WO2009087848A1 - 色素増感型太陽電池 - Google Patents

色素増感型太陽電池 Download PDF

Info

Publication number
WO2009087848A1
WO2009087848A1 PCT/JP2008/072409 JP2008072409W WO2009087848A1 WO 2009087848 A1 WO2009087848 A1 WO 2009087848A1 JP 2008072409 W JP2008072409 W JP 2008072409W WO 2009087848 A1 WO2009087848 A1 WO 2009087848A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
metal
metal oxide
layer
solar cell
Prior art date
Application number
PCT/JP2008/072409
Other languages
English (en)
French (fr)
Inventor
Yusuke Kawahara
Takahiko Nojima
Hirokazu Koyama
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2009548869A priority Critical patent/JPWO2009087848A1/ja
Priority to US12/811,160 priority patent/US20100300529A1/en
Publication of WO2009087848A1 publication Critical patent/WO2009087848A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye-sensitized solar cell.
  • the present invention relates to a dye-sensitized solar cell having excellent photoelectric conversion efficiency and improved durability.
  • the operating principle of a general dye-sensitized solar cell is as follows.
  • the sensitizing dye adsorbed on the metal oxide semiconductor electrode absorbs sunlight to generate excited electrons.
  • the excited electrons move to the metal oxide semiconductor and further pass through the transparent conductive film. It moves to the counter electrode through the circuit to be connected.
  • the electrons that have moved to the counter electrode reduce the electrolytic solution, and the electrolytic solution releases the electrons and reduces the sensitizing dye that is in an oxidized state.
  • the electrolytic solution is in contact with the transparent conductive film, and excited electrons are injected from the transparent conductive film into the electrolytic solution.
  • the open circuit voltage is lowered, resulting in a problem that the photoelectric conversion efficiency is lowered.
  • the electrolyte solution containing an iodine redox there existed a subject that a conductive film corroded by electrolyte solution and durability deteriorated because the electrolyte solution is contacting the transparent conductive film.
  • a metal oxide thin film such as indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO) is formed on a substrate as a transparent conductive film by vapor deposition or sputtering. Is formed.
  • ITO indium-doped tin oxide
  • FTO fluorine-doped tin oxide
  • this conventional transparent conductive film has a high material cost and manufacturing cost, and the above metal oxide constituting the transparent conductive film has a disadvantage that the resistivity is remarkably higher than that of a metal or the like. This was one of the reasons for the decrease in efficiency. Although the low efficiency can be lowered by increasing the thickness of the transparent conductive film, the light transmittance is lowered by this, and further, the material cost and the manufacturing cost are increased.
  • the present invention is intended to solve the above-described conventional problems, and its purpose is to realize reverse photoelectric transfer and further improve the electrical conductivity of the electrode, thereby realizing excellent photoelectric conversion efficiency and durability. It is to provide a dye-sensitized solar cell that is remarkably excellent in properties, and to provide a dye-sensitized solar cell that is also suitable when a resin film is used as a base material.
  • the problem of the present invention has been solved by providing an improved transparent conductive layer having a metal oxide intermediate layer and further having a metal current collecting layer. Specifically, it is as follows.
  • a dye-sensitized solar cell comprising a metal oxide semiconductor layer composed of a semiconductor film having a dye adsorbed on the surface of a conductive substrate, a charge transfer layer, and a counter electrode, the conductive substrate And a metal oxide intermediate layer composed of metal oxide fine particles between the metal oxide semiconductor layer, and the conductive base material is a metal current collector layer composed of fine metal wires on a transparent base material and a conductive material
  • a dye-sensitized solar cell comprising a transparent conductive layer containing a polymer.
  • the present invention it is possible to provide a dye-sensitized solar cell that achieves excellent photoelectric conversion efficiency and remarkably excellent durability, and further suitable for use of a resin film as a base material.
  • a sensitive solar cell could be provided.
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of the dye-sensitized solar cell of the present invention.
  • the dye-sensitized solar cell of the present invention has a metal current collecting layer 11 and a transparent conductive layer 10 on a transparent substrate 50a as a conductive substrate, and a metal oxide intermediate layer thereon.
  • a layer 60, a metal oxide semiconductor layer 20 composed of a semiconductor film having a dye adsorbed on its surface, and a charge transfer layer (sometimes referred to as an “electrolyte layer”) 30 are sequentially provided.
  • 50 has a conductive layer 40 on the surface.
  • the dye-sensitized solar cell of the present invention When the dye-sensitized solar cell of the present invention is irradiated with sunlight or an electromagnetic wave equivalent to sunlight, the dye adsorbed on the metal oxide semiconductor layer 20 is excited by absorbing the irradiated sunlight or electromagnetic wave. Electrons generated by excitation move from the metal oxide semiconductor layer 20 through the metal oxide intermediate layer 60 to the metal current collecting layer 11 and the transparent conductive layer 10, and then through the external circuit, the conductive layer of the counter electrode. 40, the redox electrolyte of the charge transfer layer 30 is reduced.
  • the dye that has moved the electrons is an oxidant, but when the electrons are supplied from the counter electrode via the redox electrolyte of the charge transfer layer 30, it is reduced and returned to the original state, and at the same time The redox electrolyte of the moving layer 30 is oxidized and returns to a state where it can be reduced again by electrons supplied from the counter electrode. In this way, electrons flow and the dye-sensitized solar cell of the present invention can be configured.
  • the dye-sensitized solar cell of the present invention has a metal oxide intermediate layer composed of metal oxide fine particles between a conductive substrate and a metal oxide semiconductor layer.
  • the same metal oxide as that used for the metal oxide semiconductor layer described later can be used.
  • the reverse current at the time of light irradiation is small, the forward electron transfer is increased, and high photoelectric conversion efficiency can be obtained, so that it is the same as the conduction band bottom potential of the metal oxide used for the metal oxide semiconductor layer.
  • the metal oxide used for the metal oxide intermediate layer includes zirconium oxide, strontium titanate, niobium oxide, oxide Zinc is preferable, and strontium titanate and niobium oxide are more preferable.
  • the thickness of the metal oxide intermediate layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the porosity of the metal oxide intermediate layer is preferably smaller than the porosity of the metal oxide semiconductor layer, specifically 20% or less, more preferably 10% or less. When the porosity of the metal oxide intermediate layer is reduced, not only is it difficult for electrons to move in the reverse direction, but also adhesion and durability with the conductive substrate are improved. Further, the metal oxide intermediate layer may have a laminated structure of two or more layers, and the composition, thickness, porosity and the like of the metal oxide fine particles to be formed can be arbitrarily controlled.
  • the porosity means a porosity that is penetrable in the thickness direction of the dielectric, and can be measured using a commercially available device such as a mercury porosimeter (Shimadzu porer 9220 type).
  • the method for producing the metal oxide intermediate layer is not particularly limited, and is a vacuum deposition method, ion sputtering method, cast method, coating method, spin coating method, spray method, aerosol deposition method (AD method), dipping method, electrolytic weight
  • a vacuum deposition method ion sputtering method, cast method, coating method, spin coating method, spray method, aerosol deposition method (AD method), dipping method, electrolytic weight
  • Various thin film forming methods such as a combination method, a photoelectrolytic polymerization method, and a pressure press method can be given.
  • the vacuum vapor deposition method and the ion sputtering method can be performed under well-known conditions using a commercially available vapor deposition apparatus or sputtering apparatus.
  • the coating method etc. it can carry out according to the coating method of the semiconductor fine particle of the metal oxide semiconductor layer mentioned later.
  • methods, such as a pressure press method which does not require a high temperature heating process can be applied preferably.
  • the conductive base material has a metal current collecting layer made of fine metal wires on a transparent base material and a transparent conductive layer containing a conductive polymer.
  • Metal current collector layer There is no particular limitation on the shape of the metal current collecting layer made of fine metal wires, and the metal current collecting layer can be formed in a mesh shape, a stripe shape, or an arbitrary pattern. There are no particular limitations on the material of the fine metal wires, and any metal such as gold, silver, copper, platinum, aluminum, nickel, tungsten, or an alloy containing a plurality of these can be selected and used. In particular, from the viewpoint of conductivity or depending on the method for producing a thin wire, it is also one of preferred embodiments to use silver.
  • the line width of the fine metal wire and the aperture ratio of the metal current collecting layer there is no particular limitation on the line width of the fine metal wire and the aperture ratio of the metal current collecting layer, and it can be arbitrarily controlled and applied.
  • the line width decreases, the conductivity decreases, but the aperture ratio increases, and the light transmittance as a conductive substrate increases.
  • the conductivity improves, but the aperture ratio decreases.
  • the light transmittance as the conductive substrate is lowered.
  • the line width of the fine metal wire is specifically preferably 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 5 ⁇ m or more and 10 ⁇ m or less.
  • wire width of a metal fine wire it can measure using the microscope etc. which have a ranging function.
  • the aperture ratio of the metal current collecting layer is preferably 93% or more and 98% or less, and more preferably 95% or more and 98% or less.
  • the aperture ratio can be calculated by analyzing an image taken with a microscope or the like and determining the area of the aperture.
  • the interval between the fine metal wires is a factor that affects the aperture ratio, and can be set arbitrarily, but can usually be set in the range of 10 ⁇ m to 500 ⁇ m.
  • the height of a metal fine wire when the whole smoothness is considered as an electroconductive base material, it is preferable that they are 1 micrometer or more and 10 micrometers or less.
  • a method for forming a metal current collecting layer made of fine metal wires on a transparent substrate will be described.
  • the method for forming the fine metal wire such as vacuum deposition, sputtering, ion plating, CVD, plasma CVD, or coating, ink jet, screen printing, aerosol deposition, and silver. Any method such as a salt method can be applied. Among these methods, it is preferable to apply an ink jet method or a silver salt method.
  • a photoresist is coated on a transparent substrate, pattern exposure is performed through a mask, a portion corresponding to the fine metal wire pattern of the photoresist is removed by etching, and then, for example, the metal film is formed by sputtering. After the film is uniformly formed, the photoresist can be removed by a lift-off method to form a fine metal wire.
  • a metal film is uniformly formed on the substrate, and then a photoresist is coated on the metal film, and after pattern exposure through a mask, the positive portion of the resist is dissolved and removed to be exposed. A method of forming a fine metal wire by removing the metal film by etching may be used.
  • a metal particle that becomes a fine metal wire and a binder such as glass fine particles are mixed into a paste, and a predetermined pattern is formed by a method such as a coating method, an ink jet method, or a screen printing method. And a method of fusing metal particles by heating and baking.
  • the firing temperature is preferably 600 ° C. or lower.
  • the metal fine particles used when applying methods such as the coating method, ink jet method, and screen printing method, and various shapes of fine particles can be used. It is preferable to use nanowires or spherical particles, and it is more preferable to use nanowires.
  • the size of the nanowire is not particularly limited, but the diameter is preferably 10 nm to 100 nm, and the wire length is preferably 10 ⁇ m to 100 ⁇ m.
  • the electrostatic ink jet method can continuously print a high-viscosity liquid with high accuracy, and can be used for forming fine metal wires.
  • a liquid discharge head having a nozzle having an internal diameter of 0.5 to 30 ⁇ m for discharging a charged liquid, supply means for supplying a solution into the nozzle, and a discharge voltage applied to the solution in the nozzle. It is preferably formed using a liquid ejection device provided with ejection voltage application means for applying. According to this method, there is no thickening of the intersection of the fine metal wires, and thinning is possible.
  • Specific methods for forming fine metal wires using such electrostatic inkjet include, for example, a method of forming fine metal wires by electroless plating after applying a plating catalyst ink in a desired pattern, and ink containing fine metal particles. Or, a method of applying an ink containing a metal ion or metal complex ion and a reducing agent in a desired pattern, or applying a metal ion or metal complex ion-containing ink and a reducing agent-containing ink from different nozzles in a desired pattern. Can do.
  • a metal fine particle-containing ink or an ink containing a metal ion or metal complex ion and a reducing agent is applied in a desired pattern, or a metal ion or metal complex ion-containing ink and a reducing agent-containing ink are applied from different nozzles in a desired pattern.
  • the application method is more preferable because an additional step such as plating is not required.
  • metal fine particles are contained. Since unevenness is less likely to occur on the surface of the fine metal wire than when ink is used, it can be most preferably used in applications where smoothness is required.
  • the viscosity of the ink used in the electrostatic ink jet method is preferably 30 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • a layer containing silver halide grains is provided on a transparent substrate, and then exposed and developed in a desired pattern to form a metallic silver portion of the desired pattern, and further physical development It is a method of forming a silver fine wire by processing.
  • a decrease in aperture ratio due to thickening of the intersection which can be a problem in the printing method, is less likely to occur, and it is possible to form dense silver lines, and it is preferable to apply the silver salt method It is one of.
  • the silver halide emulsion contains a binder.
  • the amount of the binder in the layer containing silver halide grains is 0.05 g / m 2. It is preferable that it is 0.25 g / m 2 or more.
  • the Ag / binder ratio in the layer containing silver halide grains is preferably 0.3 or more and 0.8 or less by volume ratio.
  • the silver halide grains are preferably silver chlorobromide grains, having a silver chloride content of 55 mol% to 95 mol% and a silver bromide content of 5 mol% to 45 mol%. Further preferred.
  • JP-A-2006-352073 For details of exposure, development processing, and further physical development processing, the method described in JP-A-2006-352073 can be referred to.
  • the fine metal wires may be plated or a corrosion prevention layer for preventing corrosion due to the electrolyte may be provided.
  • the plating treatment it can be performed under arbitrary conditions by an electrolytic plating method or an electroless plating method.
  • a corrosion prevention layer it is possible to apply a metal such as titanium, nickel, or aluminum, or an alloy thereof, and further apply an amorphous or crystalline insulating layer as the corrosion prevention layer.
  • the transparent conductive layer according to the present invention contains a conductive polymer.
  • a conductive polymer By containing a conductive polymer, it is possible to make a surface electrode with little loss even if it has a large area, especially when using a resin film as a transparent substrate, it is bent compared to inorganic conductive films such as ITO It can be set as a highly conductive substrate.
  • the conductive polymer contained in the transparent conductive layer it is possible to use polymers having various known structures, such as polypyrrole, polyindole, polycarbazole, polythiophene, polyaniline, polyacetylene, polyfuran. , Polyparaphenylene vinylene, polyazulene, polyparaphenylene, polyparaphenylene sulfide, polyisothianaphthene, polythiazyl, polyacene, and other conductive polymers can be used. Among these, polyethylene dioxythiophene and polyaniline are preferable from the viewpoint of conductivity and transparency.
  • the above long-chain sulfonic acid is preferable.
  • Examples of the long chain sulfonic acid include dinonyl naphthalene disulfonic acid, dinonyl naphthalene sulfonic acid, and dodecylbenzene sulfonic acid.
  • Examples of the halogen include Cl 2 , Br 2 , I 2 , ICl 3 , IBr, IF 5 and the like.
  • Examples of the Lewis acid include PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , SO 3 , and GaCl 3 .
  • Examples of the protonic acid include HF, HCl, HNO 3 , H 2 SO 4 , HBF 4 , HClO 4 , FSO 3 H, ClSO 3 H, CF 3 SO 3 H, and the like.
  • the transition metal halide NbF 5, TaF 5, MoF 5, WF 5, RuF 5, BiF 5, TiCl 4, ZrCl 4, MoCl 5, MoCl 3, WCl 5, FeCl 3, TeCl 4, SnCl 4, SeCl 4 , FeBr 3 , SnI 5 and the like.
  • the transition metal compound AgClO 4, AgBF 4, La (NO 3) 3, Sm (NO 3) 3 and the like.
  • Examples of the alkali metal include Li, Na, K, Rb, and Cs.
  • Examples of the alkaline earth metal include Be, Mg, Ca, Sc, and Ba.
  • the dopant for the conductive polymer may be introduced into fullerenes such as hydrogenated fullerene, hydroxylated fullerene, and sulfonated fullerene.
  • the dopant is preferably contained in an amount of 0.01 parts by mass or more, and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the conductive polymer.
  • a water-soluble organic compound may be contained in the transparent conductive layer in addition to the conductive polymer.
  • a water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include an acid group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • examples of the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, ⁇ -butyrolactone, and the like.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. Among these, it is particularly preferable to use at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol. Moreover, these may be used individually by 1 type and may use 2 or more types together.
  • the content of the water-soluble organic compound with respect to 100 parts by mass of the conductive polymer is preferably 0.001 part by mass or more, more preferably 0.01 to 50 parts by mass, and particularly preferably 0.01 to 10 parts by mass.
  • the method for forming the transparent conductive layer is not particularly limited, and a known method for forming a conductive polymer layer can be arbitrarily applied. However, a coating liquid containing a conductive polymer or a dopant is prepared. A method of coating this on a transparent substrate or a metal current collecting layer is preferred.
  • a conductive substrate according to the present invention as long as it has a metal current collecting layer composed of fine metal wires on a transparent substrate, and a transparent conductive layer containing a conductive polymer, there is no particular limitation in the order of the configuration,
  • the transparent conductive layer may be formed after the metal current collecting layer is first formed on the transparent substrate, or the metal current collecting layer may be formed after the transparent conductive layer is first formed.
  • the transparent conductive layer is formed after the metal current collector layer is first formed on the transparent substrate.
  • the transparent conductive layer covers the opening of the metal current collecting layer and the upper part of the thin metal wire so that the uppermost surface of the conductive substrate is smooth and the surface of the fine metal wire does not come into contact with the electrolyte. Most preferably it is applied.
  • the smoothing in the present invention specifically means that the arithmetic average roughness Ra defined by JIS B-0601 is 1 ⁇ m or less.
  • the measurement of the average roughness for example, an RSTPLUS non-contact three-dimensional micro surface shape measurement system manufactured by WYKO can be used.
  • the film thickness of the transparent conductive layer is preferably from 0.01 ⁇ m to 5 ⁇ m, more preferably from 0.05 ⁇ m to 2.0 ⁇ m.
  • the transparent conductive layer covers the upper part of the metal current collecting layer, it is preferable that the upper part of the thin metal wire has this film thickness.
  • the conductive substrate used in the dye-sensitized solar cell of the present invention is a mode in which a metal current collecting layer and a transparent conductive film are used in combination, and the surface resistance value can be controlled to be low.
  • the surface resistance value is preferably 10 ⁇ / ⁇ or less, more preferably 5 ⁇ / ⁇ or less, and particularly preferably 1 ⁇ / ⁇ or less.
  • the surface resistivity can be measured, for example, according to JIS K6911, ASTM D257, etc., and can be measured using a commercially available surface resistivity meter.
  • Transparent substrate As the transparent substrate used for the conductive substrate used in the dye-sensitized solar cell of the present invention, a glass plate or a resin film can be used.
  • the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene and cyclic olefin resins, polyvinyl chloride, poly Vinyl resins such as vinylidene chloride, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), etc. are used. be able to.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PES polystyrene and cyclic olefin resins
  • polyvinyl chloride poly Vinyl resins such as vinylidene chloride, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), poly
  • a biaxially stretched polyethylene terephthalate film, an acrylic resin film, and a triacetyl cellulose film are preferable, and a biaxially stretched polyethylene terephthalate film is preferable. Most preferred.
  • Metal oxide semiconductor layer The metal oxide semiconductor layer according to the present invention will be described.
  • the metal oxide constituting the metal oxide semiconductor layer according to the present invention is not particularly limited as long as it is a semiconductor that receives electrons generated by light irradiation with a dye adsorbed on the semiconductor and transmits the electrons to a conductive substrate.
  • Various metal oxides used in the dye-sensitized solar cell can be used.
  • various metal oxide semiconductors such as titanium oxide, zirconium oxide, zinc oxide, vanadium oxide, niobium oxide, tantalum oxide, tungsten oxide, strontium titanate, calcium titanate, magnesium titanate, barium titanate, niobium
  • metal oxide semiconductors such as potassium oxide and strontium tantalate, transition metal oxides such as magnesium oxide, strontium oxide, aluminum oxide, cobalt oxide, nickel oxide and manganese oxide, cerium oxide, gadolinium oxide, samarium oxide, ytterbium oxide And metal oxides such as lanthanoid oxides, and inorganic insulators such as natural or synthetic silicate compounds represented by silica.
  • the metal oxide particles may have a core-shell structure or may be doped with a different metal element, and a metal oxide having an arbitrary structure and composition can be applied.
  • the average particle diameter of the metal oxide particles is preferably 10 nm to 300 nm, more preferably 10 nm to 100 nm.
  • the shape of the metal oxide is not particularly limited, and may be spherical, acicular or amorphous crystals.
  • the method for forming metal oxide particles is not particularly limited, and various liquid phase methods such as hydrothermal reaction method, sol-gel method / gel sol method, colloid chemical synthesis method, coating pyrolysis method, spray pyrolysis method, and chemical vapor phase It can be formed using various gas phase methods such as a precipitation method.
  • a known method can be applied.
  • (1) Suspension containing metal oxide fine particles or a precursor thereof (2) A method for forming a semiconductor layer by drying and baking, and (2) immersing the conductive substrate in a colloidal solution and subjecting the metal oxide semiconductor particles to a conductive group by electrophoresis.
  • Electrophoretic electrodeposition method that adheres to the material, (3) A method in which a colloidal solution or dispersion is mixed and applied with a foaming agent, and then sintered to make it porous.
  • a polymer microbead is mixed and applied. After that, a method of removing the polymer microbeads by heat treatment or chemical treatment to form voids and making it porous can be applied.
  • a known method can be applied particularly as a coating method, and examples thereof include a screen printing method, an ink jet method, a roll coating method, a doctor blade method, a spin coating method, and a spray coating method. Can do.
  • the particle diameter of the metal oxide fine particles in the suspension is preferably fine and is preferably present as primary particles.
  • the suspension containing the metal oxide fine particles is prepared by dispersing the metal oxide fine particles in a solvent, and the solvent is not particularly limited as long as the metal oxide fine particles can be dispersed, and water, Organic solvents, mixtures of water and organic solvents are included.
  • the organic solvent alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetyl acetone, hydrocarbons such as hexane and cyclohexane, and the like are used.
  • a surfactant and a viscosity modifier can be added to the suspension as necessary.
  • concentration range of the metal oxide fine particles in the solvent is preferably 0.1 to 70% by mass, and more preferably 0.1 to 30% by mass.
  • the suspension containing the metal oxide core fine particles obtained as described above is applied onto a conductive substrate, dried, etc., and then baked in air or in an inert gas to be conductive.
  • a metal oxide semiconductor layer is formed on the conductive substrate.
  • the semiconductor layer obtained by applying and drying the suspension on the conductive substrate is composed of an aggregate of metal oxide fine particles, and the particle size of the fine particles corresponds to the primary particle size of the metal oxide fine particles used. To do. Since the metal oxide semiconductor layer formed on the conductive base material has low bonding strength with the conductive base material and fine particles, and the mechanical strength is low, this metal oxide fine particle assembly
  • the body film is preferably fired to increase the mechanical strength, and is preferably a fired product film that is strongly fixed to the substrate.
  • the metal oxide semiconductor layer may have any structure, but is preferably a porous structure film (also referred to as a porous layer having voids).
  • the porosity of the metal oxide semiconductor layer is preferably 0.1 to 20% by volume, and more preferably 5 to 20% by volume.
  • the porosity of the metal oxide semiconductor layer means a porosity that is penetrating in the thickness direction of the dielectric, and can be measured using a commercially available apparatus such as a mercury porosimeter (Shimadzu porer 9220 type).
  • the thickness of the metal oxide semiconductor layer is preferably at least 10 nm or more, and more preferably 100 to 10,000 nm.
  • the firing temperature is preferably lower than 1000 ° C., and more preferably in the range of 200 to 800 ° C. preferable.
  • the metal oxide semiconductor layer is formed on the metal oxide intermediate layer as described above, the metal oxide semiconductor layer is formed on the metal oxide semiconductor film as necessary for the purpose of improving electronic conductivity. May be subjected to a surface treatment with a metal oxide.
  • the surface treatment composition is preferably the same type of composition as that of the metal oxide forming the metal oxide semiconductor layer, particularly from the viewpoint of electron conductivity between the metal oxide fine particles.
  • a metal oxide precursor to be surface treated is applied to the semiconductor film, or the semiconductor film is a precursor.
  • a surface treatment made of a metal oxide can be performed by immersing in a body solution and further performing a firing treatment as necessary.
  • the surface treatment is performed by using an electrochemical treatment using a titanium tetrachloride aqueous solution or titanium alkoxide which is a precursor of titanium oxide, or using a precursor of an alkali metal titanate or an alkaline earth titanate metal.
  • the firing temperature and firing time at this time are not particularly limited and can be arbitrarily controlled, but are preferably 200 ° C. or lower.
  • the dye adsorbed on the surface of the metal oxide semiconductor layer described above has absorption in various visible light regions or infrared light regions, and has a lowest vacancy level higher than the conduction band of the metal oxide semiconductor.
  • dyes can be used.
  • azo dyes for example, azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, cyanidin dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, perylene dyes
  • examples thereof include dyes, indigo dyes, phthalocyanine dyes, naphthalocyanine dyes, rhodamine dyes, rhodanine dyes, and the like.
  • Metal complex dyes are also preferably used.
  • Various metals such as Tc, Te, and Rh can be used.
  • polymethine dyes such as cyanine dyes, merocyanine dyes, and squarylium dyes are one of the preferred embodiments.
  • JP-A-11-35836, JP-A-11-67285, JP-A-11- No. 86916, JP-A-11-97725, JP-A-11-158395, JP-A-11-163378, JP-A-11-214730, JP-A-11-214731, JP-A-11-238905 examples thereof include dyes described in each specification such as JP-A No. 2004-207224, JP-A No. 2004-319202, European Patent Nos. 892,411 and 911,841.
  • a metal complex dye is also one preferred embodiment, and a metal phthalocyanine dye, a metal porphyrin dye or a ruthenium complex dye is preferable, and a ruthenium complex dye is particularly preferable.
  • ruthenium complex dyes include U.S. Pat. Nos. 4,927,721, 4,684,537, 5,084,365, 5,350,644, No. 5,463,057, No. 5,525,440, JP-A-7-249790, JP-A-10-504512, WO98 / 50393, JP2000- Examples include complex dyes described in Japanese Patent No. 26487, Japanese Patent Application Laid-Open No. 2001-223037, Japanese Patent Application Laid-Open No. 2001-226607, Japanese Patent No. 3430254, and the like.
  • a rhodanine dye as the dye adsorbed on the surface of the metal oxide.
  • Any structure can be preferably used as long as it is a rhodanine-based dye.
  • at least a compound represented by the following general formula (1) or a compound represented by the following general formula (2) is preferred. It is particularly preferable to use one type.
  • R 11 represents a substituent
  • n represents an integer of 0 to 4.
  • X 11 to X 14 each represents an oxygen atom, a sulfur atom or a selenium atom
  • R 12 and R 13 each represents a hydrogen atom or a substituent.
  • R 14 represents a carboxy group or a phosphono group
  • L 11 represents a divalent linking group.
  • R 15 represents an alkyl group.
  • R 21 represents a substituent
  • n represents an integer of 0 to 4.
  • X 21 to X 26 each represents an oxygen atom, a sulfur atom or a selenium atom
  • R 22 and R 23 each represents a hydrogen atom or a substituent.
  • R 24 and R 26 each represent a hydrogen atom, a carboxy group or a phosphono group, and at least one of R 24 and R 26 represents a carboxy group or a phosphono group.
  • L 21 and L 22 each independently represent a divalent linking group.
  • R 25 represents an alkyl group.
  • the compound represented by the general formula (1) (dye) and the compound represented by the general formula (2) (dye) are derived from the compound in addition to the compound represented by the general formula.
  • Ions and salts For example, when the molecular structure has a sulfonic acid group (sulfo group), it is formed by an anion generated by dissociation of the sulfonic acid group in addition to the compound, and the anion and a counter cation. Salt.
  • Such a salt may be a salt formed with a metal ion such as sodium salt, potassium salt, magnesium salt, calcium salt, or the like, such as pyridine, piperidine, triethylamine, aniline, diazabicycloundecene, etc. It may be a salt formed with an organic base.
  • a metal ion such as sodium salt, potassium salt, magnesium salt, calcium salt, or the like, such as pyridine, piperidine, triethylamine, aniline, diazabicycloundecene, etc. It may be a salt formed with an organic base.
  • a compound having a basic group in the molecule a cation produced by protonation of the compound, and a hydrochloride, sulfate, acetate, methylsulfonate, p-toluenesulfonate, etc. Also included are salts formed with acids.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) are, for example, “Cyanine Soybean and Related Compounds” (1964, Inter Science Published by Publishers), U.S. Pat. Nos. 2,454,629, 2,493,748, JP-A-6-301136, JP-A-2003-203684, etc. Can be synthesized with reference to the method.
  • These compounds preferably have a large extinction coefficient and are stable against repeated redox reactions.
  • the compound (dye) is preferably chemically adsorbed on the metal oxide semiconductor, and has a functional group such as a carboxy group, a sulfonic acid group, a phosphoric acid group, an amide group, an amino group, a carbonyl group, or a phosphine group. It is preferable to have.
  • two or more kinds of dyes can be used together or mixed.
  • the dye to be used or mixed and the ratio thereof can be selected so as to match the wavelength range and intensity distribution of the target light source.
  • the charge transfer layer is a layer containing a charge transport material having a function of replenishing electrons to the oxidant of the dye.
  • charge transport materials that can be used in the present invention include a solvent in which a redox counter ion is dissolved, an electrolytic solution such as a room temperature molten salt containing the redox counter ion, and a solution of the redox counter ion as a polymer. Examples thereof include a gel-like quasi-solidified electrolyte impregnated with a matrix, a low-molecular gelling agent, and the like, and a polymer solid electrolyte.
  • electron transport materials and hole transport materials can also be used as materials whose carrier transport in solids is involved in electrical conduction, and these can be used in combination. Is possible.
  • the redox counter ion contained is not particularly limited as long as it can be used in a generally known solar cell or the like.
  • a redox counter ion such as I ⁇ / I 3 ⁇ and Br 2 ⁇ / Br 3 ⁇
  • ferrocyanate / ferricyanate ferrocyanate / ferricyanate
  • ferrocene / ferricinium ion cobalt Metal redox systems such as metal complexes such as complexes, organic redox systems such as alkylthiol-alkyldisulfides, viologen dyes, hydroquinones / quinones, sulfur compounds such as sodium polysulfide, alkylthiols / alkyldisulfides, etc. .
  • iodine-based compounds More specifically as iodine-based compounds, combinations of iodine and metal iodides such as LiI, NaI, KI, CsI, and CaI 2, and quaternary ammonium compounds such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc. And combinations with iodine salts of quaternary imidazolium compounds.
  • iodine and metal iodides such as LiI, NaI, KI, CsI, and CaI 2
  • quaternary ammonium compounds such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.
  • quaternary ammonium compounds such as tetraalkylammonium iodide, pyridinium iodide, imidazol
  • bromine-based combinations include bromine and metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr 2 , and combinations of tetraalkylammonium bromide, pyridinium bromide, and the like with quaternary ammonium compounds such as bromine salts. Can be mentioned.
  • a solvent As a solvent, it is an electrochemically inert compound that has low viscosity and improved ion mobility, or has a high dielectric constant and improved effective carrier concentration, and can exhibit excellent ionic conductivity. Is desirable.
  • carbonate compounds such as dimethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl Ethers, chain ethers such as polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, Ethylene glycol, diethylene glycol, triethyl Polyhydric alcohols such as ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, glycerin, nitrile compounds such as acetonitrile, glutaronitrile, propionitrile, methoxy
  • a preferable electrolyte concentration is 0.1 to 15M, and more preferably 0.2 to 10M.
  • a preferable concentration of iodine is 0.01 to 0.5M.
  • the molten salt electrolyte is preferable from the viewpoint of achieving both photoelectric conversion efficiency and durability.
  • Examples of the molten salt electrolyte include International Publication No. 95/18456, JP-A-8-259543, JP-A-2001-357896, Electrochemistry, Vol. 65, No. 11, page 923 (1997) and the like.
  • electrolytes containing known iodine salts such as pyridinium salts, imidazolium salts, and triazolium salts described in (1). These molten salt electrolytes are preferably in a molten state at room temperature, and it is preferable not to use a solvent.
  • Gels prepared by adding an electrolyte or electrolyte solution to an oligomer or polymer matrix, polymer addition, addition of low-molecular gelling agent or oil gelling agent, polymerization including polyfunctional monomers, polymer cross-linking reaction, etc. (Pseudo-solidification) can also be used.
  • polyacrylonitrile and polyvinylidene fluoride can be preferably used.
  • a preferred compound is a compound having an amide structure in the molecular structure.
  • preferred crosslinkable reactive groups are nitrogen-containing heterocycles (for example, pyridine ring, imidazole ring, thiazole ring, oxazole ring, triazole ring, morpholine ring, piperidine ring, piperazine ring, etc.), and preferred crosslinking agents Is a bifunctional or more functional reagent (for example, alkyl halide, halogenated aralkyl, sulfonate, acid anhydride, acid chloride, isocyanate, etc.) capable of electrophilic reaction with a nitrogen atom.
  • the concentration of the electrolyte is usually 0.01 to 99% by mass, preferably about 0.1 to 90% by mass.
  • an electrolyte composition containing an electrolyte and metal oxide particles and / or conductive particles can also be used.
  • the metal oxide particles TiO 2, SnO 2, WO 3, ZnO, ITO, BaTiO 3, Nb 2 O 5, In 2 O 3, ZrO 2, Ta 2 O 5, La 2 O 3, SrTiO 3, Y
  • the metal oxide particles include one or a mixture of two or more selected from the group consisting of 2 O 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , and Al 2 O 3 . These may be doped with impurities or complex oxides.
  • the conductive particles include those made of a substance mainly composed of carbon.
  • the polymer electrolyte is a solid substance capable of dissolving the redox species or binding with at least one substance constituting the redox species, for example, polyethylene oxide, polypropylene oxide, polyethylene succinate, A polymer compound such as poly- ⁇ -propiolactone, polyethyleneimine, polyalkylene sulfide or a cross-linked product thereof, polyphosphazene, polysiloxane, polyvinyl alcohol, polyacrylic acid, polyalkylene oxide, Examples include those obtained by adding an ether segment or an oligoalkylene oxide structure as a side chain, or copolymers thereof. Among them, those having an oligoalkylene oxide structure as a side chain, and those having a polyether segment as a side chain are particularly preferred. Shall is preferable.
  • a method of polymerizing in the coexistence of a monomer that becomes a polymer compound and a redox species a solid such as a polymer compound is dissolved in a solvent as necessary. Then, the above-mentioned method of adding the redox species can be used.
  • the content of the redox species can be appropriately selected according to the required ion conduction performance.
  • a solid hole transport material which is organic or inorganic or a combination of both can be used.
  • Organic hole transport materials include aromatic amines and triphenylene derivatives, polyacetylene and derivatives thereof, poly (p-phenylene) and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, polythienylene vinylene and derivatives thereof.
  • Conductive polymers such as derivatives, polythiophene and derivatives thereof, polyaniline and derivatives thereof, polytoluidine and derivatives thereof can be preferably used.
  • the hole transport material may be added with a compound containing a cation radical such as tris (4-bromophenyl) aminium hexachloroantimonate, or the potential control of the oxide semiconductor surface ( A salt such as Li [(CF 3 SO 2 ) 2 N] may be added to perform compensation of the space charge layer.
  • a p-type inorganic compound semiconductor can be used as the inorganic hole transport material.
  • the p-type inorganic compound semiconductor preferably has a band gap of 2 eV or more, and more preferably 2.5 eV or more.
  • the ionization potential of the p-type inorganic compound semiconductor needs to be smaller than the ionization potential of the dye-adsorbing electrode from the condition that the holes of the dye can be reduced.
  • the preferable range of the ionization potential of the p-type inorganic compound semiconductor varies depending on the dye used, it is generally preferably 4.5 to 5.5 eV, more preferably 4.7 to 5.3 eV.
  • a preferred p-type inorganic compound semiconductor is a compound semiconductor containing monovalent copper, preferably CuI and CuSCN, and most preferably CuI.
  • the preferred hole mobility of the charge transfer layer containing the p-type inorganic compound semiconductor is 10 ⁇ 4 to 10 4 m 2 / V ⁇ sec, more preferably 10 ⁇ 3 to 10 3 cm 2 / V ⁇ sec.
  • the preferable conductivity of the charge transfer layer is 10 ⁇ 8 to 10 2 S / cm, and more preferably 10 ⁇ 6 to 10 S / cm.
  • the method for forming the charge transfer layer between the semiconductor electrode and the counter electrode is not particularly limited.
  • the charge transfer layer is formed by filling the electrolyte solution or various electrolytes described above to form a charge transfer layer, or by dropping or coating the electrolyte or various electrolytes on the semiconductor electrode or the counter electrode.
  • a method of overlaying the other electrode on the top can be used.
  • the semiconductor electrode is a portion from the conductive base material to the metal oxide semiconductor layer.
  • the gap between the semiconductor electrode and the counter electrode is sealed with a film or resin as necessary, or the semiconductor electrode and the charge transfer It is also preferable to store the layer and the counter electrode in a suitable case.
  • a normal pressure process using capillary action by dipping or the like, or a vacuum process in which the gas phase in the gap is replaced with a liquid phase at a pressure lower than normal pressure can be used.
  • microgravure coating, dip coating, screen coating, spin coating or the like can be used as a coating method.
  • the counter electrode is provided in an undried state and measures for preventing liquid leakage at the edge portion are taken.
  • a gel electrolyte there is a method in which it is applied in a wet manner and solidified by a method such as polymerization. In this case, the counter electrode can be applied after drying and fixing.
  • a charge transfer layer can be formed by a dry film forming process such as a vacuum deposition method or a CVD method, and then a counter electrode can be provided. Specifically, it can be introduced into the electrode by techniques such as vacuum deposition, casting, coating, spin coating, dipping, electropolymerization, and photoelectropolymerization. It is formed by evaporating the solvent by heating to an arbitrary temperature.
  • the thickness of the charge transfer layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the conductivity of the charge transfer layer is preferably 1 ⁇ 10 ⁇ 10 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more.
  • the counter electrode that can be used in the present invention can utilize a single-layer structure of a substrate having conductivity as in the case of the conductive substrate described above, or a substrate having a conductive layer on the surface thereof.
  • the conductive material and the base material used for the conductive layer, and the production method thereof are the same as those of the conductive base material described above, and various known materials and methods can be applied.
  • a plastic sheet is used as a base material and a polymer material is applied as a conductive material.
  • the thickness of the conductive layer is not particularly limited, but is preferably 3 nm to 10 ⁇ m.
  • the thickness is preferably 5 ⁇ m or less, and more preferably in the range of 10 nm to 3 ⁇ m.
  • the surface resistance of the counter electrode is preferably as low as possible. Specifically, the range of the surface resistance is preferably 50 ⁇ / ⁇ or less, more preferably 20 ⁇ / ⁇ or less, still more preferably 10 ⁇ / ⁇ or less. .
  • the counter electrode Since light may be received from one or both of the conductive base material and the counter electrode described above, it is sufficient that at least one of the conductive base material and the counter electrode is substantially transparent. From the viewpoint of improving the power generation efficiency, it is preferable to make the conductive base material transparent so that light enters from the conductive base material side.
  • the counter electrode preferably has a property of reflecting light. As such a counter electrode, glass or plastic deposited with a metal or a conductive oxide, or a metal thin film can be used.
  • the counter electrode may be formed by directly applying, plating or vapor-depositing (PVD, CVD) a conductive material on the above-described charge transfer layer, or attaching a conductive layer side of the substrate or a single conductive substrate layer.
  • PVD vapor-depositing
  • CVD vapor-depositing
  • the conductive layer as the counter electrode has electrical conductivity and acts catalytically for the reduction reaction of the redox electrolyte.
  • glass or a polymer film obtained by evaporating platinum, carbon, rhodium, ruthenium, or the like or applying conductive fine particles can be used.
  • Example 1 [Preparation of conductive substrate] ⁇ Production of Conductive Substrate CB-01 >> ⁇ Undercoat layer formation> A corona discharge treatment of 12 W ⁇ min / m 2 is applied to one side of a 200 ⁇ m thick biaxially stretched PET support, and the undercoat coating solution B-1 is applied to a dry film thickness of 0.1 ⁇ m, and 12 W is applied thereon. A corona discharge treatment of min / m 2 was performed, and the undercoating liquid B-2 was applied so as to have a dry film thickness of 0.06 ⁇ m. Thereafter, heat treatment was performed at 120 ° C. for 1.5 minutes to obtain an underdrawn PET film support.
  • SnO 2 sol (A) 65 g of SnCl 4 .5H 2 O was dissolved in 2000 ml of distilled water to make a homogeneous solution, which was then boiled to obtain a precipitate. The produced precipitate is taken out by decantation and washed with distilled water many times. Silver nitrate is added dropwise to distilled water in which the precipitate has been washed, and after confirming that there is no reaction of chlorine ions, distilled water is added to the washed precipitate to make a total volume of 2000 ml. To this, 40 ml of 30% aqueous ammonia was added and heated to obtain a uniform sol. Further, while adding aqueous ammonia, the solution was concentrated by heating until the solid content concentration of SnO 2 reached 8.3% by mass to obtain SnO 2 sol (A).
  • Solution-I Surfactant: 10% by mass methanol solution of polyisopropylene polyethylene oxydisuccinate sodium salt (Solution-II) 10 mass% aqueous solution of rhodium hexachloride complex (Solution-F) Alkali-treated inert gelatin (average molecular weight 100,000) 16.5g Pure water 139.8 ml.
  • a hardening agent tetrakis (vinylsulfonylmethyl) methane
  • a surfactant di (2-ethylhexyl) sulfosuccinate / sodium
  • the amount of gelatin was adjusted so that the volume ratio of silver to gelatin was 0.5.
  • the volume ratio of silver and gelatin as used herein refers to a value obtained by dividing the volume of silver halide fine particles applied by the volume of gelatin applied.
  • the photosensitive material 101 produced as described above was exposed using an ultraviolet lamp through a lattice-like photomask having a line width of 13 ⁇ m and an interval between lines of 500 ⁇ m.
  • fixing processing is performed for 60 seconds at 35 ° C. using the following fixing solution (FIX-1). Washing with water was performed. Further, physical development was performed at 30 ° C. for 5 minutes using the following physical developer (PD-1), followed by washing with water.
  • PD-1 physical developer
  • FIX-1 Fixer 750 ml of pure water Sodium thiosulfate 250g Anhydrous sodium sulfite 15g Glacial acetic acid 15ml Potash alum 15g Add water to bring the total volume to 1L.
  • an aqueous dispersion of conductive polyaniline containing a sulfonic acid dopant [ORMECON D1033W (manufactured by Olmecon, Germany)] is formed in the opening of the metal current collecting layer so that the dry film thickness on the silver thin wire is 100 nm. And it apply
  • a conductive substrate CB-02 was prepared in the same manner as the conductive substrate CB-01 except that the step of forming the transparent conductive layer was omitted in the preparation of the conductive substrate CB-01.
  • the conductive substrate CB- was prepared except that exposure was performed using an ultraviolet lamp through a grid-like photomask having a line width of 7 ⁇ m in the formation process of the metal current collecting layer.
  • a conductive substrate CB-05 was prepared in the same manner as in 01.
  • PET polyethylene terephthalate
  • the semiconductor electrode and the counter electrode are bonded to each other using a 25 ⁇ m thick sheet-like spacer / sealing material (SX-1170-25 made by Solaronix) with a 6.5 mm square hole, and provided on the cathode electrode.
  • a 25 ⁇ m thick sheet-like spacer / sealing material SX-1170-25 made by Solaronix
  • a 6.5 mm square hole the cathode electrode.
  • lithium iodide, iodine, 1,2-dimethyl-3-propylimidazolium iodide, and t-butylpyridine using acetonitrile as a solvent were each at a concentration of 0.1 mol / L, 0.
  • a charge transfer layer containing a redox electrolyte dissolved so as to be 05 mol / L, 0.6 mol / L, and 0.5 mol / L is injected, the hole is closed with a hot bond, and the sealing agent is added from above. And sealed.
  • An antireflection film Konica Minolta Op hard coat / antireflection type cellulose film was bonded to the light receiving surface side of the base material having the metal oxide semiconductor layer to prepare a dye-sensitized solar cell SC-01.
  • ⁇ Preparation of dye-sensitized solar cell SC-02 >> ⁇ Formation of metal oxide intermediate layer> Using the apparatus described in Japanese Patent Application Laid-Open No. 2004-256920, a metal oxide intermediate layer made of titanium oxide having a size of 4 mm ⁇ 4 mm square is formed on the conductive substrate CB-02 by an aerosol deposition method. did. The film thickness was 172 ⁇ m and the porosity was 16%.
  • the photoelectric conversion efficiency is improved and the durability is further improved particularly by increasing the short-circuit current.
  • significant improvements were confirmed by optimally controlling the thickness and porosity of the metal oxide intermediate layer.
  • the dye-sensitized solar cell of the present invention has excellent photoelectric conversion efficiency even when fired at a low temperature, and is clearly excellent in suitability when using a resin film substrate. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 優れた光電変換効率を実現し、且つ耐久性にも著しく優れた色素増感型太陽電池、更には樹脂フィルムを基材として用いた場合にも適した色素増感型太陽電池は、導電性基材上に色素が表面に吸着された半導体膜から構成される金属酸化物半導体層と電荷移動層と対向電極とを順次有する色素増感型太陽電池であって、該導電性基材と該金属酸化物半導体層の間に金属酸化物微粒子から構成される金属酸化物中間層を有し、更に該導電性基材は透明基材上に金属細線からなる金属集電層及び導電性ポリマーを含有する透明導電性層を有することを特徴とする。

Description

色素増感型太陽電池
 本発明は色素増感型太陽電池に関する。特に光電変換効率に優れ、耐久性が向上した色素増感型太陽電池に関する。
 近年、シリコン系太陽電池に代わる有機材料を用いた太陽電池として色素増感型太陽電池が着目されており、研究開発が盛んに行われている。
 一般的な色素増感型太陽電池の動作原理は下記の通りである。金属酸化物半導体電極に吸着している増感色素が太陽光を吸収することによって、励起電子を発生し、その励起電子は金属酸化物半導体に移動し、更に透明導電膜を経由して電極を接続する回路を通って対向電極へ移動する。対向電極へ移動した電子は電解液を還元し、電解液は電子を放出して酸化状態となった増感色素を還元する。
 従来の色素増感型太陽電池では、金属酸化物半導体層が多孔性であるため電解液が透明導電膜と接触しており、励起電子が透明導電膜から電解液へ注入されてしまう逆電子移動が発生することにより開放電圧が低下し、結果として光電変換効率が低下するという課題があった。また、ヨウ素レドックスを含む電解液を用いる場合には、電解液が透明導電膜と接触していることにより、電解液によって導電膜が腐食して耐久性が劣化するという課題もあった。
 このような課題を解決する手段として、透明導電膜と金属酸化物半導体層の間に主に金属酸化物からなる緻密層を設けることによって、逆電子移動を防止し、光電変換効率を向上させる技術が開示されている(例えば、特許文献1、2参照)。しかし、これらの技術では逆電子移動は抑制できるものの、正常移動して電極に到達した電子を外部回路に効率よく流す手段が不十分で、結果として満足のできる光電変換効率には至っていない。
 一方、従来の色素増感型太陽電池では、透明導電膜として、基材上に蒸着法やスパッタリング法等によりインジウムドープ酸化錫(ITO)あるいはフッ素ドープ酸化錫(FTO)等の金属酸化物薄膜が形成されている。しかし、この従来の透明導電膜では材料コスト及び製造コストが高価で、更に透明導電膜を構成する上記金属酸化物は金属などと比べると抵抗率が著しく高いという欠点があり、太陽電池における光電変換効率が低下する一因となっていた。透明導電膜を厚くすることによって低効率は低下させることができるが、これによって光線透過率は低下し、更に材料コスト及び製造コストの増大を招いてしまう。
 このような課題を解決する手段として、透明導電膜として網目状などの金属集電薄膜を設けることによって電極の導電性を向上させ、更に電解液による金属の腐食も防止させた技術が提案されている(例えば、特許文献3、4参照)。
 しかし、これらの技術ではある程度の導電性向上及び腐食防止は達成できるものの、十分に満足できるものではなかった。更に透明導電膜の平滑性が十分に制御されてなく、フィルファクターの損失により優れた光電変換効率に至っていない。また、これらの金属集電薄膜の形成方法は、特にガラス基板ではなく樹脂フィルムを基材として用いた場合に常に適用できる方法ではなく、フレキシブルな色素増感型太陽電池を作製する場合には適さない場合がある。
特開2002-75471号公報 特開2002-151168号公報 国際公開第04/86464号パンフレット 特開2007-42366号公報
 本発明は上述したような従来の課題を解決するためのもので、その目的は、逆電子移動を防止し、更に電極の導電性を向上させることによって優れた光電変換効率を実現し、且つ耐久性にも著しく優れた色素増感型太陽電池を提供することであり、更に樹脂フィルムを基材として用いた場合にも適した色素増感型太陽電池を提供することである。
 本発明の課題は、金属酸化物中間層を有し、更に金属集電層を有する改良された透明導電層を設けることによって解決されるに至った。具体的には下記に挙げる通りである。
 1.導電性基材上に色素が表面に吸着された半導体膜から構成される金属酸化物半導体層と電荷移動層と対向電極とを順次有する色素増感型太陽電池であって、該導電性基材と該金属酸化物半導体層の間に金属酸化物微粒子から構成される金属酸化物中間層を有し、更に該導電性基材は透明基材上に金属細線からなる金属集電層及び導電性ポリマーを含有する透明導電性層を有することを特徴とする色素増感型太陽電池。
 2.前記金属集電層を構成する金属細線の線幅が5μm以上20μm以下であり、前記金属集電層の開口率が93%以上98%以下であることを特徴とする前記1に記載の色素増感型太陽電池。
 3.前記透明導電性層が金属集電層の開口部及び金属細線の上部を覆い、前記導電性基材の最上面が平滑であることを特徴とする前記1または2に記載の色素増感型太陽電池。
 4.前記金属酸化物中間層の膜厚が5nm以上200nm以下であることを特徴とする前記1~3のいずれか1項に記載の色素増感型太陽電池。
 5.前記金属酸化物中間層の空隙率が10%以下であることを特徴とする前記1~4のいずれか1項に記載の色素増感型太陽電池。
 本発明により、優れた光電変換効率を実現し、且つ耐久性にも著しく優れた色素増感型太陽電池を提供することができ、更に樹脂フィルムを基材として用いた場合にも適した色素増感型太陽電池を提供することができた。
本発明の色素増感型太陽電池の基本構造を示す概略断面図である。
符号の説明
 10 透明導電性層
 11 金属集電層
 20 金属酸化物半導体層
 30 電荷移動層
 40 導電性層(対向電極)
 50 基材
 50a 透明基材
 60 金属酸化物中間層
 以下、本発明について詳細に説明する。
 《色素増感型太陽電池》
 最初に、本発明の色素増感型太陽電池について、図1を用いて説明する。図1は、本発明の色素増感型太陽電池の基本構造を示す概略断面図である。本発明の色素増感型太陽電池は図1によって示される通り、導電性基材として透明基材50a上に金属集電層11及び透明導電性層10を有し、その上に金属酸化物中間層60、表面に色素を吸着させた半導体膜から構成される金属酸化物半導体層20、電荷移動層(「電解質層」と呼ぶこともある)30を順次有し、更に対向電極として、基材50の表面に導電性層40を有する構成である。
 本発明の色素増感型太陽電池を作製する際には、前記構成をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。
 本発明の色素増感型太陽電池に太陽光または太陽光と同等の電磁波を照射すると、金属酸化物半導体層20に吸着された色素は、照射された太陽光もしくは電磁波を吸収して励起する。励起によって発生した電子は、金属酸化物半導体層20から金属酸化物中間層60を経て金属集電層11及び透明導電性層10に移動し、次いで外部回路を経由して対向電極の導電性層40に移動して、電荷移動層30のレドックス電解質を還元する。
 一方、電子を移動させた色素は酸化体となっているが、対向電極から電荷移動層30のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層30のレドックス電解質は酸化されて、再び対向電極から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の色素増感型太陽電池を構成することができる。
 〈金属酸化物中間層〉
 本発明の色素増感型太陽電池は、導電性基材と金属酸化物半導体層の間に金属酸化物微粒子から構成される金属酸化物中間層を有している。
 金属酸化物中間層を構成する金属酸化物としては、後述する金属酸化物半導体層に用いられるものと同様のものを用いることができる。その中でも、光照射時の逆電流が少なく順方向の電子移動が多くなり、高い光電変換効率を得られるようにする点で金属酸化物半導体層に用いられる金属酸化物の伝導帯下端電位と同レベル、またはより卑なる伝導帯下端電位を持つ金属酸化物を用いることが好ましい。
 具体的には、金属酸化物半導体層を構成する金属酸化物が酸化チタン、酸化亜鉛の場合、金属酸化物中間層に使用する金属酸化物としては、酸化ジルコニウム、チタン酸ストロンチウム、酸化ニオブ、酸化亜鉛が好ましく、チタン酸ストロンチウム、酸化ニオブがより好ましい。
 金属酸化物中間層の厚さとしては、1nm以上500nm以下であることが好ましく、5nm以上200nm以下であることが更に好ましい。金属酸化物中間層の空隙率は、金属酸化物半導体層の空隙率よりも小さい方が好ましく、具体的には20%以下であることが好ましく、10%以下であることが更に好ましい。金属酸化物中間層の空隙率が小さくなると、電子の逆方向の移動が起こりにくくなるばかりでなく、導電性基材との密着性や耐久性も向上する。また、金属酸化物中間層は2層以上の積層構成としてもよく、構成する金属酸化物微粒子の組成や厚さや空隙率などは任意に制御することが可能である。
 ここで、空隙率とは誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。
 金属酸化物中間層の製造方法としては特に制限はなく、真空蒸着法、イオンスパッタリング法、キャスト法、塗布法、スピンコート法、スプレー法、エアロゾルデポジション法(AD法)、浸漬法、電解重合法、光電解重合法、加圧プレス法等の種々の薄膜形成法を挙げることができる。
 この中で、真空蒸着法及びイオンスパッタリング法は、市販の蒸着装置やスパッタ装置を用いて周知の条件で行うことができる。塗布法等については、後述する金属酸化物半導体層の半導体微粒子の塗布方法に準じて行うことができる。また、透明基材がガラス板ではなく樹脂フィルムである場合は、高温加熱工程を必要としない加圧プレス法などの方法を好ましく適用できる。
 〈導電性基材〉
 本発明の色素増感型太陽電池では、導電性基材として、透明基材上に金属細線からなる金属集電層、及び導電性ポリマーを含有する透明導電性層を有している。
 (金属集電層)
 金属細線からなる金属集電層の形状に特に限定はなく、網目状、ストライプ状、または任意のパターンにより形成することが可能である。金属細線の材質に特に限定はなく、金、銀、銅、白金、アルミニウム、ニッケル、タングステンなどの金属、またはこれらを複数種類含有する合金など、任意に選択して使用することが可能である。特に導電性の観点から、または細線の製法によっては、特に銀を用いることも好ましい態様の1つである。
 金属細線の線幅や金属集電層の開口率に特に限定はなく、任意に制御して適用することが可能である。線幅が小さくなると導電性は低下するが、開口率は高くなり、導電性基材としての光線透過率は高くなり、その逆に線幅が大きくなると導電性は向上するが、開口率は低くなり、導電性基材としての光線透過率は低くなる。
 このような観点を考慮すると金属細線の線幅は具体的には5μm以上20μm以下であることが好ましく、5μm以上10μm以下であることが更に好ましい。金属細線の線幅の測定については、測距機能を有したマイクロスコープなどを用いて測定することができる。
 金属集電層の開口率は具体的には93%以上98%以下であることが好ましく、95%以上98%以下であることが更に好ましい。ここで開口率とは、導電性基材の光が照射される全体の面積に対して、金属細線が締める面積を差し引いた面積との比を意味し、〔(開口率)={(全体の面積)-(金属細線が占める面積)}/(全体の面積)×100〕で表される。開口率はマイクロスコープなどで撮影した画像を解析し、開口部の面積を求めることで算出することができる。
 また、金属細線の間隔も開口率に影響する因子であり、任意に設定することが可能であるが、通常は10μm以上500μm以下の範囲で設定することができる。また、金属細線の高さについても特に限定はないが、導電性基材として全体の平滑性を考慮すると、1μm以上10μm以下であることが好ましい。
 次に、透明基材上に金属細線からなる金属集電層を形成する方法について説明する。金属細線を形成する方法に特に限定はなく、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法、プラズマCVD法、または塗布法、インクジェット法、スクリーン印刷法、エアロゾルデポジション法、更には銀塩法など、任意の方法を適用することができる。これらの方法の中でも、インクジェット法や銀塩法を適用することが好ましい。
 より具体的には、透明基材上にフォトレジストを塗り、マスクを介してパターン露光を行い、フォトレジストの金属細線パターンに対応する部位をエッチングにより除去し、次いで、例えば、スパッタリングにより上記金属膜を一様に成膜した後、リフトオフ法によりフォトレジストを除去して金属細線を形成することができる。あるいは、上記基材上に金属膜を一様に成膜し、次いでこの金属膜上にフォトレジストを塗り、且つマスクを介してパターン露光した後、レジストのポジ部を溶解して取り除き、露出する金属膜をエッチングにより除去して金属細線を形成する方法でもよい。
 また、塗布法等に関しては、金属細線となるとなる金属粒子とガラス微粒子などの結合剤を配合してペースト状にし、これを塗布法、インクジェット法、スクリーン印刷法などの方法で所定のパターンを形成するように塗膜し、加熱、焼成によって金属粒子を融着させる方法が挙げられる。焼成温度としては、例えば、透明基材がガラスである場合には600℃以下とすることが好ましい。
 塗布法、インクジェット法、スクリーン印刷法などの方法を適用する際に使用する金属微粒子としては特に限定はなく、種々の形状の微粒子を使用することが可能であるが、有効な導電接点を増やす観点でナノワイヤまたは球状粒子を使用することが好ましく、ナノワイヤを使用することが更に好ましい。ナノワイヤのサイズは特に限定はないが、直径10nm以上100nm以下が好ましく、ワイヤ長は10μm以上100μm以下であることが好ましい。
 インクジェット法としては、公知の種々の方式を適用することが可能であるが、特に静電インクジェット法は高粘度の液体を高精度に連続的に印字することが可能であり、金属細線の形成に好ましく用いられる。金属細線の形成においては、帯電した液体を吐出する内部直径が0.5~30μmノズルを有する液体吐出ヘッドと、前記ノズル内に溶液を供給する供給手段と、前記ノズル内の溶液に吐出電圧を印加する吐出電圧印加手段とを備えた液体吐出装置を用いて形成されることが好ましい。この方法によれば金属細線の交点太りがなく、また細線化が可能である。
 このような静電インクジェットを用いて金属細線を形成する具体的な方法としては、例えば、メッキ触媒インキを所望パターンで塗布した後、無電解メッキにより金属細線を形成する方法や、金属微粒子含有インキあるいは金属イオンまたは金属錯体イオンと還元剤とを含有するインキを所望パターンで塗布する、あるいは金属イオンまたは金属錯体イオン含有インキと還元剤含有インキとを異なるノズルから所望パターンで塗布する方法を挙げることができる。
 特に、金属微粒子含有インキあるいは金属イオンまたは金属錯体イオンと還元剤とを含有するインキを所望パターンで塗布する、あるいは金属イオンまたは金属錯体イオン含有インキと還元剤含有インキとを異なるノズルから所望パターンで塗布する方法は、メッキ処理などの追加の工程が不要でありより好ましい。更に金属イオンまたは金属錯体イオンと還元剤とを含有するインキを用いる、あるいは金属イオンまたは金属錯体イオン含有インキと還元剤含有インキとを異なるノズルから所望パターンで塗布する方法であれば、金属微粒子含有インキを用いるよりも金属細線表面に凹凸が生じにくいことから、平滑性を求められる用途などでは最も好ましく用いることができる。
 静電インクジェット法で用いられるインキの粘度は好ましくは30mPa・s以上であり、更に好ましくは100mPa・s以上である。
 次に、銀塩法に関して説明する。
 銀塩法とは、透明基材上にハロゲン化銀粒子を含有する層を設け、次に所望するパターンで露光、現像処理することにより、所望するパターンの金属銀部を形成し、更に物理現像処理することにより銀細線を形成する方法である。銀塩法では、印刷法などで問題になることがある交点太りなどによる開口率低下も起こりにくく、銀の緻密なラインを形成することが可能であり、銀塩法を適用することは好ましい態様の1つである。
 前記ハロゲン化銀粒子を含有する層を形成する際に、ハロゲン化銀乳剤にはバインダーを含有しているが、ハロゲン化銀粒子を含有する層におけるバインダー付き量としては、0.05g/m2以上0.25g/m2以下であることが好ましい。また、ハロゲン化銀粒子を含有する層におけるAg/バインダー比率としては、体積比で0.3以上0.8以下であることが好ましい。前記ハロゲン化銀粒子は塩臭化銀粒子であることが好ましく、塩化銀含有率が55モル%以上95モル%以下で、臭化銀含有率が5モル%以上45モル%以下であることが更に好ましい。
 露光、現像処理、更には物理現像処理等の詳細については、特開2006-352073号公報記載の方法を参考にすることができる。
 上記の種々方法によって透明基材上に金属細線を形成した後、必要に応じて、金属細線上にメッキ処理を施したり、電解質による腐食を防止するための腐食防止層を設けてもよい。メッキ処理を施す場合は、電解メッキ法や無電解メッキ法によって任意の条件で行うことができる。腐食防止層を設ける場合は、チタン、ニッケル、アルミニウムなどの金属、またはこれらの合金を適用したり、更には非晶質または結晶性の絶縁層を腐食防止層として適用することも可能である。
 (透明導電性層)
 次に、本発明に係る透明基材上に設けられる透明導電性層について説明する。
 本発明に係る透明導電性層には導電性ポリマーを含有する。導電性ポリマーを含有することによって、大面積にしてもロスの少ない面電極にすることが可能で、特に透明基材として樹脂フィルムを使用する場合、ITOなどの無機系導電性膜に比べて屈曲に強い導電性基材とすることができる。
 透明導電性層に含有される導電性ポリマーとしては、公知の種々の構造のポリマーを使用することが可能で、ポリピロール系、ポリインドール系、ポリカルバゾール系、ポリチオフェン系、ポリアニリン系、ポリアセチレン系、ポリフラン系、ポリパラフェニレンビニレン系、ポリアズレン系、ポリパラフェニレン系、ポリパラフェニレンサルファイド系、ポリイソチアナフテン系、ポリチアジル系、ポリアセン系などの導電性ポリマーを使用することができる。これらの中でも、導電性、透明性等の観点からポリエチレンジオキシチオフェンやポリアニリン系が好ましい。
 また、本発明においては、上記導電性ポリマーの導電性をより高めるために導電性ポリマーにドーピング処理を施すことが好ましい。ドーピング処理に使用できるドーパントとしては、例えば、炭素数が6~30の炭化水素基を有するスルホン酸(以下「長鎖スルホン酸」とも言う。)あるいはその重合体(例えば、ポリスチレンスルホン酸)、ハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物、遷移金属化合物、アルカリ金属、アルカリ土類金属、MClO4(M=Li+、Na+)、R4+(R=CH3、C49、C511)、またはR4+(R=CH3、C49、C511)からなる群から選ばれる少なくとも1種が挙げられる。これらの中でも、上記長鎖スルホン酸が好ましい。
 長鎖スルホン酸としては、ジノニルナフタレンジスルホン酸、ジノニルナフタレンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。ハロゲンとしては、Cl2、Br2、I2、ICl3、IBr、IF5等が挙げられる。ルイス酸としては、PF5、AsF5、SbF5、BF3、BCl3、BBr3、SO3、GaCl3等が挙げられる。プロトン酸としては、HF、HCl、HNO3、H2SO4、HBF4、HClO4、FSO3H、ClSO3H、CF3SO3H等が挙げられる。遷移金属ハロゲン化物としては、NbF5、TaF5、MoF5、WF5、RuF5、BiF5、TiCl4、ZrCl4、MoCl5、MoCl3、WCl5、FeCl3、TeCl4、SnCl4、SeCl4、FeBr3、SnI5等が挙げられる。遷移金属化合物としては、AgClO4、AgBF4、La(NO33、Sm(NO33等が挙げられる。アルカリ金属としては、Li、Na、K、Rb、Cs等が挙げられる。アルカリ土類金属としては、Be、Mg、Ca、Sc、Ba等が挙げられる。
 また、導電性ポリマーに対するドーパントは、水素化フラーレン、水酸化フラーレン、スルホン酸化フラーレンなどのフラーレン類に導入されていてもよい。上記ドーパントは、導電性ポリマー100質量部に対して、0.01質量部以上含まれていることが好ましく、0.5質量部以上含まれていることがより好ましい。
 更に本発明においては、導電性ポリマーの他に透明導電性層に水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することが可能で、例えば、酸素含有化合物が好適に挙げられる。
 酸素含有化合物としては酸素を含有する限り特に制限はなく、例えば、酸基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物などが挙げられる。ここで、水酸基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリンなどが挙げられる。カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトンなどが挙げられる。エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテルなどが挙げられる。スルホキシド基含有化合物としては、例えば、ジメチルスルホキシドなどが挙げられる。これらの中で、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが特に好ましい。また、これらは1種単独で使用してもよく、2種以上を併用してもよい。
 導電性ポリマー100質量部に対する水溶性有機化合物の含有量は、0.001質量部以上が好ましく、0.01~50質量がより好ましく、0.01~10質量部が特に好ましい。
 透明導電性層の形成方法としては特に限定はなく、公知の導電性ポリマー層を形成する方法を任意に適用することが可能であるが、導電性ポリマーやドーパント等を含有する塗布液を作製し、これを透明基材上または金属集電層上に塗布する方法が好ましい。
 本発明に係る導電性基材として、透明基材上に金属細線からなる金属集電層、及び導電性ポリマーを含有する透明導電性層を有していれば、その構成順に特に限定はなく、透明基材上に先に金属集電層を形成した後に透明導電性層を形成してもよく、または先に透明導電性層を形成した後に金属集電層を形成してもよい。
 しかし、金属細線の電解質による腐食を防止する観点、更に導電性基材全体としての平滑性を制御する観点から、透明基材上に先に金属集電層を形成した後に透明導電性層を形成する態様の方が好ましい。更にこの場合、透明導電性層が金属集電層の開口部、及び金属細線の上部を覆うことによって、導電性基材の最上面が平滑であり、金属細線の表面が電解質に接触しないように施されていることが最も好ましい。
 ここで、本発明における平滑とは、具体的にはJIS B-0601により規定される算術平均粗さRaが1μm以下であることを言う。平均粗さの測定としては、例えば、WYKO製 RSTPLUS非接触三次元微小表面形状測定システム等を用いることができる。
 透明導電性層の膜厚は0.01μm以上5μm以下が好ましく、0.05μm以上2.0μm以下が更に好ましい。透明導電性層が金属集電層の上部を覆う場合は、金属細線の上部がこの膜厚になることが好ましい。
 本発明の色素増感型太陽電池で用いられる導電性基材は、金属集電層と透明導電性膜を併用した態様であり、表面抵抗値を低く制御することが可能である。具体的に表面抵抗値としては、10Ω/□以下であることが好ましく、5Ω/□以下であることがより好ましく、1Ω/□以下であることが特に好ましい。表面抵抗率は、例えば、JIS K6911、ASTM D257などに準拠して測定することができ、また市販の表面抵抗率計を用いて測定することができる。
 〈透明基材〉
 本発明の色素増感型太陽電池で用いられる導電性基材に使用される透明基材としては、ガラス板や樹脂フィルムを使用することができる。
 樹脂フィルムとして具体的には、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、環状オレフィン系樹脂などのポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
 これらの中でも、透明性、耐熱性、取り扱いやすさ及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、アクリル樹脂フィルム、トリアセチルセルロースフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルムであることが最も好ましい。
 〈金属酸化物半導体層〉
 本発明に係る金属酸化物半導体層について説明する。
 本発明に係る金属酸化物半導体層を構成する金属酸化物としては、半導体に吸着した色素で光照射により発生した電子を受け取り、これを導電性基材へ伝達する半導体なら特に限定はなく、公知の色素増感型太陽電池に使用される種々の金属酸化物を使用することができる。
 具体的には、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化タングステン等の各種金属酸化物半導体、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウム、ニオブ酸カリウム、タンタル酸ストロンチウム等の各種複合金属酸化物半導体、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化コバルト、酸化ニッケル、酸化マンガン等の遷移金属酸化物、酸化セリウム、酸化ガドリニウム、酸化サマリウム、酸化イッテルビウム等のランタノイドの酸化物等の金属酸化物、シリカに代表される天然または合成の珪酸化合物等の無機絶縁体などを挙げることができる。
 また、これらの材料を組み合わせて使用することもできる。更に金属酸化物粒子をコアシェル構造としたり、異なる金属元素をドーピングしたりしてもよく、任意の構造、組成の金属酸化物を適用することが可能である。
 金属酸化物粒子の平均粒子径は、10nm以上300nm以下であることが好ましく、10nm以上100nm以下であることが更に好ましい。また、金属酸化物の形状も特に限定はなく、球状、針状または不定形結晶であってもよい。
 金属酸化物粒子の形成方法としては特に限定はなく、水熱反応法、ゾルゲル法/ゲルゾル法、コロイド化学合成法、塗布熱分解法、噴霧熱分解法等の各種液相法、及び化学気相析出法等の各種気相法を用いて形成することができる。
 次に、本発明に係る金属酸化物半導体層の作製方法を説明する。
 本発明の色素増感型太陽電池の金属酸化物半導体層の作製方法としては公知の方法を適用することが可能であり、(1)金属酸化物の微粒子またはその前駆体を含有する懸濁液を導電性基材上に塗布し、乾燥及び焼成を行って半導体層を形成する方法、(2)コロイド溶液中に導電性基材を浸漬して電気泳動により金属酸化物半導体微粒子を導電性基材上に付着させる泳動電着法、(3)コロイド溶液や分散液に発泡剤を混合して塗布した後、焼結して多孔質化する方法、(4)ポリマーマイクロビーズを混合して塗布した後、このポリマーマイクロビーズを加熱処理や化学処理により除去して空隙を形成させ、多孔質化する方法等を適用することができる。
 上記の作製方法の中で、特に塗布方法としては公知の方法を適用することが可能で、スクリーン印刷法、インクジェット法、ロールコート法、ドクターブレード法、スピンコート法、スプレー塗布法等を挙げることができる。
 特に上記(1)の方法の場合、懸濁液中の金属酸化物微粒子の粒子径は微細であることが好ましく、一次粒子として存在していることが好ましい。金属酸化物微粒子を含有する懸濁液は、金属酸化物微粒子を溶媒中に分散させることによって調製され、溶媒としては、金属酸化物微粒子を分散し得るものであれば特に制限はなく、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。懸濁液中には、必要に応じて界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の金属酸化物微粒子の濃度の範囲は、0.1~70質量%が好ましく、0.1~30質量%が更に好ましい。
 上記のようにして得られた金属酸化物のコア微粒子を含有する懸濁液を導電性基材上に塗布し、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性基材上に金属酸化物半導体層が形成される。導電性基材上に懸濁液を塗布、乾燥して得られる半導体層は金属酸化物微粒子の集合体からなるもので、その微粒子の粒子径は使用した金属酸化物微粒子の一次粒子径に対応するものである。導電性基材上に形成された金属酸化物半導体層は、導電性基材との結合力や微粒子相互の結合力が弱く、機械的強度の弱いものであることから、この金属酸化物微粒子集合体膜を焼成処理して機械的強度を高め、基板に強く固着した焼成物膜とすることが好ましい。
 本発明においては、この金属酸化物半導体層はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層とも言う)であることが好ましい。ここで、金属酸化物半導体層の空隙率は0.1~20体積%であることが好ましく、5~20体積%であることが更に好ましい。なお、金属酸化物半導体層の空隙率は、誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。金属酸化物半導体層の厚さは、少なくとも10nm以上であることが好ましく、100~10000nmであることが更に好ましい。
 焼成処理時、半導体層の実表面積を適切に調整し、上記の空隙率を有する半導体層を得る観点から、焼成温度は1000℃より低いことが好ましく、200~800℃の範囲であることが更に好ましい。
 本発明に係る金属酸化物半導体層では、金属酸化物中間層上に上述の通り金属酸化物半導体層を形成した後、電子伝導性を向上させる目的で、必要に応じて金属酸化物半導体膜上に金属酸化物による表面処理を施してもよい。この表面処理の組成は、特に金属酸化物微粒子間の電子伝導性の観点から、金属酸化物半導体層を形成する金属酸化物と同種の組成を使用することが好ましい。
 この表面処理を施す方法としては、導電性基材上に金属酸化物半導体膜を形成した後、表面処理となる金属酸化物の前駆体を該半導体膜に塗布すること、もしくは該半導体膜を前駆体溶液に浸漬し、更に必要に応じて焼成処理を施すことにより、金属酸化物からなる表面処理を行うことができる。
 具体的には、酸化チタンの前駆体である四塩化チタン水溶液またはチタンアルコキシドを用いた電気化学的処理や、チタン酸アルカリ金属やチタン酸アルカリ土類金属の前駆体を用いることによって表面処理を行うことができる。この際の焼成温度や焼成時間は特に制限はなく、任意に制御することができるが、200℃以下であることが好ましい。
 〈色素〉
 本発明に用いられる色素について説明する。
 本発明において、前述した金属酸化物半導体層の表面に吸着させる色素としては、種々の可視光領域または赤外光領域に吸収を有し、金属酸化物半導体の伝導帯より高い最低空準位を有する色素が好ましく、公知の様々な色素を使用することができる。
 例えば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、シアニジン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、フタロシアニン系色素、ナフタロシアニン系色素、ローダミン系色素、ローダニン系色素等が挙げられる。
 なお、金属錯体色素も好ましく使用され、その場合においては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rh等の種々の金属を用いることができる。
 上記の中で、シアニン色素、メロシアニン色素、スクワリリウム色素等のポリメチン色素は好ましい態様の1つであり、具体的には特開平11-35836号公報、特開平11-67285号公報、特開平11-86916号公報、特開平11-97725号公報、特開平11-158395号公報、特開平11-163378号公報、特開平11-214730号公報、特開平11-214731号公報、特開平11-238905号公報、特開2004-207224号公報、特開2004-319202号公報、欧州特許第892,411号明細書及び同911,841号明細書等の各明細書に記載の色素を挙げることができる。
 更に金属錯体色素も好ましい態様の1つであり、金属フタロシアニン色素、金属ポルフィリン色素またはルテニウム錯体色素が好ましく、特に好ましいのはルテニウム錯体色素である。
 ルテニウム錯体色素としては、例えば、米国特許第4,927,721号明細書、同4,684,537号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7-249790号公報、特表平10-504512号公報、国際公開第98/50393号パンフレット、特開2000-26487号公報、特開2001-223037号公報、特開2001-226607号公報、特許第3430254号公報等に記載の錯体色素を挙げることができる。
 本発明では、金属酸化物の表面に吸着する色素として、ローダニン系色素を使用することが特に好ましい。ローダニン系色素であればどのような構造であっても好ましく用いることが可能であるが、中でも、下記一般式(1)で表される化合物または下記一般式(2)で表される化合物の少なくとも1種を用いることが特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、R11は置換基を表し、nは0~4の整数を表す。X11~X14は各々酸素原子、硫黄原子またはセレン原子を表し、R12、R13は各々水素原子または置換基を表す。R14はカルボキシ基またはホスホノ基を表し、L11は2価の連結基を表す。R15はアルキル基を表す。
Figure JPOXMLDOC01-appb-C000002
 式中、R21は置換基を表し、nは0~4の整数を表す。X21~X26は各々酸素原子、硫黄原子またはセレン原子を表し、R22、R23は各々水素原子または置換基を表す。R24、R26は各々水素原子、カルボキシ基またはホスホノ基を表し、R24、R26の少なくとも1つはカルボキシ基またはホスホノ基を表す。L21、L22は各々独立に2価の連結基を表す。R25はアルキル基を表す。
 また、一般式(1)で表される化合物(色素)、一般式(2)で表される化合物(色素)には、該一般式で表される化合物そのものの他に、該化合物から誘導されるイオン及び塩が含まれる。例えば、分子構造中にスルホン酸基(スルホ基)を有している場合には、該化合物の他にスルホン酸基が解離して生じる陰イオン、及び該陰イオンと対陽イオンとで形成される塩が含まれる。
 このような塩としては、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属イオンと形成した塩であってもよいし、ピリジン、ピペリジン、トリエチルアミン、アニリン、ジアザビシクロウンデセン等のような有機塩基と形成した塩でもよい。
 分子内に塩基性基を有する化合物の場合も同様に、該化合物がプロトン化されて生成する陽イオン、及び塩酸塩、硫酸塩、酢酸塩、メチルスルホン酸塩、p-トルエンスルホン酸塩等の、酸と形成した塩である場合も含まれる。
 以下に、本発明に好ましく用いられる一般式(1)または一般式(2)で表される化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 一般式(1)で表される化合物、一般式(2)で表される化合物は、例えば、エフ・エム・ハーマ著「シアニン・ダイズ・アンド・リレーテッド・コンパウンズ」(1964,インター・サイエンス・パブリッシャーズ発刊)、米国特許第2,454,629号明細書、同2,493,748号明細書、特開平6-301136号公報、特開2003-203684号公報等に記載された従来公知の方法を参照して合成できる。
 これらの化合物(色素)は吸光係数が大きく、且つ繰り返しの酸化還元反応に対して安定であることが好ましい。
 また、上記化合物(色素)は金属酸化物半導体上に化学的に吸着することが好ましく、カルボキシ基、スルホン酸基、リン酸基、アミド基、アミノ基、カルボニル基、ホスフィン基等の官能基を有することが好ましい。
 また、光電変換の波長域をできるだけ広くし、且つ変換効率を上げるため、2種類以上の色素を併用または混合することもできる。この場合、目的とする光源の波長域と強度分布に合わせるように、併用または混合する色素とその割合を選ぶことができる。
 〈電荷移動層〉
 電荷移動層は、色素の酸化体に電子を補充する機能を有する電荷輸送材料を含有する層である。本発明で用いることのできる代表的な電荷輸送材料の例としては、酸化還元対イオンが溶解した溶剤や酸化還元対イオンを含有する常温溶融塩等の電解液、酸化還元対イオンの溶液をポリマーマトリクスや低分子ゲル化剤等に含浸したゲル状の擬固体化電解質、更には高分子固体電解質等が挙げられる。また、イオンが関わる電荷輸送材料の他に、固体中のキャリア移動が電気伝導に関わる材料として、電子輸送材料や正孔(ホール)輸送材料を挙げることもでき、これらは併用してすることも可能である。
 電荷移動層に電解液を使用する場合、含有する酸化還元対イオンとしては、一般に公知の太陽電池等において使用することができるものであれば特に限定されない。
 具体的には、I-/I3-系、Br2-/Br3-系等の酸化還元対イオンを含有させたもの、フェロシアン酸塩/フェリシアン酸塩やフェロセン/フェリシニウムイオン、コバルト錯体等の金属錯体等の金属酸化還元系、アルキルチオール-アルキルジスルフィド、ビオロゲン色素、ハイドロキノン/キノン等の有機酸化還元系、ポリ硫化ナトリウム、アルキルチオール/アルキルジスルフィド等の硫黄化合物等を挙げることができる。
 ヨウ素系として更に具体的には、ヨウ素とLiI、NaI、KI、CsI、CaI2等の金属ヨウ化物との組み合わせ、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物や4級イミダゾリウム化合物のヨウ素塩等との組み合わせ等が挙げられる。臭素系として更に具体的には、臭素とLiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物との組み合わせ、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等4級アンモニウム化合物の臭素塩等との組み合わせ等が挙げられる。
 溶剤としては電気化学的に不活性で、粘度が低くイオン易動度を向上したり、もしくは誘電率が高く有効キャリア濃度を向上したりして、優れたイオン伝導性を発現できる化合物であることが望ましい。
 具体的にはジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3-メチル-2-オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、アセトニトリル、グルタロジニトリル、プロピオニトリル、メトキシプロピオニトリル、メトキシアセトニトリル、ベンゾニトリル等のニトリル化合物、更にテトラヒドロフラン、ジメチルスルホキシド、スルホラン等非プロトン極性物質等を用いることができる。
 好ましい電解質濃度は0.1~15Mであり、更に好ましくは0.2~10Mである。また、ヨウ素系を使用する場合の好ましいヨウ素の添加濃度は0.01~0.5Mである。
 溶融塩電解質は光電変換効率と耐久性の両立という観点から好ましい。溶融塩電解質としては、例えば、国際公開第95/18456号パンフレット、特開平8-259543号公報、特開2001-357896号公報、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩を含む電解質を挙げることができる。これらの溶融塩電解質は常温で溶融状態であるものが好ましく、溶媒を用いない方が好ましい。
 オリゴマ-及びポリマー等のマトリクスに電解質あるいは電解質溶液を含有させたものや、ポリマー添加、低分子ゲル化剤やオイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法によりゲル化(擬固体化)させて使用することもできる。
 ポリマー添加によりゲル化させる場合は、特にポリアクリロニトリル、ポリフッ化ビニリデンを好ましく使用することができる。オイルゲル化剤添加によりゲル化させる場合は、好ましい化合物は分子構造中にアミド構造を有する化合物である。また、ポリマーの架橋反応により電解質をゲル化させる場合、架橋可能な反応性基を含有するポリマー及び架橋剤を併用することが望ましい。この場合、好ましい架橋可能な反応性基は、含窒素複素環(例えば、ピリジン環、イミダゾール環、チアゾール環、オキサゾール環、トリアゾール環、モルホリン環、ピペリジン環、ピペラジン環等)であり、好ましい架橋剤は、窒素原子に対して求電子反応可能な2官能以上の試薬(例えば、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロライド、イソシアネート等)である。電解質の濃度は通常0.01~99質量%で、好ましくは0.1~90質量%程度である。
 また、ゲル状電解質としては、電解質と金属酸化物粒子及び/または導電性粒子とを含む電解質組成物を用いることもできる。金属酸化物粒子としては、TiO2、SnO2、WO3、ZnO、ITO、BaTiO3、Nb25、In23、ZrO2、Ta25、La23、SrTiO3、Y23、Ho23、Bi23、CeO2、Al23からなる群から選択される1種または2種以上の混合物が挙げられる。これらは不純物がドープされたものや複合酸化物等であってもよい。導電性粒子としては、カーボンを主体とする物質からなるものが挙げられる。
 次に、高分子電解質としては、酸化還元種を溶解あるいは酸化還元種を構成する少なくとも1つの物質と結合することができる固体状の物質であり、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリ-β-プロピオラクトン、ポリエチレンイミン、ポリアルキレンスルフィド等の高分子化合物またはそれらの架橋体、ポリホスファゼン、ポリシロキサン、ポリビニルアルコール、ポリアクリル酸、ポリアルキレンオキサイド等の高分子官能基に、ポリエーテルセグメントまたはオリゴアルキレンオキサイド構造を側鎖として付加したものまたはそれらの共重合体等が挙げられ、その中でも特にオリゴアルキレンオキサイド構造を側鎖として有するものや、ポリエーテルセグメントを側鎖として有するものが好ましい。
 前記の固体中に酸化還元種を含有させるには、例えば、高分子化合物となるモノマーと酸化還元種との共存下で重合する方法、高分子化合物等の固体を必要に応じて溶媒に溶解し、次いで、前記の酸化還元種を加える方法等を用いることができる。酸化還元種の含有量は必要とするイオン伝導性能に応じて、適宜選定することができる。
 本発明では、溶融塩等のイオン伝導性電解質の代わりに、有機または無機あるいはこの両者を組み合わせた固体の正孔輸送材料を使用することができる。有機正孔輸送材料としては、芳香族アミン類やトリフェニレン誘導体類、更にポリアセチレン及びその誘導体、ポリ(p-フェニレン)及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリチオフェン及びその誘導体、ポリアニリン及びその誘導体、ポリトルイジン及びその誘導体等の導電性高分子を好ましく用いることができる。
 正孔(ホール)輸送材料にはドーパントレベルをコントロールするためにトリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネートのようなカチオンラジカルを含有する化合物を添加したり、酸化物半導体表面のポテンシャル制御(空間電荷層の補償)を行うためにLi[(CF3SO22N]のような塩を添加しても構わない。無機正孔輸送材料としては、p型無機化合物半導体を用いることができる。
 この目的のp型無機化合物半導体は、バンドギャップが2eV以上であることが好ましく、更に2.5eV以上であることが好ましい。また、p型無機化合物半導体のイオン化ポテンシャルは色素の正孔を還元できる条件から、色素吸着電極のイオン化ポテンシャルより小さいことが必要である。使用する色素によってp型無機化合物半導体のイオン化ポテンシャルの好ましい範囲は異なってくるが、一般に4.5~5.5eVであることが好ましく、更に4.7~5.3eVであることが好ましい。
 好ましいp型無機化合物半導体は一価の銅を含む化合物半導体であり、CuI及びCuSCNが好ましく、CuIが最も好ましい。p型無機化合物半導体を含有する電荷移動層の好ましいホール移動度は10-4~1042/V・secであり、更に好ましくは10-3~103cm2/V・secである。また、電荷移動層の好ましい導電率は10-8~102S/cmであり、更に好ましくは10-6~10S/cmである。
 本発明において、電荷移動層を半導体電極と対向電極との間に形成する方法としては、特に限定されるものではないが、例えば、半導体電極と対向電極とを対向配置してから両電極間に前述した電解液や各種電解質を充填して電荷移動層とする方法、半導体電極または対向電極の上に電解質や各種電解質を滴下あるいは塗布等することにより電荷移動層を形成した後、電荷移動層の上に他方の電極を重ね合わせる方法等を用いることができる。ここで、半導体電極とは導電性基材から金属酸化物半導体層までの部分である。
 また、半導体電極と対向電極との間から電解質が漏れ出さないようにするため、必要に応じて半導体電極と対向電極との隙間にフィルムや樹脂を用いて封止したり、半導体電極と電荷移動層と対向電極を適当なケースに収納したりすることも好ましい。
 前者の形成方法の場合、電荷移動層の充填方法として、浸漬等による毛管現象を利用する常圧プロセス、または常圧より低い圧力にして間隙の気相を液相に置換する真空プロセスを利用できる。
 後者の形成方法の場合、塗布方法としてはマイクログラビアコーティング、ディップコーティング、スクリーンコーティング、スピンコーティング等を用いることができる。湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止措置を施すことになる。またゲル電解質の場合には湿式で塗布して重合等の方法により固体化する方法があり、その場合には乾燥、固定化した後に対極を付与することもできる。
 固体電解質や固体の正孔(ホール)輸送材料の場合には真空蒸着法やCVD法等のドライ成膜処理で電荷移動層を形成し、その後対向電極を付与することもできる。具体的には、真空蒸着法、キャスト法、塗布法、スピンコート法、浸漬法、電解重合法、光電解重合法等の手法により電極内部に導入することができ、必要に応じて基材を任意の温度に加熱して溶媒を蒸発させる等により形成する。
 電荷移動層の厚さは10μm以下、より好ましくは5μm以下、更に1μm以下であることが好ましい。また電荷移動層の導電率は1×10-10S/cm以上であることが好ましく、1×10-5S/cm以上であることが更に好ましい。
 〈対向電極〉
 本発明で使用できる対向電極は、前述した導電性基材と同様にそれ自体が導電性を有する基材の単層構造、またはその表面に導電性層を有する基材を利用することができる。後者の場合、導電性層に用いる導電性材料、基材、更にその製造方法としては、前述した導電性基材の場合と同様で、公知の種々の材料及び方法を適用することができる。
 その中でも、I3-イオン等の酸化や他のレドックスイオンの還元反応を十分な速さで行わせる触媒能を持ったものを使用することが好ましく、具体的には白金電極、導電材料表面に白金メッキや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。また、前述と同様にコスト面や可撓性を考慮すると、プラスチックシートを基材として使用し、導電性材料としてポリマー系材料を塗布して使用することも好ましい態様の1つである。
 導電性層の厚さは特に制限されないが、3nm~10μmが好ましい。導電性層が金属である場合は、その厚さは好ましくは5μm以下であり、更に好ましくは10nm~3μmの範囲である。対向電極の表面抵抗は低い程よく、具体的には表面抵抗の範囲としては50Ω/□以下であることが好ましく、20Ω/□以下であることがより好ましく、10Ω/□以下であることが更に好ましい。
 前述した導電性基材と対向電極のいずれか一方または両方から光を受光してよいので、導電性基材と対向電極の少なくとも一方が実質的に透明であればよい。発電効率の向上の観点からは、導電性基材を透明にして、光を導電性基材側から入射させるのが好ましい。この場合対向電極は光を反射する性質を有するのが好ましい。このような対向電極としては、金属または導電性の酸化物を蒸着したガラスまたはプラスチック、あるいは金属薄膜を使用できる。
 対向電極は、前述した電荷移動層上に直接導電性材料を塗布、メッキまたは蒸着(PVD、CVD)するか、基材の導電性層側または導電性基材単層を貼り付ければよい。また、導電性基材の場合と同様に、特に対向電極が透明の場合には、金属配線層を併用することも好ましい態様の1つである。
 対極としての導電性層は導電性を持っており、レドックス電解質の還元反応を触媒的に作用するものが好ましい。例えば、ガラス、もしくは高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したり、導電性微粒子を塗り付けたものが用いうる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
 実施例1
 〔導電性基材の作製〕
 《導電性基材CB-01の作製》
 〈下引層形成〉
 200μm厚の二軸延伸PET支持体の片面に12W・min/m2のコロナ放電処理を施し、下引塗布液B-1を乾燥膜厚0.1μmになるように塗布し、その上に12W・min/m2のコロナ放電処理を施し、下引塗布液B-2を乾燥膜厚0.06μmになるように塗布した。その後、120℃で1.5分の熱処理を実施し、下引済みPETフィルム支持体を得た。
 (下引塗布液B-1)
 スチレン20質量部、グリシジルメタクリレート40質量部、ブチルアクリレート40質量部の共重合体ラテックス液(固形分質量30%)           50g
 SnO2ゾル(A)                          440g
 化合物(UL-1)                         0.2g
 水で仕上げる                          1000ml
 (下引塗布液B-2)
 ゼラチン                               10g
 化合物(UL-1)                         0.2g
 化合物(UL-2)                         0.2g
 シリカ粒子(平均粒径3μm)                    0.1g
 硬膜剤(UL-3)                           1g
 水で仕上げる                          1000ml。
 SnO2ゾル(A)の調製
 65gのSnCl4・5H2Oを蒸留水2000mlに溶解して均一溶液とし、次いでこれを煮沸し、沈澱物を得た。生成した沈澱物をデカンテーションにより取り出し、蒸留水にて何度も水洗する。沈澱を水洗した蒸留水中に硝酸銀を滴下し、塩素イオンの反応がないことを確認後、洗浄した沈澱物に蒸留水を添加し全量を2000mlとする。これに30%アンモニア水40mlを加え加温することにより、均一なゾルを得た。更にアンモニア水を添加しながら、SnO2の固形分濃度が8.3質量%になるまで加熱濃縮し、SnO2ゾル(A)を得た。
Figure JPOXMLDOC01-appb-C000024
 〈ハロゲン化銀微粒子乳剤EMP-1の調製〉
 反応容器内で下記溶液-Aを34℃に保ち、特開昭62-160128号公報記載の混合撹拌装置を用いて高速に撹拌しながら、硝酸(濃度6%)を用いてpHを2.95に調整した。引き続き、ダブルジェット法を用いて下記(溶液-B)と下記(溶液-C)を一定の流量で8分6秒間かけて添加した。添加終了後に、炭酸ナトリウム(濃度5%)を用いてpHを5.90に調整し、続いて下記(溶液-D)と(溶液-E)を添加した。
 上記操作終了後に、常法に従い40℃にてフロキュレーション法を用いて脱塩及び水洗処理を施し、下記(溶液-F)と防バイ剤を加えて60℃で良く分散し、40℃にてpHを5.90に調整して、最終的に臭化銀を10モル%含む平均粒子径0.09μm、変動係数10%の塩臭化銀立方体粒子乳剤(EMP-1)を得た。
 (溶液-A)
 アルカリ処理不活性ゼラチン(平均分子量10万)          18.7g
 塩化ナトリウム                          0.31g
 下記(溶液-I)                        1.59ml
 純水                              1246ml
 (溶液-B)
 硝酸銀                             169.9g
 硝酸(濃度6%)                        5.89ml
 純水にて317.1mlに仕上げる。
 (溶液-C)
 アルカリ処理不活性ゼラチン(平均分子量10万)          5.66g
 塩化ナトリウム                          58.8g
 臭化カリウム                           13.3g
 下記(溶液-I)                        0.85ml
 下記(溶液-II)                        2.72ml
 純水にて317.1mlに仕上げる。
 (溶液-D)
 2-メチル-4ヒドロキシ-1,3,3a,7-テトラアザインデン  0.56g
 純水                             112.1ml。
 (溶液-E)
 アルカリ処理不活性ゼラチン(平均分子量10万)          3.96g
 下記(溶液-I)                        0.40ml
 純水                             128.5ml。
 (溶液-I)
 界面活性剤:ポリイソプロピレンポリエチレンオキシジコハク酸エステルナトリウム塩の10質量%メタノール溶液
 (溶液-II)
 六塩化ロジウム錯体の10質量%水溶液
 (溶液-F)
 アルカリ処理不活性ゼラチン(平均分子量10万)          16.5g
 純水                             139.8ml。
 〈感光材料101の作製〉
 上述のように下引層を施した支持体上に、前述のように調製したハロゲン化銀微粒子乳剤EMP-1を塗布銀量が銀換算で0.8g/m2となるように塗布を行った後、乾燥して、感光材料101を作製した。
 なお、感光材料101の作製においては、硬膜剤(テトラキス(ビニルスルホニルメチル)メタン)をゼラチン1g当たり50mgの比率となるようにして添加した。また、塗布助剤として界面活性剤(スルホ琥珀酸ジ(2-エチルヘキシル)・ナトリウム)を添加し、表面張力を調整した。また、銀とゼラチンの体積比が0.5となるようにゼラチン量を調整した。ここで言う銀とゼラチンの体積比とは、塗工されているハロゲン化銀微粒子の体積を塗工されているゼラチンの体積で除した値を指す。
 〈金属集電層の形成〉
 上述のようにして製造した感光材料101に対して、ライン幅が13μm、ライン同士の間隔が500μmの格子状のフォトマスクを介して、紫外線ランプを用いて露光を行った。次いで、下記現像液(DEV-1)を用いて35℃で30秒間現像処理を行った後、下記定着液(FIX-1)を用いて35℃で60秒間の定着処理を行い、それに続けて水洗処理を行った。更に下記物理現像液(PD-1)を用いて、30℃5分間の物理現像を行い、次いで水洗処理を行った。
 (DEV-1:現像液)
 純水                               500ml
 メトール                                2g
 無水亜硫酸ナトリウム                         80g
 ハイドロキノン                             4g
 ホウ砂                                 4g
 チオ硫酸ナトリウム                          10g
 臭化カリウム                            0.5g
 水を加えて全量を1Lとする。
 (FIX-1:定着液)
 純水                               750ml
 チオ硫酸ナトリウム                         250g
 無水亜硫酸ナトリウム                         15g
 氷酢酸                               15ml
 カリミョウバン                            15g
 水を加えて全量を1Lとする。
 (PD-1:物理現像液)
 純水                               800ml
 クエン酸                               31g
 ハイドロキノン                           7.8g
 リン酸水素二ナトリウム                       1.1g
 アンモニア水(28%)                      2.2ml
 硝酸銀                               1.5g
 水を加えて全量を1Lとする。
 〈透明導電性層の形成〉
 導電性ポリマーとして、スルホン酸系ドーパントを含有する導電性ポリアニリンの水系分散液〔ORMECON D1033W(ドイツ オルメコン製)〕を銀細線上の乾燥膜厚が100nmとなるように、金属集電層の開口部及び金属細線上に平滑に塗布し、続いて100℃で20分間の加熱処理を施し、導電性基材CB-01を作製した。
 《導電性基材CB-02の作製》
 導電性基材CB-01の作製において、透明導電性層の形成工程を省いた以外は導電性基材CB-01と同様に作製し、導電性基材CB-02を作製した。
 《導電性基材CB-03の作製》
 導電性ポリアニリンの水系分散液〔ORMECON D1033W(ドイツ オルメコン製)〕を、乾燥膜厚が100nmとなるように上記下引済みPETフィルム支持体上に塗布し、続いて100℃で20分間の加熱処理を施し、導電性基材CB-03を作製した。
 《導電性基材CB-04の作製》
 導電性基材CB-01の作製において、透明導電性層として導電性ポリアニリン水系分散液の代わりにインジウムドープ酸化錫の水系分散液を使用して、透明導電性層を形成した以外は導電性基材CB-01と同様に作製し、導電性基材CB-04を作製した。
 《導電性基材CB-05の作製》
 導電性基材CB-01の作製において、金属集電層の形成工程でライン幅が7μmの格子状のフォトマスクを介して、紫外線ランプを用いて露光を行った以外は導電性基材CB-01と同様に作製し、導電性基材CB-05を作製した。
 〔色素増感型太陽電池の作製〕
 《色素増感型太陽電池SC-01の作製》
 TiO2ペースト(Solaronix製Ti-NanoxideT)をドライ膜厚10μmとなるように数回塗布、乾燥し、導電性基材CB-01上に4mm×4mm角の大きさに塗布した後、プレス成型機により130℃、9.8×108Paの条件で1分圧着して、多孔性の金属酸化物半導体層を形成した。
 次いで、アセトニトリル:t-ブタノール=1:1溶液200質量部中に、色素2-1を0.1質量部溶解した色素溶液を調製し、上記金属酸化物半導体層を基板ごと24時間浸漬した後、アセトニトリル:t-ブタノール=1:1溶液で洗浄、乾燥して、金属酸化物半導体層に色素を吸着させた半導体電極を作製した。
 対向電極として、ITOを導電膜として担持した厚み400μm、表面抵抗15Ω/□のポリエチレンテレフタレート(PET)のフィルムのITO表面に、厚さ10nmの白金膜をスパッタリング法で被覆したシート抵抗0.8Ω/□の導電性フィルムを用いた。
 前記半導体電極と前記対向電極とを、6.5mm角の穴を開けた25μm厚のシート状スペーサー兼封止材(Solaronix製SX-1170-25)を用いて向き合うように張り合わせ、カソード電極に設けた電解質注入穴から、アセトニトリルを溶媒としてヨウ化リチウム、ヨウ素、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイド、t-ブチルピリジンとを、それぞれの濃度が0.1モル/L、0.05モル/L、0.6モル/L、0.5モル/Lとなるように溶解したレドックス電解質を入れた電荷移動層を注入し、ホットボンドで穴を塞ぎ、上から前記封止剤を用いて封止した。前記金属酸化物半導体層を有する基材の受光面側に反射防止フィルム(コニカミノルタオプト製ハードコート/反射防止タイプセルロース系フィルム)を張り合わせ、色素増感型太陽電池SC-01を作製した。
 《色素増感型太陽電池SC-02の作製》
 〈金属酸化物中間層の形成〉
 特開2004-256920号公報に記載の装置を使用して、エアロゾルデポジション法によって、導電性基材CB-02上に4mm×4mm角の大きさの酸化チタンからなる金属酸化物中間層を形成した。膜厚は172μm、空隙率は16%であった。
 〈金属酸化物半導体層の形成以降の工程〉
 色素増感型太陽電池SC-01の作製において、金属酸化物半導体層形成用の酸化チタンペーストを、導電性基材上ではなく上記金属酸化物中間層上に塗布する以外は色素増感型太陽電池SC-01の作製と同様に作製し、色素増感型太陽電池SC-02を作製した。
 《色素増感型太陽電池SC-03~11の作製》
 色素増感型太陽電池SC-02の作製において、使用する導電性基材、及び金属酸化物中間層の膜厚、空隙率を表1に記載の通りに変更する以外は色素増感型太陽電池SC-02の作製と同様に作製し、色素増感型太陽電池SC-03~11を作製した。なお、金属酸化物中間層の空隙率については、ガスボンベのガス圧と排気ポンプの排気量を調整することによって制御した。
 《色素増感型太陽電池SC-12の作製》
 色素増感型太陽電池SC-11の作製において、金属酸化物中間層の組成を酸化チタンから酸化ニオブ(平均粒子径;92nm)に変更した以外は色素増感型太陽電池SC-11の作製と同様に作製し、色素増感型太陽電池SC-12を作製した。
 (太陽電池の光電変換特性評価)
 上記で得られた太陽電池SC-01~12の各々にソーラーシミュレーター(JASCO(日本分光)製、低エネルギー分光感度測定装置CEP-25)により100mW/m2の強度の光を照射した時の短絡電流密度Jsc(mA/cm2)、開放電圧値Voc(V)、フィルファクターff、変換効率η(%)を求めて表1に示した。示した値は、同じ構成及び作製方法の太陽電池3つずつ作製して評価した測定結果の平均値とした。
 (太陽電池の耐久性評価)
 上記で得られた太陽電池SC-01~12の各々に、JIS規格C8938の温湿度サイクル試験A-2に対応する温湿度変化(-40℃~90℃、相対湿度85%)を5サイクル実施し、その前後で上述の測定方法により光電変換効率η(%)を求めた。温湿度サイクル実施前の光電変換効率に対する温湿度サイクル実施後の光電変換効率をそれぞれの太陽電池について算出し、表1に示した。示した値は、同じ構成及び作製方法の太陽電池3つずつ作製して評価した測定結果の平均値とした。
Figure JPOXMLDOC01-appb-T000025
 表1から明らかなように、本発明の色素増感型太陽電池SC-05~12では、特に短絡電流が高くなることにより光電変換効率が向上し、更に耐久性も向上している。特に、金属酸化物中間層の膜厚や空隙率を最適に制御することによって、著しい向上が確認された。
 これに対し、比較の中でも特に色素増感型太陽電池SC-04については、透明導電性層の導電性材料として無機酸化物微粒子を使用しており、特に樹脂フィルムを基材として用いた場合には透明導電層の導電性が不十分となり、結果として十分な変換効率を得られていない。これに対して、本発明の色素増感型太陽電池は、低温で焼成した場合においても優れた光電変換効率を有しており、樹脂フィルム基材を使用する場合の適性にも優れることが明らかである。

Claims (5)

  1. 導電性基材上に色素が表面に吸着された半導体膜から構成される金属酸化物半導体層と電荷移動層と対向電極とを順次有する色素増感型太陽電池であって、該導電性基材と該金属酸化物半導体層の間に金属酸化物微粒子から構成される金属酸化物中間層を有し、更に該導電性基材は透明基材上に金属細線からなる金属集電層及び導電性ポリマーを含有する透明導電性層を有することを特徴とする色素増感型太陽電池。
  2. 前記金属集電層を構成する金属細線の線幅が5μm以上20μm以下であり、前記金属集電層の開口率が93%以上98%以下であることを特徴とする請求の範囲第1項に記載の色素増感型太陽電池。
  3. 前記透明導電性層が金属集電層の開口部及び金属細線の上部を覆い、前記導電性基材の最上面が平滑であることを特徴とする請求の範囲第1項または第2項に記載の色素増感型太陽電池。
  4. 前記金属酸化物中間層の膜厚が5nm以上200nm以下であることを特徴とする請求の範囲第1項~第3項のいずれか1項に記載の色素増感型太陽電池。
  5. 前記金属酸化物中間層の空隙率が10%以下であることを特徴とする請求の範囲第1項~第4項のいずれか1項に記載の色素増感型太陽電池。
PCT/JP2008/072409 2008-01-08 2008-12-10 色素増感型太陽電池 WO2009087848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009548869A JPWO2009087848A1 (ja) 2008-01-08 2008-12-10 色素増感型太陽電池
US12/811,160 US20100300529A1 (en) 2008-01-08 2008-12-10 Dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008001061 2008-01-08
JP2008-001061 2008-01-08

Publications (1)

Publication Number Publication Date
WO2009087848A1 true WO2009087848A1 (ja) 2009-07-16

Family

ID=40852973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072409 WO2009087848A1 (ja) 2008-01-08 2008-12-10 色素増感型太陽電池

Country Status (3)

Country Link
US (1) US20100300529A1 (ja)
JP (1) JPWO2009087848A1 (ja)
WO (1) WO2009087848A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840795A (zh) * 2010-05-11 2010-09-22 中国乐凯胶片集团公司 一种柔性染料敏化太阳能电池
JP2011512636A (ja) * 2008-02-19 2011-04-21 ソーラープリント・リミテッド 電解質組成物
US20110240112A1 (en) * 2010-04-06 2011-10-06 Seoul National University R&Db Foundation Flexible dye-sensitized solar cell and preparation method thereof
WO2011136140A1 (ja) * 2010-04-27 2011-11-03 京セラ株式会社 光電変換装置
JP2013539168A (ja) * 2010-09-27 2013-10-17 ▲海▼洋王照明科技股▲ふん▼有限公司 色素増感太陽電池の対電極及びその製造方法
US20140000703A1 (en) * 2010-07-01 2014-01-02 First Solar Malaysia Sdn. Bhd. Thin Film Article and Method for Forming a Reduced Conductive Area in Transparent Conductive Films for Photovoltaic Modules
JP2014179254A (ja) * 2013-03-15 2014-09-25 Taiyo Kogyo Corp 色素増感型太陽電池、及びその製造方法、並びにその施工方法
WO2015040738A1 (ja) * 2013-09-20 2015-03-26 積水化学工業株式会社 色素増感型太陽電池用多孔質膜および色素増感型太陽電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497130B1 (en) * 2009-11-06 2018-01-24 Nano-C, Inc. Fullerene-functionalized particles, methods for making the same and their use in bulkheterojunction organic photovoltaic devices
WO2012014924A1 (ja) * 2010-07-29 2012-02-02 京セラ株式会社 光電変換装置
US8932898B2 (en) 2011-01-14 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior Univerity Deposition and post-processing techniques for transparent conductive films
JP4893867B1 (ja) * 2011-02-23 2012-03-07 ソニー株式会社 透明導電膜、分散液、情報入力装置、および電子機器
US8865298B2 (en) * 2011-06-29 2014-10-21 Eastman Kodak Company Article with metal grid composite and methods of preparing
WO2013082287A1 (en) * 2011-11-30 2013-06-06 Konica Minolta Laboratory U.S.A., Inc. Coating liquid for photovoltaic device and method for using the same
US9991463B2 (en) * 2012-06-14 2018-06-05 Universal Display Corporation Electronic devices with improved shelf lives
US20140116509A1 (en) * 2012-10-30 2014-05-01 Sean Andrew Vail Solid-State Dye-Sensitized Solar Cell Using Oxidative Dopant
CN103871751A (zh) * 2014-03-31 2014-06-18 宋旭 一种新型柔性染料敏化太阳能电池
CN107615426B (zh) * 2015-05-14 2019-09-17 株式会社昭和 在对电极上设置有集电极的色素敏化型太阳能电池
JP6522040B2 (ja) * 2017-04-28 2019-05-29 キヤノン株式会社 積層体の製造方法および液体吐出ヘッドの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241234A (ja) * 2003-02-05 2004-08-26 Hitachi Metals Ltd 光電極およびそれを使用した色素増感型太陽電池
JP2004363069A (ja) * 2002-06-14 2004-12-24 Hitachi Metals Ltd 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池
JP2005332705A (ja) * 2004-05-20 2005-12-02 Fujimori Kogyo Co Ltd 透明電極基板とその製造方法及びこの基板を用いた色素増感型太陽電池
JP2007048579A (ja) * 2005-08-09 2007-02-22 Shimane Pref Gov 酸化物半導体電極、その作製方法およびこれを備えた色素増感太陽電池
JP2007048580A (ja) * 2005-08-09 2007-02-22 Shimane Pref Gov 酸化物半導体電極、その作製方法およびこれを備えた色素増感太陽電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127738A (en) * 1976-07-06 1978-11-28 Exxon Research & Engineering Company Photovoltaic device containing an organic layer
KR100232716B1 (ko) * 1995-04-07 1999-12-01 하루타 히로시 태양전지식 시계의 문자판
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
KR100658263B1 (ko) * 2005-09-29 2006-12-14 삼성전자주식회사 적층형 광전변환소자 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363069A (ja) * 2002-06-14 2004-12-24 Hitachi Metals Ltd 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池
JP2004241234A (ja) * 2003-02-05 2004-08-26 Hitachi Metals Ltd 光電極およびそれを使用した色素増感型太陽電池
JP2005332705A (ja) * 2004-05-20 2005-12-02 Fujimori Kogyo Co Ltd 透明電極基板とその製造方法及びこの基板を用いた色素増感型太陽電池
JP2007048579A (ja) * 2005-08-09 2007-02-22 Shimane Pref Gov 酸化物半導体電極、その作製方法およびこれを備えた色素増感太陽電池
JP2007048580A (ja) * 2005-08-09 2007-02-22 Shimane Pref Gov 酸化物半導体電極、その作製方法およびこれを備えた色素増感太陽電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512636A (ja) * 2008-02-19 2011-04-21 ソーラープリント・リミテッド 電解質組成物
US20110240112A1 (en) * 2010-04-06 2011-10-06 Seoul National University R&Db Foundation Flexible dye-sensitized solar cell and preparation method thereof
WO2011136140A1 (ja) * 2010-04-27 2011-11-03 京セラ株式会社 光電変換装置
JP5490226B2 (ja) * 2010-04-27 2014-05-14 京セラ株式会社 光電変換装置
US8916905B2 (en) 2010-04-27 2014-12-23 Kyocera Corporation Photoelectric conversion device
CN101840795A (zh) * 2010-05-11 2010-09-22 中国乐凯胶片集团公司 一种柔性染料敏化太阳能电池
US20140000703A1 (en) * 2010-07-01 2014-01-02 First Solar Malaysia Sdn. Bhd. Thin Film Article and Method for Forming a Reduced Conductive Area in Transparent Conductive Films for Photovoltaic Modules
JP2013539168A (ja) * 2010-09-27 2013-10-17 ▲海▼洋王照明科技股▲ふん▼有限公司 色素増感太陽電池の対電極及びその製造方法
JP2014179254A (ja) * 2013-03-15 2014-09-25 Taiyo Kogyo Corp 色素増感型太陽電池、及びその製造方法、並びにその施工方法
WO2015040738A1 (ja) * 2013-09-20 2015-03-26 積水化学工業株式会社 色素増感型太陽電池用多孔質膜および色素増感型太陽電池
JPWO2015040738A1 (ja) * 2013-09-20 2017-03-02 積水化学工業株式会社 色素増感型太陽電池用多孔質膜および色素増感型太陽電池

Also Published As

Publication number Publication date
US20100300529A1 (en) 2010-12-02
JPWO2009087848A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2009087848A1 (ja) 色素増感型太陽電池
KR101024876B1 (ko) 메쉬 전극을 이용하는 광전지
JP4546733B2 (ja) 太陽電池繊維
JP5360054B2 (ja) 色素増感型太陽電池およびその製造方法
EP1467386A2 (en) Photoelectric conversion device fabrication method, photoelectric conversion device
JP4363553B2 (ja) 電解質組成物、光電変換素子および光電気化学電池
JP4754862B2 (ja) 色素増感太陽電池およびその製造方法
JP2000285977A (ja) 光電変換素子および光電池
JP2002298936A (ja) 光電変換素子、及びその製造方法
JP6082007B2 (ja) 光電変換層用組成物および光電変換素子
WO2009113342A1 (ja) 色素増感型太陽電池
JP2022501807A (ja) 色素増感光電池
JP2012227015A (ja) 光電変換素子及び光電気化学電池
JP2004161589A (ja) 酸化チタンゾル及び酸化チタン微粒子の製造方法、並びに光電変換素子
JP2004010403A (ja) 多重構造酸化チタン微粒子、及びその作製方法、及びそれを含有する光電変換素子並びに光電池
JP2009252726A (ja) 色素増感型太陽電池
JPWO2014017535A1 (ja) 光電変換層用組成物および光電変換素子
JP5151682B2 (ja) 色素増感型太陽電池の製造方法
JP6201317B2 (ja) 色素増感型光電変換素子および色素増感型太陽電池
JP5162904B2 (ja) 光電変換素子及び色素増感型太陽電池
JP2004124124A (ja) 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP4931402B2 (ja) 光電変換素子
CN110323069B (zh) 染料敏化太阳能电池和其制造方法
JP2004238213A (ja) 酸化チタン粒子の製造方法、及びそれを用いた光電変換素子
JP5651887B2 (ja) 色素増感型光電変換素子および色素増感型太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548869

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12811160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869905

Country of ref document: EP

Kind code of ref document: A1