WO2007100095A1 - 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池 - Google Patents

色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池 Download PDF

Info

Publication number
WO2007100095A1
WO2007100095A1 PCT/JP2007/054042 JP2007054042W WO2007100095A1 WO 2007100095 A1 WO2007100095 A1 WO 2007100095A1 JP 2007054042 W JP2007054042 W JP 2007054042W WO 2007100095 A1 WO2007100095 A1 WO 2007100095A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
sensitized solar
solar cell
photoelectrode
layer
Prior art date
Application number
PCT/JP2007/054042
Other languages
English (en)
French (fr)
Inventor
Hironori Arakawa
Takeshi Yamaguchi
Original Assignee
Tokyo University Of Science Educational Foundation Administrative Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University Of Science Educational Foundation Administrative Organization filed Critical Tokyo University Of Science Educational Foundation Administrative Organization
Priority to US12/224,647 priority Critical patent/US20090114277A1/en
Priority to EP07737690A priority patent/EP2006949A2/en
Priority to JP2008502871A priority patent/JP4446011B2/ja
Publication of WO2007100095A1 publication Critical patent/WO2007100095A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a photoelectrode for dye-sensitized solar cell, a photoelectrode for dye-sensitized solar cell, and a dye-sensitized solar cell.
  • the dye-sensitized solar cell is a translucent substrate having a transparent conductive layer formed on a translucent support, and a titanium substrate formed on the transparent conductive layer.
  • a photoelectrode comprising a photoelectric conversion layer in which a sensitizing dye is supported on semiconductor particles such as particles, and a counter electrode electrically connected to the photoelectrode, and the photoelectrode and the counter electrode It is constructed by interposing an electrolyte solution in between.
  • this dye-sensitized solar cell has photoelectric conversion ability equal to or higher than that of a silicon-based solar cell conventionally used, and further, it is an acid titanium sensitizing dye as a material, an electrolyte solution component Have less resource restrictions than conventional silicon solar cells. In addition to that, it can be manufactured under atmospheric pressure, printing method or flow production method, and expensive manufacturing equipment is required. Therefore, it has the advantage of being able to be manufactured at low cost in large quantities.
  • glass can be mentioned as a material of the light-transmissive support of the light-transmissive substrate used in a dye-sensitized solar cell.
  • Dye-sensitized solar cells using glass as a light-transmissive support are generally prepared, for example, by applying a titanium-nanoparticle-containing paste containing an organic binder on a conductive glass substrate and firing at a temperature of 400 ° C. or higher The organic binder is burned to form a pure oxide semiconductor film, and the photoelectric conversion efficiency of such a dye-sensitized solar cell is about 8% and at most about 11%.
  • the use of a plastic substrate in which the light-transmissive support is a plastic plate, a plastic film or the like as a light-transmissive substrate has been attracting attention and studied.
  • This has advantages such as light weight, cost reduction, strength and flexibility, so it can be installed on, for example, a roof or a curved surface such as a car body. Because they are expected to be used as a power source for mobile phones.
  • a method of forming a photoelectric conversion layer at a low temperature of about 150 ° C., a pressure method, an electroconductive deposition method, a hydrothermal synthesis method, a microwave heating method, etc. have been proposed. Even in the case of using a dye-sensitized solar cell using a plastic substrate, the photoelectric conversion ability of the dye-sensitized solar cell using a glass-made solar cell can not be surpassed.
  • the plastic material type may be used as a translucent support in which such a solvent is often an organic solvent. There is a problem that it is limited.
  • Patent Document 2 discloses that a paste containing a binder and in which one type of semiconductor fine particle on which a sensitizing dye is supported in advance is dispersed is applied onto a conductive PET substrate (light transmitting substrate).
  • a dye-sensitized solar cell is disclosed in which a photoelectric conversion layer is formed by pressing, and while the pressure is applied, for example, the adhesion between the conductive PET substrate and the semiconductor particles, etc. If a high pressure of about 100 MPa is applied for the purpose of obtaining the above, it is considered that problems such as breakage of the conductive film of the conductive PET substrate and distortion of the conductive PET substrate itself may occur.
  • the photoelectric conversion layer formed by using the semiconductor fine particle on which the sensitizing dye is supported in advance peels off the sensitizing dye on the surface of the semiconductor fine particle that is directly pressed by pressing treatment, and the sensitizing dye It is considered that the contact between the semiconductor fine particles is interrupted and the movement of electrons is interrupted, and as a result, the obtained dye-sensitized solar cell becomes poor in performance.
  • the dye-sensitized solar cell manufactured using the binder as described above has a low photoelectric conversion efficiency.
  • the reason for this is presumed to be that the binder penetrates between the semiconductor fine particles and between the semiconductor fine particles and the light transmitting substrate, and their junctions' contact is interrupted to inhibit the movement of electrons.
  • Non-Patent Document 1 Nature, 353, p. 737-740, 1991 Patent Document 1: Japanese Patent Application Laid-Open No. 2006-19072
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-214129
  • Patent Document 3 International Publication 2003Z107471 Pamphlet
  • the present invention has been made in consideration of the above circumstances, and the object of the present invention is to obtain high photoelectric conversion efficiency even when a plastic substrate is used as a translucent substrate,
  • the photoelectrode for dye-sensitized solar cell and the manufacturing thereof in which a dye-sensitized solar cell capable of maintaining a high level of photoelectric conversion efficiency even when the amount of incident light is changed can be reliably obtained with good reproducibility. It is an object of the present invention to provide a method and a dye-sensitized solar cell obtained by the photoelectrode for the dye-sensitized solar cell.
  • the present inventors have made intensive efforts to solve the above problems, and as a result of using an aqueous paste containing semiconductor particles and water and not containing a noinder and an organic solvent, this is used as a translucent substrate.
  • the photoelectric conversion layer can be formed on the light transmitting substrate with high adhesion, and the obtained dye-sensitized solar cell is high.
  • a photoelectrode for a dye-sensitized solar cell capable of exhibiting a photoelectric conversion efficiency can be obtained, and in particular, it is found that it is effective when a plastic substrate is used as a translucent substrate, and the present invention is completed.
  • the photoelectric conversion layer is formed on the transparent conductive layer of the transparent substrate having the transparent conductive layer formed on the transparent support.
  • the photoelectric conversion layer contains at least two types of semiconductor particles having different average particle sizes, and a sensitizing dye,
  • It comprises a step of pressing the coating formed on the transparent conductive layer with an aqueous paste containing at least two kinds of semiconductor particles having different average particle sizes and containing no ginder and organic solvent. .
  • the surface of the light-transmissive substrate transparent conductive layer is subjected to ultrasonic cleaning treatment, etching treatment and Z or UV-ozone treatment. Preferred to be.
  • the photoelectric conversion layer is a functional semiconductor layer obtained by pressing a coating of the aqueous paste, It can be obtained by supporting a sensitizing dye on a functional semiconductor layer.
  • the press treatment is carried out at a light transmittance of a wavelength of 400 to 800 nm in the functional semiconductor layer and 110 of the value before the press treatment. It is preferred to be done on the condition which will be ⁇ 130%!
  • the photoelectric conversion layer is formed on the layer obtained by pressing the coating of the aqueous paste, on the layer obtained by pressing.
  • a functional semiconductor layer is obtained by forming one or more layers composed of a coating film of an aqueous paste containing no organic solvent and containing at least two kinds of semiconductor particles having different average particle sizes, to increase the functional semiconductor layer. It can be obtained by carrying a dye.
  • the press treatment is performed by pressing the light transmittance at a wavelength of 400 to 800 nm in the layer obtained by pressing the coating of the aqueous paste. It is preferable to be performed under the condition that it becomes 110 to 130% of the value before treatment
  • the functional properties can be obtained through the step of pressing the coating of the aqueous paste before supporting the sensitizing dye.
  • the semiconductor layer is preferably subjected to UV-ozone treatment.
  • the photoelectric conversion layer is obtained by supporting a sensitizing dye on the coating film of the aqueous paste and pressing it. And the sensitizing dye-loaded pressure semiconductor layer.
  • the pressing treatment is a light transmittance force at a wavelength of 400 to 800 nm in the sensitizing dye-loaded pressure semiconductor layer, and a value before the pressing treatment. It is preferred to be done on the condition of 110% to 130%!
  • the semiconductor particle is an anatase crystalline titanium particle.
  • the semiconductor particles be obtained by a basic method.
  • the basic method includes a step of hydrolyzing an alkoxide of a semiconductor metal with a quaternary ammonium salt. Preferred.
  • the content ratio of at least two types of semiconductor particles having different average particle sizes in the aqueous paste is 5 to 30 mass%. Is preferred! /.
  • semiconductor particles contained in the aqueous paste have an average particle diameter of 3 to 40 nm, and an average particle diameter of 50 nm or more. Preferred to be 2 types!
  • the press treatment is preferably performed at room temperature.
  • the press treatment is performed under a pressure of 5 MPa or more and 500 MPa or less. Preferred to be done!
  • the translucent support of the translucent substrate may be a translucent support made of plastic.
  • the heat treatment is performed at a temperature lower than the heat resistance temperature of the plastic light-transmissive support, and the light-transmissive support is obtained. It is preferable to form a transparent conductive layer of indium-tin complex oxide (ITO) by sputtering.
  • ITO indium-tin complex oxide
  • a functional semiconductor layer is provided on the transparent conductive layer of the light transmitting substrate in which the transparent conductive layer is formed on the light transmitting support. It is a photoelectrode for a dye-sensitized solar cell in which a sensitizing dye is supported on the functional semiconductor layer of the photoelectron pole structure.
  • the functional semiconductor layer has a pressed layer in contact with the transparent conductive layer, and the pressed layer contains at least two types of semiconductor particles having different average particle sizes and contains a binder. It is characterized by not being.
  • the content ratio of semiconductor particles having an average particle diameter of 3 to 40 nm in at least two types of semiconductor particles having different average particle diameters is 50 to 50. It is preferable that it is 95 mass%.
  • the functional semiconductor layer of the photoelectrode assembly is a pressed layer and a flat layer laminated on the pressed layer. It is possible to have a multilayer structure of at least one layer containing at least two types of semiconductor particles different in average particle size, no binder, and not pressed.
  • the thickness of the pressed semiconductor layer of the functional semiconductor layer is preferably 3 to 40 ⁇ m.
  • the pressed layer of the functional semiconductor layer may have a trace in which a crack is buried.
  • the wavelength of a laminate of the light transmitting substrate in the photoelectrode structure and the pressed layer of the functional semiconductor layer is 500 nm. It is preferable that the light transmittance of these is 20 to 65%, and the light transmittance of wavelength 700 nm is 30 to 75%.
  • the dye-sensitized solar cell of the present invention comprises the above-described photoelectrode for a dye-sensitized solar cell, and the photoelectrode for the dye-sensitized solar cell is opposed to the counter electrode through the electrolyte portion. It is characterized by being set up.
  • the photoelectric conversion layer contains two or more kinds of semiconductor particles having different average particle diameters, so that the photoelectric conversion layer contains The sensitizing dye can achieve high light absorption efficiency by the so-called light confinement effect.
  • the semiconductor particles are densely formed by the pressing treatment.
  • the flexibility allows the semiconductor particles to adhere closely to the surface of the transparent conductive layer of the light transmitting substrate. Between the particles and the surface of the transparent conductive layer, since a binder does not enter, a very good electron flow can be achieved, and as a result, a dye-sensitized solar cell with good performance can be obtained.
  • the photoelectric conversion layer can be formed on the light transmitting substrate with high adhesion, and as a result Even when a plastic substrate is used, the photoelectrode for dye-sensitized solar cell which can obtain a dye-sensitized solar cell capable of maintaining a high level of photoelectric conversion efficiency even when the amount of incident light is changed Can be manufactured.
  • the manufacturing method of the present invention since the operation can be carried out under room temperature conditions, the operation can be facilitated and heating is hardly required, and the number of materials to be used is smaller than that of the conventional manufacturing method. As a result, manufacturing costs are reduced, and advantages such as excellent environmental performance because no organic solvent is used, and energy saving because the pressing process is sufficient at low pressure are obtained.
  • the photoelectrode for dye-sensitized solar cell of the present invention even when a plastic substrate is used as the light-transmissive substrate, high photoelectric conversion efficiency can be maintained even if the amount of incident light is changed.
  • a dye-sensitized solar cell can be provided.
  • a dye-sensitized solar cell using a plastic substrate as a translucent substrate for example, when the amount of incident light is changed in the range of 20 to 170 mW / cm 2 , The photoelectric conversion efficiency is maintained at a high level of 9 to 7.4% and the variation thereof is small.
  • FIG. 1 is a cross-sectional view for illustrating an example of the configuration of a cell constituting the dye-sensitized solar cell of the present invention.
  • FIG. 2 is an explanatory sectional view showing an example of a method of producing the photoelectrode for dye-sensitized solar cell of the present invention.
  • FIG. 3 is an explanatory cross-sectional view showing another example of the configuration of the cell constituting the dye-sensitized solar cell of the present invention.
  • FIG. 4 is an explanatory sectional view showing an example of a method of producing a photoelectrode for a dye-sensitized solar cell according to another example of the present invention.
  • FIG. 5 is a graph showing the results of Example 1.
  • FIG. 1 is an explanatory cross-sectional view showing an example of the configuration of a cell constituting the dye-sensitized solar cell of the present invention.
  • a cell (hereinafter, also referred to as “photoelectric conversion element”) 10 constituting this dye-sensitized solar cell is a photoelectrode for a dye-sensitized solar cell in which a photoelectric conversion layer 23 is formed on a translucent substrate 21. (Hereinafter, it is also simply referred to as “photoelectrode”) 20, and a counter electrode 16 in which a conductive layer (not shown) made of, for example, platinum or the like is formed on a light transmitting substrate (not shown).
  • the photoelectric conversion layer 23 and the conductive layer are disposed to face each other via the electrolyte portion 12.
  • the photo electrode 20 acts as a negative electrode, and specifically, a light transmitting substrate 21 having a transparent conductive layer 21 b (see FIG. 2 (a)), and the light transmitting substrate 21. And a photoelectric conversion layer 23 provided by being stacked on the transparent conductive layer 21b.
  • the photoelectric conversion layer 23 contains at least two types of semiconductor particles having different average particle sizes (hereinafter, referred to as “specific semiconductor particle group”) and a sensitizing dye, and is press-treated. Specifically, the functional semiconductor layer 23a is obtained by pressing a coating 23A (see FIG. 2 (b)) of an aqueous paste containing a specific semiconductor particle group without containing a binder and an organic solvent. A sensitizing dye is carried.
  • the functional semiconductor layer 23 a When the photoelectric conversion layer 23 has the functional semiconductor layer 23 a obtained by pressing, the functional semiconductor layer 23 a can be formed with a large number of nanopores. The ratio of the surface area of the semiconductor particles per unit area is extremely large, whereby a sufficient amount of sensitizing dye can be supported, and as a result, high light absorption efficiency can be obtained.
  • the photoelectric conversion layer 23 contains two or more kinds of semiconductor particles having different average particle sizes, for example, nano-sized semiconductor particles having an average particle size of about 20 nm tend to transmit long wavelength light.
  • semiconductor particles having a large particle size of about 100 nm in average particle diameter are mixed, light is scattered, and the optical path length in the functional semiconductor layer 23 a is increased. it can.
  • sufficient light absorption efficiency is obtained for the sensitizing dye, and therefore, high V ⁇ photoelectric conversion efficiency is achieved in the dye-sensitized solar cell.
  • the photoelectrode structure 20K in which the transparent conductive layer 21b and the functional semiconductor layer 23a are provided in this order on the light-transmissive support 21a (see FIG. 2 (c)). It is preferable that the light transmittance of the wavelength 500 nm is 20 to 65%, and the light transmittance of the wavelength 700 nm is 30 to 75%.
  • the semiconductor particles exert an electron transfer function, and as a semiconductor constituting such semiconductor particles, specifically, for example, TiO 2, SnO, ZnO, WO 2, Nb 2 O 3, In
  • Oxide semiconductors such as O 2, ZrO 2, Ta 2 O 3, and TiSrO 2; CdS, ZnS, In S, PbS, Mo
  • Sulfide semiconductors such as S, WS, SbS, BiS, ZnCdS, CuS; CdSe, In Se
  • metal chalcogenides such as WSe, PbSe and CdTe; elements such as GaAs, Si, Se and InP
  • a complex of SnO and ZnO a complex of TiO and Nb 2 O 5
  • any complex of two or more of these can also be used.
  • the types of semiconductor can be used as a mixture of two or more types without being limited to these.
  • oxides of Ti, Zn, Sn and Nb are preferred as the semiconductor constituting the semiconductor particles, and TiO 2 is particularly preferable.
  • tita particles comprising TiO those of anatase crystal type and rutile crystal type
  • titanium particles of anatase crystal type makes it possible, in particular, in the dye-sensitized solar cell with a light-transmissive support made of a plastic film. Performance is obtained.
  • the two or more types of semiconductor particles having different average particle sizes contained in a specific semiconductor particle group may be the same as or different from each other, but may be the same. And is preferred.
  • titanium particles as the semiconductor particles.
  • the average particle diameter of semiconductor particles having a small average particle diameter is preferably 3 to 40 nm, and more preferably Is 15 to 25 nm.
  • semiconductor particles having a large average particle diameter (hereinafter, also referred to as “semiconductor large particles”) have light scattering ability, and the average particle diameter is Is preferably 50 nm or more, more preferably 80 to 400%, particularly preferably 90 to 120%.
  • the content ratio of the semiconductor small particles in the specific semiconductor particle group constituting the photoelectric conversion layer 23 is preferably 50 to 95% by mass, and more preferably 60 to 70% by mass.
  • the proportion of small semiconductor particles is excessive, sufficient light confinement effect by large semiconductor particles is obtained. High light absorption efficiency can not be obtained for sensitizing dyes.
  • the proportion of the semiconductor particles is too small, the photoelectric conversion ability can not be obtained sufficiently.
  • the thickness of the functional semiconductor layer 23 a for forming the photoelectric conversion layer 23 is preferably 3 to 40 ⁇ m, and more preferably 6 to 15 ⁇ m.
  • the thickness of the functional semiconductor layer to form the photoelectric conversion layer is too small, a sufficient amount of sensitizing dye can not be supported, and the resulting dye-sensitized solar cell obtains sufficient photoelectric conversion efficiency. It can not be done.
  • the thickness of the functional semiconductor layer to form the photoelectric conversion layer is excessive, the diffusion distance of the electrons injected from the sensitizing dye in the obtained photoelectric conversion layer is increased, so that the energy due to charge recombination is increased. The loss will increase.
  • the sensitizing dye supported by the semiconductor particles in the photoelectric conversion layer 23 is not particularly limited as long as it exhibits a sensitizing action, and N3 complex, N719 complex (N719 dye), Ru terpyridine complex (black dye), Ru complexes such as Ru diketonate complexes; organic dyes such as coumarin dyes, merocyanine dyes, and polyene dyes; metal porphyrin dyes and lidar cyanine dyes, among which Ru complexes are preferred.
  • N719 dye and black dye are preferably mentioned because they have a broad absorption spectrum in the visible light region.
  • N719 dye is a compound represented by (RuL (NCS) ⁇ 2 ⁇ ), and Black dye dye
  • supported amount of the sensitizing dye in the photoelectric conversion layer 23, the functional semiconductor layer 23 the amount per unit surface area of a is 1 X 10- 8 ⁇ 1 X 10 " 7 mol / cm 2, preferably 3 X by being a 10- 8 ⁇ 7 X 10- 8 molZ cm 2 is preferred supported amount force.
  • sensitizing dye in this range the sensitizing dye on the surface of the semiconductor particles is carried as monolayer Therefore, energy loss does not occur, such as the electrons excited in the sensitizing dye reduce the electrolyte of the electrolyte portion. Sufficient light absorption efficiency can be obtained.
  • a translucent substrate 21 constituting the photoelectric conversion element 10 of this example is formed by forming a translucent conductive layer 21b on a translucent support 21a.
  • the translucent support 21a those made of various materials such as glass and plastic can be used, and as the plastic-made one, for example, from the viewpoints of translucency, heat resistance, chemical resistance and the like, for example, It is preferable to use a plate-like or film-like cycloolefin-based polymer, a plate-like or film-like acrylic urea-based polymer, a plate-like or film-like polyester, a plate-like or film-like polyethylene naphthalate, or the like.
  • the surface resistance of the translucent substrate 21 is preferably 100 ⁇ or less, more preferably 15 ⁇ or less.
  • Examples of the transparent conductive layer 21b formed on one surface of the translucent support 21a include those made of indium complex oxide (ITO), fluorine-doped tin oxide (FTO), and the like.
  • ITO indium complex oxide
  • FTO fluorine-doped tin oxide
  • the photoelectric conversion layer 23 of the photoelectrode 20 as described above can be manufactured through the following essential steps (1) to (5) in this order.
  • a transparent substrate 21 is formed on the transparent support 21a to obtain the transparent substrate 21, and the transparent substrate 21 is subjected to surface treatment as required (see FIG. 2 (a)). ).
  • An aqueous paste preparation step of preparing an aqueous paste containing semiconductor particles by a basic method (2) An aqueous paste preparation step of preparing an aqueous paste containing semiconductor particles by a basic method.
  • the translucent substrate 21 is obtained by forming the transparent conductive 21b on the translucent support 21a by, for example, a sputtering method.
  • the formation of the transparent conductive layer 21 b is preferably performed while heat treatment from the viewpoint of the adhesion to the light transmitting support 21 a of the transparent conductive layer 21 b and the durability.
  • the temperature of the heat treatment is, for example, usually 100 to 150 ° C.
  • the temperature of the heat treatment is The temperature is lower than the heat-resistant temperature of the plastic forming the translucent support 21a.
  • the "heat-resistant temperature” means the lower one of the soft softening point temperature and the melting point temperature of the plastic.
  • the above translucent substrate 21 is formed by combining one or more of ultrasonic cleaning treatment, etching treatment, and surface treatment such as UV-ozone treatment, that is, the surface, that is, the surface of the transparent conductive layer 21b.
  • surface treatment such as UV-ozone treatment, that is, the surface, that is, the surface of the transparent conductive layer 21b.
  • the reason for this is that both the wettability when applying the aqueous paste on the light transmitting substrate 21 and the adhesion between the semiconductor particles after pressing and the light transmitting substrate 21 are improved by surface treatment. For example, it is confirmed that the contact angle of the surface of translucent substrate 21 before surface treatment is larger than 90 ° and the contact angle after surface treatment is reduced to about 80 to 90 °. .
  • the surface treatment method of the translucent substrate 21 may be appropriately selected from other treatment methods such as sputtering in addition to the ultrasonic cleaning treatment, the etching treatment, and the UV-ozone treatment, and is not limited thereto.
  • the ultrasonic cleaning process uses an ultrasonic cleaner and an ultrasonic cleaner, and the transparent substrate is immersed in a container containing a cleaning agent, and the container is filled with water.
  • ultrasonic waves are emitted for several minutes to 10 minutes to clean and remove fine deposits and the like on the surface of the translucent substrate.
  • the etching process was performed by setting the light-transmissive substrate in a high frequency sputtering apparatus “SVC-700RFII” (Sanyu Electronics Co., Ltd.) and setting high vacuum conditions (5 Pa), and then performing reverse sputtering (etching) processing at 20 W. It is performed under the condition of 10 minutes. Specifically, plasma is generated by applying a high-frequency alternating current, and deposits on the substrate are removed by causing the positively charged argon atoms to collide with the negatively charged substrate.
  • UV-ozone treatment is carried out by placing the object to be treated in a UV-ozone cleaning device "OC-2506" (manufactured by Iwasaki Electric Co., Ltd.) and performing ultraviolet irradiation for about 5 minutes.
  • OC-2506 manufactured by Iwasaki Electric Co., Ltd.
  • the aqueous paste used in the production method of the present invention is one that only works with semiconductor particles and water, and does not contain a grinder and an organic solvent.
  • organic solvent may be used in this aqueous paste preparation step including the step of producing semiconductor large particles
  • the organic paste is contained in the aqueous paste as a residue to actively remove the organic solvent.
  • organic solvent is not contained” unless it affects the performance of the produced photoelectrode.
  • the method of preparing the aqueous paste containing the specific semiconductor particle group constituting the photoelectric conversion layer 23 is not particularly limited, for example, an alkoxide generated by the present inventors is hydrolyzed with a quaternary ammonium salt.
  • the basic method of decomposing is preferably used. Specifically, this basic method is obtained by hydrolyzing an alkoxide for obtaining small semiconductor particles with a quaternary ammonium salt, and similarly an alkakide for obtaining large semiconductor particles is obtained. It is obtained by hydrolysis with quaternary ammonium salts, and these can be prepared by mixing them.
  • the average particle size of the obtained semiconductor particles can be controlled by adjusting the addition amount of quaternary ammonium salt to be subjected to hydrolysis, and the addition amount of quaternary ammonium salt is large. As the particle size increases, semiconductor particles with a smaller average particle size can be obtained.
  • TMAH tetramethyl ammonium hydroxide
  • the methyl group is not limited, and the carbon number is 1 to 4
  • Those having one or more alkyl groups can be exemplified.
  • an alkoxide for obtaining semiconductor large particles an alkoxide of a metal constituting the above-mentioned semiconductor particles can be used.
  • the semiconductor particles are titanium particles
  • the content ratio of the specific semiconductor particle group in the aqueous paste is preferably 5 to 30% by mass, and more preferably 8 to 15% by mass.
  • This step is a step of applying a water-based paste onto the transparent conductive layer 21 b of the light transmitting substrate 21 to obtain a coated film 23 A, which is dried on the transparent conductive layer 21 b of the light transmitting substrate 21.
  • the method for applying the aqueous paste is not particularly limited, and may be carried out according to various known methods such as a doctor blade method and a spray method.
  • drying temperature can be, for example, room temperature.
  • the region of the transparent conductive layer 21b on which the aqueous paste is applied functions as a working electrode, and the area of the working electrode region can be appropriately selected depending on the application.
  • the area of the working electrode that can be manufactured by the manufacturing method of the present invention varies depending on the performance of the press used in the press treatment process described later, for example, a size of about 20 cm x 20 cm or more. It is also possible to make one with regions.
  • This step is a step of pressing the coating film 23A to obtain the functional semiconductor layer 23a, and by performing the pressing treatment, the semiconductor particles in the coating film 23A are sufficiently in close contact with each other. Transmission ability can be obtained.
  • this pressing process achieves high electron transferability by filling the cracks.
  • the state in which the crack has occurred before pressing and the state in which the crack has been filled after pressing (marks of the crack) can be visually observed with a scanning electron microscope (SEM).
  • the trace of the crack can be clearly confirmed by SEM observation also for those on which the sensitizing dye obtained through the pressing process and the dye-supporting process is supported.
  • the method of press treatment of the aqueous paste is not particularly limited, and various known methods such as a press molding method using a flat plate-type press or the like, a roll press method, a calender method and the like can be mentioned.
  • room temperature is 20-35 degreeC normally.
  • the light transmittance at a wavelength of 400 to 800 nm in the laminate in which the functional semiconductor layer 23 a is formed on the translucent substrate 21 is 105 to 170% of the value before the press treatment. It is preferably performed under the conditions of 110 to 170%, more preferably 110 to 130%, for example, preferably the pressing is performed at a pressure of 5 MPa or more, preferably 30 MPa or more. By carrying out at a pressure of 500 MPa or less, preferably 150 MPa or less, it is possible to realize the above-mentioned light transmittance and to bury cracks which inevitably occur in the coating of the aqueous paste.
  • the light transmitting support itself of the plastic substrate is distorted and not only adversely affects the performance of the dye-sensitized solar cell, Furthermore, it is not preferable because the transparent conductive layer formed on the translucent support may be broken.
  • the thickness of the functional semiconductor layer 23a will be 80 to 30% of the value before a press process by performing a press process.
  • UV-ozone treatment can be performed as a surface treatment of the pressed functional semiconductor layer 23a, if necessary.
  • This UV-ozone treatment can be carried out both when the UV-ozone treatment is carried out as the surface treatment of the light-transmissive substrate 21 and when it is not carried out.
  • the surface of the semiconductor particles constituting the functional semiconductor layer 23a can be cleaned, and by increasing the number of hydrophilic groups of the semiconductor particles, the sensitizing dye is easily adsorbed. It is considered that the dye-sensitized solar cell can be put into a state, and as a result, the obtained dye-sensitized solar cell can be made to have high photoelectric conversion efficiency.
  • TMAH used in preparation of titanium particles by the basic method may remain as unreacted material in the functional semiconductor layer 23 a.
  • UV-ozone treatment Can decompose the TMAH and clean the surface of the semiconductor particles.
  • the UV-ozone treatment can be performed in the same manner as the UV-ozone treatment of the light-transmissive substrate 21.
  • the method for supporting the sensitizing dye on the functional semiconductor layer 23a of the photoelectrode structure 20K is not particularly limited.
  • the sensitizing dye may be alcohols, nitriles, nitromethane, halogenated hydrocarbons, ethers, Dimethyl sulfoxide, amides, N-methyl pyrrolidone, 1,3-dimethyl imidazolidinone, 3-methyl oxazolidinone, esters, carbonic esters, ketones, hydrocarbons, solvents such as water, or the like
  • An immersion method of immersing the photoelectrode structure 20K having the functional semiconductor layer 23a formed thereon, which is dissolved in a mixed solvent of a species or more, a spray coating method, a printing coating method, etc. may be mentioned.
  • the photoelectrode 20 obtained by the above manufacturing method has a photoelectric conversion layer 23 provided on a light transmitting substrate 21, and the photoelectric conversion layer 23 has a specific semiconductor particle group and an increase in size. It contains a dyestuff and does not contain a binder.
  • the dye-sensitized solar cell according to the photoelectrode for dye-sensitized solar cell obtained by the manufacturing method as described above has a photoelectric conversion effect when the light-transmissive support is made of plastic.
  • the rate is higher than the photoelectric conversion efficiency when the light-transmissive support is made of glass. This is presumed to be because the semiconductor particles are slightly embedded in the transparent conductive layer by pressing the semiconductor particles on the soft plastic light-transmissive support, resulting in a closer bond. .
  • a translucent support made of a hard material such as glass it is presumed that the performance is lower than that using a plastic translucent support, because such a translucent support does not have such elasticity.
  • the electrolyte portion 12 interposed between the photoelectrode 20 and the counter electrode 16 may be in the form of liquid, solid, solid, or room temperature molten salt. It is also good.
  • the thickness of the electrolyte portion 12, that is, the distance between the photoelectrode 20 and the counter electrode 16 is, for example, 1 to: LOO ⁇ m.
  • the electrolyte part 12 is, for example, in the form of a solution, the electrolyte part 12 is preferably composed of an electrolyte, a solvent, and an additive.
  • electrolytes combinations of metal iodides such as lithium iodide, sodium iodide, potassium iodide, cesium iodide, etc. and iodine, tetraalkylammonoidide, pyridiniummuroidide, imidazolium muroidide, etc.
  • Iodine salt of a class of ammonium compound A combination of iodine, or a combination of bromine and bromine instead of the iodine and the iodine compound may be used.
  • the electrolyte force S ionic liquid it is not necessary to use a solvent.
  • the electrolyte may be a gel electrolyte, a polymer electrolyte, or a solid electrolyte, or alternatively, an organic charge transport material may be used instead of the electrolyte.
  • the solvent include: acetonitrile, methoxyacetonitrile, a tolyl-based solvent such as propio-tolyl, a carbonate-based solvent such as ethylene carbonate, an ether-based solvent, and an alcohol A system solvent etc. are mentioned.
  • the concentration of the electrolyte in the electrolyte solution varies depending on the type of electrolyte, for example, the combination of the electrolyte force S iodine salt iodine 0.1 to 5. More preferably, it is 0. 1 to 1. OM. [Counter electrode]
  • the counter electrode 16 functions as the positive electrode of the photoelectric conversion element 10, and as a material constituting the counter electrode 16, platinum, gold, silver, copper, aluminum, metals such as rhodium, indium, carbon, ITO, FTO, etc. Conductive metal oxides and the like.
  • the counter electrode 16 is usually constituted by providing a conductive film made of the above-mentioned metal, carbon or conductive oxide on a support having a conductive support or a conductive layer similar to that! It is not essential to have a support, as long as it has sufficient strength and sealability.
  • the photoelectrode 20 and the counter electrode 16 are disposed opposite to each other through an appropriate spacer, and between the photoelectrode 20 and the counter electrode 16 By sealing the electrolyte portion 12, a photoelectric conversion element 10 constituting a dye-sensitized solar cell can be obtained.
  • the above photoelectric conversion element 10 can be manufactured in various shapes according to the application, and the shape is not particularly limited.
  • Photoelectric conversion in this dye-sensitized solar cell is performed as follows.
  • the sensitizing dye contained in the photoelectric conversion layer 23 can achieve high light absorption efficiency by the light trapping effect, and the photoelectric conversion
  • the conversion layer 23 By forming the conversion layer 23 by a specific method using a specific aqueous paste, whatever material the light-transmissive support 21 a of the light-transmissive substrate 21 is made by, for example, conventionally high light absorption
  • the photoelectric conversion layer 23 can be formed on the translucent substrate 21 with high adhesion, and as a result, the plastic substrate can be obtained. Also in the case of using it, the photoelectric conversion efficiency at a high level can be maintained even if the amount of incident light is changed.
  • the light scattering layer 25 made of only semiconductor large particles may be formed on the surface of the photoelectric conversion layer 23.
  • the light scattering layer 25 of the photoelectric conversion element 10A can be made of, for example, a coating of an aqueous paste containing large semiconductor particles without containing a binder and an organic solvent.
  • the thickness of the light scattering layer 25 can be, for example, 1 to 15 m.
  • the photoelectric conversion element 10A having the photoelectrode 20A for dye-sensitized solar cell in which such a light scattering layer 25 is formed an extremely high light confinement effect can be obtained, and as a result, it is extremely high. ! It is possible to construct a dye-sensitized solar cell in which the photoelectric conversion efficiency is achieved.
  • the photoelectric conversion layer does not contain a binder and an organic solvent, and is an aqueous paste containing a specific semiconductor particle group.
  • the sensitizing dye-supporting pressure semiconductor layer may be obtained by pressing.
  • the photoelectrode for the dye-sensitized solar cell of this example is obtained by supporting the sensitizing dye on the coating film of the aqueous paste and then pressing it. At the time, since peeling of the sensitizing dye occurs, the pigment obtained in comparison with the photoelectrode 20 in the first embodiment prepared by supporting the sensitizing dye after pressing the coating of the aqueous paste is carried out. Low performance of sensitized solar cells.
  • the photoelectrode for dye-sensitized solar cell constituting the dye-sensitized solar cell of this example is photoelectric
  • the functional semiconductor layer constituting the conversion layer contains a specific semiconductor particle group and does not contain a binder and an organic solvent on the layer obtained by pressing the coating of the aqueous paste.
  • the structure is the same as that of the first embodiment except that it is a multilayer structure in which one or more layers are formed.
  • the photoelectric conversion layer 26 (see FIG. 4 (c)) is obtained in the same manner as the functional semiconductor layer 23 a in the first embodiment, that is, contains a binder and an organic solvent. Without the binder and the organic solvent on the layer 23 (see FIG. 4 (&)) obtained by pressing the coating of the aqueous paste containing the specific semiconductor particle group without A sensitizing dye is supported on a functional semiconductor layer 23j8 having one or more layers of a coating 23C (see FIG. 4 (b)) of an aqueous paste containing conductor particles.
  • the coating 23C of the aqueous paste can be laminated in 1 to 3 layers.
  • the type and the content ratio of the specific semiconductor particle group contained in the aqueous paste for forming the coating film 23C of the aqueous paste are for forming the layer 23 B obtained by pressing the coating film. It may be the same as, or different from, the type and content of the specific semiconductor particle group contained in the aqueous paste.
  • the layer thickness of the layer 23 B obtained by pressing the coating is, for example, 1 to 20 ⁇ m
  • the layer thickness of the coating 23 C of the aqueous paste of one layer is, for example It is 1 to 15 ⁇ m.
  • the photoelectrode structure 20K formed in the first embodiment ie, A coating 23C of an aqueous paste was formed on the layer 23B in which the transparent conductive layer 21b and the layer 23 obtained by pressing the coating on the translucent support 21a were formed in this order.
  • a method of forming the photoelectrode structure 20L and supporting the sensitizing dye on the functional semiconductor layer 23 ⁇ in the photoelectrode structure 20L by the above-mentioned method can be mentioned. Specifically, after the press treatment step (4) of the manufacturing step in the first embodiment described above, one to three layers of the coating film 23C of the aqueous paste are formed, and thereafter, the dye supporting step (5) is performed.
  • the press treatment to be performed in the state where the coating film is formed to obtain the layer 23 obtained by pressing the coating film on the translucent substrate 21 is the pressing treatment in the first embodiment. It can be performed under the same conditions as the logic. That is, the pressing process is a light transmittance force at a wavelength of 400 to 800 nm in the laminate in which the layer 23B obtained by pressing the coating film on the light transmitting substrate 21 is 105 to 170 of the value before the pressing process. %, More preferably 110 to 170%, and particularly preferably 110 to 130%.
  • the pressing force is MPa or more, preferably 30 MPa or more, and 500 MPa or less, preferably 150 MPa or less.
  • the pressure for the press treatment is too high, especially when a plastic light-transmissive support is used, the light-transmissive support itself is distorted, and the performance of the dye-sensitized solar cell is adversely affected. Not only that, but also the transparent conductive layer formed on the translucent support may be broken, which is not preferable.
  • the thickness of the layer 23 obtained by pressing the coating film constituting the functional semiconductor layer 23 ⁇ is preferably 80 to 30% of the value before the pressing process. .
  • the first process for surface treatment of the functional semiconductor layer 23 ⁇ may be performed before the next dye-supporting process, if necessary.
  • the UV-ozone treatment can be carried out by the same method as in the embodiment.
  • the UV-ozone treatment can be performed with or without UV-ozone treatment as the surface treatment of the light-transmissive substrate 21.
  • the surface of the semiconductor particles constituting the functional semiconductor layer 23 ⁇ can be cleaned, and by increasing the number of hydrophilic groups of the semiconductor particles, the sensitizing dye is easily adsorbed. It is considered that the dye-sensitized solar cell can be put into a state, and as a result, the obtained dye-sensitized solar cell can be made to have high photoelectric conversion efficiency.
  • the soot used in the preparation of titanium particles by the basic method may remain in the functional semiconductor layer 23 ⁇ as an unreacted substance.
  • Force UV-ozone treatment Can break down the soot and clean the surface of the semiconductor particles.
  • the precipitate was covered with ion-exchanged water in which 8 g of tetramethylammonium hydroxide (TMAH) was dissolved, and ion-exchanged water was further added to make the total amount of the sample 160 g.
  • TMAH tetramethylammonium hydroxide
  • This sample was heated to reflux at 140 ° C. for 4 hours, and then the microcrystal was removed with a glass filter to obtain a cloudy translucent colloidal solution.
  • the obtained colloidal solution is transferred to a closed autoclave container and subjected to hydrothermal synthesis at 260 ° C. for 8 hours. After this hydrothermal synthesis, the solvent of the colloidal solution is replaced with ethanol using an evaporator, and then ultrasonic wave is generated. Dispersion treatment was carried out to obtain an ethanol suspension [A] containing tita particles [A] of anatase crystal type having an average particle size of 20 nm (The above operation is “preparation operation of semiconductor particle suspension”) Say :) o
  • the total amount of trimethylamine produced by decomposition of TMAH is removed during the operation of replacing the solvent of the colloid solution with ethanol.
  • D is the length of the crystallite
  • the half width
  • is the diffraction angle
  • 0.94
  • 1.5418.
  • the tita particles [ ⁇ ] and the tita particles [ ⁇ ] were almost 100% anatase in crystal form, and the presence of rutile crystal was not confirmed.
  • the titanium particles [A] and the titanium particles [B] are mixed in a weight ratio of 7: 3 and this mixed solution is again used with an evaporator to substantially reduce the solvent.
  • an aqueous paste [1] for forming a photoelectric conversion layer having a concentration of titanium particles of 10 wt% and using water as a medium was obtained.
  • This aqueous paste [1] for photoelectric conversion layer formation was applied to a light-transmissive substrate made of ITOZPEN (polyethylene naphthalate) substrate (manufactured by Oji Toby) having a sheet resistance of 13 ⁇ by a doctor blade method. O. After applying to the working electrode area of 5 cm in size, it is allowed to dry at room temperature to obtain a coated film, and this coated film is pressed using a press at a pressure of 100 MPa for 60 seconds to transmit light. The photoelectrode structure in which the functional semiconductor layer was formed on the porous substrate was obtained.
  • ITOZPEN polyethylene naphthalate
  • the aqueous paste containing commercially available tita-7 “P-25” (manufactured by Nippon Aerosol Co., Ltd.) at a concentration of 10 wt% can not be applied to a translucent substrate, but the aqueous solution for forming the photoelectric conversion layer described above
  • the reason why the paste [1] was able to be applied to the light transmitting substrate despite the fact that the titanium particles were contained at a concentration of 10 wt% the reason is not clear, but there is a possibility of remaining. It is considered that the viscosity of the aqueous paste [1] for forming a photoelectric conversion layer is increased by certain TMAH.
  • FIG. 5 (b) shows the measurement results of the light transmittance of the one in which the coating film is formed on the translucent substrate before the pressing process.
  • cis-bis (isothiocyanate) -bis (2,2, -dipyridyl-4,4, -dicarboxylic acid) -ruthenium (II) bis-tetrabutyl ammonium is used as a sensitizing dye and it is possible to use ethanol.
  • the dye solution is dissolved at a concentration of 0.2 mM to obtain a dye solution, and the photoelectrode structure in which the above functional semiconductor layer is formed is immersed in this dye solution for 24 hours, and the sensitizing dye is added to the functional semiconductor layer.
  • a supported photoelectrode [1] was obtained.
  • an acetylonitrile solution in which iodine, lithium iodide, 1,2-dimethyl-3-propylimidazolium iodide and t-butylpyridine were dissolved was used. These were dissolved in acetonitrile under nitrogen atmosphere to become 0.05M, 0.1M, 0.6M and 0.5M respectively.
  • an ITO-PET film in which platinum was vapor-deposited was used as the counter electrode.
  • the above-mentioned photoelectrode [1] is combined with an anode of 50 m in thickness in this order and a counter electrode, and the electrolyte solution is injected between the photoelectrode [1] and the counter electrode with a microsyringe to obtain dye sensitization.
  • Type solar cell [1] was produced.
  • the produced dye-sensitized solar cell has extremely excellent performance, and the effect of TMAH was not observed. This is because, even if TMAH is present in the functional semiconductor layer after the pressing process, the TMAH is caused by immersing the photoelectrode structure in an ethanol solution of the sensitizing dye, whereby the sensitizing dye becomes a titanium particle. It is thought that because it is strongly bound and simultaneously dissolved in ethanol and removed, as a result, T MAH does not enter between the titanium particles and between the titanium particles and the light transmitting substrate. .
  • This dye-sensitized solar cell [1] is irradiated with pseudo-sunlight of AMI. 5 and lOOmW / cm 2 using a “Solar Simulator” (manufactured by PECSEL), “2400 type source meter” (K The IV characteristics were measured using EITHLEY) to obtain the values of the short circuit current, the open circuit voltage and the form factor ff, and the photoelectric conversion efficiency was calculated by the following equation (1) using these values. The results are shown in Table 1.
  • photoelectric conversion efficiency (%) [short circuit current value (mAZcm 2 ) X open circuit voltage value (V)
  • a dye-sensitized solar cell [2] was obtained in the same manner as in Example 1 except that the titanium particles [A] and the titanium particles [B] were mixed in a weight ratio of 6: 4.
  • the short circuit current, open circuit voltage, form factor ff and photoelectric conversion efficiency were obtained for this dye-sensitized solar cell [2] in the same manner as in Example 1. The results are shown in Table 1.
  • the light transmittance at a wavelength of 400 to 800 nm in the functional semiconductor layer was increased by 130% and the layer thickness was decreased to 70% with respect to the value before pressing.
  • Example 3 A dye-sensitized solar cell [3] is obtained in the same manner as in Example 2 except that the ITOZPEN substrate is replaced by a ⁇ cycloolefin substrate “Zeonor substrate” (manufactured by Nippon Zeon), and this dye is used.
  • the sensitized solar cell [3] values of a short circuit current, an open discharge pressure, a form factor ff and a photoelectric conversion efficiency were obtained in the same manner as in Example 1. The results are shown in Table 1.
  • a dye-sensitized solar cell [4] is obtained in the same manner as in Example 2 except that an ITOZ heat-resistant acrylic substrate (manufactured by Japan Synthetic Chemical Co., Ltd.) is used instead of the ITOZPEN substrate V, and this dye-sensitized solar cell
  • the short circuit current, the open circuit voltage, the form factor ff, and the photoelectric conversion efficiency were obtained in the same manner as in Example 1 for the solar cell [4]. The results are shown in Table 1.
  • a dye-sensitized solar cell [5] is obtained in the same manner as in Example 3 except that the working electrode region is 0.5 cm x 4.5 cm, and the pressing condition is a pressure of 80 MPa, to obtain this dye-sensitized solar cell.
  • the values of the short circuit current, the open circuit voltage, the form factor ff, and the photoelectric conversion efficiency were obtained for the solar cell [5] in the same manner as in Example 1. The results are shown in Table 1.
  • the light transmittance at a wavelength of 400 to 800 nm in the functional semiconductor layer was increased by 130% with respect to the value before pressing, and the layer thickness was decreased to 70%, which was 6 m.
  • a dye-sensitized solar cell [6] was obtained in the same manner as in Example 3 except that the working electrode region was 0.5 cm X 9. O cm, and the pressing conditions were a pressure of 80 MPa, and this dye-sensitized solar cell
  • the values of the short circuit current, the open circuit voltage, the form factor ff, and the photoelectric conversion efficiency were obtained for the solar cell [6] in the same manner as in Example 1. The results are shown in Table 1.
  • the light transmittance at a wavelength of 400 to 800 nm in the functional semiconductor layer was increased by 130% and the layer thickness was decreased to 70% with respect to the value before pressing.
  • a dye-sensitized solar cell [7] is obtained in the same manner as in Example 2 except that an FTOZ conductive glass substrate having a sheet resistance of 9 ⁇ and a Z port is used instead of the ITOZPEN substrate as the light transmitting substrate.
  • values of a short circuit current, an open discharge pressure, a form factor ff, and a photoelectric conversion efficiency were obtained in the same manner as in Example 1. The results are shown in Table 1. The thickness of the functional semiconductor layer was reduced to 70%, and was 5 m.
  • a dye-sensitized solar cell [1] for comparison is obtained in the same manner as in Example 1 except that the pressing process is not performed, and an example of the dye-sensitized solar cell [1] for comparison is obtained.
  • the values of short circuit current, open circuit voltage, form factor ff, and photoelectric conversion efficiency were obtained in the same manner as in 1. The results are shown in Table 1.
  • a dye-sensitized solar cell [3] for comparison was obtained in the same manner as in Example 1 except that the coating was not subjected to a press treatment, and was subjected to a heat treatment at 150 ° C. for 10 minutes.
  • the short circuit current, open circuit voltage, form factor ff, and photoelectric conversion efficiency were obtained in the same manner as in Example 1 for the dye-sensitized solar cell [3] for comparison. The results are shown in Table 1.
  • an FTOZ conductive glass substrate with a sheet resistance of 9 ⁇ and a Z port is used instead of the ITOZPEN substrate, and pressing is not performed, and after applying and drying an aqueous paste [1] for photoelectric conversion layer formation 520
  • the dye-sensitized solar cell for comparison [4] is prepared in the same manner as in Example 2 except that the baking treatment is carried out at 1 ° C. for 1 hour, and the conductive glass is sputtered with platinum as a counter electrode.
  • the short-circuit current, open circuit voltage, form factor ff, and photoelectric conversion efficiency were obtained in the same manner as in Example 1 for this comparative dye-sensitized solar cell [4]. Table 1 shows the results.
  • aqueous paste [1] for forming a photoelectric conversion layer two types of ethanol suspensions [A] and [B] are used in a weight ratio of the titanium particles [A] and the titanium particles [B]. : Mix to be 4 and To this mixture is added ethylcellulose and a-terpineol, dispersed uniformly with a homogenizer and an ultrasonic disperser, and concentrated using a force rotary evaporator to prepare an aqueous paste [Y] for forming a comparative photoelectric conversion layer.
  • the layer thickness of the functional semiconductor layer was 7 m.
  • Example 1 The same as in Example 1 except that the aqueous paste [Z] for forming a photoelectric conversion layer consisting of only titanium particles [A] was used instead of the aqueous paste for forming a photoelectric conversion layer [1]. Then, a dye-sensitized solar cell [6] for comparison is obtained, and the short-circuit current, open circuit voltage, form factor ff, photoelectric conversion of the dye-sensitized solar cell for comparison [6] in the same manner as in Example i. I got the value of efficiency. The results are shown in Table 1.
  • the light transmittance at a wavelength of 400 to 800 nm in the functional semiconductor layer was increased by 130% and the layer thickness was decreased to 70% with respect to the value before pressing.
  • Example 1 in place of the photoelectric conversion layer forming aqueous paste [1], Chita - ⁇ particles [A] and Chita - combined ⁇ particles (B) 10 weight 0/0, hydroxypropylcellulose 0.5 weight %, Using a water-based paste [W] for forming a photoelectric conversion layer for comparison, containing titanium particles [A] and titanium particles [B] in a weight ratio of 7: 3.
  • Example S 7 10.9 0.75 0, 76 6.2
  • Comparative example 4 6 10 0.81 0.68 5.6
  • Comparative Example 7 8.1 6.8 0.72 0.70 3.4
  • the dye-sensitized solar cell of the present invention according to Example 1 to Example 7 has high photoelectric conversion efficiency. It was confirmed that.
  • the dye-sensitized solar cell [1] according to Example 1 shows higher photoelectric conversion efficiency than the dye-sensitized solar cells according to other Examples 2 to 7 because the value of form factor ff is This is considered to be due to the high bondability between the titanium particles and the light transmitting substrate.
  • a dye-sensitized solar cell for comparison obtained by performing high-temperature firing using a paste containing a glass substrate as a light-transmitting substrate and a binder, which has been subjected to the results of Example 1 and the conventional technology.
  • the dye-sensitized solar cell of the present invention can obtain photoelectric conversion efficiency equal to or higher than that of the conventional dye-sensitized solar cell using a glass substrate. It was confirmed to be a thing.
  • Example 7 shows that when the working electrode region is enlarged, the magnitude of the photoelectric conversion efficiency tends to be affected by the increase and the effect tends to decrease somewhat. It was confirmed that high photoelectric conversion efficiency of 6% or more can be obtained even if the pole region is enlarged. Furthermore, according to the results of Example 7, although the light transmitting substrate is made of a light transmitting support made of glass, although the dye-sensitized solar cell [7] thus obtained lacks advantages such as flexibility and the like over dye-sensitized solar cells using plastic substrates, it has high photoelectric conversion efficiency. It was confirmed that it could be obtained.
  • a solar cell having a photoelectric conversion layer containing a binder can not obtain higher photoelectric conversion efficiency than that of the present invention having a photoelectric conversion layer not containing a binder. confirmed. It is presumed that this is because the binder penetrates between the titania particles or between the titanium particles and the light transmitting substrate, resulting in a poor bonding property and thus the electron transfer being inhibited.
  • a total of 63 dye-sensitized solar cells having the same configuration as in Examples 1 to 7 were produced, and 63 short-circuit currents were produced in the same manner as in Example 1 for all the dye-sensitized solar cells.
  • all nine dye-sensitized solar cells were ⁇ 0 for the corresponding values of the examples 1 to 7 shown in Table 1. It showed a value within an error range of 2%.
  • Example 2 A dye-sensitized solar cell [b] is obtained to obtain a photoelectrode structure [b] of the dye-sensitized solar cell [b] [b] with wavelengths of 400 nm, 500 nm, 600 nm, 700 nm, and 800 nm, respectively.
  • the light transmittance (absolute value) was measured. The results are shown in Table 2.
  • a dye-sensitized solar cell (port) is obtained in the same manner as in Example 9 except that the pressure treatment conditions are a pressure of 160 MPa (gauge pressure; 8 MPa), and the light of this dye-sensitized solar cell (port)
  • the electrode structure (mouth) [The light transmittance (absolute value) was measured at wavelengths of 400 nm, 500 nm, 600 nm, 700 nm, and 800 nm]. The results are shown in Table 2.
  • a dye-sensitized solar cell [iii] is obtained in the same manner as in Example 1 except that the pressure treatment conditions are a pressure of 80 MPa (gauge pressure; 4 MPa), and the dye-sensitized solar cell [iii]
  • the light electrode structure [No.] [The light transmittance (absolute value) was measured at wavelengths of 400 nm, 500 nm, 600 nm, 700 nm, and 800 nm. The results are shown in Table 2.
  • a dye-sensitized solar cell [2] is obtained in the same manner as in Example 10 except that the pressure treatment conditions are a pressure of 160 MPa (gauge pressure; 8 MPa), and the photoelectric conversion of this dye-sensitized solar cell [2]
  • the light transmittance absolute value was measured at each of the wavelengths 400 nm, 500 nm, 600 nm, 700 nm, and 800 mn. The results are shown in Table 2.
  • the photoelectrode structure [E] of the dye-sensitized solar cell [E] for this comparative reference is obtained at wavelengths of 4 OO nm, 500 nm, 600 nm, 700 nm, 800 nm, respectively. Value) was measured. The results are shown in Table 2.
  • a dye-sensitized solar cell [to] for comparison and reference was obtained in the same manner as in Comparative Example 1 except that the pressure treatment was performed at a pressure of 160 MPa (gauge pressure; 8 MPa).
  • Photoelectrode structure of sensitive solar cell [To] [wavelength] 400 nm, 500 nm, 6
  • the light transmittance (absolute value) was measured for each of 00 nm, 700 nm, and 800 nm. The results are shown in Table 2.
  • the same ultrasonic cleaning treatment, etching treatment and UV-ozone treatment as described below are applied to the surface of the same light-transmissive substrate as in Example 1 (sheet resistance: 13 ⁇ , ITOZPEN substrate), or two or more of them.
  • the combined surface treatment is performed according to Table 3, the aqueous paste for photoelectric conversion layer formation [1] obtained in the same manner as in Example 1 is applied on the surface, and the layer thickness shown in Table 3 is obtained.
  • the functional semiconductor layer is formed by pressing, and if necessary, the functional semiconductor layer is subjected to UV-ozone treatment, and then the sensitizing dye is supported to obtain a dye-sensitized solar cell [ 12] to [23] are obtained, and values of a short circuit current, an open circuit voltage, a form factor ff, and a photoelectric conversion efficiency are obtained in the same manner as in Example 1 for these dye-sensitized solar cells [12] to [23].
  • the results are shown in Table 3.
  • a translucent substrate is set in a high frequency sputtering apparatus “SVC-700RFII” (Sanyu Electronics Co., Ltd.), high vacuum conditions (5 Pa) are set, and reverse sputtering (etching) processing is performed at 20 W for 10 minutes. I went there. Specifically, plasma is generated by applying a high-frequency alternating current potential, and positively charged argon atoms are caused to collide with the negatively charged substrate, thereby depositing the deposit on the substrate. Removed.
  • the object to be treated was placed in a UV-ozone cleaning apparatus "OC-2506" (manufactured by Iwasaki Electric Co., Ltd.), and ultraviolet irradiation was performed for 5 minutes.
  • OC-2506 manufactured by Iwasaki Electric Co., Ltd.
  • the surface treatment when the surface treatment is applied to the light transmitting substrate, the surface treatment is not performed, for example, compared with the photoelectric conversion efficiency of 7.1% in Example 1. It has been shown that a high photoelectric conversion efficiency of 27.6% can be obtained, and in addition to the surface treatment of the translucent substrate, the functional semiconductor layer is treated by UV-ozone treatment. For example, in Examples 12 to 15, while the photoelectric conversion efficiency is 7. 2 to 7. 3%, it is shown that a high photoelectric conversion efficiency of 7. 3 to 7. 6% can be obtained.
  • Example 1 UV-ozone treatment is applied to the functional semiconductor layer after pressing and before the dye-supporting step, and acetylene and t-butyl alcohol are used as solvents for use in the dye-supporting step.
  • Dye-sensitized solar cells [24] and [25] were produced in the same manner, except that a mixed solvent with a weight ratio of 1: 1 was used.
  • the layer thicknesses of the functional semiconductor layers constituting the dye-sensitized solar cells [24] and [25] were 7.6 m and 8.1 m, respectively.
  • values of short circuit current, open circuit voltage, form factor ff, and photoelectric conversion efficiency were obtained in the same manner as in Example 1. The results are shown in Table 4.
  • the dye-sensitized solar cell of the present invention can maintain a high level of photoelectric conversion efficiency even when the amount of incident light is changed.
  • the amount of incident light is changed in the range of 20 to 200 mW Z cm 2 , and the amount of incident light is 23 mW Z cm 2 , 4 8.5 mW / cm, respectively.
  • the photoelectric conversion efficiency was measured at 2 , 70 mW / cm 2 , 100 mW / cm 2 , or 170 mW / cm 2 . The results are shown in Table 5.
  • a dye-sensitized solar cell [19] produced by using the surface-treated translucent substrate produced in the same manner as in Example 19 and further subjecting the functional semiconductor layer after pressing to UV-ozone treatment is obtained.
  • the amount of incident light varied from 20 ⁇ 200MWZcm 2, Re quantity of incident light, respectively it 20. 9mWZcm 2, 31. 4mW / cm 2, 46. OmW / cm 2, 69. OmW / cm 2, 100 mW / cm 2, or the photoelectric conversion efficiency was measured in the case of a 170mWZcm 2. The results are shown in Table 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 透光性基板を構成する透光性支持体としてプラスチック製のものを用いた場合にも高い光電変換効率が得られ、しかも、入射光量を変化させても高いレベルの光電変換効率を維持することができる色素増感型太陽電池が再現性よく確実に得られる色素増感型太陽電池用光電極およびその製造方法、並びに色素増感型太陽電池の提供。  製造方法は、透光性支持体上に透明導電層が形成されてなる透光性基板の当該透明導電層上に光電変換層が積層して形成された色素増感型太陽電池用光電極の製造方法であって、光電変換層は、平均粒子径の異なる少なくとも2種の半導体粒子と、増感色素とを含有するものであって、バインダーおよび有機溶剤を含有せず、前記平均粒子径の異なる少なくとも2種の半導体粒子を含有する水性ペーストによって透明導電層上に形成される塗膜をプレス処理する工程を含む。

Description

明 細 書
色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池 用光電極、並びに色素増感型太陽電池
技術分野
[0001] 本発明は、色素増感型太陽電池用光電極の製造方法および色素増感型太陽電 池用光電極、並びに色素増感型太陽電池に関する。
背景技術
[0002] 21世紀の人類が遭遇している深刻な問題として、産業革命以来の大量のエネルギ 一消費による地球温暖化とィ匕石燃料の枯渴が挙げられる。このため化石燃料を使わ ず、二酸ィ匕炭素を排出しないクリーンで再生可能エネルギーの開発が求められてお り、このようなクリーンで再生可能エネルギーとしては、水力、風力、地熱、波力など 様々あるが、場所を選ばず一定のエネルギーを確保できる太陽光エネルギー力 将 来最も有望な再生可能エネルギーのひとつとして注目されて 、る。
太陽光を利用したエネルギー技術の中では、太陽電池が最も広く用いられており、 ここ数年来実用化の段階に入ってはいるが、この有望な技術も製造コストが割高であ るため一般的な普及には至ってない。太陽光発電によるクリーンなエネルギーの大 幅な導入には、低コストの太陽電池の開発が欠力せない条件となっており、このよう な低コストで製造できる太陽電池として、一般にグレッツエル電池と称される色素増感 型太陽電池が提案されている (例えば、非特許文献 1参照。 ) o
[0003] この色素増感型太陽電池は、具体的には透光性支持体上に透明導電層が形成さ れた透光性基板、およびこの透明導電層上に形成された、チタ-ァ粒子などの半導 体粒子に増感色素が担持されてなる光電変換層とよりなる光電極と、この光電極に 電気的に接続された対極とを有し、これらの光電極と対極との間に電解質溶液を介 在させて構成されている。
そして、この色素増感型太陽電池は、従来使用されているシリコン系太陽電池と同 等以上の光電変換能を有し、さらに、材料である酸ィ匕チタンゃ増感色素、電解質溶 液成分などについて、従来のシリコン系太陽電池に比して資源的な制約が少ないこ とに加え、大気圧下、印刷方式や流れ生産方式で製造でき、製造設備も高価なもの は必要な 、ことから、低コストで大量に製造できると 、う利点を有する。
[0004] 従来、色素増感型太陽電池に使用される透光性基板の透光性支持体の材料とし て、ガラスが挙げられる。透光性支持体としてガラスを用いた色素増感型太陽電池は 、一般に、例えば導電性ガラス基板上に有機バインダーを含むチタ-アナノ粒子力 なるペーストを塗布し、 400°C以上の温度で焼成することによって有機バインダーを 燃焼させて純粋な酸ィ匕物半導体膜を作製しており、このような色素増感型太陽電池 の光電変換効率は 8%程度、最高でも 11%程度である。
一方、近年、透光性基板として、透光性支持体がプラスチック板やプラスチックフィ ルムなどであるプラスチック製基板を用いることが注目されて検討されて 、る。これは 、軽量ィ匕ゃコストの低減が図れ、強靭であり、フレキシブルであることなどの長所を有 することから、例えば、屋根の上などに設置したり、自動車のボディーのような曲面に 適用したりすることができ、また、携帯電話の電力源として用いることが期待されるた めである。
し力しながら、プラスチック製基板は耐熱温度が低ぐ 400°C以上の温度で焼成す るようなガラス基板の場合に通常用いられてきたプロセスを、そのままプラスチック製 基板に適用することができず、その結果、十分な光電変換効率が得られる色素増感 型太陽電池を形成することができな ヽ、という問題があった。
この問題を解決するため、 150°C程度の低温で光電変換層を形成させる方法、加 圧法、泳導電着法、水熱合成法、マイクロ波加熱法などが提案されているが、いずれ の手法を用いた場合においても、プラスチック製基板を用いた色素増感型太陽電池 は、ガラス製のものを用いた色素増感型太陽電池の光電変換能を凌駕することはで きない。
[0005] また、光電変換能の高!、色素増感型太陽電池を意図して、プラスチック製基板上 に光電変換層を形成するためには、通常、半導体粒子およびバインダーを含有する ペーストが使用されている(例えば、特許文献 1〜3参照。)。このノインダ一は、透光 性基板上への塗工性を向上させ、透光性基板と半導体粒子との密着性を良好なも のとし、得られる色素増感型太陽電池の耐久性を高いものとする目的で用いられて いる。
[0006] 然るに、バインダーを含有するペーストは、当該バインダーを溶解させる溶媒によつ て調製されるところ、このような溶媒が有機溶剤であることも多ぐ透光性支持体として プラスチック材料種が限定されてしまう、という問題がある。
[0007] 例えば、特許文献 2には、バインダーを含有し、増感色素が予め担持された 1種類 の半導体微粒子が分散されたペーストを、導電性 PET基板 (透光性基板)上に塗布 後プレス処理して、光電変換層が形成された色素増感型太陽電池が開示されている し力しながら、このプレス処理にぉ 、て例えば当該導電性 PET基板と半導体微粒 子との密着性などを得るためなどの目的で lOOOMPa程度の高圧をかけると、導電 性 PET基板の導電性膜の破損や、当該導電性 PET基板自体が歪むなどの問題が 発生すると考えられる。
また、予め増感色素が担持された半導体微粒子を用いて形成された光電変換層は 、プレス処理によって直接押圧を受ける半導体微粒子の表面の増感色素が剥離して しまう上に、増感色素によって半導体微粒子間の接触が妨げられて電子の移動が阻 害され、その結果、得られる色素増感型太陽電池が性能の低いものとなってしまうと 考えられる。
さらに、このようにバインダーを用いて製造した色素増感型太陽電池は、光電変換 効率が低いことが検証されている。この理由としては、バインダーが半導体微粒子間 および半導体微粒子と透光性基板との間に入り込み、それらの接合'接触が妨げら れて電子の移動が阻害されるためであると推察される。
[0008] 現在のところ、ガラス製の透光性基板を用いた色素増感型太陽電池と同程度ある いはそれ以上の高い光電変換効率が得られるプラスチック製基板による色素増感型 太陽電池が、再現性良く安定して作製できた旨の報告はない。
また、プラスチック製基板による色素増感型太陽電池として、入射光量を変化させ ても高いレベルの光電変換効率を維持できるものが期待されている力 未だに達成 されて!/ヽな ヽのが実情である。
[0009] 非特許文献 1 : Nature, 353, p. 737- 740, 1991 特許文献 1 :特開 2006— 19072号公報
特許文献 2 :特開 2004— 214129号公報
特許文献 3:国際公開第 2003Z107471号パンフレット
発明の開示
[0010] 本発明は、以上のような事情を考慮してなされたものであって、その目的は、透光 性基板としてプラスチック製基板を用いた場合にも、高い光電変換効率が得られ、し 力も、入射光量を変化させても高いレベルの光電変換効率を維持することができる色 素増感型太陽電池が再現性よく確実に得られる色素増感型太陽電池用光電極およ びその製造方法、並びに当該色素増感型太陽電池用光電極によって得られる色素 増感型太陽電池を提供することにある。
[0011] 本発明者らは、上記の課題を解決するために、鋭意努力した結果、半導体粒子お よび水を含有し、ノインダーおよび有機溶剤を含有しない水性ペーストを用い、これ を透光性基板上に塗布'乾燥して形成させた塗膜をプレス処理することによって、透 光性基板上に高 ヽ密着性で光電変換層を形成させることができ、得られる色素増感 型太陽電池が高い光電変換効率を示すものとすることができる色素増感型太陽電池 用光電極を得られ、特に透光性基板としてプラスチック製基板を用いた場合に有効 であることを見出し、本発明を完成させた。
[0012] 本発明の色素増感型太陽電池用光電極の製造方法は、透光性支持体上に透明 導電層が形成されてなる透光性基板の当該透明導電層上に光電変換層が積層して 形成された色素増感型太陽電池用光電極の製造方法であって、
前記光電変換層は、平均粒子径の異なる少なくとも 2種の半導体粒子と、増感色素 とを含有するものであって、
ノインダーおよび有機溶剤を含有せず、前記平均粒子径の異なる少なくとも 2種の 半導体粒子を含有する水性ペーストによって前記透明導電層上に形成される塗膜を プレス処理する工程を含むことを特徴とする。
[0013] 本発明の色素増感型太陽電池用光電極の製造方法においては、前記透光性基 板力 透明導電層の表面が超音波洗浄処理、エッチング処理および Zまたは UV— オゾン処理されたものであることが好まし 、。 [0014] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記光電 変換層は、前記水性ペーストの塗膜をプレス処理して得られる機能性半導体層を得 、この機能性半導体層に増感色素を担持させて得られるものとすることができる。
[0015] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記プレ ス処理は、機能性半導体層における波長 400〜800nmの光透過率力 プレス処理 前の値の 110〜 130%となる条件で行われることが好まし!/、。
[0016] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記光電 変換層は、前記水性ペーストの塗膜をプレス処理して得られる層上に、ノインダ一お よび有機溶剤を含有せず、平均粒子径の異なる少なくとも 2種の半導体粒子を含有 する水性ペーストの塗膜よりなる層を 1層以上形成させて機能性半導体層を得、この 機能性半導体層に増感色素を担持させて得られるものとすることができる。
この色素増感型太陽電池用光電極の製造方法にぉ 、ては、前記プレス処理は、 前記水性ペーストの塗膜をプレス処理して得られる層における波長 400〜800nmの 光透過率が、プレス処理前の値の 110〜130%となる条件で行われることが好ましい
[0017] また、本発明の色素増感型太陽電池用光電極の製造方法においては、増感色素 を担持する前に、前記水性ペーストの塗膜をプレス処理する工程を経て得られる機 能性半導体層を UV—オゾン処理することが好ましい。
[0018] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記光電 変換層は、前記水性ペーストの塗膜に増感色素を担持させた後、プレス処理して得 られる増感色素担持加圧半導体層よりなるものとすることができる。
[0019] この色素増感型太陽電池用光電極の製造方法においては、前記プレス処理は、 増感色素担持加圧半導体層〖こおける波長 400〜800nmの光透過率力 プレス処 理前の値の 110〜 130%となる条件で行われることが好まし!/、。
[0020] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記半導 体粒子がアナターゼ結晶型のチタ-ァ粒子であることが好ましい。
また、本発明の色素増感型太陽電池用光電極の製造方法においては、半導体粒 子が塩基性法により得られたものであることが好ましい。 [0021] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記塩基 性法は、半導体金属のアルコキサイドを 4級アンモ-ゥム塩によって加水分解するェ 程を含むものであることが好まし 、。
[0022] また、本発明の色素増感型太陽電池用光電極の製造方法においては、水性ぺー ストにおける平均粒子径の異なる少なくとも 2種の半導体粒子の含有割合が 5〜30 質量%であることが好まし!/、。
また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記水性 ペーストに含有される半導体粒子力 平均粒子径が 3〜40nmのもの、および平均粒 子径が 50nm以上のものの 2種であることが好まし!/、。
[0023] また、本発明の色素増感型太陽電池用光電極の製造方法においては、プレス処 理カ 室温で行われることが好ましぐまた、プレス処理は、 5MPa以上 500MPa以 下の圧力で行われることが好まし!/、。
[0024] また、本発明の色素増感型太陽電池用光電極の製造方法においては、前記透光 性基板の透光性支持体がプラスチック製の透光性支持体とすることができる。
[0025] この本発明の色素増感型太陽電池用光電極の製造方法においては、前記プラス チック製の透光性支持体の耐熱温度より低い温度で加熱処理しながら当該透光性 支持体上にスパッタリング法によってインジウムースズ複合酸ィ匕物 (ITO)からなる透 明導電層を形成させることが好ましい。
[0026] 本発明の色素増感型太陽電池用光電極は、透光性支持体上に透明導電層が形 成されてなる透光性基板の当該透明導電層上に機能性半導体層が設けられた光電 極構造体の当該機能性半導体層に増感色素が担持された色素増感型太陽電池用 光電極であって、
前記機能性半導体層は、プレス処理された層を透明導電層に接触した状態で有し 、当該プレス処理された層は、平均粒子径の異なる少なくとも 2種の半導体粒子を含 有しバインダーを含有しないものであることを特徴とする。
[0027] また、本発明の色素増感型太陽電池用光電極は、前記平均粒子径の異なる少なく とも 2種の半導体粒子に含有される半導体粒子力 平均粒子径が 3〜40nmのもの、 および平均粒子径が 50nm以上のものの 2種であることが好ましい。 [0028] また、本発明の色素増感型太陽電池用光電極においては、前記平均粒子径の異 なる少なくとも 2種の半導体粒子における平均粒子径が 3〜40nmの半導体粒子の 含有割合が 50〜95質量%であることが好ましい。
[0029] 本発明の色素増感型太陽電池用光電極においては、前記光電極構造体の機能 性半導体層が、プレス処理された層と、当該プレス処理された層上に積層された、平 均粒子径の異なる少なくとも 2種の半導体粒子を含有しバインダーを含有せず、プレ ス処理されていない少なくとも 1層の層とによる多層構造である構成とすることができ る。
[0030] また、本発明の色素増感型太陽電池用光電極においては、前記機能性半導体層 のプレス処理された層の厚み力 3〜40 μ mであることが好ましい。
[0031] また、本発明の色素増感型太陽電池用光電極においては、前記機能性半導体層 のプレス処理された層は、クラックが埋められた痕跡を有するものであってもよい。
[0032] また、本発明の色素増感型太陽電池用光電極においては、前記光電極構造体に おける透光性基板および機能性半導体層のプレス処理された層よりなる積層体の波 長 500nmの光透過率が 20〜65%であり、かつ、波長 700nmの光透過率が 30〜7 5%であることが好ましい。
[0033] 本発明の色素増感型太陽電池は、上記の色素増感型太陽電池用光電極を備え、 当該色素増感型太陽電池用光電極が、電解質部分を介して対極と対向するよう設 けられて 、ることを特徴とする。
[0034] 本発明の色素増感型太陽電池用光電極の製造方法によれば、光電変換層に特定 の平均粒子径の異なる 2種以上の半導体粒子が含有されるので当該光電変換層に 含有される増感色素にっ 、て 、わゆる光閉じ込め効果による高 、光吸収効率を達 成させることができる。
また、本発明の製造方法によれば、この光電変換層が特定の水性ペーストを用い てその塗膜をプレス処理すると!、う特定の方法によって形成されるので、プレス処理 によって半導体粒子同士が密に結合し、透光性基板がプラスチック製基板である場 合には、その可撓性によって半導体粒子が透光性基板の透明導電層表面に食い込 むように密着し、しかも、半導体粒子間および半導体粒子と透明導電層表面との間 にバインダーが入り込むこともないために、極めて良好な電子の流れが達成され、そ の結果、良好な性能の色素増感型太陽電池を得ることができる。
すなわち、例えば従来高い光吸収効率を得ることが困難であったプラスチック製基 板を用いた場合にも当該光電変換層を高 ヽ密着性で透光性基板上に形成すること ができ、その結果、プラスチック製基板を用いた場合にも、入射光量を変化させても 高いレベルの光電変換効率を維持できる色素増感型太陽電池が得られる色素増感 型太陽電池用光電極を再現性よく確実に製造することができる。
また、本発明の製造方法によれば、室温条件下で行えるので作業を簡易に進める ことができると共に加熱をほとんど要せず、使用すべき材料が従来の製造方法に比し て少種であるために製造コストが低減され、また、有機溶剤を使用しないために環境 性に優れ、さらに、プレス処理が低圧で十分であるために省エネルギーであるなどの 利点が得られる。
本発明の色素増感型太陽電池用光電極によれば、透光性基板としてプラスチック 製基板を用いた場合にも、入射光量を変化させても高!ヽレベルの光電変換効率を維 持できる色素増感型太陽電池を提供することができる。
[0035] 透光性基板としてプラスチック製基板を用いた色素増感型太陽電池の特性の一例 を挙げれば、例えば入射光量を 20〜170mW/cm2の範囲において変化させた場 合に、 6. 9〜7. 4%の高いレベルであってかつその変化量が少ない光電変換効率 が維持される。
図面の簡単な説明
[0036] [図 1]本発明の色素増感型太陽電池を構成するセルの構成の一例を示す説明用断 面図である。
[図 2]本発明の色素増感型太陽電池用光電極を製造する方法の一例を示す説明用 断面図である。
[図 3]本発明の色素増感型太陽電池を構成するセルの構成の別の一例を示す説明 用断面図である。
[図 4]本発明の別の例の色素増感型太陽電池用光電極を製造する方法の一例を示 す説明用断面図である。 [図 5]実施例 1の結果を示すグラフである。
符号の説明
[0037] 10, 10A 光電変換素子
12 電解質部分
16 対極
17 結線
20, 20 A 光電極
20K, 20L 光電極構造体
21 透光性基板
21a 透光性支持体
21b 透明導電層
23, 26 光電変換層
23A 塗膜
23B 層
23C 塗膜
23 α , 23 β 機能性半導体層
25 光散乱層
発明を実施するための最良の形態
[0038] 以下、本発明について具体的に説明する。
[0039] <第 1の実施形態 >
図 1は、本発明の色素増感型太陽電池を構成するセルの構成の一例を示す説明 用断面図である。
[0040] 〔光電変換素子〕
この色素増感型太陽電池を構成するセル (以下、「光電変換素子」ともいう。) 10は 、透光性基板 21上に光電変換層 23が形成された色素増感型太陽電池用光電極( 以下、単に「光電極」ともいう。) 20と、透光性基板(図示せず)上に例えば白金などよ りなる導電層(図示せず)が形成された対極 16とが、これらの光電変換層 23および 導電層が電解質部分 12を介して対向するよう配置されている。 [0041] 光電極 20は、負極として作用するものであって、具体的には、透明導電層 21b (図 2 (a)参照。)を有する透光性基板 21と、この透光性基板 21の透明導電層 21bに積 層して設けられた光電変換層 23とを備えるものである。
[0042] 〔光電変換層〕
光電変換層 23は、平均粒子径の異なる少なくとも 2種の半導体粒子 (以下、「特定 の半導体粒子群」という。)と、増感色素とを含有し、プレス処理されたものであり、具 体的には、バインダーおよび有機溶剤を含有せず、特定の半導体粒子群を含有す る水性ペーストの塗膜 23A (図 2 (b)参照。)がプレス処理された機能性半導体層 23 aに、増感色素が担持されたものである。
光電変換層 23がプレス処理された機能性半導体層 23 aを有することにより、当該 機能性半導体層 23 aを多数のナノ細孔が形成されたものとすることができるため、 透光性基板 21の単位面積当たりの半導体粒子の表面積の割合が極めて大きくなり 、これにより、十分な量の増感色素を担持させることができ、結局、高い光吸収効率 が得られる。
また、光電変換層 23が平均粒子径の異なる 2種以上の半導体粒子を含有すること により、例えば平均粒子径 20nm程度のナノサイズの半導体粒子は、長波長の光を 透過しやす 、傾向にあるところ、例えば平均粒子径 lOOnm程度の大粒径の半導体 粒子が混在することにより光が散乱され、機能性半導体層 23 a中における光路長が 増大される、いわゆる光閉じ込め効果を十分に得ることができる。その結果、増感色 素について十分な光吸収効率が得られ、従って、色素増感型太陽電池において高 Vヽ光電変換効率が達成される。
[0043] この光電変換素子 10においては、透光性支持体 21a上に透明導電層 21bおよび 機能性半導体層 23 aがこの順に設けられた光電極構造体 20K (図 2 (c)参照。 )の 波長 500nmの光透過率が 20〜65%であり、かつ、波長 700nmの光透過率が 30〜 75%であることが好まし 、。
この光透過率が過大であると、内部散乱が起きずに光が透過してしまうために光電 極において十分な光吸収効率を得ることができなくなるおそれがあり、一方、光透過 率が過小であると、表面反射が生じて光電極内に光の入射しないおそれがある。 [0044] 〔半導体粒子〕
半導体粒子は、電子伝達作用を発揮するものであって、このような半導体粒子を構 成する半導体としては、具体的には、例えば TiO 、 SnO、 ZnO、 WO 、 Nb O 、 In
2 3 2 5
O 、 ZrO 、 Ta O 、 TiSrO などの酸化物半導体; CdS、 ZnS、 In S、 PbS、 Mo
2 3 2 2 5 3 2 2
S、 WS 、 Sb S , Bi S 、 ZnCdS 、 CuSなどの硫ィ匕物半導体; CdSe、 In Se
2 2 3 2 3 2 2 2 2
、 WSe 、 PbSe、 CdTeなどの金属カルコゲナイド; GaAs、 Si、 Se、 InPなどの元素
2
半導体などが挙げられ、例えば SnOと ZnOとの複合体、 TiOと Nb O の複合体な
2 2 5
どの、これらの 2種以上よりなる複合体を用いることもできる。また、半導体の種類はこ れらに限定されるものでは無ぐ 2種類以上混合して用いることもできる。
半導体粒子を構成する半導体としては、上記の中で Ti、 Zn、 Sn、 Nbの酸化物が 好ましぐ特に TiO が好ましい。
2
TiO よりなるチタ-ァ粒子としては、アナターゼ結晶型のものおよびルチル結晶型
2
のものが挙げられて共に使用可能であるが、特にアナターゼ結晶型のチタ-ァ粒子 を用いると、プラスチックフィルムよりなる透光性支持体による色素増感型太陽電池に おいて、確実に所期の性能が得られる。
[0045] 特定の半導体粒子群に含有される平均粒子径の異なる 2種以上の半導体粒子は、 互いに同種のものであってもよぐ異種のものであってもよいが、同種のものであるこ とが好ましい。
半導体粒子としては、チタ-ァ粒子を用いることが好まし 、。
[0046] 特定の半導体粒子群を構成する半導体粒子のうちの平均粒子径が小さい半導体 粒子(以下、「半導体小粒子」ともいう。)の平均粒子径は好ましくは 3〜40nm、より好 ましくは 15〜25nmである。また、特定の半導体粒子群を構成する半導体粒子のうち の平均粒子径が大きい半導体粒子 (以下、「半導体大粒子」ともいう。)は、光散乱能 を有するものであって、その平均粒子径は好ましくは 50nm以上、より好ましくは 80〜 400應、特に好ましくは 90〜120應である。
[0047] 光電変換層 23を構成する特定の半導体粒子群における半導体小粒子の含有割 合は、 50〜95質量%であることが好ましぐより好ましくは 60〜70質量%である。半 導体小粒子の割合が過多であると、半導体大粒子による十分な光閉じ込め効果を得 ることができず、増感色素について高い光吸収効率が得られない。一方、半導体小 粒子の割合が過少であると、光電変換能が十分に得られな 、ものとなる。
[0048] また、光電変換層 23を形成すべき機能性半導体層 23 aの厚みは、 3〜40 μ mで あることが好ましぐより好ましくは 6〜 15 μ mである。
光電変換層を形成すべき機能性半導体層の厚みが過小である場合は、十分な量 の増感色素を担持できな 、ために得られる色素増感型太陽電池が十分な光電変換 効率を得ることができないものとなってしまう。一方、光電変換層を形成すべき機能性 半導体層の厚みが過大である場合は、得られる光電変換層において増感色素から 注入された電子の拡散距離が増大するために電荷の再結合によるエネルギーロスが 大きくなつてしまう。
[0049] 〔増感色素〕
光電変換層 23において半導体粒子に担持される増感色素としては、増感作用を 示すものであれば特に限定されず、 N3錯体、 N719錯体 (N719色素)、 Ruターピリ ジン錯体 (ブラックダイ)、 Ruジケトナート錯体などの Ru錯体;クマリン系色素、メロシ ァニン系色素、ポリェン系色素などの有機系色素;金属ポルフィリン系色素やフタ口 シァニン色素などを挙げることができ、この中では Ru錯体が好ましぐ特に、可視光 域に広い吸収スペクトルを有するため、 N719色素およびブラックダイが好ましく挙げ られる。
N719色素は(RuL (NCS) · 2ΤΒΑ)で表される化合物であり、 Black dye色素
2 2
は(Rul (NCS) · 2ΤΒΑ)で表される化合物である。ただし、 Lは、 4, 4'—ジカル
2 3
ボキシ 2, 2 一ビビリジン、! は、 4, 4' , 4,, ーテトラー力ノレボキシ 2, 2" , 2" ターピリジン、 ΤΒΑは、テトラプチルアンモ -ゥムカオチンである。
これらは単独でもしくは 2種類以上を混合して用いることができる。
[0050] 光電変換層 23における増感色素の担持量は、機能性半導体層 23 aの単位表面 積当たりの量が 1 X 10— 8〜1 X 10"7mol/cm2、好ましくは 3 X 10— 8〜7 X 10— 8molZ cm2とされることが好ましい。増感色素の担持量力この範囲内であることにより、半導 体粒子の表面に増感色素が単分子層として担持されるため、増感色素において励 起された電子が電解質部分の電解質を還元するなどのエネルギーロスが発生せず に十分な光吸収効率が得られる。
[0051] 〔透光性基板〕
この例の光電変換素子 10を構成する透光性基板 21は、透光性支持体 21a上に透 明導電層 21bが形成されてなるものである。
透光性支持体 21aとしては、ガラス、プラスチックなど種々の材料よりなるものを用い ることができ、プラスチック製のものとしては、透光性、耐熱性、耐化学薬品特性など の観点から、例えば、板状またはフィルム状のシクロォレフイン系ポリマー、板状また はフィルム状のアクリル尿素系ポリマー、板状またはフィルム状のポリエステル、板状 またはフィルム状のポリエチレンナフタレートなどを用いることが好ましい。
[0052] 透光性基板 21の表面抵抗は 100 Ω Ζ口以下であることが好ましぐ 15 Ω Ζ口以下 であることがより好ましい。
[0053] 〔透明導電層〕
透光性支持体 21aの一面に形成される透明導電層 21bは、例えば、インジゥムース ズ複合酸化物 (ITO)、フッ素をドープした酸化スズ (FTO)などよりなるものが挙げら れる。
[0054] 〔光電変換層の形成方法〕
以上のような光電極 20の光電変換層 23は、図 2に示されるように、以下の必須ェ 程(1)〜(5)をこの順に経て製造することができる。
(1) 透光性支持体 21a上に透明導電層 21bを形成させて透光性基板 21を得、必 要に応じて表面処理を施す透光性基板製造工程 (図 2 (a)参照。 )。
(2) 半導体粒子を含有する水性ペーストを塩基性法により調整する水性ペースト調 製工程。
(3) 透光性基板 21の透明導電層 21b上に水性ペーストを塗布して乾燥させた塗膜 23Aを得る塗膜形成工程 (図 2 (b)参照。 )0
(4) 透光性基板 21上に形成された塗膜 23Aをプレス処理して機能性半導体層 23 αを得るプレス処理工程(図 2 (c)参照。)。
(5) 機能性半導体層 23 aに増感色素を担持させる色素担持工程 (図 2 (d)参照。 ) [0055] 〔透光性基板製造工程〕
透光性基板 21は、透光性支持体 21 a上に対して例えばスパッタリング法などによつ て透明導電 21bが形成されることにより、得られる。
透明導電層 21bの形成は、透明導電層 21bの透光性支持体 21aに対する密着性 や耐久性の観点から、加熱処理しながら行われることが好ま 、。
加熱処理の温度は、例えば、通常、 100〜150°Cとされる力 透光性基板 21を構 成する透光性支持体 21aがプラスチック製のものである場合は、加熱処理の温度は 当該透光性支持体 21aを構成するプラスチックの耐熱温度より低い温度とされる。 ここに、「耐熱温度」とは、プラスチックの軟ィ匕点温度または融点温度のいずれか低 い方の温度を意味する。
[0056] 〔透光性基板の表面処理〕
以上の透光性基板 21は、超音波洗浄処理、エッチング処理およびは UV—オゾン 処理などの表面処理のうち 1つまたは 2つ以上を組み合わせて、その表面、すなわち 透明導電層 21bの表面に表面処理が施されたものであってもよぐこのような表面処 理が施された透光性基板 21は、得られる色素増感型太陽電池が優れた光電変換効 率を示すものとなる。
この理由としては、表面処理を施すことによって透光性基板 21上に水性ペーストを 塗布する際の濡れ性およびプレス処理後の半導体粒子の透光性基板 21との密着性 が共に向上したものとなることによると考えられ、例えば、表面処理前の透光性基板 2 1の表面の接触角は 90° より大きぐ表面処理後の接触角は 80〜90° 程度に減少 することが確認されて 、る。
この透光性基板 21の表面処理法は、超音波洗浄処理、エッチング処理及び UV— オゾン処理以外に、スパッタリングなどの他の処理法も適宜使用可能であり、これらに 限定されない。
[0057] 超音波洗浄処理は、超音波洗浄器および超音波洗浄用洗剤を用い、洗浄剤を入 れた容器内に透光性基板を浸漬し、その容器を水で満たした超音波洗浄器に入れ 、数分〜 10分間超音波を発信させることにより、当該透光性基板の表面における微 細な付着物などを洗浄 '除去する処理である。 また、エッチング処理は、高周波スパッタ装置「SVC— 700RFII」(サンユー電子( 株)製)に透光性基板をセットし、高真空条件(5Pa)とした後、逆スパッタ (エッチング )処理を 20W、 10分間の条件で行われるものである。具体的には、高周波の交流電 位をかけることによりプラズマを発生させ、その内のプラス電荷を帯びたアルゴン原子 をマイナス電荷をかけた基板に衝突させることによって、基板上の付着物を除去する
さらに、 UV—オゾン処理は、処理対象物を UV—オゾン洗浄装置「OC— 2506」 ( 岩崎電気 (株)製)に入れ、 5分間前後紫外線照射を行うことにより、行われるものであ る。
[0058] 〔水性ペースト調製工程〕
本発明の製造方法に用いられる水性ペーストは、半導体粒子と水とのみ力 なり、 ノインダーおよび有機溶剤を含有しないものである。
なお、半導体大粒子の作製工程を含むこの水性ペースト調製工程において、有機 溶剤を使用する場合があるが、当該有機溶剤を積極的に除去するために、残渣とし て水性ペースト中に有機溶剤が含まれている場合にも、作製する光電極の性能に影 響しない限り、本発明においては「有機溶剤は含有しない」ものとする。
光電変換層 23を構成する特定の半導体粒子群を含有する水性ペーストの調製方 法は、特に限定されるものではないが、例えば、本発明者らが創出したアルコキサイ ドを 4級アンモニゥム塩により加水分解する塩基性法が好ましく用いられる。この塩基 性法は、具体的には、半導体小粒子を得るためのアルコキサイドを、 4級アンモ-ゥ ム塩によって加水分解することにより得、同様にして半導体大粒子を得るためのアル コキサイドを、 4級アンモニゥム塩によって加水分解することにより得、これらを混合す ること〖こより、調製することができる。
得られる半導体粒子の平均粒子径は、加水分解に供される 4級アンモ-ゥム塩の 添加量を調整することにより、制御することができ、 4級アンモ-ゥム塩の添加量を大 きくするに従って、平均粒子径の小さい半導体粒子を得ることができる。
[0059] 4級アンモ-ゥム塩としては、例えば、テトラメチルアンモ -ゥムハイド口オキサイド( TMAH)を用いることができる力 メチル基については限定されず、炭素数が 1〜4 個のアルキル基を有するものを例示することができる。
また、半導体大粒子を得るためのアルコキサイドとしては、上述の半導体粒子を構 成する金属のアルコキサイド用いることができる。
具体的には、例えば半導体粒子がチタ-ァ粒子である場合は、半導体粒子のアル コキサイドとして Ti (OC H ) を用い、 4級アンモ-ゥム塩として、 TMAHを用いるこ
3 5 4
とがでさる。
[0060] 水性ペースト中の特定の半導体粒子群の含有割合は、 5〜30質量%であることが 好ましぐより好ましくは 8〜 15質量%である。
[0061] 〔塗膜形成工程〕
この工程は、透光性基板 21の透明導電層 21b上に水性ペーストを塗布して乾燥さ せた塗膜 23 Aを得る工程であって、透光性基板 21の透明導電層 21 b上に水性ぺー ストを塗布する方法としては特に制限はなぐ例えばドクターブレード法やスプレー法 など、公知の種々の方法に従って行うことができる。
また、乾燥温度は、例えば室温とすることができる。
透明導電層 21b上における水性ペーストが塗布された領域が作用極として機能し、 用途によってこの作用極領域の面積を適宜に選択することができる。
本発明の製造方法によって製造することができる作用極の面積は、後述のプレス処 理工程に用いられるプレス機の性能によっても異なる力 例えば 20cm X 20cm程度 の大きさ、あるいはそれ以上の大きさの領域を有するものを作製することもできる。
[0062] 〔プレス処理工程〕
この工程は、塗膜 23 Aをプレス処理して機能性半導体層 23 aを得る工程であって 、プレス処理を行うことによって、塗膜 23A中の半導体粒子同士が十分に密着され、 高 、電子伝達能を得ることができる。
このプレス処理が行われないと、透明導電層上に水性ペーストから形成される塗膜 には乾燥に伴ってランダムに蛇行した多数の線状クラックが不可避的に発生するとこ ろ、このクラックをそのまま放置することとなり、得られる色素増感型太陽電池が所期 の性能を有するものとならないおそれが大きい。また、このクラックを放置した場合に 、剥がれなどが生じ、十分な耐久性が得られないおそれがある。透明導電層上にお ヽて水性ペーストから形成される塗膜にクラックが発生する理由は、塗膜の膜厚が極 めて薄 、上に、塗布液が有機溶剤を含有しな 、水性ペーストであってバインダーを 含有しな ヽちのであること〖こよるちのと考免られる。
すなわち、本発明の製造方法において、このプレス処理工程は、クラックを埋めるこ とによって高い電子伝達能が達成される。
プレス処理前のクラックが発生した状態およびプレス処理後のクラックが埋められた 状態 (クラックの痕跡)は、それぞれ走査型電子顕微鏡 (SEM)によって目視で観察 することができる。
なお、クラックの痕跡は、プレス処理工程および色素担持工程を経て得られた増感 色素が担持されたものについても、 SEM観察によって明確に確認することができる。
[0063] 水性ペーストのプレス処理の方法としては特に限定されず、平板式のプレス機など を用いるプレス成型法、ロールプレス法やカレンダ一法などの公知の種々の方法を 挙げることができる。
また、プレス処理は、室温において行われることが好ましい。なお、「室温」とは、通 常、 20〜35°Cである。
[0064] そして、このプレス処理は、透光性基板 21上に機能性半導体層 23 aが形成された 積層体における波長 400〜800nmの光透過率が、プレス処理前の値の 105〜 170 %、より好ましくは 110〜170%、特に好ましくは 110〜130%となる条件で行われる ことが好ましぐ例えばプレス処理が 5MPa以上、好ましくは 30MPa以上の圧力で行 われることが好ましぐまた、 500MPa以下、好ましくは 150MPa以下の圧力で行わ れることにより、上記の光透過率を実現し、かつ水性ペーストの塗膜において不可避 的に発生してしまうクラックを埋めることができる。
プレス処理に係る圧力が高すぎる場合は、特にプラスチック製基板を用いた場合に 当該プラスチック製基板の透光性支持体自体が歪んで色素増感型太陽電池の性能 に悪影響を及ぼすのみならず、さらに当該透光性支持体上に形成された透明導電 層が破損することがあるため、好ましくない。
また、プレス処理が行われることにより、機能性半導体層 23 aの厚みは、プレス処 理前の値の 80〜30%となることが好ましい。 [0065] 〔UV—オゾン処理〕
プレス処理工程後であって次の色素担持工程前に、必要に応じて、プレス処理さ れた機能性半導体層 23 aの表面処理として UV—オゾン処理を行うことができる。透 光性基板 21の表面処理として UV—オゾン処理を行った場合も行わなカゝつた場合も 、この UV—オゾン処理を行うことができる。
この UV—オゾン処理を施すことによって、機能性半導体層 23 aを構成する半導 体粒子の表面を洗浄できるば力りでなぐ半導体粒子の親水基を増加させて、増感 色素を吸着しやすい状態とすることにもなると考えられ、結果的に、得られる色素増 感型太陽電池を光電変換効率の高いものとすることができる。
なお、水性ペースト調製工程にぉ 、て塩基性法によるチタ-ァ粒子の作製に使用 される TMAHが未反応物として機能性半導体層 23 a中に残留してしまうことがある 力 UV—オゾン処理によってこの TMAHを分解して半導体粒子を表面洗浄するこ とがでさる。
この UV—オゾン処理は、透光性基板 21につ!/、ての UV—オゾン処理と同様にして 行うことができる。
[0066] 〔色素担持工程〕
増感色素を光電極構造体 20Kの機能性半導体層 23 aに担持させる方法としては 特に限定されず、例えば増感色素をアルコール類、二トリル類、ニトロメタン、ハロゲ ン化炭化水素、エーテル類、ジメチルスルホキシド、アミド類、 N—メチルピロリドン、 1 , 3—ジメチルイミダゾリジノン、 3—メチルォキサゾリジノン、エステル類、炭酸エステ ル類、ケトン類、炭化水素、水などの溶媒あるいはこれらの 2種以上による混合溶媒 に溶解させ、これに機能性半導体層 23 aが形成された光電極構造体 20Kを浸漬す る浸漬法や、スプレー塗布法、印刷塗布法などが挙げられる。
[0067] 以上の製造方法によって得られた光電極 20は、透光性基体 21上に光電変換層 2 3が設けられたものであって、前記光電変換層 23は特定の半導体粒子群および増 感色素を含有し、バインダーを含有しないものである。
[0068] 以上のような製造方法によって得られる色素増感型太陽電池用光電極による色素 増感型太陽電池は、透光性支持体がプラスチック製のものである場合の光電変換効 率が、透光性支持体がガラス製のものである場合の光電変換効率より高くなる。これ は、柔らかいプラスチック製の透光性支持体上で半導体粒子を加圧することにより、 半導体粒子が多少透明導電層内にめり込むような構造となり、より密接な接合が得ら れるためと推察される。ガラスなどの固い材質の透光性支持体の場合はこのような弾 性を有さな 、ため、プラスチックの透光性支持体を用いたものよりも性能が低くなるも のと推察される。
[0069] 〔電解質部分〕
本発明の色素増感型太陽電池において、光電極 20および対極 16との間に介在さ れる電解質部分 12は、液体状、固体状、凝固体状、常温溶融塩状態のいずれのも のであってもよい。
また、この電解質部分 12の厚み、すなわち光電極 20と対極 16との離間距離は、例 えば 1〜: LOO μ mとされる。
[0070] 電解質部分 12が例えば溶液状のものである場合は、この電解質部分 12は、電解 質、溶媒、および添加物で構成されることが好ましい。
電解質としては、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウムな どの金属ヨウ化物とヨウ素の組み合わせや、テトラアルキルアンモ-ゥムョーダイド、ピ リジ -ゥムョーダイド、イミダゾリゥムョーダイドなどの第 4級アンモ-ゥム化合物のヨウ 素塩 ヨウ素の組み合わせ、あるいは前記ヨウ素、ヨウ素化合物のかわりに臭素化合 物—臭素の組み合わせでもよい。電解質力 Sイオン性液体の場合は、特に溶媒を用い なくてもよい。電解質は、ゲル電解質、高分子電解質、固体電解質でもよぐまた、電 解質の代わりに有機電荷輸送物質を用いてもよ!ヽ。
[0071] 電解質部分 12が溶液状のものである場合の溶媒としては、ァセトニトリル、メトキシ ァセトニトリル、プロピオ-トリルのような-トリル系溶媒や、エチレンカーボネートのよ うなカーボネート系溶媒、エーテル系溶媒、アルコール系溶媒などが挙げられる。
[0072] 電解質部分 12が溶液状のものである場合、電解質溶液における電解質の濃度は 、電解質の種類によっても異なる力 例えば電解質力 Sヨウ素塩 ヨウ素の組み合わせ である場合は、 0. 1〜5. OMであることが好ましぐさらに好ましくは 0. 1〜1. OMで ある。 [0073] 〔対極〕
対極 16は、光電変換素子 10の正極として機能するものであり、対極 16を構成する 材料としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウムなどの金属、炭 素、 ITO、 FTOなどの導電性金属酸ィ匕物などが挙げられる。対極 16は、通常、導電 性の支持体や、それと同様の導電性層を有する支持体に、上記の金属や炭素、導 電性酸化物よりなる導電性膜が設けられて構成されて!ヽてもよ!ヽが、十分な強度およ び密封性が得られるのであれば、支持体を有することは必須ではな 、。
[0074] 〔光電変換素子の製造方法〕
以上の光電変換素子 10は、例えば電解質部分 12が液状のものである場合は、光 電極 20および対極 16を適宜のスぺーサを介して対向配置させ、これらの光電極 20 および対極 16間に電解質部分 12を封入することにより、色素増感型太陽電池を構 成する光電変換素子 10が得られる。
以上の光電変換素子 10は、用途に応じて様々な形状で作製することが可能であり 、その形状は特に限定されない。
[0075] この色素増感型太陽電池における光電変換は、以下のように行われる。
まず、光電極 20の透光性基板 21を透過して入射した太陽光が、光電変換層 23の 半導体粒子の表面に担持された基底状態の増感色素に吸収されてこの増感色素が 励起され、電子が発生される。この電子が半導体粒子に注入され、この半導体粒子 に注入された電子は光電変換層 23中を拡散して透明導電層 21bおよび結線 17を 経由して対極 16へ導かれる。一方、電子を失った増感色素は、電解質部分 12から 電子を受け取って基底状態に戻る。そして、電子を渡して酸化された電解質部分 12 は、対極 16から電子を受け取って還元され、基の状態に戻る。以上の一連の過程に より、光電変換層 23と電気的に接続された透光性基板 21と、対極 16との間に起電 力が発生する。
[0076] 以上の光電変換素子 10からなる色素増感型太陽電池によれば、色素増感型太陽 電池用光電極 20の光電変換層 23に特定の平均粒子径の異なる 2種以上の半導体 粒子が含有されるので当該光電変換層 23に含有される増感色素につ 、て 、わゆる 光閉じ込め効果による高い光吸収効率を達成させることができると共に、この光電変 換層 23を特定の水性ペーストを用いて特定の方法によって形成することにより、透光 性基板 21の透光性支持体 21aがどのような材質のものであっても、すなわち例えば 従来高い光吸収効率を得ることが困難であったプラスチック製基板を用いた場合で あっても当該光電変換層 23を高い密着性で透光性基板 21上に形成することができ 、その結果、プラスチック製基板を用いた場合にも、入射光量を変化させても高いレ ベルの光電変換効率を維持できる。
[0077] 〔変形例〕
以上の光電変換素子においては、種々の変更をカ卩えることができる。
例えば、図 3に示されるように、光電変換層 23の表面上に、半導体大粒子のみより なる光散乱層 25が形成されたものであってもよい。この光電変換素子 10Aの光散乱 層 25は、例えばバインダーおよび有機溶剤を含有せず、半導体大粒子を含有する 水性ペーストの塗膜よりなるものとすることができる。
光散乱層 25の厚みは、例えば 1〜15 mとすることができる。
このような光散乱層 25が形成されてなる色素増感型太陽電池用光電極 20Aを有 する光電変換素子 10Aによれば、極めて高い光閉じ込め効果を得ることができ、そ の結果、極めて高!ヽ光電変換効率が達成された色素増感型太陽電池を構成するこ とがでさる。
[0078] また例えば、以上の光電変換素子を構成する色素増感型太陽電池用光電極は、 光電変換層が、バインダーおよび有機溶剤を含有せず、特定の半導体粒子群を含 有する水性ペーストの塗膜に増感色素を担持させた後に、プレス処理することにより 得られる増感色素担持加圧半導体層よりなるものであってもよい。
なお、この例の色素増感型太陽電池用光電極は水性ペーストの塗膜に増感色素 を担持させた後、プレス処理することにより得られるものであるが、製造工程中、プレ ス処理の際に増感色素の剥離が発生してしまうため、水性ペーストの塗膜をプレス処 理した後に増感色素を担持させて作製した第 1の実施形態における光電極 20に比 して得られる色素増感型太陽電池の性能が低 、。
[0079] <第 2の実施形態 >
この例の色素増感型太陽電池を構成する色素増感型太陽電池用光電極は、光電 変換層を構成する機能性半導体層が、水性ペーストの塗膜をプレス処理して得られ る層上に、特定の半導体粒子群を含有し、バインダーおよび有機溶剤を含有しない 水性ペーストの塗膜よりなる層を 1層以上形成させた多層構造であることの他は第 1 の実施形態と同様の構成を有するものである。
[0080] この光電変換層 26 (図 4 (c)参照。)は、具体的には、第 1の実施形態における機能 性半導体層 23 aと同様にして得られる、すなわちバインダーおよび有機溶剤を含有 せず、特定の半導体粒子群を含有する水性ペーストの塗膜をプレス処理して得られ る層23 (図4 (&)参照。)上に、バインダーおよび有機溶剤を含有せず、特定の半導 体粒子群を含有する水性ペーストの塗膜 23C (図 4 (b)参照。)を 1層以上形成させ た機能性半導体層 23 j8に、増感色素を担持させたものである。
水性ペーストの塗膜 23Cは、 1〜3層積層させることができる。
また、この水性ペーストの塗膜 23Cを形成させるための水性ペーストに含有される 特定の半導体粒子群の種類や含有割合は、前記塗膜をプレス処理して得られる層 2 3Bを形成させるための水性ペーストに含有される特定の半導体粒子群の種類や含 有割合と同じであっても異なって 、てもよ 、。
[0081] この例の光電変換素子においては、塗膜をプレス処理して得られる層 23Bの層厚 が例えば 1〜20 μ mとされ、 1層の水性ペーストの塗膜 23Cの層厚が例えば 1〜15 μ mとされる。
[0082] この色素増感型太陽電池用光電極の製造方法としては、図 4 (a)〜(c)に示される ように、第 1の実施形態において形成される光電極構造体 20K、すなわち透光性支 持体 21a上に透明導電層 21bおよび塗膜をプレス処理して得られる層 23Βがこの順 に形成されたものにおける当該層 23B上に、水性ペーストの塗膜 23Cを形成させた 光電極構造体 20Lを形成し、この光電極構造体 20Lにおける機能性半導体層 23 β に増感色素を上述の方法などによって担持させる方法を挙げることができる。具体的 には、上記の第 1の実施形態における製造工程のプレス処理工程 (4)の後に、水性 ペーストの塗膜 23Cを 1〜3層形成し、その後、色素担持工程 (5)を行う。
透光性基板 21上に塗膜をプレス処理して得られる層 23Βを得るための当該塗膜を 形成した状態にお!、て行われるプレス処理は、第 1の実施の形態におけるプレス処 理と同様の条件で行うことができる。すなわち、プレス処理は、透光性基板 21上に塗 膜をプレス処理して得られる層 23Bが形成された積層体における波長 400〜800n mの光透過率力 プレス処理前の値の 105〜170%、より好ましくは 110〜170%、 特に好ましくは 110〜 130%となる条件で行われることが好ましく、例えばプレス処理 力 MPa以上、好ましくは 30MPa以上であり、 500MPa以下、好ましくは 150MPa 以下の圧力で行われることにより、上記の光透過率を実現し、かつ水性ペーストの塗 膜において不可避的に発生してしまうクラックを埋めることができる。
プレス処理に係る圧力が高すぎる場合は、特にプラスチック製の透光性支持体を 用いた場合に当該透光性支持体自体が歪んで色素増感型太陽電池の性能に悪影 響を及ぼすばのみならず、さらに当該透光性支持体上に形成した透明導電層が破 損することがあるため、好ましくない。
また、このプレス処理が行われることにより、機能性半導体層 23 βを構成する塗膜 をプレス処理して得られる層 23Βの厚み力 プレス処理前の値の 80〜30%となるこ とが好ましい。
また、プレス処理工程後の水性ペーストの塗膜 23Cを積層させた後であって、次の 色素担持工程前に、必要に応じて、機能性半導体層 23 βの表面処理として第 1の 実施の形態における場合と同様の方法によって UV—オゾン処理を行うことができる 。透光性基板 21の表面処理として UV—オゾン処理を行つた場合も行わな力つた場 合も、この UV—オゾン処理を行うことができる。
この UV—オゾン処理を施すことによって、機能性半導体層 23 βを構成する半導 体粒子の表面を洗浄できるば力りでなぐ半導体粒子の親水基を増加させて、増感 色素を吸着しやすい状態とすることにもなると考えられ、結果的に、得られる色素増 感型太陽電池を光電変換効率の高いものとすることができる。
なお、水性ペースト調製工程にぉ 、て塩基性法によるチタ-ァ粒子の作製に使用 される ΤΜΑΗが未反応物として機能性半導体層 23 β中に残留してしまうことがある 力 UV—オゾン処理によってこの ΤΜΑΗを分解して半導体粒子を表面洗浄するこ とがでさる。
この例の光電変換素子 10A力 なる色素増感型太陽電池用光電極によれば、第 1 の実施形態における光電変換素子 10と同様の効果を得ることができる。 実施例
[0084] 以下、本発明の具体的な実施例について説明する力 本発明はこれらに限定され るものではない。
〔実施例 1〕
(チタニァ半導体粒子懸濁液の調製)
オルトチタン酸テトライソプロピル 56. 8gを、イオン交換水 200mL中によく撹拌しな 力 滴下し、滴下終了後、さらに 1時間撹拌を続けることで加水分解を完結させ、 目 的とする水酸ィ匕チタンの沈殿物を得た。沈殿物は濾紙を用いて濾別し、イオン交換 水で十分に洗浄した。
5. 8gのテトラメチルアンモ -ゥムハイド口オキサイド (TMAH)を溶解させたイオン 交換水にこの沈殿物をカ卩え、さらにイオン交換水を追カ卩して試料の全量を 160gとし た。
この試料を、 140°Cで 4時間加熱還流を行った後、ガラスフィルターでマイクロクリス タルを除去することで、白濁半透明なコロイド溶液を得た。
得られたコロイド溶液を密閉したオートクレープ容器に移し 260°Cで 8時間水熱合 成を行い、この水熱合成後、エバポレーターを用いてコロイド溶液の溶媒をエタノー ルに置換した後、超音波分散の処理を行い、平均粒子径 20nmのアナターゼ結晶 型のチタ-ァ粒子〔A〕を含むエタノール懸濁液〔A〕を得た (以上の操作を「半導体粒 子懸濁液の調製操作」という。 ) o
なお、 TMAHが分解して生成されるトリメチルァミンは、コロイド溶液の溶媒をェタノ ールに置換する操作の際にほぼ全量除去される。
[0085] この半導体粒子懸濁液の調製操作において、 TMAHの添力卩量を 1. 5gとしたこと の他は同様にして、平均粒子径 lOOnmのアナターゼ結晶型のチタ-ァ粒子〔B〕を 含むエタノール懸濁液〔B〕を得た。
なお、エタノール懸濁液〔A〕、〔B〕に含有されるチタ-ァ粒子について、エタノール 懸濁液をスライドガラス上にドクターブレード法で塗布 ·乾燥後、 XRDパターンを測定 し、得られた XRDパターンから半価幅を求め、 Scherrerの式(D=K X λ / β cos 0 )を用いることにより、平均粒子径を算出し、かつ、チタ-ァ粒子の結晶型を確認し た。ただし、式中、 Dは結晶子の長さ、 βは半価幅、 Θは回折角、 Κ=0. 94、 λ = 1 . 5418である。
チタ-ァ粒子〔Α〕およびチタ-ァ粒子〔Β〕は、その結晶型がほぼ 100%アナターゼ 結晶型であり、ルチル結晶型の存在は確認されなカゝつた。
[0086] (光電変換層形成用水性ペーストの調製)
これら 2種類のエタノール懸濁液〔Α〕 , 〔Β〕につ 、て、各々のチタ-ァ粒子の濃度 を、まず、るつぼの質量 (W)を電子天秤で秤り、その後、るつぼにエタノール懸濁液 を取り、るつぼとエタノール懸濁液の総質量 (W )を秤り、これを電気炉内に入れ、 1
1
50°Cで 2時間保持してエタノール懸濁液の溶媒を完全に除去し、次いで、再び質量 (W )を秤り、式 {チタニア粒子の濃度 (wt%) = (W -W) / (W W) X 100}から
2 2 1
求めた。
そして、それぞれの濃度に基づいて、チタ-ァ粒子〔A〕およびチタ-ァ粒子〔B〕が 重量比で 7: 3となるように混合し、この混合液を再びエバポレーターを用いて溶媒を ほぼ完全に水で置換した上で濃縮することにより、最終的に、チタ-ァ粒子の濃度が 10wt%であって水を媒体とする光電変換層形成用水性ペースト〔1〕を得た。
[0087] (光電変換層形成用水性ペーストの塗布およびプレス処理)
この光電変換層形成用水性ペースト〔1〕を、ドクターブレード法により、シート抵抗 1 3 Ω Z口の ITOZPEN (ポリエチレンナフタレート)基板(王子トービ製)よりなる透光 性基板に、 0. 5cm X O. 5cmの大きさの作用極領域に塗布した後、室温で乾燥させ て塗膜を得、この塗膜に対して、プレス機を用い、圧力 lOOMPaで 60秒間プレス処 理を行い、透光性基板上に機能性半導体層が形成された光電極構造体を得た。 なお、市販のチタ- 7「P— 25」(日本エアロゾル社製)が 10wt%の濃度で含有さ れる水性ペーストは透光性基板に塗布することができないところ、上記の光電変換層 形成用水性ペースト〔1〕がチタ-ァ粒子が 10wt%の濃度で含有されているにもかか わらず透光性基板に塗布することができた理由は明確ではないが、残留している可 能性のある TMAHによって当該光電変換層形成用水性ペースト〔1〕の粘性が高め られて 、ることが考免られる。 [0088] このプレス処理を行うことにより、機能性半導体層における波長 400〜800nmの光 透過率は、プレス処理前の値に対して 110%増加し、層厚は 70%に減少し、 8 m であった。セル実効面積については、デジタルマイクロスコープおよび校正スケール を用い、有効数字 4桁での補正を行った。この光電極構造体の波長 200〜900nm の光透過率の測定結果を図 5 (b)に示す。なお、図 5 (a)は、プレス処理前の透光性 基板上に塗膜が形成されたものの光透過率である。
[0089] また、プレス処理前の、光電変換層形成用水性ペースト〔1〕を用いて透光性基板 上に形成した塗膜を SEM観察したところ、千倍の撮影倍率の SEM写真にぉ 、て長 さ 10〜: LOO /z m程度の線状クラックがランダムに多数形成されていることが観察され 、さらに、 2万倍の撮影倍率の SEM写真においてこのクラックを観察したところ、個々 のチタ-ァ粒子が単独に存在していることが確認された。
一方、プレス処理後の、千倍および 2万倍の SEM写真を観察したところ、多数形成 されていたクラックはほぼ全て埋められてその痕跡が確認され、また、チタ-ァ粒子 同士が密に結合している状態が観察された。
ここに、プレス処理によって埋められたクラックの痕跡が観察されることによって、ク ラックが埋められて半導体粒子と透明導電層との接触面積が増大し、色素増感型太 陽電池の性能が向上されたものと推察される。
[0090] (増感色素の担持'光電極の作製)
一方、増感色素としてシス—ビス (イソチオシアナート)—ビス(2, 2,—ジピリジル— 4, 4,ージカルボン酸)—ルテニウム(II)ビスーテトラブチルアンモ-ゥムを用い、エタ ノール中〖こ 0. 2mMの濃度で溶解させて色素溶液を得、この色素溶液中に上記の 機能性半導体層を形成させた光電極構造体を 24時間浸潰させ、機能性半導体層 に増感色素が担持された光電極〔1〕を得た。
なお、この光電極〔1〕について上記と同様にして SEM観察を行ったところ、プレス 処理後の SEM観察において確認されたクラックの痕跡が同様に観察された。
[0091] (色素増感型太陽電池の作製)
電解質溶液として、ヨウ素、ヨウ化リチウム、 1, 2—ジメチル— 3—プロピルイミダゾリ ゥムアイオダイドおよび t—ブチルピリジンが溶解されたァセトニトリル溶液を用いた。 これらはそれぞれ 0. 05M、 0. 1M、 0. 6Mおよび 0. 5Mになるよう窒素雰囲気下で ァセトニトリルに溶解されたものである。
対極としては、 ITO— PETフィルムに白金が蒸着されたものを用いた。 上記の光電極〔1〕に、厚さ 50 mの絶^べーサ、対極の順に組み合わせ、光電 極〔1〕と対極との間にマイクロシリンジで電解質溶液を注入することにより、色素増感 型太陽電池〔1〕を作製した。
[0092] 作製された色素増感型太陽電池は極めて優れた性能を有し、 TMAHの影響は観 察されなかった。これは、プレス処理後の機能性半導体層に TMAHが存在していた としても、その TMAHは増感色素のエタノール溶液に光電極構造体を浸漬すること により、増感色素がチタ-ァ粒子と強く結合すると同時に、エタノールに溶解して除 去され、この結果、チタ-ァ粒子間およびチタ-ァ粒子および透光性基板の間に T MAHが入り込むことがな 、からであると推察される。
[0093] (色素増感型太陽電池の性能評価)
この色素増感型太陽電池〔1〕に、「ソーラーシミュレータ」(ぺクセル社製)を用いて 、 AMI. 5、 lOOmW/cm2の擬似太陽光を照射しながら「2400型ソースメータ」(K EITHLEY社製)を用いて I V特性を測定して短絡電流、開放電圧、形状因子 ffの 値を得ると共に、これらの値を用いて下記式(1)により、光電変換効率を算出した。 結果を表 1に示す。
式 (1);光電変換効率 (%) = [短絡電流値 (mAZcm2 ) X開放電圧値 (V)
X {形状因子 ffZ入射光(lOOmWZcm2 ) }] X 100
[0094] 〔実施例 2〕
チタ-ァ粒子〔A〕およびチタ-ァ粒子〔B〕が重量比で 6: 4となるように混合したこと の他は実施例 1と同様にして色素増感型太陽電池〔2〕を得、この色素増感型太陽電 池〔2〕について実施例 1と同様にして短絡電流、開放電圧、形状因子 ff、光電変換 効率の値を得た。結果を表 1に示す。
なお、機能性半導体層における波長 400〜800nmの光透過率は、プレス処理前 の値に対して 130%増加し、層厚は 70%に減少し、 であった。
[0095] 〔実施例 3〕 ITOZPEN基板の代わり〖こ ιτοΖシクロォレフインポリマー基板「ゼォノア基板」( 日本ゼオン製)を用いたことの他は実施例 2と同様にして色素増感型太陽電池〔3〕を 得、この色素増感型太陽電池〔3〕について実施例 1と同様にして短絡電流、開放電 圧、形状因子 ff、光電変換効率の値を得た。結果を表 1に示す。
[0096] 〔実施例 4〕
ITOZPEN基板の代わりに ITOZ耐熱アクリル基板 (日本合成化学 (株)製)を用 V、たことの他は実施例 2と同様にして色素増感型太陽電池〔4〕を得、この色素増感 型太陽電池〔4〕について実施例 1と同様にして短絡電流、開放電圧、形状因子 ff、 光電変換効率の値を得た。結果を表 1に示す。
[0097] 〔実施例 5〕
作用極領域を 0. 5cm X 4. 5cmとし、プレス処理の条件を圧力 80MPaとしたことの 他は実施例 3と同様にして色素増感型太陽電池〔5〕を得、この色素増感型太陽電池 〔5〕について実施例 1と同様にして短絡電流、開放電圧、形状因子 ff、光電変換効 率の値を得た。結果を表 1に示す。
なお、機能性半導体層における波長 400〜800nmの光透過率は、プレス処理前 の値に対して 130%増加し、層厚は 70%に減少し、 6 mであった。
[0098] 〔実施例 6〕
作用極領域を 0. 5cm X 9. Ocmとし、プレス処理の条件を圧力 80MPaとしたことの 他は実施例 3と同様にして色素増感型太陽電池〔6〕を得、この色素増感型太陽電池 〔6〕について実施例 1と同様にして短絡電流、開放電圧、形状因子 ff、光電変換効 率の値を得た。結果を表 1に示す。
なお、機能性半導体層における波長 400〜800nmの光透過率は、プレス処理前 の値に対して 130%増加し、層厚は 70%に減少し、 であった。
[0099] 〔実施例 7〕
透光性基板として、 ITOZPEN基板の代わりにシート抵抗 9 Ω Z口の FTOZ導電 性ガラス基板を用いたことの他は実施例 2と同様にして色素増感型太陽電池〔7〕を 得、この色素増感型太陽電池〔7〕について実施例 1と同様にして短絡電流、開放電 圧、形状因子 ff、光電変換効率の値を得た。結果を表 1に示す。 なお、機能性半導体層における層厚は 70%に減少し、 5 mであった。
[0100] 〔比較例 1〕
プレス処理を行わな力つたことの他は実施例 1と同様にして比較用の色素増感型太 陽電池〔1〕を得、この比較用の色素増感型太陽電池〔1〕について実施例 1と同様に して短絡電流、開放電圧、形状因子 ff、光電変換効率の値を得た。結果を表 1に示 す。
[0101] 〔比較例 2〕
光電変換層形成用水性ペースト〔1〕の代わりに市販のペースト「PECC— 01— 06」 (ぺクセル社製)を使用し、プレス処理を行わず、 150°Cで 10分間、加熱処理を行った ことの他は実施例 1と同様にして比較用の色素増感型太陽電池〔2〕を得、この比較 用の色素増感型太陽電池〔2〕について実施例 1と同様にして短絡電流、開放電圧、 形状因子 ff、光電変換効率の値を得た。結果を表 1に示す。
[0102] 〔比較例 3〕
塗膜に対してプレス処理を行わず、 150°Cで 10分間、加熱処理を行ったことの他 は実施例 1と同様にして比較用の色素増感型太陽電池〔3〕を得、この比較用の色素 増感型太陽電池〔3〕について実施例 1と同様にして短絡電流、開放電圧、形状因子 ff、光電変換効率の値を得た。結果を表 1に示す。
[0103] 〔比較例 4〕
透光性基板として、 ITOZPEN基板の代わりにシート抵抗 9 Ω Z口の FTOZ導電 性ガラス基板を使用し、プレス処理を行わず、光電変換層形成用水性ペースト〔1〕の 塗布 ·乾燥処理後に 520°Cで 1時間焼成処理を行 、、対極として導電性ガラスに白 金をスパッタしたものを用いたことの他は実施例 2と同様にして比較用の色素増感型 太陽電池〔4〕を得、この比較用の色素増感型太陽電池〔4〕について実施例 1と同様 にして短絡電流、開放電圧、形状因子 ff、光電変換効率の値を得た。結果を表 1〖こ 示す。
[0104] 〔比較例 5〕
光電変換層形成用水性ペースト〔1〕の代わりに、 2種類のエタノール懸濁液〔A〕, 〔 B〕を、チタ-ァ粒子〔A〕およびチタ-ァ粒子〔B〕が重量比で 6: 4となるように混合し、 この混合液にェチルセルロースおよび a—terpineolを加え、ホモジナイザーおよび 超音波分散器で均一に分散させて力 ロータリーエバポレーターで濃縮して調製し た比較用の光電変換層形成用水性ペースト〔Y〕を用い、この比較用の光電変換層 形成用水性ペースト [Υ]をスクリーンプリンターを用いてシート抵抗 9 Ω Ζ口の導電 性ガラス上に作用極領域が 0. 5cm Χ 0. 5cmとなるよう印刷し、 520°Cで 1時間焼成 処理を行って作製した比較用の光電極と、対極として導電性ガラスに白金をスパッタ したものを用いたことの他は実施例 1と同様にして比較用の色素増感型太陽電池〔5 〕を得、この比較用の色素増感型太陽電池〔5〕について実施例 1と同様にして短絡 電流、開放電圧、形状因子 ff、光電変換効率の値を得た。結果を表 1に示す。
なお、機能性半導体層の層厚は 7 mであった。
[0105] 〔比較例 6〕
光電変換層形成用水性ペースト〔1〕の代わりに、チタ-ァ粒子〔A〕のみよりなる比 較用の光電変換層形成用水性ペースト〔Z〕を用いたことの他は実施例 1と同様にし て比較用の色素増感型太陽電池〔6〕を得、この比較用の色素増感型太陽電池〔6〕 について実施例 iと同様にして短絡電流、開放電圧、形状因子 ff、光電変換効率の 値を得た。結果を表 1に示す。
なお、機能性半導体層における波長 400〜800nmの光透過率は、プレス処理前 の値に対して 130%増加し、層厚は 70%に減少し、 であった。
[0106] 〔比較例 7〕
実施例 1において、光電変換層形成用水性ペースト〔1〕の代わりに、チタ-ァ粒子 〔A〕およびチタ-ァ粒子〔B〕を合わせて 10重量0 /0、ヒドロキシプロピルセルロース 0. 5重量%ぉよび水力 なり、かつチタ-ァ粒子〔A〕とチタ-ァ粒子〔B〕を重量比で 7: 3の割合で含む比較用の光電変換層形成用水性ペースト〔W〕を用いることの他は同 様にして、厚さ 8. 1 μ mの光電変換層が形成された比較用の色素増感型太陽電池〔 7〕を得、この比較用色素増感太陽電池〔7〕について、実施例 1と同様にして短絡電 流、開放電圧、形状因子 ff、光電変換効率の値を得た。結果を表 1に示す。
[0107] [表 1] 别定結菜
曆厚
k μ πι) 開放電圧 形状因子光電変換効率
(V) ff (%)
実施例 1 8 12.4 0.75 0.77 7.1
実旃例2 7 12 0.77 0.75 6.9
実誦 3 7 11 .7 0.79 0.73 6.7
実施例 4 7 11 .5 0.76 0.71 6.2
実施例 5 6 10.8 0.77 0.74 6.2
実施例 S 7 10.9 0.75 0 ,76 6.2
実施例 7 5 11 .7 < 0.76 0.72 6 Λ
比較例 1 7 4.1 0.78 0.61 2.2
比 β例 2 5 5.5 0.73 0. B9 2.4
比铰例 3 7 8.8 0.76 0.58 3.9
比姣例 4 6 10 0.81 0.68 5.6
比絞例 5 7 11 .2 0.79 0.71 6.3
比絞例 6 7 10.3 0.73 0.71 5.37
比铰例 7 8.1 6.8 0.72 0.70 3.4 表 1から明らかなように、実施例 1〜実施例 7に係る本発明の色素増感型太陽電池 にお 、ては、高 、光電変換効率が得られて 、ることが確認された。
実施例 1に係る色素増感型太陽電池〔1〕が、他の実施例 2〜7に係る色素増感型 太陽電池に比して高い光電変換効率を示すのは、形状因子 ffの値が高ぐすなわち チタ-ァ粒子と透光性基板との接合性が良好であることによると考えられる。
また、実施例 1の結果と、従来力も行われている、透光性基板としてガラス基板、お よびバインダーを含むペーストを用い、高温焼成を行って得られた比較用色素増感 型太陽電池に係る比較例 5の結果とを比較することにより、本発明の色素増感型太 陽電池が、ガラス基板を用いた従来の色素増感型太陽電池と同等またはそれ以上 の光電変換効率が得られるものであることが確認された。
また、実施例 1, 3, 4の結果を比較することにより、透光性基板を構成する透光性 支持体の材質の違いが光電変換効率の大きさに影響することが示された。
また、実施例 1, 5, 6の結果を比較することにより、作用極領域を大きくすると光電 変換効率の大きさに影響し多少低くなる傾向を示すが、特に実施例 6の結果から、作 用極領域を大きくしても 6%以上の高い光電変換効率が得られることが確認された。 さらに、実施例 7の結果より、透光性基板としてガラス製の透光性支持体よりなるも のを用いた場合であっても、得られた色素増感型太陽電池〔7〕はプラスチック製基板 を用いた色素増感型太陽電池よりフレキシブル性などの利点に欠けるものの、高い 光電変換効率が得られることが確認された。
[0109] 一方、プレス処理を行わな力つた比較用色素増感型太陽電池に係る比較例 1〜4 の結果から、プレス処理を行わな 、と高 、光電変換効率が得られな 、ことが確認され た。これは、プレス処理を行わな力つた結果、チタ-ァ粒子間およびチタ-ァ粒子と 透光性基板との接合性が低いものとなってしまうことが大きな要因であるが、さらに水 性ペーストから形成されることに起因して生じるクラックがそのまま存在し残ることも要 因として考えられる。
また、比較例 6の結果から、粒径の小さい 1種類の半導体粒子のみを用いた太陽電 池は、粒径の異なる 2種の半導体粒子を用いる本発明のものに比して高い光電変換 効率が得られな 、ことが確認された。
さらに、比較例 7の結果から、バインダーを含有する光電変換層を有する太陽電池 は、バインダーを含有しない光電変換層を有する本発明のものに比して高い光電変 換効率が得られないことが確認された。これは、バインダーがチタニア粒子間やチタ ユア粒子と透光性基板との間に入り込む結果、接合性が低いものとなって電子移動 が阻害されるためであると推察される。
[0110] 〔実験例 1〜7〕
実施例 1〜7とそれぞれ同様にして同じ構成の色素増感型太陽電池を 9個づっ合 計 63個作製し、全ての色素増感型太陽電池について、実施例 1と同様にして短絡電 流、開放電圧、形状因子 ff、光電変換効率の値を測定したところ、表 1に示される実 施例 1〜7の対応する値に対して 9個づつの色素増感型太陽電池はすべて ±0. 2% の誤差範囲にある値を示した。
この実験例により、本発明の製造方法によれば、高い光電変換効率を有する色素 増感型太陽電池を再現性よく安定的に製造できることが確認された。
[0111] 〔実施例 8〕
チタ-ァ粒子〔A〕およびチタ-ァ粒子〔B〕が重量比で 6: 4となるように混合し、プレ ス処理の条件を圧力 80MPa (ゲージ圧; 4MPa)としたことの他は実施例 1と同様に して色素増感型太陽電池〔ィ〕を得、この色素増感型太陽電池〔ィ〕の光電極構造体〔 ィ〕【こつ ヽて波長 400mn、 500nm, 600nm, 700nm, 800mnの各々【こつ ヽて光 透過率 (絶対値)を測定した。結果を表 2に示す。
[0112] 〔実施例 9〕
プレス処理の条件を圧力 160MPa (ゲージ圧; 8MPa)としたことの他は実施例 9と 同様にして色素増感型太陽電池〔口〕を得、この色素増感型太陽電池〔口〕の光電極 構造体〔口〕【こつ ヽて波長 400nm、 500nm、 600nm、 700nm、 800nmの各々【こつ Vヽて光透過率 (絶対値)を測定した。結果を表 2に示す。
[0113] 〔実施例 10〕
プレス処理の条件を圧力 80MPa (ゲージ圧; 4MPa)としたことの他は実施例 1と同 様にして色素増感型太陽電池〔ハ〕を得、この色素増感型太陽電池〔ハ〕の光電極構 造体〔ノヽ〕【こつ ヽて波長 400mn、 500nm, 600nm, 700nm, 800mnの各々【こつ Vヽて光透過率 (絶対値)を測定した。結果を表 2に示す。
[0114] 〔実施例 11〕
プレス処理の条件を圧力 160MPa (ゲージ圧; 8MPa)としたことの他は実施例 10 と同様にして色素増感型太陽電池〔二〕を得、この色素増感型太陽電池〔二〕の光電 極構造体〔二〕【こつ ヽて波長 400mn、 500nm, 600nm, 700nm、 800mnの各々 につ ヽて光透過率 (絶対値)を測定した。結果を表 2に示す。
[0115] 〔参考例 1〕
チタ-ァ粒子〔A〕のみを用い、プレス処理の条件を圧力 80MPa (ゲージ圧; 4MPa )としたことの他は実施例 1と同様にして比較参考用の色素増感型太陽電池〔ホ〕を得 、この比較参考用の色素増感型太陽電池〔ホ〕の光電極構造体〔ホ〕について波長 4 OOnm、 500nm, 600nm, 700nm, 800nmの各々【こつ!/ヽて光透過率(絶対値)を 測定した。結果を表 2に示す。
[0116] 〔参考例 2〕
プレス処理の条件を圧力 160MPa (ゲージ圧; 8MPa)としたことの他は比較実験 例 1と同様にして比較参考用の色素増感型太陽電池〔へ〕を得、この比較参考用の 色素増感型太陽電池〔へ〕の光電極構造体〔へ〕〖こついて波長 400nm、 500nm、 6 00nm、 700nm、 800nmの各々について光透過率(絶対値)を測定した。結果を表 2に示す。
[0117] [表 2]
Figure imgf000036_0001
[0118] 〔実施例 12〜23〕
以下に、透光性基板の表面処理および機能性半導体層の UV—オゾン処理によつ て得られる効果について、確認実験を行った。
具体的には、実施例 1と同じ透光性基板 (シート抵抗 13 ΩΖ口の ITOZPEN基板 )の表面に、以下のような超音波洗浄処理、エッチング処理および UV—オゾン処理 を単独あるいは 2つ以上組み合わせた表面処理を表 3に従って施した後、その表面 上に実施例 1と同様にして得られた光電変換層形成用水性ペースト〔1〕を塗布し、表 3に示される層厚が得られるようにプレス処理して機能性半導体層を形成し、必要に 応じてこの機能性半導体層に UV—オゾン処理を施し、その後、増感色素を担持さ せることにより、色素増感型太陽電池〔12〕〜〔23〕を得、これらの色素増感型太陽電 池〔12〕〜〔23〕について実施例 1と同様にして短絡電流、開放電圧、形状因子 ff、 光電変換効率の値を得た。結果を表 3に示す。
[0119] (超音波洗浄処理)
超音波洗浄器および超音波洗浄用洗剤を用い、洗浄剤を入れた容器内に透光性 基板を浸漬し、その容器を水で満たした超音波洗浄器に入れ、 10分間超音波を発 信させることにより、当該透光性基板の表面における微細な付着物などを洗浄 '除去 した。
[0120] (エッチング処理) 高周波スパッタ装置「SVC— 700RFII」(サンユー電子 (株)製)に透光性基板をセ ットし、高真空条件(5Pa)とした後、逆スパッタ(エッチング)処理を 20W、 10分間の 条件で行った。具体的には、高周波の交流電位をかけることによりプラズマを発生さ せ、その内のプラス電荷を帯びたアルゴン原子をマイナス電荷をかけた基板に衝突 させること〖こよって、基板上の付着物を除去した。
[0121] (UV—才ゾン処理)
処理対象物を UV—オゾン洗浄装置「OC— 2506」(岩崎電気 (株)製)に入れ、 5分 間紫外線照射を行った。
[0122] [表 3]
Figure imgf000038_0001
表 3から明らかなように、透光性基板に表面処理を施すことにより、表面処理を施さ ない場合は例えば実施例 1では光電変換効率が 7. 1%であるのに比して、 7. 2 7 . 6%と高い光電変換効率が得られることが示され、また、透光性基板に表面処理を 施すことに加えて機能性半導体層に UV—オゾン処理を施すことにより、これを行わ な力つた場合は例えば実施例 12〜15では光電変換効率が 7. 2〜7. 3%であるの に対して 7. 3〜7. 6%と高い光電変換効率を得られることが示された。
これは、機能性半導体層への UV オゾン処理により、機能性半導体層に含有さ れる半導体粒子の親水基が増加されて当該半導体粒子が色素吸着しやすいものと なり、その結果、得られる色素増感型太陽電池が高い光電変換効率を得られると推 察される。
[0124] また、表面処理法のうち特に UV オゾン処理を行うと、超音波洗浄処理およびェ ツチング処理を行うことに比して、高い光電変換効率が得られる傾向が示されている 1S この理由は、紫外線によって生じたオゾンが処理対象物表面の有機汚染物質を 分解除去する上に、オゾン力 の活性酸素が表面分子と結合して処理対象物表面 の親水性が増加することによって、水の接触角が表面処理前に比べて大きく減少し、 その結果、透光性基板に対する水性ペーストの密着性が高くなるためであると考えら れる。
[0125] 〔実施例 24, 25]
実施例 1にお 、て、プレス処理後であってかつ色素担持工程前の機能性半導体層 に UV—オゾン処理を施し、さら〖こ、色素担持工程に使用する溶媒としてァセトニトリ ルおよび t ブチルアルコールの重量比 1: 1の混合溶媒を用いることの他は同様に して色素増感型太陽電池〔24〕, 〔25〕を作製した。この色素増感型太陽電池〔24〕, 〔25〕を構成する機能性半導体層の層厚はそれぞれ 7. 6 m、 8. 1 mであった。 これらの色素増感型太陽電池〔24〕, 〔25〕を用い、実施例 1と同様にして短絡電流 、開放電圧、形状因子 ff、光電変換効率の値を得た。結果を表 4に示す。
[0126] [表 4]
Figure imgf000039_0001
表 4から明らかなように、プレス処理後の機能性半導体層に UV—オゾン処理を施 すことにより、色素増感型太陽電池の性能を向上させることができることが確認された [0128] 〔実施例 26〕
以下に、本発明の色素増感型太陽電池が、入射光量を変化させても高いレベルの 光電変換効率を維持できるものであることを検証した。
具体的には、実施例 1と同様にして作製した色素増感型太陽電池を用い、入射光 量を 20〜200mWZcm2の範囲で変化させ、入射光量をそれぞれ 23mWZcm2、 4 8. 5mW/cm2、 70mW/cm2、 lOOmW/cm2、または 170mW/cm2とした場 合における光電変換効率を測定した。結果を表 5に示す。
[0129] [表 5]
Figure imgf000040_0001
[0130] 表 5から明らかなように、入射光量が 23〜170mWZcm2の範囲において、入射光 量を変化させても 6. 2〜7. 1%と高いレベルの光電変換効率を維持できることが確 認された。また、短絡電流は入射光量に比例して高くなる傾向にあることが示された
[0131] 〔実施例 27〕
実施例 19と同様にして作製した、表面処理した透光性基板を使用し、さらにプレス 処理後の機能性半導体層を UV—オゾン処理して作製した色素増感型太陽電池〔1 9〕を用い、入射光量を 20〜200mWZcm2の範囲で変化させ、入射光量をそれぞ れ 20. 9mWZcm2、 31. 4mW/cm2、 46. OmW/cm2、69. OmW/cm2、 100 mW/cm2,または 170mWZcm2とした場合における光電変換効率を測定した。結 果を表 6に示す。
[0132] [表 6]
Figure imgf000040_0002
[0133] 表 6から明らかなように、入射光量が 20. 9~170mW/cm2の範囲において、入 射光量を変化させても 6. 9〜7. 4%と高いレベルの光電変換効率を維持できること が確認された。また、短絡電流は入射光量に比例して高くなる傾向にあることが示さ れた。また、透光性基板および機能性半導体層に表面処理を施さな力 た色素増感 型太陽電池に比してより高いレベルの光電変換効率が達成された。

Claims

請求の範囲
[1] 透光性支持体上に透明導電層が形成されてなる透光性基板の当該透明導電層上 に光電変換層が積層して形成された色素増感型太陽電池用光電極の製造方法で あって、
前記光電変換層は、平均粒子径の異なる少なくとも 2種の半導体粒子と、増感色素 とを含有するものであって、
ノインダーおよび有機溶剤を含有せず、前記平均粒子径の異なる少なくとも 2種の 半導体粒子を含有する水性ペーストによって前記透明導電層上に形成される塗膜を プレス処理する工程を含むことを特徴とする色素増感型太陽電池用光電極の製造 方法。
[2] 前記透光性基板が、透明導電層の表面が超音波洗浄処理、エッチング処理およ び Zまたは UV—オゾン処理されたものであることを特徴とする請求項 1に記載の色 素増感型太陽電池用光電極の製造方法。
[3] 前記光電変換層は、前記水性ペーストの塗膜をプレス処理して得られる機能性半 導体層を得、この機能性半導体層に増感色素を担持させて得られるものであることを 特徴とする請求項 1または請求項 2に記載の色素増感型太陽電池用光電極の製造 方法。
[4] 前記プレス処理は、機能性半導体層における波長 400〜800nmの光透過率が、 プレス処理前の値の 110〜 130%となる条件で行われることを特徴とする請求項 3に 記載の色素増感型太陽電池用光電極の製造方法。
[5] 前記光電変換層は、前記水性ペーストの塗膜をプレス処理して得られる層上に、バ インダーおよび有機溶剤を含有せず、平均粒子径の異なる少なくとも 2種の半導体 粒子を含有する水性ペーストの塗膜よりなる層を 1層以上形成させて機能性半導体 層を得、この機能性半導体層に増感色素を担持させて得られるものであることを特徴 とする請求項 1または請求項 2に記載の色素増感型太陽電池用光電極の製造方法。
[6] 前記プレス処理は、前記水性ペーストの塗膜をプレス処理して得られる層における 波長 400〜800nmの光透過率力 プレス処理前の値の 110〜 130%となる条件で 行われることを特徴とする請求項 5に記載の色素増感型太陽電池用光電極の製造 方法。
[7] 増感色素を担持する前に、前記水性ペーストの塗膜をプレス処理する工程を経て 得られる機能性半導体層を UV—オゾン処理することを特徴とする請求項 3〜請求項
6の 、ずれか一に記載の色素増感型太陽電池用光電極の製造方法。
[8] 前記光電変換層は、前記水性ペーストの塗膜に増感色素を担持させた後、プレス 処理して得られる増感色素担持加圧半導体層よりなることを特徴とする請求項 1また は請求項 2に記載の色素増感型太陽電池用光電極の製造方法。
[9] 前記プレス処理は、増感色素担持加圧半導体層における波長 400〜800nmの光 透過率力 プレス処理前の値の 110〜 130%となる条件で行われることを特徴とする 請求項 8に記載の色素増感型太陽電池用光電極の製造方法。
[10] 前記半導体粒子がアナターゼ結晶型のチタ-ァ粒子であることを特徴とする請求 項 1〜請求項 9のいずれか一に記載の色素増感型太陽電池用光電極の製造方法。
[11] 半導体粒子が塩基性法により得られたものであることを特徴とする請求項 1〜請求 項 10のいずれか一に記載の色素増感型太陽電池用光電極の製造方法。
[12] 前記塩基性法は、半導体金属のアルコキサイドを 4級アンモ-ゥム塩によって加水 分解する工程を含むものであることを特徴とする請求項 11に記載の色素増感型太陽 電池用光電極の製造方法。
[13] 水性ペーストにおける平均粒子径の異なる少なくとも 2種の半導体粒子の含有割合 力 〜 30質量%であることを特徴とする請求項 1〜請求項 12のいずれか一に記載の 色素増感型太陽電池用光電極の製造方法。
[14] 前記水性ペーストに含有される半導体粒子力 平均粒子径が 3〜40nmのもの、お よび平均粒子径が 50nm以上のものの 2種であることを特徴とする請求項 1〜請求項
13の 、ずれか一に記載の色素増感型太陽電池用光電極の製造方法。
[15] プレス処理が、室温で行われることを特徴とする請求項 1〜請求項 14のいずれか 一に記載の色素増感型太陽電池用光電極の製造方法。
[16] プレス処理は、 5MPa以上 500MPa以下の圧力で行われることを特徴とする請求 項 1〜請求項 15のいずれか一に記載の色素増感型太陽電池用光電極の製造方法
[17] 前記透光性基板の透光性支持体がプラスチック製の透光性支持体であることを特 徴とする請求項 1〜請求項 16のいずれか一に記載の色素増感型太陽電池用光電 極の製造方法。
[18] 前記プラスチック製の透光性支持体の耐熱温度より低い温度で加熱処理しながら 当該透光性支持体上にスパッタリング法によってインジウムースズ複合酸ィ匕物 (ITO) からなる透明導電層を形成させることを特徴とする請求項 17に記載の色素増感型太 陽電池用光電極の製造方法。
[19] 透光性支持体上に透明導電層が形成されてなる透光性基板の当該透明導電層上 に機能性半導体層が設けられた光電極構造体の当該機能性半導体層に増感色素 が担持された色素増感型太陽電池用光電極であって、
前記機能性半導体層は、プレス処理された層を透明導電層に接触した状態で有し 、当該プレス処理された層は、平均粒子径の異なる少なくとも 2種の半導体粒子を含 有しバインダーを含有しないものであることを特徴とする色素増感型太陽電池用光電 極。
[20] 前記平均粒子径の異なる少なくとも 2種の半導体粒子に含有される半導体粒子が 、平均粒子径が 3〜40nmのもの、および平均粒子径が 50nm以上のものの 2種であ ることを特徴とする請求項 19に記載の色素増感型太陽電池用光電極。
[21] 前記平均粒子径の異なる少なくとも 2種の半導体粒子における平均粒子径が 3〜4 Onmの半導体粒子の含有割合が 50〜95質量%であることを特徴とする請求項 20 に記載の色素増感型太陽電池用光電極。
[22] 前記光電極構造体の機能性半導体層が、プレス処理された層と、当該プレス処理 された層上に積層された、平均粒子径の異なる少なくとも 2種の半導体粒子を含有し バインダーを含有せず、プレス処理されていない少なくとも 1層の層とによる多層構造 であることを特徴とする請求項 19〜請求項 21のいずれか一に記載の色素増感型太 陽電池用光電極。
[23] 前記機能性半導体層のプレス処理された層の厚み力 3〜40 μ mであることを特 徴とする請求項 19〜請求項 22の 、ずれか一に記載の色素増感型太陽電池用光電 極。
[24] 前記機能性半導体層のプレス処理された層は、クラックが埋められた痕跡を有する ことを特徴とする請求項 19〜請求項 23のいずれか一に記載の色素増感型太陽電 池用光電極。
[25] 前記光電極構造体における透光性基板および機能性半導体層のプレス処理され た層よりなる積層体の波長 500nmの光透過率が 20〜65%であり、かつ、波長 700η mの光透過率が 30〜75%であることを特徴とする請求項 19〜請求項 24のいずれ か一に記載の色素増感型太陽電池用光電極。
[26] 請求項 19〜請求項 25の 、ずれか一に記載の色素増感型太陽電池用光電極を備 え、
当該色素増感型太陽電池用光電極が、電解質部分を介して対極と対向するよう設 けられて 、ることを特徴とする色素増感型太陽電池。
PCT/JP2007/054042 2006-03-02 2007-03-02 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池 WO2007100095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/224,647 US20090114277A1 (en) 2006-03-02 2007-03-02 Production Process of Photoelectrode for Dye-Sensitized Solar Cell, Photoelectrode for Dye-Sensitized Solar Cell and Dye-Sensitized Solar Cell.
EP07737690A EP2006949A2 (en) 2006-03-02 2007-03-02 Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2008502871A JP4446011B2 (ja) 2006-03-02 2007-03-02 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-056422 2006-03-02
JP2006056422 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007100095A1 true WO2007100095A1 (ja) 2007-09-07

Family

ID=38459190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054042 WO2007100095A1 (ja) 2006-03-02 2007-03-02 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池

Country Status (4)

Country Link
US (1) US20090114277A1 (ja)
EP (1) EP2006949A2 (ja)
JP (2) JP4446011B2 (ja)
WO (1) WO2007100095A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289669A (ja) * 2008-05-30 2009-12-10 Jgc Catalysts & Chemicals Ltd 光電気セル用多孔質金属酸化物半導体膜形成用塗料および光電気セル
JP2010140812A (ja) * 2008-12-12 2010-06-24 Sekisui Chem Co Ltd 機能素子及びその製造方法並びに色素増感太陽電池
WO2013077043A1 (ja) 2011-11-25 2013-05-30 学校法人東京理科大学 色素増感太陽電池用光電極およびその製造方法、ならびに色素増感太陽電池
WO2014064965A1 (ja) 2012-10-23 2014-05-01 学校法人東京理科大学 色素増感太陽電池用光電極および色素増感太陽電池
KR101419671B1 (ko) 2011-05-20 2014-07-30 세키스이가가쿠 고교가부시키가이샤 제막 방법, 제막체, 및 색소 증감 태양 전지
US9318270B2 (en) 2014-03-27 2016-04-19 Ricoh Company, Ltd. Perovskite solar cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504842A (ja) * 2009-09-10 2013-02-07 モナシュ、ユニバーシティ メゾスコピック太陽電池の製造方法
JP5630745B2 (ja) * 2010-01-07 2014-11-26 日新製鋼株式会社 色素増感型太陽電池用光電極の製造方法
JP2012146420A (ja) * 2011-01-07 2012-08-02 Toppan Printing Co Ltd 色素増感太陽電池および色素増感太陽電池の製造方法
JP5358790B2 (ja) * 2011-05-11 2013-12-04 ペクセル・テクノロジーズ株式会社 色素増感型光電変換素子用光電極及びその製造方法
JP2013026082A (ja) * 2011-07-22 2013-02-04 Sony Corp 光電変換装置、電子機器および建築物
WO2013111160A1 (en) 2012-01-05 2013-08-01 Council Of Scientific & Industrial Research Method for preparing solar paint at room temperature for dye sensitized solar cells for window panes and flexible substrates
JP6520914B2 (ja) 2014-02-24 2019-05-29 株式会社リコー 固体型光電変換素子及び太陽電池
CN109608055B (zh) * 2018-12-29 2021-08-20 河南科技大学 一种硫化铋敏化的二氧化钛纳米棒薄膜及其制备方法
CN109704595B (zh) * 2019-02-19 2021-08-24 河南科技大学 一种硫化铋/二氧化钛复合材料薄膜及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093591A (ja) * 1999-09-28 2001-04-06 Toshiba Corp 光電変換素子
JP2004214129A (ja) 2003-01-08 2004-07-29 Sony Corp 光電変換素子およびその製造方法ならびに電子装置およびその製造方法
JP2004247104A (ja) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd 酸化チタン微粒子、光電変換素子の作製方法及び光電変換素子
JP2005056627A (ja) * 2003-07-31 2005-03-03 Toin Gakuen フィルム型色素増感光電池
JP2005235794A (ja) * 2004-02-17 2005-09-02 Kyoto Univ グラフト薄膜を用いた光電素子及び太陽電池
JP2006012517A (ja) * 2004-06-24 2006-01-12 Toppan Printing Co Ltd 金属酸化物構造体及び色素増感太陽電池
JP2006019072A (ja) 2004-06-30 2006-01-19 Nissin Electric Co Ltd 色素増感太陽電池及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881604B2 (en) * 1999-05-25 2005-04-19 Forskarpatent I Uppsala Ab Method for manufacturing nanostructured thin film electrodes
SE514600C2 (sv) * 1999-05-25 2001-03-19 Forskarpatent I Uppsala Ab Metod för tillverkning av nanostrukturerade tunnfilmselektroder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093591A (ja) * 1999-09-28 2001-04-06 Toshiba Corp 光電変換素子
JP2004214129A (ja) 2003-01-08 2004-07-29 Sony Corp 光電変換素子およびその製造方法ならびに電子装置およびその製造方法
JP2004247104A (ja) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd 酸化チタン微粒子、光電変換素子の作製方法及び光電変換素子
JP2005056627A (ja) * 2003-07-31 2005-03-03 Toin Gakuen フィルム型色素増感光電池
JP2005235794A (ja) * 2004-02-17 2005-09-02 Kyoto Univ グラフト薄膜を用いた光電素子及び太陽電池
JP2006012517A (ja) * 2004-06-24 2006-01-12 Toppan Printing Co Ltd 金属酸化物構造体及び色素増感太陽電池
JP2006019072A (ja) 2004-06-30 2006-01-19 Nissin Electric Co Ltd 色素増感太陽電池及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINDSTRÖM H. ET AL.: "A new method to make dye-sensitized nanocrystalline solar cells at room temperature", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A, CHEMISTRY, vol. 145, 2001, pages 107 - 112, XP003017706 *
NATURE, vol. 353, 1991, pages 737 - 740

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289669A (ja) * 2008-05-30 2009-12-10 Jgc Catalysts & Chemicals Ltd 光電気セル用多孔質金属酸化物半導体膜形成用塗料および光電気セル
JP2010140812A (ja) * 2008-12-12 2010-06-24 Sekisui Chem Co Ltd 機能素子及びその製造方法並びに色素増感太陽電池
KR101419671B1 (ko) 2011-05-20 2014-07-30 세키스이가가쿠 고교가부시키가이샤 제막 방법, 제막체, 및 색소 증감 태양 전지
US9721733B1 (en) 2011-05-20 2017-08-01 National Institute Of Advanced Industrial Science And Technology Method for forming a dye-sensitized solar cell having a porous film of an inorganic substance on a base material by spraying dry fine particles of an inorganic substance on the base material
WO2013077043A1 (ja) 2011-11-25 2013-05-30 学校法人東京理科大学 色素増感太陽電池用光電極およびその製造方法、ならびに色素増感太陽電池
WO2014064965A1 (ja) 2012-10-23 2014-05-01 学校法人東京理科大学 色素増感太陽電池用光電極および色素増感太陽電池
US9318270B2 (en) 2014-03-27 2016-04-19 Ricoh Company, Ltd. Perovskite solar cell

Also Published As

Publication number Publication date
EP2006949A2 (en) 2008-12-24
US20090114277A1 (en) 2009-05-07
JPWO2007100095A1 (ja) 2009-07-23
JP4446011B2 (ja) 2010-04-07
JP2008288209A (ja) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4446011B2 (ja) 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池
JP4185285B2 (ja) 色素増感型光電変換素子およびそれを用いた太陽電池
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
JP5191647B2 (ja) 酸化チタン膜、酸化チタン膜電極膜構造および色素増感太陽電池
JP2008251519A (ja) 色素増感型太陽電池用光電極および色素増感型太陽電池
Sedghi et al. Influence of TiO2 electrode properties on performance of dye-sensitized solar cells
JP5275346B2 (ja) 色素増感太陽電池
Jang et al. Effect of an electrodeposited TiO 2 blocking layer on efficiency improvement of dye-sensitized solar cell
JP2006032260A (ja) 光電変換装置およびそれを用いた光発電装置
JP2011165469A (ja) 半導体電極層及びその製造方法、並びに電気化学装置
JP4601285B2 (ja) 色素増感型太陽電池用電極基板及びその製造方法並びに色素増感型太陽電池
JP4883559B2 (ja) 光電変換電極
US20110203644A1 (en) Quasi-solid-state photoelectrochemical solar cell formed using inkjet printing and nanocomposite organic-inorganic material
Nguu et al. Electrophoretic deposition and characterization of TiO2/Nb2O5 composite thin films for dye sensitized solar cells
JP5332739B2 (ja) 光電変換素子及び太陽電池
JP2012064440A (ja) 光電変換素子及び太陽電池
JP5189869B2 (ja) 電解液及び色素増感型太陽電池
JP4808560B2 (ja) 酸化チタン粒子含有組成物、光電極の製造方法及び太陽電池の製造方法
Ulusoy Development of photoanodes for performance enhanced dye sensitized solar cells
Liu Fabrication and characterization of dye sensitized solar cells (DSSCs) for wearable energy harvesting applications
JP5408596B2 (ja) 色素増感太陽電池用光電極および色素増感太陽電池
JP6015929B2 (ja) 色素増感太陽電池用光電極および色素増感太陽電池
JP2004241234A (ja) 光電極およびそれを使用した色素増感型太陽電池
JP2012043724A (ja) 半導体電極層及びその製造方法、並びに電気化学装置
JP2008226528A (ja) 光電極、その製造方法、及び光電変換デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008502871

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224647

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)