実施例1と同様にして、比較例1の色素増感太陽電池の光電変換効率を測定した。結果を表1に示す。
 [比較例2]
 厚さ1.1mmのガラス基板を用意し、そのガラス基板に設けられた透明電極膜上に、高温焼成ペースト(ソラロニクス社製)をスクリーン印刷で塗布し、それを500℃で焼成して、酸化チタンからなる多孔質膜の形成した。しかし、比較例2では、高温焼成後、膜応力によって多孔質膜が割れてしまった。そのため、各評価測定が出来なかった。
 [比較例3]
 多孔質膜の厚さは約5μmとした以外は比較例2と同様にして色素増感型太陽電池用多孔質膜を作製した。
 実施例1と同様にして、得られた多孔質膜のフィルム基板に対する密着性を評価した。結果を表1に示す。
 また、実施例1と同様にして、多孔質膜が設けられたフィルム基板を用いて、色素増感太陽電池を作製した。
 実施例1と同様にして、比較例1の色素増感太陽電池の光電変換効率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~4では、非加熱プロセスのAD法によって多孔質膜を形成しているにもかかわらず、多孔質膜のフィルム基板に対する密着性が高く、かつ光電変換効率が高いことが分かった。
 一方、比較例1では、低温焼成で成膜を行ったが、実施例1~4よりも多孔質膜のフィルム基板に対する密着性が非常に劣るばかりでなく、光電変換効率が低いことが分かった。
 また、比較例2では、ガラス基板を用い、高温焼成で成膜を行ったが、焼成後、膜応力によって膜が割れてしまった。そのため、臨界荷重、鉛筆硬度、曲げ試験、変換効率を測定することができなかった。
 また、比較例3では、多孔質膜の膜厚を約5μmに変更した以外は比較例2と同様の操作を行った。その結果、臨界荷重、鉛筆硬度及び変換効率は実施例1と同等以上であった。しかしながら、比較例3では、高温焼成で成膜を行っているため、フィルム基板上に多孔質膜を形成することが出来ない。
 なお、実施例1~4では、粒子混合比を大径:小径=70:30~96:4の範囲で調整したが、大径:小径=70重量部以上:30重量部以下の範囲であれば、多孔質膜のフィルム基板に対する密着性が高く、かつ光電変換効率が高いことが確認された。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 10 色素増感型太陽電池用多孔質膜(多孔質膜)
 11 フィルム基板
 12 透明電極膜
 50 色素増感型太陽電池
 51 第一基板
 52 第二基板
 53 透明電極膜
 54 対向電極膜
 55 光電変換層
 56 電解質層
 57 封止樹脂
 58 光電極基板
 59 対極基板

Claims (10)

  1.  フィルム基板上に形成された酸化チタンからなる多孔質膜であって、 臨界荷重が8mN以上、または、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上であることを特徴とする色素増感型太陽電池用多孔質膜。
  2.  前記多孔質膜は、非加熱プロセスによって形成され、前記非加熱プロセスは、前記多孔質膜の原料微粒子を前記フィルム基板に吹き付けて、前記原料微粒子からなる多孔質膜を形成する成膜方法であることを特徴とする請求項1に記載の色素増感型太陽電池用多孔質膜。
  3.  前記非加熱プロセスを常温で行うことを特徴とする請求項1または2に記載の色素増感型太陽電池用多孔質膜。
  4.  膜厚が8~12μmであり、かつ、膜厚のばらつきが±1μmであることを特徴とする請求項1~3のいずれか一項に記載の色素増感型太陽電池用多孔質膜。
  5.  前記多孔質膜の空隙率が15~50%であることを特徴とする請求項1~4のいずれか一項に記載の色素増感型太陽電池用多孔質膜。
  6.  前記多孔質膜は、非加熱プロセスによって形成され、
     前記非加熱プロセスは、前記多孔質膜の原料微粒子を前記フィルム基板に吹き付けて、前記原料微粒子からなる多孔質膜を形成する成膜方法であり、
     前記原料微粒子が、平均粒子径0.2~2μmの大径粒子と平均粒子径1~200nm未満の小径粒子の混合粒子であることを特徴とする請求項1~5のいずれか一項に記載の色素増感型太陽電池用多孔質膜。
  7.  前記大径粒子と前記小径粒子の混合比が、99.9重量部:0.1重量部~70重量部:30重量部であることを特徴とする請求項6に記載の色素増感型太陽電池用多孔質膜。
  8.  前記フィルム基板のガラス転移温度(Tg)が200℃未満であることを特徴とする請求項1~7のいずれか一項に記載の色素増感型太陽電池用多孔質膜。
  9.  対向する一対の基板と、これらの基板の間に対向配置された一対の電極膜と、これらの電極膜の間に形成された光電変換層および電解質層と、を備えた色素増感型太陽電池であって、 前記光電変換層が、請求項1~7のいずれか1項に記載の色素増感型太陽電池用多孔質膜からなることを特徴とする色素増感型太陽電池。
  10.  色素増感型太陽電池用多孔質膜の製造方法であって、
     原料微粒子をフィルム基板に吹き付ける非加熱プロセスによって、該フィルム基板上に、臨界荷重が8mN以上、または、日本工業規格JIS K5600-5-4「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準拠した鉛筆硬度がH以上である多孔質膜を形成することを特徴とする色素増感型太陽電池用多孔質膜の製造方法。
PCT/JP2013/075476 2013-09-20 2013-09-20 色素増感型太陽電池用多孔質膜および色素増感型太陽電池 WO2015040738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015537523A JPWO2015040738A1 (ja) 2013-09-20 2013-09-20 色素増感型太陽電池用多孔質膜および色素増感型太陽電池
KR1020157025370A KR102090978B1 (ko) 2013-09-20 2013-09-20 색소 증감형 태양전지용 다공질막 및 색소 증감형 태양전지
PCT/JP2013/075476 WO2015040738A1 (ja) 2013-09-20 2013-09-20 色素増感型太陽電池用多孔質膜および色素増感型太陽電池
CN201380074744.1A CN105051849B (zh) 2013-09-20 2013-09-20 染料敏化型太阳能电池用多孔膜及染料敏化型太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075476 WO2015040738A1 (ja) 2013-09-20 2013-09-20 色素増感型太陽電池用多孔質膜および色素増感型太陽電池

Publications (1)

Publication Number Publication Date
WO2015040738A1 true WO2015040738A1 (ja) 2015-03-26

Family

ID=52688420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075476 WO2015040738A1 (ja) 2013-09-20 2013-09-20 色素増感型太陽電池用多孔質膜および色素増感型太陽電池

Country Status (4)

Country Link
JP (1) JPWO2015040738A1 (ja)
KR (1) KR102090978B1 (ja)
CN (1) CN105051849B (ja)
WO (1) WO2015040738A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038208A (ja) * 2017-08-28 2019-03-14 積水化学工業株式会社 積層体及び太陽電池並びに積層体及び太陽電池の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158907B2 (en) * 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142169A (ja) * 2001-10-31 2003-05-16 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2005190676A (ja) * 2003-12-24 2005-07-14 Hitachi Chem Co Ltd 半導体電極用混合水溶液、半導体電極、光電変換素子、太陽電池及びこれらの製造方法
JP2005235757A (ja) * 2004-01-22 2005-09-02 Showa Denko Kk 金属酸化物電極膜および色素増感型太陽電池
JP2007265648A (ja) * 2006-03-27 2007-10-11 Nippon Steel Chem Co Ltd 色素増感太陽電池用表面側電極部材及びその製造方法
JP2008251519A (ja) * 2007-03-02 2008-10-16 Tokyo Univ Of Science 色素増感型太陽電池用光電極および色素増感型太陽電池
JP2009059687A (ja) * 2007-08-06 2009-03-19 Toyo Seikan Kaisha Ltd 色素増感型太陽電池用電極基板及び色素増感型太陽電池
WO2009087848A1 (ja) * 2008-01-08 2009-07-16 Konica Minolta Holdings, Inc. 色素増感型太陽電池
WO2012161161A1 (ja) * 2011-05-20 2012-11-29 独立行政法人産業技術総合研究所 製膜方法、製膜体、及び色素増感太陽電池
JP2012243629A (ja) * 2011-05-20 2012-12-10 National Institute Of Advanced Industrial & Technology 製膜方法、製膜体、及び色素増感太陽電池
JP2013181233A (ja) * 2012-03-02 2013-09-12 National Institute Of Advanced Industrial Science & Technology 製膜方法及び製膜体並びに色素増感太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435459B2 (ja) 2000-08-16 2003-08-11 独立行政法人産業技術総合研究所 色素増感太陽電池
JP4562467B2 (ja) 2004-09-10 2010-10-13 ペクセル・テクノロジーズ株式会社 半導体ナノ粒子を含む粘性分散液
JP2006286534A (ja) 2005-04-04 2006-10-19 Nippon Oil Corp フレキシブル色素増感太陽電池
JP5200398B2 (ja) 2007-03-26 2013-06-05 大日本印刷株式会社 酸化物半導体電極用積層体、耐熱基板付酸化物半導体電極、酸化物半導体電極、色素増感型太陽電池セル、および色素増感型太陽電池モジュール
CN102005302A (zh) * 2010-10-19 2011-04-06 吉首大学 染料敏化外负载TiO2/(PPA-Pt)surf.薄膜电极及其制备工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142169A (ja) * 2001-10-31 2003-05-16 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2005190676A (ja) * 2003-12-24 2005-07-14 Hitachi Chem Co Ltd 半導体電極用混合水溶液、半導体電極、光電変換素子、太陽電池及びこれらの製造方法
JP2005235757A (ja) * 2004-01-22 2005-09-02 Showa Denko Kk 金属酸化物電極膜および色素増感型太陽電池
JP2007265648A (ja) * 2006-03-27 2007-10-11 Nippon Steel Chem Co Ltd 色素増感太陽電池用表面側電極部材及びその製造方法
JP2008251519A (ja) * 2007-03-02 2008-10-16 Tokyo Univ Of Science 色素増感型太陽電池用光電極および色素増感型太陽電池
JP2009059687A (ja) * 2007-08-06 2009-03-19 Toyo Seikan Kaisha Ltd 色素増感型太陽電池用電極基板及び色素増感型太陽電池
WO2009087848A1 (ja) * 2008-01-08 2009-07-16 Konica Minolta Holdings, Inc. 色素増感型太陽電池
WO2012161161A1 (ja) * 2011-05-20 2012-11-29 独立行政法人産業技術総合研究所 製膜方法、製膜体、及び色素増感太陽電池
JP2012243629A (ja) * 2011-05-20 2012-12-10 National Institute Of Advanced Industrial & Technology 製膜方法、製膜体、及び色素増感太陽電池
JP2013181233A (ja) * 2012-03-02 2013-09-12 National Institute Of Advanced Industrial Science & Technology 製膜方法及び製膜体並びに色素増感太陽電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038208A (ja) * 2017-08-28 2019-03-14 積水化学工業株式会社 積層体及び太陽電池並びに積層体及び太陽電池の製造方法

Also Published As

Publication number Publication date
JPWO2015040738A1 (ja) 2017-03-02
KR20160058068A (ko) 2016-05-24
CN105051849A (zh) 2015-11-11
KR102090978B1 (ko) 2020-03-19
CN105051849B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
TWI390743B (zh) Pigment for a dye-sensitized solar cell, an electrode for a dye-sensitized solar cell, and a method of manufacturing the same
US20110240112A1 (en) Flexible dye-sensitized solar cell and preparation method thereof
WO2007100095A1 (ja) 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池
Kim et al. Room temperature deposition of TiO 2 using nano particle deposition system (NPDS): Application to dye-sensitized solar cell (DSSC)
JP2006282970A (ja) 色素増感型太陽電池用積層フィルムおよびそれを用いた色素増感型太陽電池用電極
TWI502761B (zh) 製膜方法、製膜體、及色素增感太陽電池
WO2015040738A1 (ja) 色素増感型太陽電池用多孔質膜および色素増感型太陽電池
TWI646716B (zh) 染料敏化型太陽電池用多孔質膜及染料敏化型太陽電池
JP2012119189A (ja) 光電極及び色素増感太陽電池
JP2012241244A (ja) 製膜体、該製膜体を備えた光電極、及び該光電極を備えた色素増感太陽電池
Agarkar et al. Dye sensitized solar cell (DSSC) by a novel fully room temperature process: a solar paint for smart windows and flexible substrates
Kim et al. Photovoltaic characteristics of a dye-sensitized solar cell (DSSC) fabricated by a nano-particle deposition system (NPDS)
JP2012248789A (ja) 太陽電池の製造方法
JP4929658B2 (ja) 酸化物半導体電極用積層体
JP6134106B2 (ja) 多孔質膜の製造方法
JP5059289B2 (ja) 色素増感型太陽電池用積層体、色素増感型太陽電池用電極およびその製造方法
JP6196547B2 (ja) 光電極及びその製造方法、色素増感太陽電池
WO2015002285A1 (ja) 半導体膜の製造方法、半導体膜製造用原料粒子、半導体膜、光電極および色素増感太陽電池
Chiang et al. A study of the use of fluorine-containing UV-curable adhesives to seal dye-sensitized solar cells for long-term thermal stability
JP2013196897A (ja) 光電極および色素増感太陽電池
JP2020152951A (ja) セラミック膜の形成方法、セラミック膜の製造装置、フィルム型フレキシブル太陽電池
JP6595849B2 (ja) 光電極及びその製造方法並びに太陽電池
JP2013181233A (ja) 製膜方法及び製膜体並びに色素増感太陽電池
JP2020152592A (ja) エアロゾルデポジッション法用の多孔質層形成用粉体、脆性材料成形体の製造方法、光電極の製造方法及び色素増感型太陽電池の製造方法
JP2013181234A (ja) 製膜装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074744.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537523

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157025370

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893925

Country of ref document: EP

Kind code of ref document: A1