WO2015012282A1 - 非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池 Download PDF

Info

Publication number
WO2015012282A1
WO2015012282A1 PCT/JP2014/069371 JP2014069371W WO2015012282A1 WO 2015012282 A1 WO2015012282 A1 WO 2015012282A1 JP 2014069371 W JP2014069371 W JP 2014069371W WO 2015012282 A1 WO2015012282 A1 WO 2015012282A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
electrolyte secondary
electrode active
Prior art date
Application number
PCT/JP2014/069371
Other languages
English (en)
French (fr)
Inventor
広将 戸屋
森田 昌宏
裕喜 永井
嘉也 牧村
小林 哲郎
Original Assignee
住友金属鉱山株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社, トヨタ自動車株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201480041971.9A priority Critical patent/CN105409039B/zh
Priority to KR1020167004646A priority patent/KR101871075B1/ko
Priority to US14/907,087 priority patent/US20160172673A1/en
Priority to EP14828830.1A priority patent/EP3026738B1/en
Publication of WO2015012282A1 publication Critical patent/WO2015012282A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material as a positive electrode material.
  • lithium ion secondary battery that is a kind of non-aqueous electrolyte secondary battery.
  • This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material used as a material for the negative electrode and the positive electrode.
  • lithium ion secondary batteries using a layered or spinel type lithium metal composite oxide as a positive electrode material, Since a high voltage of 4V class can be obtained, the battery is being put to practical use as a battery having a high energy density.
  • lithium cobalt composite oxide As a positive electrode material for such a lithium ion secondary battery, lithium cobalt composite oxide (LiCoO 2 ), which is currently relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel cheaper than cobalt, Lithium nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide using manganese (LiMn 2 O 4 ), lithium nickel manganese composite oxide (LiNi 0.5 Mn Lithium composite oxides such as 0.5 O 2 ) have been proposed.
  • lithium nickel cobalt manganese composite oxide has attracted attention as a positive electrode material that has good cycle characteristics, low resistance, and high output.
  • attempts have been made to improve the performance by introducing various additive elements into the lithium nickel cobalt manganese composite oxide.
  • the ratio of the diffraction peak intensity (H (003) ) at the (003 ) plane and the diffraction peak intensity (H (104) ) at the (104) plane is 1.0 to 1. .5
  • a positive electrode active material that has high lithium ion conductivity and can suppress an increase in internal resistance of the battery has been proposed.
  • a lithium nickel manganese composite oxide is obtained by firing a raw material having a small particle diameter at 950 ° C. or higher, preferably 1000 ° C. to 1100 ° C., and for 10 hours to 50 hours. It is stated that it can be done.
  • the positive electrode active material has a hollow structure, and the value of FWHM (003) / FWHM (104) is controlled to 0.7 or less, so that ⁇ 30 can be obtained in a low charge state.
  • Lithium ion secondary batteries that can exhibit high output characteristics even in an extremely low temperature environment of ° C. have been proposed.
  • such a positive electrode active material is prepared by mixing a transition metal hydroxide crystallized under a predetermined condition with a lithium compound, and setting a maximum firing temperature in an oxidizing atmosphere to 700 ° C. to 1000 ° C. It describes that it can be obtained by baking at a temperature for 3 to 20 hours.
  • JP-A-5-258751 Japanese Patent Laid-Open No. 9-22893 JP-A-8-55624 JP-A-10-308218 JP 2000-195514 A JP 2005-197004 A JP 2013-51772 A
  • An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can improve the output characteristics of a lithium ion secondary battery, in particular, the output characteristics when used in a low temperature environment. . Moreover, it aims at providing the manufacturing method which can manufacture such a positive electrode active material easily in industrial scale production.
  • the ratio of the integrated width of the diffraction peak at the (104) plane to the integrated width of the diffraction peak at the (003) plane in the Miller index (hkl) is preferably 1.38 or more, preferably 1.39 to
  • the ratio of the peak integrated intensity of the (003) plane to the peak integrated intensity of the (104) plane in the Miller index (hkl) is It is preferable that it is 1.20 or more.
  • the volume-based average particle diameter determined by a laser diffraction scattering method is preferably in the range of 3 [mu] m ⁇ 20 [mu] m, specific surface area, in the range of 0.3m 2 /g ⁇ 2.5m 2 / g preferable.
  • the heating rate is 4 ° C / min to 10 ° C / min and Firing at a temperature of 800 ° C. to 1000 ° C., a holding time at the baking temperature of 5 hours or less, and a time from the start of temperature rise to the end of holding of 3.0 to 7.0 hours. It is characterized by.
  • lithium carbonate lithium hydroxide
  • lithium hydroxide lithium hydroxide
  • the oxygen concentration in the oxidizing atmosphere is 10 volume% to 100 volume%.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, and the positive electrode active material for a nonaqueous electrolyte secondary battery is used as a positive electrode material of the positive electrode. It is characterized by that.
  • the nonaqueous electrolyte secondary battery of the present invention has battery characteristics such that an initial discharge capacity is 150 mAh / g or more, and a cryogenic output at ⁇ 30 ° C. is 110 W or more.
  • a non-aqueous electrolyte secondary battery having a high capacity and excellent output characteristics in a low temperature environment.
  • a secondary battery can be suitably applied to a small secondary battery mounted on a power supply device such as a portable electronic device such as a mobile phone or a notebook computer, a power tool, and an electric vehicle including a hybrid vehicle. it can.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery having such excellent characteristics can be provided by a method that can be easily and mass-produced. For this reason, the industrial significance of the present invention is extremely large.
  • FIG. 1 is a diagram schematically showing a cross section of a cylindrical lithium ion secondary battery in which the present invention is used for battery evaluation.
  • FIG. 2 is a graph showing the relationship between the integral width ratio and the output at ⁇ 30 ° C.
  • FIG. 3 is a graph showing the relationship between the peak integrated intensity ratio and the output at ⁇ 30 ° C.
  • the inventors of the present invention have made extensive studies to solve the above-described problems. As a result, in powder X-ray diffraction using CuK ⁇ rays, it is specified by the ratio of the integration width of the diffraction peak on the (104) plane to the integration width of the diffraction peak on the (003) plane in the Miller index (hkl). In addition, the inventors have found that there is a correlation between the crystal form of the lithium nickel cobalt manganese composite oxide and the output characteristics of the lithium ion secondary battery using this in an extremely low temperature environment. In addition, as a result of repeated studies in detail on the crystal growth process of lithium nickel cobalt manganese composite oxide, it was found that the growth direction of the crystal can be controlled by controlling the firing conditions. The present invention has been completed based on these findings.
  • compositions The positive electrode active material of the present invention is composed of lithium composite oxide particles.
  • the composition of the lithium composite oxide particles is represented by the general formula (A) described above.
  • the value of a indicating an excess amount of lithium (Li) is ⁇ 0.05 or more and 0.20 or less, preferably 0 or more and 0.18 or less, more preferably more than 0 and 0.15 or less.
  • the value of a is less than ⁇ 0.05, the positive electrode resistance of the nonaqueous electrolyte secondary battery using this positive electrode active material increases, and the output of the battery decreases.
  • the value of a exceeds 0.20, the initial discharge capacity of the nonaqueous electrolyte secondary battery using this positive electrode active material is lowered.
  • Nickel (Ni) is an element that contributes to improving battery capacity.
  • the value x indicating the nickel content is 0.30 to 0.70, preferably 0.30 to 0.65, and more preferably 0.33 to 0.60.
  • the value of x is less than 0.30, the battery capacity of the nonaqueous electrolyte secondary battery using this positive electrode active material is reduced.
  • the value of x exceeds 0.70, the content of other additive elements decreases, and the effect of addition may not be sufficiently obtained.
  • Co Co is an element that contributes to improving the cycle characteristics.
  • the positive electrode active material has good cycle characteristics, that is, high durability.
  • the value of y indicating the cobalt content is 0.10 or more and 0.40 or less, preferably 0.10 or more and 0.35 or less, and more preferably 0.15 or more and 0.35 or less. If the value of y is less than 0.10, sufficient cycle characteristics cannot be obtained, and the capacity retention rate decreases. On the other hand, when the value of y exceeds 0.40, the initial discharge capacity is greatly reduced.
  • Manganese (Mn) is an element that contributes to improved thermal stability.
  • the value of z indicating the manganese content is 0.10 or more and 0.40 or less, preferably 0.10 or more and 0.35 or less, and more preferably 0.15 or more and 0.35 or less. If the value of z is less than 0.10, the effect of adding manganese cannot be sufficiently obtained. On the other hand, if the value of z exceeds 0.40, the elution amount of manganese increases at high temperature operation, and the cycle characteristics deteriorate.
  • the positive electrode active material of the present invention can contain an additive element (M) in the lithium composite oxide particles. Thereby, durability, an output characteristic, etc. of the secondary battery using this positive electrode active material can be improved.
  • M additive element
  • Such additive elements (M) include calcium (Ca), magnesium (Mg), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), and niobium (Nb).
  • One or more elements selected from molybdenum (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W) can be used. These additive elements (M) are appropriately selected according to the use of the secondary battery in which the obtained positive electrode active material is used and the required performance.
  • the value of t indicating the content of the additive element (M) is 0 or more and 0.01 or less, preferably more than 0.0003 and 0.01 or less, more preferably more than 0.0005 and 0.008 or less, Preferably, it exceeds 0.001 and is set to 0.007 or less.
  • the value of t is 0.0003 or less, the effect of improving the durability characteristics and output characteristics of the nonaqueous electrolyte secondary battery using this positive electrode active material cannot be sufficiently obtained.
  • the value of t exceeds 0.01, the metal element contributing to the Redox reaction decreases, and the battery capacity decreases.
  • the additive element (M) is crystallized together with nickel, cobalt and manganese in the crystallization step, and in the nickel cobalt manganese composite hydroxide particles (hereinafter referred to as “composite hydroxide particles”). Although it can be dispersed uniformly, the surface of the composite hydroxide particles may be coated with the additive element (M) after the crystallization step. Moreover, in a mixing process, it is also possible to mix with a lithium compound with a composite hydroxide particle, You may use these methods together. Regardless of which method is used, it is necessary to adjust the content so that the composition of the general formula (A) is obtained.
  • the positive electrode active material of the present invention is composed of hexagonal lithium composite oxide particles having a layered structure, and (003) in Miller index (hkl) in powder X-ray diffraction using CuK ⁇ rays.
  • the ratio of the integral width of the diffraction peak at the (104) plane to the integral width of the diffraction peak at the () plane (integral width ratio) is 1.38 or more.
  • the integration width of the diffraction peak at the (003) plane in the Miller index (hkl) is W (003) and the integration width of the diffraction peak at the (104) plane is W ( 104) Integral width ratio: 1.38 ⁇ W (104) / W (003) It is characterized by that.
  • lithium composite oxide lithium nickel cobalt manganese composite oxide
  • insertion and desorption of lithium ions accompanying charge / discharge are in the a-axis direction orthogonal to the c-axis. It is known to be done in On the other hand, in order to improve the output characteristics, it is advantageous that the diffusion distance of lithium ions is short. In particular, in an extremely low temperature state where the diffusion rate is slow, the contribution of the diffusion distance to the output characteristics is considered to be large. For this reason, if the growth in the a-axis direction proceeds more than the c-axis direction, the output characteristics are disadvantageous.
  • W (104) represents crystal growth in the a-axis and c-axis directions
  • W (003) represents crystal growth in the c-axis direction
  • W (104) / W (003) is approximately c
  • W (104) and W (003) mean that crystal growth is progressing, so that the value is small. From this, it can be said that the larger the W (104) / W (003) is, the more the crystal growth in the a-axis direction is suppressed and the crystal growth in the c-axis direction is progressing. Therefore, the larger W (104) / W (003) , the shorter the lithium ion diffusion distance, and the higher the output characteristics at cryogenic temperatures.
  • W (104) / W (003) is preferably set to 1.39 or more. , 1.40 or more is more preferable. However, if W (104) / W (003) becomes too large, the crystallinity becomes unstable and the battery characteristics may deteriorate. For this reason, in consideration of manufacturing restrictions, the upper limit value is preferably 1.51 or less, more preferably 1.49 or less, and even more preferably 1.48 or less.
  • the full width at half maximum (FWHM) with respect to the diffraction peak is used when evaluating crystal growth.
  • the full width at half maximum (FWHM) is a relative crystallinity between crystal planes, and is not considered quantitatively, so that sufficient reliability cannot be obtained.
  • Another problem is that the peak shape varies greatly due to the resolution.
  • W integral width
  • Peak integrated intensity ratio In the positive electrode active material of the present invention, the integral width ratio is controlled as described above, and the peak integrated intensity (I (003) on the (003) plane of powder X-ray diffraction using CuK ⁇ rays is used. ) And (104) plane peak integrated intensity (I (104) ) ratio (peak integrated intensity ratio: I (003) / I (104) ) is preferably controlled to 1.20 or more. It is more preferable to control to 22 to 1.35, and it is more preferable to control to 1.23 to 1.28.
  • the peak integrated intensity is an index of crystal growth, and by controlling the peak integrated intensity ratio in the above-described range, crystal growth in the a-axis direction orthogonal to the c-axis can be suppressed. It is possible to improve.
  • the peak integrated intensity ratio is less than 1.20, the crystallinity becomes insufficient, and battery characteristics such as capacity and cycle retention ratio may be deteriorated. Although it is preferable that crystal growth in the c-axis direction proceeds, problems such as the formation of a heterogeneous phase may occur when the peak integrated intensity ratio becomes excessively large. For this reason, the peak integrated intensity ratio is preferably 1.35 or less.
  • the positive electrode active material of the present invention is composed of substantially spherical secondary particles formed by agglomerating a plurality of primary particles (lithium composite oxide particles).
  • the shape of the primary particles constituting the secondary particles various forms such as a plate shape, a needle shape, a rectangular parallelepiped shape, an ellipse shape, and a ridge surface shape can be adopted.
  • the aggregation state can be applied to the present invention not only in the case of aggregation in a random direction but also in the case where the major axis direction of particles aggregates radially from the center.
  • the primary particles are preferably spherical.
  • the positive electrode active material of the present invention has an interface or a grain boundary through which the electrolytic solution can permeate between primary particles constituting the secondary particles. For this reason, the electrolyte solution can be infiltrated to the surface of the primary particles where lithium ions are desorbed and inserted, and the output characteristics are greatly improved by the synergistic effect with the control of the integral width ratio and the peak integral intensity ratio described above. Can be improved.
  • Such secondary particles can be easily manufactured by using, as a precursor, composite hydroxide particles obtained in a crystallization process as described later.
  • the average particle size of the positive electrode active material of the present invention is preferably 3 ⁇ m to 20 ⁇ m.
  • the average particle diameter means a volume-based average particle diameter (MV) obtained by a laser diffraction scattering method.
  • the average particle size is less than 3 ⁇ m, the packing density of the positive electrode active material may decrease, and the battery capacity per positive electrode volume may decrease. Moreover, it may react with electrolyte solution excessively and safety
  • the average particle size exceeds 20 ⁇ m, the specific surface area of the positive electrode active material decreases and the interface with the electrolytic solution decreases, so that the positive electrode resistance increases and the output characteristics of the secondary battery may decrease.
  • the average particle size is more preferably 5 ⁇ m to 15 ⁇ m from the viewpoint of increasing the battery capacity per unit volume and obtaining battery characteristics excellent in high safety and high output.
  • the specific surface area of the positive electrode active material having a specific surface area of the present invention preferably to 0.3m 2 /g ⁇ 2.5m 2 / g, and 0.5m 2 /g ⁇ 2.0m 2 / g It is more preferable. If the specific surface area is less than 0.3 m 2 / g, a sufficient reaction area with the electrolytic solution may not be ensured. On the other hand, when it exceeds 2.5 m 2 / g, it reacts excessively with the electrolytic solution, and the safety may decrease.
  • the specific surface area can be measured by the BET method using nitrogen gas adsorption.
  • the method for producing a positive electrode active material according to the present invention comprises adding a lithium compound to nickel cobalt manganese composite hydroxide particles (hereinafter referred to as “composite hydroxide particles”).
  • composite hydroxide particles a lithium compound to nickel cobalt manganese composite hydroxide particles
  • a mixing step of mixing to obtain a lithium mixture and a baking step of baking the lithium mixture in an oxidizing atmosphere to obtain lithium composite oxide particles are provided.
  • the general formula (B): Ni x Co y Mn z M t (OH) 2 + ⁇ (x + y + z + t 1,0.30 ⁇ x ⁇ 0 .70, 0.10 ⁇ y ⁇ 0.40, 0.10 ⁇ z ⁇ 0.40, 0 ⁇ t ⁇ 0.01,
  • M is Ca, Mg, Al, Ti, V, Cr, Zr, Nb,
  • Composite hydroxide particles represented by one or more elements selected from Mo, Hf, Ta, and W can be used.
  • the method for producing such composite hydroxide particles is not particularly limited, and a known method can be applied.
  • a mixed aqueous solution in which a metal compound of nickel, cobalt, manganese and an additive element (M) is dissolved so that the composition ratio represented by the general formula (B) is obtained, or an ammonium ion supplier is added to this mixed aqueous solution.
  • the added aqueous solution is supplied to the reaction vessel while stirring, and a reaction aqueous solution is formed by supplying an aqueous sodium hydroxide solution, and the pH value is controlled within a predetermined range to crystallize composite hydroxide particles.
  • the shape of the obtained composite hydroxide particles can be made spherical.
  • a crystallization method either a continuous crystallization method or a batch crystallization method can be employed.
  • a nucleation stage in which the core part of the composite hydroxide particles precipitates and a particle growth stage in which particles grow around this nucleus are clearly defined. It is preferable to employ a batch type crystallization method separated into two.
  • the composite hydroxide particles may optionally be heat treated before the mixing step after the crystallization step, and then mixed with the lithium compound.
  • the heat treatment step is a step of removing moisture contained in the composite hydroxide particles by heating the composite hydroxide particles to a temperature of 105 ° C. to 400 ° C. for heat treatment.
  • moisture remaining in the particles until the firing step can be reduced to a certain amount, resulting in variations in the number of atoms of each metal component and the ratio of the number of lithium atoms in the obtained positive electrode active material.
  • the lithium atom number ratio (Li / Me) can be stabilized.
  • the heating temperature in the heat treatment step is 105 ° C to 400 ° C, preferably 150 ° C to 400 ° C. If the heating temperature is less than 105 ° C., excess moisture in the composite hydroxide particles cannot be removed, and variation may not be sufficiently suppressed. On the other hand, even if the heating temperature exceeds 400 ° C., not only a further effect cannot be expected, but the production cost increases.
  • variation mentioned above can be suppressed by calculating
  • the atmosphere in which the heat treatment is performed is not particularly limited and may be any non-reducing atmosphere, but is preferably performed in an air stream that can be easily performed.
  • the heat treatment time is not particularly limited, but if it is less than 1 hour, excess moisture of the composite hydroxide particles may not be sufficiently removed. Therefore, the heat treatment time is preferably at least 1 hour or more, more preferably 5 hours to 15 hours.
  • the equipment used for such heat treatment is not particularly limited as long as the composite hydroxide particles can be heated in a non-reducing atmosphere, preferably in an air stream, and no electric gas is generated. Etc. are preferably used.
  • the ratio (Li / Me) of the number of lithium atoms (Li) to the total number (Me) of atoms of the metal elements constituting the composite hydroxide particles or heat-treated particles is determined.
  • This is a step of obtaining a lithium mixture by mixing lithium compounds so as to be 0.95 to 1.20, preferably 1.00 to 1.20, more preferably greater than 1.00 and 1.15 or less. That is, since Li / Me does not change before and after the firing step, the composite hydroxide particles or the heat treatment is performed so that Li / Me of the lithium mixture obtained by this mixing step becomes Li / Me of the target positive electrode active material. It is necessary to mix a lithium compound with the particles.
  • the lithium compound used to form the lithium mixture is not particularly limited, but considering the availability, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof should be preferably used. Can do. In particular, lithium hydroxide or lithium carbonate is preferably used, and lithium carbonate is more preferably used in consideration of ease of handling and quality stability.
  • the lithium mixture is sufficiently mixed before firing.
  • mixing is insufficient, Li / Me varies among individual particles, and sufficient battery characteristics may not be obtained.
  • a general mixer can be used for mixing, for example, a shaker mixer, a V blender, a ribbon mixer, a Julia mixer, a Ladige mixer, or the like can be used.
  • the composite oxide particles or the heat-treated particles and the lithium compound may be sufficiently mixed so that the shape of the composite hydroxide particles or the heat-treated particles is not destroyed.
  • the compound of an additional element (M) can also be mixed with a lithium compound.
  • the surface of the composite hydroxide particles or composite oxide particles may be coated with the compound of the additive element (M) and then mixed with the lithium compound.
  • these methods may be used in combination. In any case, it is necessary to appropriately adjust the additive element (M) so as to have the composition of the general formula (A).
  • the firing step is a step of obtaining lithium composite oxide particles by firing the lithium mixture obtained in the mixing step under predetermined conditions and then cooling to room temperature.
  • the temperature rise rate in a temperature range of at least 30 ° C. to 800 ° C. in an oxidizing atmosphere is set to 4 ° C./min to 10 ° C./min, and the firing temperature is set to 800 ° C. to 1000 ° C.
  • it is important to perform firing so that the holding time at this firing temperature is within 5 hours, and the time from the start of temperature rise to the end of holding is 3 to 7 hours.
  • W (104) / W (003) is 1.38 or more. It can be.
  • the firing furnace used in the firing step is not limited as long as the conditions described below can be controlled. However, those that can be heated in the atmosphere or in an oxygen stream are preferred, and an electric furnace that does not generate gas is more preferred. If it is such a baking furnace, both a batch type electric furnace and a continuous type electric furnace can be used suitably.
  • the firing temperature is 800 ° C. to 1000 ° C., preferably 830 ° C. to 980 ° C., more preferably 840 ° C. to 960 ° C.
  • the firing temperature is less than 800 ° C.
  • the composite hydroxide particles or composite oxide particles do not sufficiently react with the lithium compound, and the surplus lithium compound and unreacted composite hydroxide particles or composite oxide particles remain.
  • the diffusion of lithium into the composite hydroxide particles or composite oxide particles becomes insufficient, the crystal structure is not uniform.
  • the firing temperature exceeds 1000 ° C., sintering between the generated lithium composite oxide particles proceeds vigorously and abnormal grain growth occurs, so that the particles become coarse and can maintain the shape of spherical secondary particles. Disappear.
  • the firing temperature is less than 800 ° C.
  • the average particle diameter of the lithium composite oxide particles is small and the specific surface area is large.
  • it exceeds 1000 ° C. the average particle size is large and the specific surface area is small. For this reason, in any case, it is difficult to obtain a positive electrode active material having a suitable average particle diameter and specific surface area.
  • the rate of temperature rise in the temperature range of at least 30 ° C. to 800 ° C. is 4 ° C./min to 10 ° C./min, preferably 5 ° C./min to 9 ° C./min, more preferably 5 ° C./min to It is necessary to set the temperature at 8 ° C./min. Thereby, crystal growth in the a-axis direction orthogonal to the c-axis can be suppressed.
  • the rate of temperature increase in this temperature range is less than 4 ° C./min, the composite hydroxide particles are converted to composite oxide particles during the temperature increase, and the composite oxide particles and the lithium compound Since the reaction with lithium proceeds, crystal growth in the a-axis direction orthogonal to the c-axis also proceeds.
  • the rate of temperature increase in this temperature range exceeds 10 ° C./min, the reaction between the composite hydroxide particles or composite oxide particles and the lithium compound becomes non-uniform, and the sintering between the particles proceeds locally. Therefore, the positive electrode resistance value of the obtained secondary battery is increased.
  • the rate of temperature increase means an average value of temperature increase rate (average temperature increase rate) in a target temperature range.
  • the heating rate from 800 ° C. to firing temperature in the firing step is not particularly limited, but as with the temperature raising rate in the temperature range of 30 ° C. to 800 ° C., 4 It is preferable that the temperature is set to 10 ° C./min. If the rate of temperature increase in this temperature range is less than 4 ° C./min, the time that the temperature is maintained at 800 ° C. or more becomes too long, and thus crystal growth in the a-axis direction orthogonal to the c-axis may proceed excessively. On the other hand, if the rate of temperature rise in this temperature range exceeds 10 ° C./min, the temperature of the lithium mixture varies, crystal growth becomes non-uniform, and battery characteristics may deteriorate.
  • the holding time at the firing temperature is within 5 hours, preferably within 4 hours.
  • the holding time is within such a range, the crystal structure of the obtained positive electrode active material becomes uniform, and W (104) / W (003) can be 1.38 or more.
  • the holding time exceeds 5 hours, crystal growth proceeds in the a-axis direction orthogonal to the c-axis.
  • the lower limit of the holding time is not particularly limited as long as the composite hydroxide particles or composite oxide particles can be sufficiently reacted with the lithium compound, and is sufficient during the temperature raising process up to the firing temperature. If it can be made to react, it does not need to provide holding time.
  • Total firing time 3.0 hours to 7.0 hours, preferably 4.0 hours to 6. 9 hours, more preferably 4.5 hours to 6.5 hours. If the total firing time is less than 3 hours, the composite hydroxide or composite oxide particles do not sufficiently react with the lithium compound, and the surplus lithium compound and unreacted composite hydroxide particles or composite oxide particles remain, Or, since the diffusion of lithium into the composite hydroxide particles or composite oxide particles becomes insufficient, the crystal structure is not uniform. On the other hand, if the total firing time exceeds 7 hours, crystal growth proceeds in the a-axis direction orthogonal to the c-axis.
  • the firing atmosphere is preferably an oxidizing atmosphere, and is preferably performed in an atmosphere having an oxygen concentration of 18% by volume to 100% by volume, that is, in the air to an oxygen stream. Considering the cost, it is particularly preferable to perform in an air stream. When the oxygen concentration is less than 18% by volume, the oxidation reaction does not proceed sufficiently, and the resulting lithium composite oxide particles may not have sufficient crystallinity.
  • the lithium composite oxide particles obtained by the firing process may be aggregated or slightly sintered.
  • the average particle diameter (MV) of the obtained positive electrode active material is easily adjusted to a suitable range of 3 ⁇ m to 20 ⁇ m by crushing the aggregate or sintered body of the lithium composite oxide particles. can do.
  • pulverization means that mechanical energy is applied to an aggregate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. It is an operation of separating and loosening the aggregates.
  • known means can be used, for example, a pin mill or a hammer mill can be used. At this time, it is preferable to adjust the crushing force to an appropriate range so as not to destroy the secondary particles.
  • Non-aqueous electrolyte secondary battery of the present invention includes the same components as a general non-aqueous electrolyte secondary battery, such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • a general non-aqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • the embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention is applied to various modifications and improvements based on the embodiment described in the present specification. It is also possible.
  • a conductive material and a binder are mixed with the powdered positive electrode active material obtained according to the present invention, and activated carbon and a solvent such as viscosity adjustment are added as necessary, and these are kneaded and mixed.
  • a material paste is prepared.
  • the mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the nonaqueous electrolyte secondary battery.
  • the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass in the same manner as the positive electrode of a general nonaqueous electrolyte secondary battery.
  • the content is preferably 1 to 20 parts by mass
  • the binder content is preferably 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production.
  • the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.
  • the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), and carbon black materials such as acetylene black and ketjen black can be used.
  • the binder plays a role of anchoring the active material particles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluorine rubber ethylene propylene diene rubber
  • styrene butadiene styrene butadiene
  • cellulosic resin and polyacrylic
  • An acid can be used.
  • a positive electrode active material, a conductive material and activated carbon can be dispersed and a solvent for dissolving the binder can be added to the positive electrode mixture.
  • a solvent an organic solvent such as N-methyl-2-pyrrolidone can be used.
  • activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
  • Electrode metallic lithium or lithium alloy, or a negative electrode active material that can occlude and desorb lithium ions is mixed with a binder, and an appropriate solvent is added into a paste to form a negative electrode mixture such as copper. It is applied to the surface of the metal foil current collector, dried, and compressed to increase the electrode density as necessary.
  • the negative electrode active material for example, a fired organic compound such as natural graphite, artificial graphite and phenol resin, and a powdery substance of carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder as in the positive electrode
  • an organic material such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials and the binder.
  • a solvent can be used.
  • a separator is interposed between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains an electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
  • Non-aqueous electrolyte The nonaqueous electrolytic solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate are used alone or in admixture of two or more. be able to.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.
  • non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator and the nonaqueous electrolytic solution described above has various shapes such as a cylindrical shape and a laminated shape. Can do.
  • the positive electrode and the negative electrode are laminated through a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside.
  • the positive electrode terminal and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like, and sealed in a battery case to complete a nonaqueous electrolyte secondary battery. .
  • the nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention can improve output characteristics, particularly output characteristics when used in an extremely low temperature (-30 ° C.) environment.
  • the output value at ⁇ 30 ° C. is 110 W or more, preferably 114 W or more, more preferably 120 W. This can be done.
  • the cylindrical lithium ion secondary battery using the positive electrode active material of the present invention can achieve a high initial discharge capacity of 150 mAh / g or more, preferably 153 mAh / g or more, more preferably 156 mAh / g or more.
  • a high capacity retention rate can be obtained even in a long-term cycle, so it can be said that the capacity is high and the life is long.
  • the thermal stability is high and the safety is also excellent. For this reason, an expensive protection circuit can be simplified and the secondary battery can be reduced in size and cost.
  • the non-aqueous electrolyte secondary battery of the present invention having the above-described characteristics is required to have high output characteristics including use in a cold region, and small portable electronic devices that are restricted in mounting space, It can be suitably used as a power source for transportation machinery such as automobiles.
  • the present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.
  • Example 1 [Crystalling process] Composite hydroxide particles were prepared using known crystallization techniques. First, nickel, cobalt and manganese sulfates, a mixed aqueous solution of a zirconium compound and a tungsten compound, and an aqueous solution containing an ammonium ion supplier were supplied into the reaction vessel while stirring. At the same time, by supplying an aqueous sodium hydroxide solution, a reaction aqueous solution was formed, and the composite hydroxide particles were crystallized. At this time, the supply amount of the aqueous sodium hydroxide solution was adjusted so that the pH value of the aqueous reaction solution was maintained within a predetermined range. Thereafter, the composite hydroxide particles were collected, washed with water and dried to obtain powder.
  • the composite hydroxide particles thus obtained were subjected to composition analysis using an ICP emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation). 0.33 Co 0.33 Mn 0.33 ) 0.993 Zr 0.002 W 0.005 (OH) 2 + ⁇ (0 ⁇ ⁇ ⁇ 0.5) was confirmed.
  • the lithium mixture obtained in the mixing step was fired in an air (oxygen: 21% by volume) airflow at a firing temperature of 950 ° C. Specifically, the temperature was raised from room temperature (30 ° C.) to a firing temperature at a rate of temperature rise of 8 ° C./minute, fired at a holding time at this temperature for 3 hours, and then cooled to room temperature. Note that the total firing time from the start of temperature rise to the end of holding at this time was 4.9 hours.
  • the positive electrode active material thus obtained was subjected to composition analysis using an ICP emission spectrometer.
  • the composition of the positive electrode active material was as follows: General formula: Li 1.14 (Ni 0.33 Co 0.33 Mn 0.33 ) 0.993 Zr 0.002 W 0.005 It was confirmed that it was represented by O 2 .
  • the average particle size of the positive electrode active material was determined as the particle size at which the volume integration obtained by particle size distribution measurement with a laser diffraction / scattering particle size distribution measurement device (manufactured by Nikkiso Co., Ltd., Microtrac HRA) is 50%. It was confirmed to be 5.2 ⁇ m.
  • this positive electrode active material Furthermore, with respect to this positive electrode active material, measurement of applied voltage 40 kV, current value 40 mA, step width 0.0168 °, integration time 20 seconds using an X-ray diffractometer (manufactured by Panalical, X'Pert PRO). Under the conditions, powder X-ray diffraction measurement using CuK ⁇ rays was performed. As a result, this positive electrode active material was confirmed to have a hexagonal layered structure.
  • the integral width ratio and peak integral intensity ratio of this positive electrode active material were measured using powder X-ray diffraction pattern comprehensive analysis software (manufactured by Rigaku Corporation, JADE), and the peak angle range on the (003) plane was 17.
  • the analysis was performed using the Lorentz function with 0 ° to 20.0 ° and the peak angle range on the (104) plane of 42.5 ° to 46.5 °. As a result, it was confirmed that the integral width ratio was 1.48 and the peak integral intensity ratio was 1.23.
  • Positive electrode The positive electrode active material is mixed with carbon black as a conductive material and polyvinylidene fluoride (PVDF) as a binder so that the mass ratio of these materials is 85: 10: 5.
  • PVDF polyvinylidene fluoride
  • a positive electrode mixture paste was prepared by dissolving in -methyl-2-pyrrolidone (NMP) solution.
  • the positive electrode mixture paste was applied to both surfaces of an aluminum foil with a comma coater, heated at 100 ° C., and dried to obtain a positive electrode. And this positive electrode was passed through the roll press machine, the load was added, and the positive electrode sheet (1) which improved the electrode density was produced.
  • Negative electrode Graphite as a negative electrode active material and PVDF as a binder are mixed so that the mass ratio of these materials is 92.5: 7.5, and dissolved in an NMP solution. A material paste was obtained.
  • This negative electrode mixture paste was applied to both sides of a copper foil with a comma coater in the same manner as the positive electrode, heated to 1200 ° C., and dried to obtain a negative electrode. And this negative electrode was passed through the roll press machine, the load was added, and the negative electrode sheet (2) which improved the electrode density was produced.
  • Lithium ion secondary battery The positive electrode sheet (1) and the negative electrode sheet (2) were wound with a separator (3) made of a microporous polyethylene sheet having a thickness of 25 ⁇ m interposed therebetween, and a wound isomorphous electrode body ( 4) was formed.
  • the wound-type electrode body (4) is arranged so that the lead tabs provided on the positive electrode sheet (1) and the negative electrode sheet (2) are joined to the positive electrode terminal or the negative electrode terminal. Inserted into.
  • an organic solvent composed of a mixed solution in which ethylene carbonate (EC) and diethylene carbonate (DEC) are mixed at a volume ratio of 3: 7 is used as a lithium salt so as to be 1 moI / dm 3 in the electrolytic solution.
  • LiPF 6 was dissolved to prepare an electrolytic solution.
  • This electrolytic solution was poured into a battery case in which a wound electrode assembly was inserted, and the open portion of the battery case (5) was sealed and sealed to obtain a lithium ion secondary battery (6).
  • the production conditions of the positive electrode active material are shown in Table 1, and the characteristics of the obtained positive electrode active material and the lithium ion secondary battery are shown in Table 2, respectively.
  • the firing temperature was 890 ° C., and the temperature was raised from room temperature (30 ° C.) to the firing temperature.
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the baking was carried out at a rate of 8 ° C./min and a holding time of 4 hours. In addition, the total baking time from the temperature rising start to the end of holding at this time was 5.8 hours. The results are shown in Tables 1 and 2.
  • Example 3 In the firing step, a positive electrode was obtained in the same manner as in Example 1, except that the firing temperature was 890 ° C., the heating rate from room temperature (30 ° C.) to the firing temperature was 8 ° C./min, and the holding time was 4 hours. An active material was obtained and evaluated. In addition, the total baking time from the temperature rising start to the end of holding at this time was 5.8 hours. The results are shown in Tables 1 and 2.
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the baking was carried out at a rate of 8 ° C./min and a holding time of 4 hours. In addition, the total baking time from the temperature rising start to the end of holding at this time was 5.8 hours. The results are shown in Tables 1 and 2.
  • the firing temperature was 930 ° C., and the temperature was raised from room temperature (30 ° C.) to the firing temperature.
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the baking was carried out at a rate of 8 ° C./min and a holding time of 4 hours. Note that the total firing time from the start of temperature rise to the end of holding at this time was 5.9 hours. The results are shown in Tables 1 and 2.
  • Example 6 In the firing step, the positive electrode was treated in the same manner as in Example 1, except that the firing temperature was 930 ° C., the heating rate from room temperature (30 ° C.) to the firing temperature was 8 ° C./min, and the holding time was 4 hours. An active material was obtained and evaluated. Note that the total firing time from the start of temperature rise to the end of holding at this time was 5.9 hours. The results are shown in Tables 1 and 2.
  • the firing temperature was 930 ° C., and the temperature was raised from room temperature (30 ° C.) to the firing temperature.
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the baking was carried out at a rate of 8 ° C./min and a holding time of 4 hours. Note that the total firing time from the start of temperature rise to the end of holding at this time was 5.9 hours. The results are shown in Tables 1 and 2.
  • the firing temperature was 960 ° C., and the temperature was raised from room temperature (30 ° C.) to the firing temperature.
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the baking was carried out at a rate of 8 ° C./min and a holding time of 4 hours. Note that the total firing time from the start of temperature rise to the end of holding at this time was 5.9 hours. The results are shown in Tables 1 and 2.
  • Example 9 In the firing step, a positive electrode was obtained in the same manner as in Example 1 except that firing was performed at a firing temperature of 960 ° C., a heating rate from room temperature (30 ° C.) to the firing temperature of 8 ° C./min, and a holding time of 4 hours. An active material was obtained and evaluated. Note that the total firing time from the start of temperature rise to the end of holding at this time was 5.9 hours. The results are shown in Tables 1 and 2.
  • the firing temperature was 960 ° C., and the temperature was raised from room temperature (30 ° C.) to the firing temperature.
  • a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the baking was carried out at a rate of 8 ° C./min and a holding time of 4 hours. Note that the total firing time from the start of temperature rise to the end of holding at this time was 5.9 hours. The results are shown in Tables 1 and 2.
  • Example 11 In the firing step, a positive electrode was obtained in the same manner as in Example 1, except that the firing temperature was 950 ° C., the rate of temperature increase from room temperature (30 ° C.) to the firing temperature was 4 ° C./min, and the holding time was 3 hours. An active material was obtained and evaluated. Note that the total firing time from the start of temperature rise to the end of holding at this time was 6.8 hours. The results are shown in Tables 1 and 2.
  • Example 12 In the firing step, the positive electrode was treated in the same manner as in Example 1 except that the firing temperature was 800 ° C., the temperature rising rate from room temperature (30 ° C.) to the firing temperature was 8 ° C./min, and the holding time was 3 hours. An active material was obtained and evaluated. Note that the total firing time from the start of temperature rise to the end of holding at this time was 4.6 hours. The results are shown in Tables 1 and 2.
  • Example 1 In the firing step, a positive electrode was formed in the same manner as in Example 1 except that firing was performed at a firing temperature of 950 ° C., a heating rate from room temperature (30 ° C.) to the firing temperature of 3 ° C./min, and a holding time of 3 hours. An active material was obtained and evaluated. In addition, the total baking time from the temperature rising start at this time to the end of holding was 8.1 hours. The results are shown in Tables 1 and 2.
  • Example 2 In the firing step, a positive electrode was obtained in the same manner as in Example 1, except that the firing temperature was 950 ° C., the temperature rising rate from room temperature (30 ° C.) to the firing temperature was 8 ° C./min, and the holding time was 10 hours. An active material was obtained and evaluated. Note that the total firing time from the start of temperature rise to the end of holding at this time was 11.9 hours. The results are shown in Tables 1 and 2.
  • Example 6 In the firing step, a positive electrode was obtained in the same manner as in Example 1, except that the firing temperature was 950 ° C., the temperature rising rate from room temperature (30 ° C.) to the firing temperature was 11 ° C./min, and the holding time was 3 hours. An active material was obtained and evaluated. In addition, the total baking time from the temperature rising start to the completion
  • Example 7 In the firing step, the positive electrode was treated in the same manner as in Example 1, except that the firing temperature was 950 ° C., the heating rate from room temperature (30 ° C.) to the firing temperature was 8 ° C./min, and the holding time was 6 hours. An active material was obtained and evaluated. In addition, the total baking time from the temperature rising start to the completion
  • Example 8 In the firing step, a positive electrode was formed in the same manner as in Example 1 except that the firing temperature was 780 ° C., the temperature rising rate from room temperature (30 ° C.) to the firing temperature was 8 ° C./min, and the holding time was 3 hours. An active material was obtained and evaluated. Note that the total firing time from the start of temperature rise to the end of holding at this time was 4.6 hours. The results are shown in Tables 1 and 2.
  • the integral width ratio can be controlled to 1.38 or more. Therefore, it can be seen that the initial discharge capacity can be 150 mAh / g or more and the cryogenic output can be 110 W or more. In particular, in Examples 1 to 10 and 12 in which the peak integrated intensity ratio is controlled to 1.20 or more, it can be seen that the cryogenic output can be 114 W or more.
  • Comparative Example 4 although the conditions in the firing step are within the range specified in the present invention, the Li / Me value is too small, so the positive electrode resistance is increased and the cryogenic output is decreased.
  • Comparative Example 5 similarly, although the conditions in the firing step are within the range specified in the present invention, the initial discharge capacity is reduced because the value of Li / Me is too large.
  • FIG. 2 shows the relationship between the integral width ratio and the output at ⁇ 30 ° C. (cryogenic output)
  • FIG. 3 shows the relationship between the peak integrated intensity ratio and the cryogenic output.
  • the integral width ratio increases, the cryogenic output tends to improve.
  • the integral width ratio is controlled to be 1.38 or higher. It turns out that is necessary.
  • FIG. 3 shows that a favorable cryogenic output can be obtained by setting the peak integrated intensity ratio to 1.20 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】極低温環境での使用時における出力特性を向上させることが可能な非水電解質二次電池用正極活物質を提供する。 【解決手段】一般式:NixCoyMnzt(OH)2+α(x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルコバルトマンガン複合水酸化物粒子に、リチウム以外の金属元素の原子数の合計に対する、リチウムの原子数の比が1:0.95~1.20となるように、リチウム化合物を混合する。このリチウム混合物を、酸化性雰囲気中において、少なくとも30℃~800℃の温度域における昇温速度を4℃/分~10℃/分とするとともに、焼成温度を800℃~1000℃として、この焼成温度における保持時間を5時間以内とし、かつ、昇温開始から保持終了までの時間を3.0時間~7.0時間となるように焼成する。

Description

非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質とその製造方法、および、この正極活物質を正極材料として用いた非水電解質二次電池に関する。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギ密度を有する小型で軽量な二次電池の開発が強く望まれている。また、モータ駆動用電源、特に輸送機器用電源の電池として高出力の二次電池の開発も強く望まれている。
 このような要求を満たす二次電池として、非水電解質二次電池の一種であるリチウムイオン二次電池がある。このリチウムイオン二次電池は、負極、正極、電解液などで構成され、その負極および正極の材料として用いられる活物質には、リチウムを脱離および挿入することが可能な材料が使用される。
 さまざまな種類のリチウムイオン二次電池について、現在、研究開発が盛んに行われているが、その中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギ密度を有する電池として実用化が進められている。
 このようなリチウムイオン二次電池の正極材料として、現在、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/32)、マンガンを用いたリチウムマンガン複合酸化物(LiMn24)、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.52)などのリチウム複合酸化物が提案されている。これらのうち、リチウムニッケルコバルトマンガン複合酸化物は、サイクル特性が良好で、低抵抗で、かつ、高出力が取り出せる正極材料として注目されている。また、このリチウムニッケルコバルトマンガン複合酸化物中にさまざまな添加元素を導入することで、その高性能化を図る試みもなされている。
 一方、このようなリチウム複合酸化物の結晶形態に着目した研究もなされている。たとえば、特開平5-258751号公報、特開平9-22693号公報、特開平8-55624号公報では、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピーク強度(H(003))と(104)面での回折ピーク強度(H(104))の比を特定の範囲に規制することにより、サイクル特性を向上させたリチウム複合酸化物が提案されている。
 また、特開平10-308218号公報では、(003)面からシェラ-式により算出された結晶子径および(110)面からシェラ-式により算出された結晶子径を、特定の範囲に規制することにより、リチウムイオン二次電池の充電時の熱安定性の改善とサイクル特性を両立させたリチウム複合酸化物が提案されている。
 さらに、特開2000-195514号公報では、(104)面での回折ピークの半値全幅(FWHM(104))に対する、(003)面での回折ピークに対する半値全幅(FWHM(003))の比(FWHM(003)/FWHM(104))、および、(003)面での回折ピークの積分強度(I(003))に対する、(104)面での回折ピークの積分強度(I(104))の比(I(104)/I(003))を、それぞれ特定の範囲に規制することにより、結晶の成長方向を制御し、大電流放電特性の向上を図った、層状構造を有する三方晶系のリチウムニッケルコバルトマンガン複合酸化物が提案されている。
 これらの文献では、リチウム複合酸化物の特定の結晶面の半値全幅や結晶子径などを規制することにより、得られるリチウムイオン二次電池のサイクル特性や熱安定性の向上を図っているものの、出力特性の向上、特に、低温環境下での出力特性の向上に関しては何ら検討されていない。低温環境下では、リチウムイオン二次電池の出力特性が著しく低下することが知られており、これらの引用文献に記載の技術では、このような環境下での使用に対応することが困難であると考えられる。一方、近年の携帯電子機器や電気自動車などの世界的な普及に伴い、これらの機器に使用されるリチウムイオン二次電池には、寒冷地などの厳しい環境における使用を前提として、低温環境下での出力特性のさらなる改善が求められている。
 たとえば、特開2005-197004号公報では、(003)面での回折ピーク強度(H(003))と(104)面での回折ピーク強度(H(104))の比を1.0~1.5、比表面積を0.6m2/g~1.5m2/gに制御した、一般式:LiaMnxNiyCoz2(0<a≦1.2、0.1≦x≦0.9、0≦y≦0.44、0.1≦z≦0.6、x+y+z=1)で表される層状リチウムニッケルマンガン複合酸化物からなり、-30℃という極低温環境下においても、高いリチウムイオン伝導性を有し、電池の内部抵抗の上昇を抑制できる正極活物質が提案されている。なお、この文献には、このようなリチウムニッケルマンガン複合酸化物は、小粒径の原料を、950℃以上、好ましくは1000℃~1100℃で、かつ、10時間~50時間焼成することにより得ることができる旨が記載されている。
 また、特開2013-51772号公報では、正極活物質を中空構造とするとともに、FWHM(003)/FWHM(104)の値を0.7以下に制御することで、低充電状態で、-30℃という極低温環境下であっても高い出力特性を発揮することができるリチウムイオン二次電池が提案されている。なお、この文献には、このような正極活物質は、所定条件で晶析した遷移金属水酸化物をリチウム化合物と混合し、酸化性雰囲気中、最高焼成温度を700℃~1000℃とし、この温度で3時間~20時間焼成することで得ることができる旨が記載されている。
 したがって、これらの正極活物質を用いることで、二次電池の高出力化とともに、極低温(-30℃程度)における正極抵抗の低減を図ることができると考えらえる。しかしながら、回折ピーク強度は、対象とする結晶面を量的に評価するのみであり、出力特性に重要な影響を及ぼす結晶性までを十分に評価することはできない。また、半値全幅(FWHM)は、結晶面間の相対的な結晶性の評価であり、量的な考慮がなされないため、これのみによって、信頼性の高い評価をすることが困難である。したがって、これらの正極材料を使用した場合であっても、非水電解質二次電池の出力特性が低下する極低温環境下(-30℃程度)での出力特性の改善は未だ十分なものではなく、さらなる向上が求められている。
特開平5-258751号公報 特開平9-22693号公報 特開平8-55624号公報 特開平10-308218号公報 特開2000-195514号公報 特開2005-197004号公報 特開2013-51772号公報
 本発明は、リチウムイオン二次電池の出力特性、特に、低温環境下での使用時における出力特性を向上させることが可能な非水電解質二次電池用正極活物質を提供することを目的とする。また、このような正極活物質を、工業規模の生産において、容易に製造可能な製造方法を提供することを目的とする。
 本発明の非水電解質二次電池用正極活物質は、一般式(A):Li1+aNixCoyMnzt2(-0.05≦a≦0.20、x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Ca、Mg、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物粒子からなり、かつ、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの積分幅に対する、(104)面での回折ピークの積分幅の比が1.38以上、好ましくは1.39~1.49であることを特徴とする。
 この非水電解質二次電池用正極活物質、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(104)面のピーク積分強度に対する、(003)面のピーク積分強度の比が1.20以上であることが好ましい。
 また、レーザ回折散乱法で求めた体積基準平均粒径が、3μm~20μmの範囲にあることが好ましく、比表面積が、0.3m2/g~2.5m2/gの範囲にあることが好ましい。
 本発明の非水電解質二次電池用正極活物質の製造方法は、一般式(B):NixCoyMnzt(OH)2+α(x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルコバルトマンガン複合水酸化物粒子に、リチウム以外の金属元素の原子数の合計に対する、リチウムの原子数の比が1:0.95~1.20となるように、リチウム化合物を混合して、リチウム混合物を得る混合工程と、前記リチウム混合物を、酸化性雰囲気中において、少なくとも30℃~800℃の温度域における昇温速度を4℃/分~10℃/分とするとともに、焼成温度を800℃~1000℃、該焼成温度での保持時間を5時間以内とし、かつ、昇温開始から保持終了までの時間を3.0時間~7.0時間として焼成する工程とを備えることを特徴とする。
 前記混合工程の前に、前記ニッケルコバルトマンガン複合水酸化物粒子を105℃~400℃で熱処理し、熱処理粒子とする熱処理工程をさらに備えることが好ましい。
 前記リチウム化合物として、炭酸リチウム、水酸化リチウム、またはこれらの混合物を用いることが好ましい。
 前記酸化性雰囲気における酸素濃度を10容量%~100容量%とすることが好ましい。
 前記焼成工程後に、該焼成工程により得られたリチウムニッケルコバルトマンガン複合酸化物粒子を解砕する解砕工程をさらに備えることが好ましい。
 本発明の非水電解質二次電池は、正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、前記非水電解質二次電池用正極活物質が用いられていることを特徴とする。特に、本発明の非水電解質二次電池は、初期放電容量が、150mAh/g以上で、かつ、-30℃における極低温出力が110W以上という電池特性を備える。
 本発明によれば、高容量で、低温環境下における出力特性に優れる非水電解質二次電池を提供することが可能となる。このような二次電池は、携帯電話やノート型パソコンなどの携帯電子機器、パワーツールおよびハイブリッド車をはじめとする電気自動車などの電源装置に搭載される小型二次電池に好適に適用することができる。
 また、本発明によれば、このような優れた特性を備える非水電解質二次電池用正極活物質を、簡易かつ大量に製造可能な方法で提供することができる。このため、本発明の工業的意義はきわめて大きい。
図1は、本発明を電池評価用に用いた、円筒形のリチウムイオン二次電池の断面を模式的に示す図である。 図2は、積分幅比と、-30℃における出力の関係を示した図である。 図3は、ピーク積分強度比と、-30℃における出力の関係を示した図である。
 本発明者らは、上述した課題を解決するために鋭意研究を重ねた。この結果、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの積分幅に対する、(104)面での回折ピークの積分幅の比により特定される、リチウムニッケルコバルトマンガン複合酸化物の結晶形態と、これを用いたリチウムイオン二次電池の極低温環境下での出力特性との間に相関関係があるとの知見を得た。また、リチウムニッケルコバルトマンガン複合酸化物の結晶の成長過程について詳細に検討を重ねた結果、焼成条件を制御することにより、結晶の成長方向を制御することができるとの知見を得た。本発明は、これらの知見に基づき完成するに至ったものである。
 1.非水電解質二次電池用正極活物質
 本発明の非水電解質二次電池用正極活物質(以下、「正極活物質」という)は、一般式(A):Li1+aNixCoyMnzt2(-0.05≦a≦0.20、x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Ca、Mg、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、層状構造を有する六方晶系のリチウムニッケルコバルトマンガン複合酸化物粒子(以下、「リチウム複合酸化物粒子」という)からなり、かつ、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの積分幅に対する、(104)面での回折ピークの積分幅の比が1.38以上、好ましくは1.39~1.49であることを特徴とする。
 (1)組成
 本発明の正極活物質は、リチウム複合酸化物粒子により構成される。このリチウム複合酸化物粒子の組成は、上述した一般式(A)で表される。
 リチウム(Li)の過剰量を示すaの値は、-0.05以上0.20以下、好ましくは0以上0.18以下、より好ましくは0を超えて0.15以下である。aの値が-0.05未満では、この正極活物質を用いた非水電解質二次電池の正極抵抗が大きくなり、電池の出力が低くなる。一方、aの値が0.20を超えると、この正極活物質を用いた非水電解質二次電池の初期放電容量が低下する。
 ニッケル(Ni)は、電池容量の向上に寄与する元素である。ニッケルの含有量を示すxの値は0.30以上0.70以下、好ましくは0.30以上0.65以下、より好ましくは0.33以上0.60以下とする。xの値が0.30未満では、この正極活物質を用いた非水電解質二次電池の電池容量が低下する。一方、xの値が0.70を超えると、他の添加元素の含有量が減少し、その添加効果が十分に得られなくなるおそれがある。
 コバルト(Co)は、サイクル特性の向上に寄与する元素である。コバルトが適正量だけ含有されることにより、正極活物質が良好なサイクル特性、すなわち、高い耐久性を備えたものとなる。コバルトの含有量を示すyの値は0.10以上0.40以下、好ましくは0.10以上0.35以下、より好ましくは0.15以上0.35以下とする。yの値が0.10未満では、十分なサイクル特性を得ることはできず、容量維持率が低下する。一方、yの値が0.40を超えると、初期放電容量が大きく減少することとなる。
 マンガン(Mn)は、熱安定性の向上に寄与する元素である。マンガンの含有量を示すzの値は0.10以上0.40以下、好ましくは0.10以上0.35以下、より好ましくは0.15以上0.35以下とする。zの値が0.10未満では、マンガンの添加効果を十分に得られない。一方、zの値が0.40を超えると、高温作動時にマンガンの溶出量が増加し、サイクル特性が低下する。
 このほか、本発明の正極活物質は、リチウム複合酸化物粒子に添加元素(M)を含有させることができる。これにより、この正極活物質を用いた二次電池の耐久性や出力特性などを向上させることができる。
 このような添加元素(M)としては、カルシウム(Ca)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)から選択される1種以上の元素を使用することができる。これらの添加元素(M)は、得られる正極活物質が使用される二次電池の用途や要求される性能に応じて適宜選択される。
 添加元素(M)の含有量を示すtの値は、0以上0.01以下、好ましくは0.0003を超えて0.01以下、より好ましくは0.0005を超えて0.008以下、さらに好ましくは0.001を超えて0.007以下とする。tの値が0.0003以下では、この正極活物質を用いた非水電解質二次電池の耐久特性や出力特性を向上させる効果が十分に得られない。一方、tの値が0.01を超えると、Redox反応に貢献する金属元素が減少するため、電池容量が低下する。
 なお、添加元素(M)は、後述するように晶析工程において、ニッケル、コバルトおよびマンガンとともに晶析させ、ニッケルコバルトマンガン複合水酸化物粒子(以下、「複合水酸化物粒子」という)中に均一に分散させることもできるが、晶析工程後に、複合水酸化物粒子の表面を添加元素(M)で被覆してもよい。また、混合工程において、複合水酸化物粒子とともに、リチウム化合物と混合することも可能であり、これらの方法を併用してもよい。いずれの方法による場合であっても、一般式(A)の組成となるように、その含有量を調整することが必要となる。
 (2)積分幅比
 本発明の正極活物質は、層状構造を有する六方晶系リチウム複合酸化物粒子からなり、かつ、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの積分幅に対する、(104)面での回折ピークの積分幅の比(積分幅比)が1.38以上であることを特徴とする。すなわち、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの積分幅をW(003)、(104)面での回折ピークの積分幅をW(104)とした場合に、
  積分幅比:1.38≦W(104)/W(003)
が成り立つことを特徴とする。ここで、積分幅:W(104)、W(003)は、CuKα線を使用した粉末X線回折のミラー指数(hkl)における(003)面、(104)面での回折ピークでの積分強度(ピーク積分強度)を、回折ピークでのピーク強度(回折ピーク強度)で除することによって求められる値(W=ピーク積分強度/回折ピーク強度)である。
 リチウムニッケルコバルトマンガン複合酸化物(以下、「リチウム複合酸化物」という)のような六方晶系層状酸化物では、充放電に伴うリチウムイオンの挿入および脱離は、c軸と直交するa軸方向で行われることが知られている。一方、出力特性を向上させるためには、リチウムイオンの拡散距離が短い方が有利である。特に、拡散律速が遅くなる極低温状態においては、出力特性に対する拡散距離の寄与が大きくなると考えられる。このため、c軸方向よりもa軸方向の成長が進むと、出力特性には不利となる。
 ここで、W(104)は、a軸およびc軸方向の結晶成長を表し、W(003)は、c軸方向の結晶成長を表すため、W(104)/W(003)は、概ねc軸方向の結晶成長を表していると理解できる。また、W(104)、W(003)は、その値が小さいほど、結晶成長が進行していることを意味する。このことから、W(104)/W(003)が大きいほど、a軸方向の結晶成長が抑制され、c軸方向の結晶成長が進行しているということができる。したがって、W(104)/W(003)が大きい方が、リチウムイオンの拡散距離が短くなり、極低温での出力特性を高いものとすることができる。
 すなわち、W(104)/W(003)が1.38以上であれば、a軸およびc軸方向への結晶成長の指標であるW(104)の値が相対的に大きくなり、c軸方向への結晶成長の指標であるW(003)の値が相対的に小さくなるため、c軸と直交するa軸方向への結晶成長が抑制され、高い出力特性を得ることができる。この結果、-30℃程度の極低温状態においても高い出力特性を有する二次電池を得ることができる。このような効果は、-30℃程度の極低温状態において顕著なものとなるが、より高い効果を得るためには、W(104)/W(003)を1.39以上とすることが好ましく、1.40以上とすることがより好ましい。ただし、W(104)/W(003)が大きくなりすぎると、結晶性が不安定になり、電池特性が悪化する場合がある。このため、製造上の制約なども考慮し、その上限値は、1.51以下とすることが好ましく、1.49以下とすることがより好ましく、1.48以下とすることがさらに好ましい。
 なお、特開2000-195514号公報や特開2013-51172号公報では、結晶成長を評価する際に、回折ピークに対する半値全幅(FWHM)を使用している。しかしながら、上述の通り、半値全幅(FWHM)は、結晶面間の相対的な結晶性であり、量的な考慮がなされていないため、十分な信頼性が得られない。また、分解能の関係からピーク形状のばらつきが大きくなるという問題もある。これに対して、本発明のように、結晶成長を特定の面指数の情報を多く含む積分幅(W)で評価する場合には、このような問題が生じることはなく、信頼性の高い関係性を求めることができる。
 (3)ピーク積分強度比
 本発明の正極活物質では、上述のように積分幅比を制御するとともに、CuKα線を使用した粉末X線回折の(003)面のピーク積分強度(I(003))と、(104)面のピーク積分強度(I(104))の比(ピーク積分強度比:I(003)/I(104))を、1.20以上に制御することが好ましく、1.22~1.35に制御することがより好ましく、1.23~1.28に制御することがより好ましい。ピーク積分強度は、結晶成長の指標であり、ピーク積分強度比を上述した範囲に制御することにより、c軸と直交するa軸方向への結晶成長を抑制することができるため、さらなる出力特性の向上を図ることが可能となる。
 これに対して、ピーク積分強度比が1.20未満では、結晶性が不十分となり、容量やサイクル維持率などの電池特性が低下する場合がある。なお、c軸方向への結晶成長が進むことは好ましいものの、ピーク積分強度比が過度に大きくなると、異相が形成されるなどの問題が生じる可能性がある。このため、ピーク積分強度比は1.35以下とすることが好ましい。
 (4)粒子構造
 本発明の正極活物質は、一次粒子(リチウム複合酸化物粒子)が複数凝集して形成された、略球状の二次粒子により構成されている。二次粒子を構成する一次粒子の形状としては、板状、針状、直方体状、楕円状、稜面体状などのさまざまな形態を採り得る。また、その凝集状態も、ランダムな方向に凝集する場合のほか、中心から放射状に粒子の長径方向が凝集する場合も本発明に適用することは可能である。ただし、得られる正極活物質の充填密度を向上させるためには、一次粒子の形状は球状であることが好ましい。
 また、本発明の正極活物質は、二次粒子を構成する一次粒子間に、電解液が浸透可能な界面または粒界を有している。このため、リチウムイオンの脱離および挿入が行われる一次粒子の表面まで電解液を浸透させることができ、上述した積分幅比やピーク積分強度比の制御との相乗効果により、出力特性を大幅に改善することができる。このような二次粒子は、後述するような晶析工程で得られる複合水酸化物粒子を前駆体とすることで、容易に製造することができる。
 (5)平均粒径
 本発明の正極活物質の平均粒径は、3μm~20μmとすることが好ましい。ここで、平均粒径とは、レーザ回折散乱法で求められる体積基準平均粒径(MV)を意味する。
 平均粒径が3μm未満では、正極活物質の充填密度が低下し、正極の容積あたりの電池容量が低下する場合がある。また、電解液との過剰に反応し、安全性が低下する場合がある。一方、平均粒径が20μmを超えると、正極活物質の比表面積が低下し、電解液との界面が減少するため、正極抵抗が上昇し、二次電池の出力特性が低下する場合がある。なお、単位容積あたりの電池容量を大きくするとともに、高安全性および高出力などに優れた電池特性を得る観点から、平均粒径は、5μm~15μmとすることがより好ましい。
 (6)比表面積
 本発明の正極活物質の比表面積は、0.3m2/g~2.5m2/gとすることが好ましく、0.5m2/g~2.0m2/gとすることがより好ましい。比表面積が0.3m2/g未満では、電解液との反応面積を十分に確保することができない場合がある。一方、2.5m2/gを超えると、電解液との過剰に反応し、安全性が低下する場合がある。なお、比表面積は、窒素ガス吸着によるBET法により測定することができる。
 2.非水電解質二次電池用正極活物質の製造方法
 本発明の正極活物質の製造方法は、ニッケルコバルトマンガン複合水酸化物粒子(以下、「複合水酸化物粒子」という)にリチウム化合物を加えて混合し、リチウム混合物を得る混合工程と、リチウム混合物を酸化性雰囲気中で焼成して、リチウム複合酸化物粒子を得る焼成工程とを備えることを特徴とする。ただし、得られる正極活物質の特性をさらに高いものとするために、追加的に、所定の晶析工程、熱処理工程および/または解砕工程を備えることが好ましい。
 (1)晶析工程
 本発明では、正極活物質の前駆体として、一般式(B):NixCoyMnzt(OH)2+α(x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Ca、Mg、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表される複合水酸化物粒子を使用することができる。
 このような複合水酸化物粒子の製造方法は、特に制限されることはなく、公知の方法を適用することができる。たとえば、一般式(B)に表される組成比となるように、ニッケル、コバルト、マンガンおよび添加元素(M)の金属化合物を溶解した混合水溶液を、または、この混合水溶液にアンモニウムイオン供給体を加えた水溶液を、反応槽内に撹拌しながら供給するとともに、水酸化ナトリウム水溶液を供給することで反応水溶液を形成し、そのpH値を所定範囲に制御して、複合水酸化物粒子を晶析させる方法を適用することができる。
 このような晶析工程によれば、得られる複合水酸化物粒子の形状を球状とすることができる。本発明では、このような晶析法として、連続晶析法またはバッチ式晶析法のいずれも採用することができる。しかしながら、粒径が均一な複合水酸化物粒子を得る観点から、複合水酸化物粒子の核となる部分が析出する核生成段階と、この核を中心として粒子が成長する粒子成長段階とを明確に分離したバッチ式晶析法を採用することが好ましい。
 (2)熱処理工程
 本発明の製造方法においては、任意的に、晶析工程後混合工程前に、複合水酸化物粒子を熱処理し、熱処理粒子としてから、リチウム化合物と混合してもよい。ここで、熱処理粒子には、熱処理工程において余剰水分を除去された複合水酸化物粒子のみならず、熱処理工程により転換された、一般式(C):NixCoyMnzt2(x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルコバルトマンガン複合酸化物粒子(以下、「複合酸化物粒子」という)、または、これらの混合物も含まれる。
 熱処理工程は、複合水酸化物粒子を105℃~400℃の温度に加熱して熱処理することより、複合水酸化物粒子に含有される水分を除去する工程である。これによって、粒子中に、焼成工程まで残留する水分を一定量まで減少させることができるため、得られる正極活物質中の各金属成分の原子数や、リチウムの原子数の割合にばらつきが生じることを防止し、リチウム原子数比(Li/Me)を安定させることができる。
 なお、熱処理工程では、正極活物質中の各金属成分の原子数や、リチウムの原子数の割合にばらつきが生じない程度に水分を除去できればよいので、必ずしもすべての複合水酸化物粒子を複合酸化物粒子に転換する必要はない。しかしながら、各金属成分の原子数やリチウムの原子数の割合のばらつきをより少ないものとするためには、ニッケルコバルトマンガン複合水酸化物の分解条件以上に加熱して、すべての複合水酸化物粒子を、複合酸化物粒子に転換することが好ましい。
 熱処理工程における加熱温度は105℃~400℃、好ましくは150℃~400℃とする。加熱温度が105℃未満では、複合水酸化物粒子中の余剰水分を除去できず、ばらつきを十分に抑制することができない場合がある。一方、加熱温度が400℃を超えても、それ以上の効果は期待できないばかりか、生産コストが増加してしまう。なお、熱処理条件による熱処理粒子中に含有される各金属成分を分析によって予め求めておき、リチウム化合物との比を決めておくことで、上述したばらつきを抑制することができる。
 熱処理を行う雰囲気は特に制限されることはなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中において行うことが好ましい。
 また、熱処理時間も、特に制限されることはないが、1時間未満では複合水酸化物粒子の余剰水分を十分に除去できない場合がある。このため、熱処理時間は、少なくとも1時間以上が好ましく、5時間~15時間がより好ましい。
 このような熱処理に用いられる設備は、特に制限されることはなく、複合水酸化物粒子を非還元性雰囲気中、好ましくは空気気流中で加熱できるものであればよく、ガス発生がない電気炉などが好適に用いられる。
 (3)混合工程
 混合工程は、複合水酸化物粒子または熱処理粒子に、これらを構成する金属元素の原子数の合計(Me)に対する、リチウムの原子数(Li)の比(Li/Me)が0.95~1.20、好ましくは1.00~1.20、より好ましくは1.00よりも大きく1.15以下となるように、リチウム化合物を混合し、リチウム混合物を得る工程である。すなわち、焼成工程前後でLi/Meは変化しないため、この混合工程によって得られるリチウム混合物のLi/Meが、目的とする正極活物質のLi/Meとなるように、複合水酸化物粒子または熱処理粒子にリチウム化合物を混合することが必要となる。
 リチウム混合物を形成するために使用するリチウム化合物は、特に制限されるものではないが、入手のしやすさを考慮すると、水酸化リチウム、硝酸リチウム、炭酸リチウムまたはこれらの混合物を好適に使用することができる。特に、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウムまたは炭酸リチウムを使用することが好ましく、炭酸リチウムを使用することがより好ましい。
 リチウム混合物は、焼成前に十分混合しておくことが好ましい。混合が不十分だと、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られない場合がある。
 また、混合には、一般的な混合機を使用することができ、たとえば、シェーカミキサ、Vブレンダ、リボンミキサ、ジュリアミキサ、レーディゲミキサなどを用いることができる。いずれの混合機を使用する場合も、複合水酸化物粒子または熱処理粒子の形状が破壊されない程度に、複合酸化物粒子または熱処理粒子と、リチウム化合物とを十分に混合すればよい。
 なお、混合工程においては、リチウム化合物とともに、添加元素(M)の化合物を混合することもできる。あるいは、複合水酸化物粒子または複合酸化物粒子の表面を添加元素(M)の化合物で被覆した後、リチウム化合物と混合してもよい。さらには、これらの方法を併用してもよい。いずれにせよ、添加元素(M)が、一般式(A)の組成となるように、適宜調整することが必要となる。
 (4)焼成工程
 焼成工程は、混合工程で得られたリチウム混合物を、所定条件で焼成した後、室温まで冷却し、リチウム複合酸化物粒子を得る工程である。
 特に、本発明では、リチウム混合物を酸化性雰囲気中で、少なくとも30℃~800℃の温度域における昇温速度を4℃/分~10℃/分とするとともに、焼成温度を800℃~1000℃として、この焼成温度における保持時間を5時間以内とし、かつ、昇温開始から保持終了までの時間を3時間~7時間となるように焼成することに重要な意義がある。このような焼成条件で焼成することにより、リチウム複合酸化物におけるc軸と直交するa軸方向の結晶成長を抑制しながら結晶性を高め、W(104)/W(003)を1.38以上とすることができる。
 なお、焼成工程に使用する焼成炉は、以下で説明する条件を制御することができる限り、制限されることはない。ただし、大気ないしは酸素気流中で加熱できるものが好ましく、ガス発生がない電気炉がより好ましい。このような焼成炉であれば、バッチ式の電気炉、連続式の電気炉のいずれも好適に使用することができる。
 [焼成温度]
 焼成温度は800℃~1000℃、好ましくは830℃~980℃、より好ましくは840℃~960℃とする。焼成温度が800℃未満では、複合水酸化物粒子または複合酸化物粒子とリチウム化合物とが十分に反応せず、余剰のリチウム化合物と未反応の複合水酸化物粒子または複合酸化物粒子が残存し、あるいは、複合水酸化物粒子または複合酸化物粒子中へのリチウムの拡散が不十分になるため結晶構造が均一なものとはならない。一方、焼成温度が1000℃を超えると、生成したリチウム複合酸化物粒子間での焼結が激しく進行するとともに、異常粒成長が起こるため、粒子が粗大化し、球状二次粒子の形態を保持できなくなる。
 また、焼成温度が800℃未満では、リチウム複合酸化物粒子の平均粒径が小さく、比表面積が大きくなる。一方、1000℃を超えると、平均粒径が大きく、比表面積が小さくなる。このため、いずれの場合においても、好適な平均粒径と比表面積を有する正極活物質を得ることが困難となる。
 [昇温速度]
 a)30℃~800℃
 焼成工程のうち、少なくとも30℃~800℃の温度域における昇温速度は、4℃/分~10℃/分、好ましくは5℃/分~9℃/分、より好ましくは5℃/分~8℃/分とすることが必要となる。これにより、c軸と直交するa軸方向への結晶成長を抑制することができる。
 これに対して、この温度域における昇温速度が4℃/分未満では、昇温中に、複合水酸化物粒子が複合酸化物粒子に転換されるとともに、複合酸化物粒子とリチウム化合物中のリチウムとの反応が進行するため、c軸と直交するa軸方向への結晶成長も進行してしまう。一方、この温度域における昇温速度が10℃/分を超えると、複合水酸化物粒子または複合酸化物粒子とリチウム化合物との反応が不均一になり、局所的に粒子間の焼結が進行するため、得られる二次電池の正極抵抗値が高くなってしまう。
 なお、本発明において、昇温速度とは、対象とする温度域における昇温速度の平均値(平均昇温速度)を意味する。
 b)800℃~焼成温度
 焼成工程のうち、800℃~焼成温度までの昇温速度は、特に制限されることはないが、30℃~800℃の温度域における昇温速度と同様に、4℃/分~10℃/分とすることが好ましい。この温度域における昇温速度が4℃/分未満では、800℃以上に保持される時間が長くなり過ぎるため、c軸と直交するa軸方向への結晶成長が進みすぎる場合がある。一方、この温度域における昇温速度が10℃/分を超えると、リチウム混合物の温度にばらつきが生じて結晶成長が不均一となり、電池特性が低下する場合がある。
 [焼成時間]
 a)保持時間
 焼成温度での保持時間は5時間以内、好ましくは4時間以内とする。保持時間が、このような範囲にあれば、得られる正極活物質の結晶構造が均一なものとなり、かつ、W(104)/W(003)を1.38以上とすることができる。これに対して、保持時間が5時間を超えると、c軸と直交するa軸方向への結晶成長が進行してしまう。なお、保持時間の下限は、複合水酸化物粒子または複合酸化物粒子とリチウム化合物とを十分に反応させることができる限り、特に制限されることはなく、焼成温度までの昇温過程中に十分に反応させることができれば、保持時間を設けなくてもよい。
 b)昇温開始から保持終了までの時間
 昇温開始から保持終了までの時間(以下、「全焼成時間」という)は3.0時間~7.0時間、好ましくは4.0時間~6.9時間、より好ましくは4.5時間~6.5時間とする。全焼成時間が3時間未満では、複合水酸化物または複合酸化物粒子とリチウム化合物が十分に反応せず、余剰のリチウム化合物と未反応の複合水酸化物粒子または複合酸化物粒子が残存し、あるいは、複合水酸化物粒子または複合酸化物粒子中へのリチウムの拡散が不十分になるため結晶構造が均一なものとはならない。一方、全焼成時間が7時間を超えると、c軸と直交するa軸方向への結晶成長が進行してしまう。
 [焼成雰囲気]
 焼成時の雰囲気は、酸化性雰囲気とし、酸素濃度が18容量%~100容量%の雰囲気、すなわち、大気~酸素気流中で行うことが好ましい。コスト面を考慮すると、空気気流中で行うことが、特に好ましい。酸素濃度が18容量%未満では、酸化反応が十分に進行せず、得られるリチウム複合酸化物粒子の結晶性が十分なものとならない場合がある。
 (5)解砕工程
 本発明の製造方法においては、焼成工程後に、リチウム複合酸化物粒子を解砕する解砕工程を、さらに備えることが好ましい。焼成工程により得られたリチウム複合酸化物粒子は、凝集または軽度の焼結が生じている場合がある。このような場合、このリチウム複合酸化物粒子の凝集体または焼結体を解砕することにより、得られる正極活物質の平均粒径(MV)を、容易に3μm~20μmという好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作のことである。
 解砕の方法としては、公知の手段を用いることができ、たとえば、ピンミルやハンマーミルなどを使用することができる。なお、この際、二次粒子を破壊しないように解砕力を適切な範囲に調整することが好ましい。
 3.非水電解質二次電池
 本発明の非水電解質二次電池は、正極、負極、セパレータ、非水電解液などの、一般の非水電解質二次電池と同様の構成要素を備える。なお、以下に説明する実施形態は例示にすぎず、本発明の非水電解質二次電池は、本明細書に記載されている実施形態を基づき、種々の変更、改良を施した形態に適用することも可能である。
 (1)構成材料
 [正極]
 本発明により得られた正極活物質を用いて、たとえば、以下のようにして非水電解質二次電池の正極を作製する。
 まず、本発明により得られた粉末状の正極活物質に、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの溶剤を添加し、これらを混練して正極合材ペーストを作製する。その際、正極合材ペースト中のそれぞれの混合比も、非水電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水電解質二次電池の正極と同様、正極活物質の含有量を60質量部~95質量部とし、導電材の含有量を1質量部~20質量部とし、結着剤の含有量を1質量部~20質量部とすることが好ましい。
 得られた正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などをして、電池の作製に供することができる。ただし、正極の作製方法は、上述した例示のものに限られることなく、他の方法によってもよい。
 導電材としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂およびポリアクリル酸を用いることができる。
 また、必要に応じて、正極活物質、導電材および活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加することができる。溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することもできる。
 [負極]
 負極には、金属リチウムやリチウム合金など、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、たとえば、天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 [セパレータ]
 正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレンやポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
 [非水電解液]
 非水電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO22、およびそれらの複合塩などを用いることができる。
 さらに、非水電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。
 (2)二次電池の形状および構成
 上述した正極、負極、セパレータおよび非水電解液で構成される本発明の非水電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水電解質二次電池を完成させる。
 (3)特性
 本発明の正極活物質を用いた非水電解質二次電池は、出力特性、特に、極低温(-30℃)環境下での使用時における出力特性を改善することができる。たとえば、本発明の正極活物質を用いて図1に示すような円筒形のリチウムイオン二次電池を構成した場合に、-30℃における出力値を110W以上、好ましくは114W以上、より好ましくは120W以上とすることができる。
 また、本発明の正極活物質を用いた円筒形のリチウムイオン二次電池は、150mAh/g以上、好ましくは153mAh/g以上、より好ましくは156mAh/g以上という高い初期放電容量を達成することができ、長期サイクルでも高い容量維持率が得られるため、高容量で高寿命であるといえる。さらに、従来のリチウムコバルト複合酸化物あるいはリチウムニッケル複合酸化物の正極活物質との比較においても、熱安定性が高く、安全性においても優れているといえる。このため、高価な保護回路を簡略化し、二次電池の小型化および低コスト化を図ることができる。
 (4)用途
 上述した特性を備える本発明の非水電解質二次電は、寒冷地における使用も含めて、高い出力特性が要求され、かつ、搭載スペースに制約を受ける小型携帯電子機器や、電気自動車などの輸送機械器具用電源として、好適に使用することができる。なお、本発明は、純粋に電気エネルギで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用する、いわゆるハイブリッド車用の電源としても用いることができる。
 以下、本発明について実施例および比較例を参照して詳述する。なお、すべての実施例および比較例を通じて、複合水酸化物粒子、正極活物質(リチウム複合酸化物粒子)および二次電池の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。
 (実施例1)
 [晶析工程]
 複合水酸化物粒子を公知の晶析技術を用いて作製した。はじめに、ニッケル、コバルトおよびマンガンの各硫酸塩と、ジルコニウム化合物およびタングステン化合物の混合水溶液と、アンモニウムイオン供給体を含む水溶液を、撹拌しながら反応槽内に供給した。同時に、水酸化ナトリウム水溶液を供給することで、反応水溶液を形成し、複合水酸化物粒子を晶析させた。この際、反応水溶液のpH値が所定の範囲に維持されるように、水酸化ナトリウム水溶液の供給量を調整した。その後、この複合水酸化物粒子を回収し、水洗および乾燥することで、粉末状とした。
 このようにして得られた複合水酸化物粒子に対して、ICP発光分析装置(株式会社島津製作所製、ICPS-8100)を用いて組成分析を行ったところ、その組成は、一般式:(Ni0.33Co0.33Mn0.330.993Zr0.0020.005(OH)2+α(0≦α≦0.5)で表されるものであることが確認された。
 [熱処理工程]
 この複合水酸化物粒子を、電気炉を用いて、大気雰囲気中、150℃で12時間熱処理し、熱処理粒子を得た。
 [混合工程]
 熱処理粒子に対して、Li/Me=1.14となるように炭酸リチウムを加えて、シェーカミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製、TURBULA TypeT2C)を用いて、20分間混合し、リチウム混合物を得た。
 [焼成工程]
 混合工程で得られたリチウム混合物を、焼成温度を950℃として、空気(酸素:21容量%)気流中で焼成した。具体的には、昇温速度を8℃/分として室温(30℃)から焼成温度まで昇温し、この温度での保持時間を3時間として焼成した後、室温まで冷却した。なお、このときの昇温開始から保持終了までの全焼成時間は4.9時間であった。
 このようにして得られた正極活物質に対して、ICP発光分析装置を用いて組成分析を行ったところ、その組成は、一般式:Li1.14(Ni0.33Co0.33Mn0.330.993Zr0.0020.0052で表されるものであることが確認された。
 この正極活物質の平均粒径を、レーザ回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)による粒度分布測定により得られた体積積算が50%となる粒径として求めたところ、5.2μmであることが確認された。
 また、比表面積を、窒素吸着式BET法測定機(ユアサアイオニクス株式会社製、カンタソーブQS-10)により測定したところ、1.2m2/gであることが確認された。
 さらに、この正極活物質に対して、X線回折装置(パナリティカル社製、X‘Pert PRO)を用いて、印加電圧40kV、電流値40mA、ステップ幅0.0168°、積算時間20秒の測定条件の下で、CuKα線による粉末X線回折測定を行った。この結果、この正極活物質は、六方晶の層状構造を有することが確認された。
 最後に、この正極活物質の積分幅比およびピーク積分強度比を、粉末X線回折パターン総合解析ソフト(株式会社リガク製、JADE)を使用し、(003)面におけるピークの角度範囲を17.0°~20.0°、(104)面におけるピークの角度範囲を42.5°~46.5°とし、ローレンツ(Lorentz)関数を使用して解析した。この結果、積分幅比は1.48であり、ピーク積分強度比は1.23であることが確認された。
 [非水電解質二次電池の作製]
 次に、以下の手順にて、図1に示す評価用の巻同型非水電解質二次電池(リチウムイオン二次電池)を作製した。
 a)正極
 正極活物質に、導電材としてのカーボンブラックと、結着材としてのポリフッ化ビニリデン(PVDF)とを、これらの材料の質量比が85:10:5となるように混合し、N-メチル-2-ピロリドン(NMP)溶液に溶解させ、正極合材ペーストを作製した。
 この正極合材ペーストを、コンマコータによりアルミ箔の両面に塗布し、100℃で加熱し、乾燥させることにより正極を得た。そして、この正極をロールプレス機に通して荷重を加え、電極密度を向上させた正極シート(1)を作製した。
 b)負極
 負極活物質としてのグラファイトと、結着材としてのPVDFとを、これらの材料の質量比が92.5:7.5となるように混合し、NMP溶液に溶解させて、負極合材ペーストを得た。
 この負極合材ペーストを、正極と同様に、コンマコータにより銅箔の両面に塗布し、1200℃に加熱し、乾燥させることにより負極を得た。そして、この負極をロールプレス機に通して荷重を加え、電極密度を向上させた負極シート(2)を作製した。
 c)リチウムイオン二次電池
 正極シート(1)および負極シート(2)を、厚さ25μmの微多孔性ポリエチレンシートからなるセパレータ(3)を介した状態で巻回させて、巻同型電極体(4)を形成した。巻同型電極体(4)は、正極シート(1)および負極シート(2)にそれぞれに設けられたリードタブが、正極端子あるいは負極端子に接合した状態となるように、電池ケース(5)の内部に挿入した。
 さらに、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)とを、3:7の体積比で混合した混合溶液からなる有機溶媒に、電解液中で1moI/dm3となるように、リチウム塩としてのLiPF6を溶解させて、電解液を調整した。
 この電解液を、巻同型電極体が挿入された電池ケース内に注入し、電池ケース(5)の開ロ部を密閉して封止し、リチウムイオン二次電池(6)を得た。
 [評価]
 a)初期放電容量
 リチウムイオン二次電池を24時間程度放置し、開路電圧OCV(opencircuit voItage)が安定した後、正極に対する電流密度を0.5mA/cm2として、カットオフ電圧4.3Vまで充電した。1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を、初期放電容量とした。この結果、実施例1の初期放電容量は156.8mAh/gであった。
 b)極低温出力
 25℃の温度条件下で3.0Vまでの定電流放電後、定電流定電圧で充電を行って、40%充電電位に調整した。その後、-30℃にて適宜電流を変化させ、放電開始から2秒後の電力を測定し、I-V特性グラフを作成した。放電カット電圧は2.0Vとして、このI-V特性グラフから求めた出力を、極低温出力とした。この結果、実施例1の極低温出力は132Wであった。
 正極活物質の製造条件を表1に、得られた正極活物質およびリチウムイオン二次電池の特性を表2にそれぞれ示す。
 (実施例2)
 混合工程において、熱処理粒子に対して、Li/Me=1.12となるように炭酸リチウムを加えたこと、焼成工程において、焼成温度を890℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.8時間であった。その結果を表1および表2に示す。
 (実施例3)
 焼成工程において、焼成温度を890℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.8時間であった。その結果を表1および表2に示す。
 (実施例4)
 混合工程において、熱処理粒子に対して、Li/Me=1.16となるように炭酸リチウムを加えたこと、焼成工程において、焼成温度を890℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.8時間であった。その結果を表1および表2に示す。
 (実施例5)
 混合工程において、熱処理粒子に対して、Li/Me=1.12となるように炭酸リチウムを加えたこと、焼成工程において、焼成温度を930℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.9時間であった。その結果を表1および表2に示す。
 (実施例6)
 焼成工程において、焼成温度を930℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.9時間であった。その結果を表1および表2に示す。
 (実施例7)
 混合工程において、熱処理粒子に対して、Li/Me=1.16となるように炭酸リチウムを加えたこと、焼成工程において、焼成温度を930℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.9時間であった。その結果を表1および表2に示す。
 (実施例8)
 混合工程において、熱処理粒子に対して、Li/Me=1.12となるように炭酸リチウムを加えたこと、焼成工程において、焼成温度を960℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.9時間であった。その結果を表1および表2に示す。
 (実施例9)
 焼成工程において、焼成温度を960℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.9時間であった。その結果を表1および表2に示す。
 (実施例10)
 混合工程において、熱処理粒子に対して、Li/Me=1.16となるように炭酸リチウムを加えたこと、焼成工程において、焼成温度を960℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を4時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.9時間であった。その結果を表1および表2に示す。
 (実施例11)
 焼成工程において、焼成温度を950℃、室温(30℃)から焼成温度までの昇温速度を4℃/分、保持時間を3時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は6.8時間であった。その結果を表1および表2に示す。
 (実施例12)
 焼成工程において、焼成温度を800℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を3時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は4.6時間であった。その結果を表1および表2に示す。
 (比較例1)
 焼成工程において、焼成温度を950℃、室温(30℃)から焼成温度までの昇温速度を3℃/分、保持時間を3時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は8.1時間であった。その結果を表1および表2に示す。
 (比較例2)
 焼成工程において、焼成温度を950℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を10時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は11.9時間であった。その結果を表1および表2に示す。
 (比較例3)
 焼成工程において、焼成温度を1050℃、室温(30℃)から焼成温度までの昇温速度を3℃/分とし、昇温後に保持せずに焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は5.7時間であった。その結果を表1および表2に示す。
 (比較例4)
 混合工程において、熱処理粒子に対して、Li/Me=0.94となるように炭酸リチウムを加えたこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。その結果を表1および表2に示す。
 (比較例5)
 混合工程において、熱処理粒子に対して、Li/Me=1.22となるように炭酸リチウムを加えたこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。その結果を表1および表2に示す。
 (比較例6)
 焼成工程において、焼成温度を950℃、室温(30℃)から焼成温度までの昇温速度を11℃/分、保持時間を3時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は4.4時間であった。その結果を表1および表2に示す。
 (比較例7)
 焼成工程において、焼成温度を950℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を6時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は7.9時間であった。その結果を表1および表2に示す。
 (比較例8)
 焼成工程において、焼成温度を780℃、室温(30℃)から焼成温度までの昇温速度を8℃/分、保持時間を3時間として焼成したこと以外は、実施例1と同様にして、正極活物質を得るとともに、その評価を行った。なお、このときの昇温開始から保持終了までの全焼成時間は4.6時間であった。その結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (総合評価)
 表1および表2により、正極活物質の組成および焼成工程における条件が本発明に規定する範囲内にある実施例1~12では、積分幅比を1.38以上に制御することができ、このため、初期放電容量を150mAh/g以上、かつ、極低温出力を110W以上とすることが可能であることが分かる。特に、ピーク積分強度比を1.20以上に制御している実施例1~10および12では、極低温出力を114W以上とすることが可能であることが分かる。
 これに対して、比較例1~3および6~8では、焼成工程における条件の1つ以上が本発明に規定する範囲から外れているため、積分幅比を1.38以上に制御することができず、極低温出力が低下している。
 また、比較例4では、焼成工程における条件は本発明に規定する範囲内にあるものの、Li/Meの値が小さすぎたため、正極抵抗が大きくなり、極低温出力が低下している。
 さらに、比較例5では、同様に、焼成工程における条件が本発明に規定する範囲内にあるものの、Li/Meの値が大きすぎたため、初期放電容量が低下している。
 なお、図2は、積分幅比とー30℃における出力(極低温出力)との関係を、図3は、ピーク積分強度比と極低温出力との関係を示した図である。図2より、積分幅比が大きいほど、極低温出力が向上する傾向があり、特に、極低温環境下で110W以上の出力を得るためには、積分幅比を1.38以上に制御することが必要であることが分かる。また、図3より、ピーク積分強度比を1.20以上とすることにより、良好な極低温出力が得られることが分かる。
 1 正極シート
 2 負極シート
 3 多孔性セパレータ
 4 電極体
 5 電池ケース
 6 リチウムイオン二次電池

Claims (12)

  1.  一般式(A):Li1+aNixCoyMnzt2(-0.05≦a≦0.20、x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Ca、Mg、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表され、層状構造を有する六方晶系リチウムニッケルコバルトマンガン複合酸化物粒子からなり、かつ、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの積分幅に対する、(104)面での回折ピークの積分幅の比が1.38以上である、非水電解質二次電池用正極活物質。
  2.  CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(104)面のピーク積分強度に対する、(003)面のピーク積分強度の比が1.20以上である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記積分幅の比が、1.39~1.49の範囲にある、請求項1に記載の非水電解質二次電池用正極活物質。
  4.  レーザ回折散乱法で求めた体積基準平均粒径が、3μm~20μmの範囲にある、請求項1に記載の非水電解質二次電池用正極活物質。
  5.  比表面積が、0.3m2/g~2.5m2/gの範囲にある、請求項1に記載の非水電解質二次電池用正極活物質。
  6.  一般式(B):NixCoyMnzt(OH)2+α(x+y+z+t=1、0.30≦x≦0.70、0.10≦y≦0.40、0.10≦z≦0.40、0≦t≦0.01、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)で表されるニッケルコバルトマンガン複合水酸化物粒子に、リチウム以外の金属元素の原子数の合計に対する、リチウムの原子数の比が1:0.95~1.20となるように、リチウム化合物を混合して、リチウム混合物を得る混合工程と、
     前記リチウム混合物を、酸化性雰囲気中において、少なくとも30℃~800℃の温度域における昇温速度を4℃/分~10℃/分とするとともに、焼成温度を800℃~1000℃、該焼成温度での保持時間を5時間以内とし、かつ、昇温開始から保持終了までの時間を3.0時間~7.0時間として焼成する工程と
    を備える、非水電解質二次電池用正極活物質の製造方法。
  7.  前記混合工程の前に、前記ニッケルコバルトマンガン複合水酸化物粒子を105℃~400℃で熱処理し、熱処理粒子とする熱処理工程をさらに備える、請求項6に記載の非水電解質二次電池用正極活物質の製造方法。
  8.  前記リチウム化合物として、炭酸リチウム、水酸化リチウム、またはこれらの混合物を用いる、請求項6に記載の非水電解質二次電池用正極活物質の製造方法。
  9.  前記酸化性雰囲気における酸素濃度を10容量%~100容量%とする、請求項6に記載の非水電解質二次電池用正極活物質の製造方法。
  10.  前記焼成工程後に、該焼成工程により得られたリチウムニッケルコバルトマンガン複合酸化物粒子を解砕する解砕工程をさらに備える、請求項6に記載の非水電解質二次電池用正極活物質の製造方法。
  11.  正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、請求項1に記載の非水電解質二次電池用正極活物質が用いられている、非水電解質二次電池。
  12.  初期放電容量が、150mAh/g以上で、かつ、-30℃における極低温出力が110W以上である、請求項11に記載の非水電解質二次電池。
PCT/JP2014/069371 2013-07-24 2014-07-22 非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池 WO2015012282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480041971.9A CN105409039B (zh) 2013-07-24 2014-07-22 非水电解质二次电池用正极活性物质及其制造方法,以及非水电解质二次电池
KR1020167004646A KR101871075B1 (ko) 2013-07-24 2014-07-22 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수전해질 이차 전지
US14/907,087 US20160172673A1 (en) 2013-07-24 2014-07-22 Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method for same, and non-aqueous electrolyte secondary battery
EP14828830.1A EP3026738B1 (en) 2013-07-24 2014-07-22 Positive electrode active material for non-aqueous electrolyte secondary cell, production method for same, and non-aqueous electrolyte secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-153897 2013-07-24
JP2013153897A JP6133720B2 (ja) 2013-07-24 2013-07-24 非水電解質二次電池用正極活物質とその製造方法、並びに、非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2015012282A1 true WO2015012282A1 (ja) 2015-01-29

Family

ID=52393316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069371 WO2015012282A1 (ja) 2013-07-24 2014-07-22 非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池

Country Status (6)

Country Link
US (1) US20160172673A1 (ja)
EP (1) EP3026738B1 (ja)
JP (1) JP6133720B2 (ja)
KR (1) KR101871075B1 (ja)
CN (1) CN105409039B (ja)
WO (1) WO2015012282A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248085A1 (en) * 2015-02-20 2016-08-25 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for manufacturing the same
CN108604680A (zh) * 2016-02-22 2018-09-28 巴斯夫户田电池材料有限公司 非水电解质二次电池用正极活性物质颗粒及其制备方法、以及非水电解质二次电池
JP2020501329A (ja) * 2016-12-12 2020-01-16 ポスコPosco リチウム二次電池用正極活物質、その製造方法、およびそれを含むリチウム二次電池
CN109075335B (zh) * 2016-02-03 2022-01-07 住友化学株式会社 正极活性物质、锂离子二次电池用正极及锂离子二次电池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635906B2 (ja) * 2016-10-19 2020-01-29 Jx金属株式会社 リチウムイオン二次電池、及びリチウムイオン二次電池用正極活物質の製造方法
US10553874B2 (en) 2017-08-04 2020-02-04 Uchicago Argonne, Llc Protective coatings for lithium anodes
KR20200023468A (ko) * 2017-12-27 2020-03-04 히타치 긴조쿠 가부시키가이샤 리튬 이온 이차 전지용 정극 활물질 및 리튬 이온 이차 전지용 정극 활물질의 제조 방법, 그리고 리튬 이온 이차 전지
KR102231062B1 (ko) * 2018-03-09 2021-03-23 주식회사 엘지화학 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
CN112042011B (zh) * 2018-03-28 2024-02-13 尤米科尔公司 作为用于可再充电锂二次蓄电池的正电极活性材料的锂过渡金属复合氧化物
JP7000239B2 (ja) * 2018-04-16 2022-01-19 トヨタ自動車株式会社 正極活物質粒子、正極、リチウムイオン二次電池、および正極活物質粒子の製造方法
CN109461926B (zh) * 2018-11-09 2022-03-11 万华化学集团股份有限公司 一种锂离子电池正极材料及其制备方法、正极和锂离子电池
KR102207619B1 (ko) * 2018-11-27 2021-01-25 한양대학교 산학협력단 프러시안 블루 아날로그를 사용한 리튬-전이금속 산화물 제조 방법, 리튬-전이금속 산화물, 및 리튬 이차 전지
CN109796052B (zh) * 2019-01-24 2023-03-14 湖南桑瑞新材料有限公司 正极材料及其制备方法和锂离子电池
WO2020175552A1 (ja) * 2019-02-26 2020-09-03 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
KR102553588B1 (ko) * 2019-02-28 2023-07-11 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
US20230202865A1 (en) * 2019-09-13 2023-06-29 Umicore Process for preparing a positive electrode material for rechargeable lithium ion batteries
CN110957482B (zh) * 2019-11-30 2021-08-03 华友新能源科技(衢州)有限公司 一种添加六价元素的镍钴锰复合氢氧化物及其制备方法
US20210336240A1 (en) * 2020-04-22 2021-10-28 Uchicago Argonne, Llc Modification of lithium ion electrode materials via atomic layer deposition techniques
CN115498147A (zh) * 2022-06-20 2022-12-20 山东省科学院能源研究所 一种铪改性的高镍层状氧化物电极材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258751A (ja) 1991-11-01 1993-10-08 Sanyo Electric Co Ltd 非水系電池
JPH0855624A (ja) 1994-03-07 1996-02-27 Tdk Corp 層状構造酸化物および二次電池
JPH0922693A (ja) 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd 非水電解液電池およびその正極活物質と正極板の製造法
JPH10308218A (ja) 1997-03-07 1998-11-17 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2000195514A (ja) 1998-12-24 2000-07-14 Toshiba Corp 非水溶媒二次電池の製造方法
JP2001095514A (ja) 1999-10-01 2001-04-10 Taiyo Kagaku Co Ltd 麺類の品質改良剤と麺類の製造方法
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2005197004A (ja) 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2012018925A (ja) * 2010-07-06 2012-01-26 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法、並びにそれを備えるリチウム二次電池
JP2013051772A (ja) 2011-08-30 2013-03-14 Toyota Motor Corp 給電コネクタ、車両および車両の制御方法
JP2013051172A (ja) 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013134822A (ja) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc 非水系二次電池用正極活物質及び非水系リチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8962195B2 (en) * 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
EP2533333B1 (en) * 2010-02-05 2018-09-12 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP4894969B1 (ja) * 2011-06-07 2012-03-14 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
CN102332578A (zh) * 2011-09-21 2012-01-25 广东达之邦新能源技术有限公司 一种高容量锂离子电池正极材料及其制备方法
EP2790254A4 (en) * 2011-12-09 2015-07-15 Gs Yuasa Int Ltd ACTIVE MATERIAL FOR A NON-CIRCULAR ELECTROLYTE SECONDARY CELL, METHOD FOR PRODUCING THE ACTIVE MATERIAL FOR A NON-CIRCULAR ELECTROLYTE SECONDARY CELL, ELECTRODE FOR NON-CIRCULAR ELECTROLYTE SECONDARY CELL, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL
JP2014123529A (ja) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd リチウム二次電池用正極材料

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258751A (ja) 1991-11-01 1993-10-08 Sanyo Electric Co Ltd 非水系電池
JPH0855624A (ja) 1994-03-07 1996-02-27 Tdk Corp 層状構造酸化物および二次電池
JPH0922693A (ja) 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd 非水電解液電池およびその正極活物質と正極板の製造法
JPH10308218A (ja) 1997-03-07 1998-11-17 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2000195514A (ja) 1998-12-24 2000-07-14 Toshiba Corp 非水溶媒二次電池の製造方法
JP2001095514A (ja) 1999-10-01 2001-04-10 Taiyo Kagaku Co Ltd 麺類の品質改良剤と麺類の製造方法
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2005197004A (ja) 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2012018925A (ja) * 2010-07-06 2012-01-26 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法、並びにそれを備えるリチウム二次電池
JP2013051772A (ja) 2011-08-30 2013-03-14 Toyota Motor Corp 給電コネクタ、車両および車両の制御方法
JP2013051172A (ja) 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013134822A (ja) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc 非水系二次電池用正極活物質及び非水系リチウム二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248085A1 (en) * 2015-02-20 2016-08-25 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for manufacturing the same
CN105914346A (zh) * 2015-02-20 2016-08-31 丰田自动车株式会社 非水电解质二次电池及其制造方法
US10431814B2 (en) * 2015-02-20 2019-10-01 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for manufacturing the same
CN109075335B (zh) * 2016-02-03 2022-01-07 住友化学株式会社 正极活性物质、锂离子二次电池用正极及锂离子二次电池
CN108604680A (zh) * 2016-02-22 2018-09-28 巴斯夫户田电池材料有限公司 非水电解质二次电池用正极活性物质颗粒及其制备方法、以及非水电解质二次电池
JP2020501329A (ja) * 2016-12-12 2020-01-16 ポスコPosco リチウム二次電池用正極活物質、その製造方法、およびそれを含むリチウム二次電池
US11670766B2 (en) 2016-12-12 2023-06-06 Posco Holdings Inc. Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
EP3026738B1 (en) 2019-01-09
KR20160037960A (ko) 2016-04-06
KR101871075B1 (ko) 2018-06-25
JP6133720B2 (ja) 2017-05-24
CN105409039A (zh) 2016-03-16
JP2015026457A (ja) 2015-02-05
CN105409039B (zh) 2018-07-20
US20160172673A1 (en) 2016-06-16
EP3026738A4 (en) 2017-02-22
EP3026738A1 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US20220093919A1 (en) Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP6133720B2 (ja) 非水電解質二次電池用正極活物質とその製造方法、並びに、非水電解質二次電池
JP6888297B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
KR102203425B1 (ko) 전이 금속 복합 수산화물 입자와 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수전해질 이차 전지
EP3151317B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery including said material
JP6252010B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP6062818B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP6347227B2 (ja) マンガンニッケルチタン複合水酸化物粒子とその製造方法、および、非水系電解質二次電池用正極活物質の製造方法
JP2013147416A (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP7047251B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP6346448B2 (ja) 非水系電解質二次電池用正極活物質、および、非水系電解質二次電池
CN114521300A (zh) 锂离子二次电池用正极活性物质以及锂离子二次电池
JP7205114B2 (ja) 遷移金属複合水酸化物の製造方法、および、リチウムイオン二次電池用正極活物質の製造方法
JP2021048071A (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
US20230135908A1 (en) Metal composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP2019212365A (ja) リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池
JP2022046655A (ja) 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
JP6222337B2 (ja) 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
JP6862786B2 (ja) 遷移金属含有複合水酸化物の製造方法および非水電解質二次電池用正極活物質の製造方法
WO2021006128A1 (ja) リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041971.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14907087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014828830

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167004646

Country of ref document: KR

Kind code of ref document: A