WO2015002145A1 - 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法 - Google Patents

絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法 Download PDF

Info

Publication number
WO2015002145A1
WO2015002145A1 PCT/JP2014/067404 JP2014067404W WO2015002145A1 WO 2015002145 A1 WO2015002145 A1 WO 2015002145A1 JP 2014067404 W JP2014067404 W JP 2014067404W WO 2015002145 A1 WO2015002145 A1 WO 2015002145A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin composition
thermoplastic resin
electrical component
Prior art date
Application number
PCT/JP2014/067404
Other languages
English (en)
French (fr)
Inventor
浩之 河野
和之 緒方
忠幸 石井
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to JP2015525206A priority Critical patent/JP6120965B2/ja
Priority to US14/901,215 priority patent/US9991622B2/en
Priority to DE112014003158.5T priority patent/DE112014003158B4/de
Priority to CN201480035784.XA priority patent/CN105340024B/zh
Publication of WO2015002145A1 publication Critical patent/WO2015002145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • H01R13/405Securing in non-demountable manner, e.g. moulding, riveting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/123Polyphenylene oxides not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5216Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/527Flameproof cases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • H01R13/6271Latching means integral with the housing
    • H01R13/6273Latching means integral with the housing comprising two latching arms

Definitions

  • the present invention relates to an electrical component including an insulating resin molded body having stabilized aging characteristics, and a flame retardance stabilization method.
  • Examples of conventional resin materials for various electric / electronic component applications include polyester resins and polyamide resins.
  • the resin composition containing a base resin, a halogenated flame retardant, and an oxygen acid component is proposed, for example (for example, refer patent document 1). .
  • a resin composition containing a phosphorus flame retardant as a non-halogen flame retardant has been proposed (see, for example, Patent Document 2).
  • a resin composition including a polycarbonate polyorganosiloxane copolymer, an alkali metal salt of an organic sulfonic acid, polytetrafluoroethylene, and titanium dioxide particles having a coating layer has been proposed (see, for example, Patent Document 3).
  • PC polycarbonate
  • modified PPE modified polyphenylene ether
  • thermoplastic resin composition that includes polyphenylene ether resin, carbon black, and alkaline earth metal carbonate and / or sulfate and has improved tracking resistance (see, for example, Patent Document 4).
  • the polyester resin or polyamide resin is excellent in mechanical properties and chemical resistance, but has a problem that it is difficult to achieve both these properties and dimensional stability, water resistance and the like.
  • the resin composition disclosed in Patent Document 1 uses a halogenated flame retardant, it has a problem that it cannot be said that the recent environmental safety orientation is sufficiently satisfied.
  • the resin composition disclosed in Patent Document 2 has a problem that the flame retardancy after heat aging cannot be sufficiently ensured.
  • the resin composition disclosed in Patent Document 3 is a combination of polycarbonate and special surface-treated titanium oxide, and there is room for improvement from the viewpoints of mechanical properties, water resistance, and dimensional stability. There is.
  • thermoplastic resin composition disclosed in Patent Document 4 has been evaluated for tracking only at 250 V and 275 V, which may require a longer creepage distance in parts to which high voltage is applied. There is a problem that it is difficult to reduce the size of parts.
  • carbon black is an essential component, and there is a problem that there is a restriction in development to parts other than black.
  • insulating resin moldings used for electrical components in the field of electrical energy have been widespread, such as solar cells, fuel cells and storage batteries, electric vehicles, LED lighting, and smart meters. And these insulating resin moldings are required to be miniaturized and multifunctional of electric parts. Therefore, in insulating resin moldings incorporated in electrical components, ensure sufficient insulation distance between live parts and between the live parts and the outer surface of the insulating resin moldings to avoid malfunction due to tracking. It has become difficult to do. Furthermore, particularly in miniaturized electrical components, the insulating resin molded body is easily affected by the heat generated by the live parts, and thus it is strongly required that physical properties such as flame retardancy be maintained even after heat aging. .
  • a polyphenylene ether resin that satisfies both flame retardancy, mechanical properties, water resistance, and dimensional stability, and performance enhancement and miniaturization are achieved. It is an object of the present invention to provide an electrical component including a molded article of a thermoplastic resin composition containing a polyphenylene ether resin. In other words, in the present invention, it has tracking resistance that enables reduction of the insulation distance, has an excellent balance between impact resistance and rigidity, and is stable even after heat aging even when a phosphorus flame retardant is used. An object of the present invention is to provide an electrical component including an insulating resin molded body that can maintain the flame retardancy.
  • the inventors of the present invention have used a polyphenylene ether-based resin (hereinafter also referred to as “PPE-based resin”) as the insulating resin molded body in contact with the live part and the hydrogenated block.
  • PPE-based resin polyphenylene ether-based resin
  • a molded body of a thermoplastic resin composition to which a polymer, a flame retardant and titanium oxide are added in addition to the conventional excellent resin performance, it has high tracking resistance and is excellent in impact resistance and rigidity.
  • the inventors have found that stable flame retardancy can be maintained even after heat aging, and have completed the present invention. That is, the present invention is as follows.
  • thermoplastic resin composition is (A) a polyphenylene ether resin or a mixed resin of a polyphenylene ether resin and a styrene resin; (B) a hydrogenated block copolymer; (C) a flame retardant; (D) titanium oxide; Including, For a total of 100 parts by mass of (A), (B), and (C), The content of (A) is 60 to 80 parts by mass, The content of (B) is 5 to 30 parts by mass, The content of (C) is 9 to 25 parts by mass, The content of (D) is 0.1 to 3 parts by mass, It is a length between the live part and the outer surface part of the electrical component that is electrically separated by the insulation resin molding, and is formed along the surface of the insulation resin molding An electrical component, wherein at least one of the creepage distances including the length of
  • thermoplastic resin composition the (B) hydrogenated block copolymer is dispersed in the form of particles, The electrical component according to [1] or [2], wherein the dispersed particles of the (B) hydrogenated block copolymer have an average particle diameter of 0.2 to 1.0 ⁇ m.
  • thermoplastic resin composition 10 or more
  • the electrical component according to any one of [1] to [3], wherein a combustion level of the thermoplastic resin composition (thickness: 1.5 mm) measured based on a UL94 vertical combustion test is V-0.
  • a combustion level of the thermoplastic resin composition thickness: 1.5 mm measured based on a UL94 vertical combustion test is V-0.
  • E The electrical component according to any one of [1] to [4], further including 0.01 to 1 part by mass of an alkaline earth metal carbonate and / or sulfate.
  • thermoplastic resin composition is (A) a polyphenylene ether resin or a mixed resin of a polyphenylene ether resin and a styrene resin; (B) a hydrogenated block copolymer; Containing,
  • the combustion level of the thermoplastic resin composition is V-0, In the tracking resistance test according to IEC60112 of the thermoplastic resin composition (30 mm ⁇ 30 mm test piece), the drop amount until tracking occurs in all of 300 V, 400 V, 500 V, and 600 V is 80 drops
  • thermoplastic resin composition is a total of 100 parts by mass of (A), (B), and (C).
  • the content of (A) is 60 to 80 parts by mass, and the content of (B) is 5 to 30 parts by mass.
  • the content of (C) is 9 to 25 parts by mass
  • the content of (D) is 0.1 to 3 parts by mass
  • an electrical component having an insulating resin molded body that has an excellent balance of tracking resistance, impact resistance, and rigidity, and that can maintain stable flame retardancy even after heat aging.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings.
  • the present invention is not limited to the following description, and various modifications can be made within the scope of the gist thereof.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified, and the dimensional ratio in the drawing is not limited to the illustrated ratio.
  • the electrical component of this embodiment is The live electrical department, An insulating resin molded body which is a molded body of a thermoplastic resin composition in contact with the live part; It has.
  • the thermoplastic resin composition is (A) a polyphenylene ether-based resin, or a mixed resin of a polyphenylene ether-based resin and a styrene-based resin (hereinafter sometimes referred to as “component (A)”); (B) a hydrogenated block copolymer (hereinafter sometimes referred to as component (B)), (C) a flame retardant (hereinafter sometimes referred to as (C) component); (D) titanium oxide (hereinafter may be referred to as (D) component), Containing.
  • the content of (A) is 60 to 80 parts by mass
  • the content of (B) is 5 to 30 parts by mass
  • the content of (C) is 9 to 25 parts by mass
  • the content of (D) is 0.1 to 3 parts by mass. It is a length between the live part and the outer surface part of the electrical component that is electrically separated by the insulation resin molding, and is formed along the surface of the insulation resin molding At least one of the creepage distances including the length of the length is 15 mm or more and 40 mm or less.
  • the electrical component of the present embodiment includes a live part and an insulating resin molded body that is a molded body of a thermoplastic resin composition in contact with the electrical part.
  • the said live part is various electroconductive members contained in an electrical component, Comprising: The part electrically supplied at the time of use is mentioned, For example, a metal terminal, conducting wire, etc. are contained.
  • the length between the live part and the outer surface part of the electrical part, where the live part is electrically separated by the insulating resin molding is the insulating resin.
  • At least one of the creepage distances including the length formed along the surface of the molded body is 15 mm or more and 40 mm or less.
  • the “outer surface portion of the electrical component” means an outer surface portion of the electrical component when the electrical component is used, that is, in an energized state.
  • the “creeping distance” is, for example, measured between two different live parts or between the live part and the boundary surface of the electrical equipment along the surface of the insulator in JIS 6950-1. Is defined as the shortest distance in the case.
  • the “boundary surface” is defined as “the outer surface of an electrical enclosure that is considered to have metal foil pressed against an accessible insulator surface”. Yes.
  • the “accessible insulator surface” is “a place where a finger can touch without applying too much force”, and a metal foil is pressed against the accessible insulator surface to increase electrical conductivity.
  • the “distance between the original active part and the metal foil and formed along the surface of the insulator” is the creeping distance.
  • it is defined as the shortest distance when it measures along the surface of an insulator between the live part and the boundary surface of an electric equipment. When there are two or more routes passing between two different live parts or between the live part and the boundary surface of the electrical equipment, the shortest distance through the shorter route is used.
  • the electrical component of this embodiment is configured by a male side member 10 and a female side member 20.
  • the male side member 10 has a configuration in which a predetermined electrical cable 12 is connected to a male side terminal 11 which is a live part, and the male side terminal 11 is surrounded by a cylindrical male side insulating resin molded body 13.
  • the male side insulating resin molded body 13 and the electric cable 12 are fixed by a cap 14.
  • the female-side member 20 has a configuration in which a predetermined electrical cable 22 is connected to a female-side terminal 21 that is a live part, and the female-side terminal 21 is surrounded by a cylindrical female-side insulating resin molded body 23.
  • the female side insulating resin molding 23 and the electric cable 22 are fixed by a cap 24.
  • the female side insulating resin molded body 23 includes a claw portion 25 for fitting the male side member 10 and the female side member 20, and the male side insulating resin molded body 13 inserts the claw portion 25.
  • a slit 15 is provided.
  • the female terminal 21 has an opening 26. As shown in FIG. 2, when the male side member 10 and the female side member 20 are fitted together, the claw portion 25 is inserted into the slit 15 shown in FIG. 1, and the male side terminal 11 is inserted into the opening portion 26 shown in FIG. It is made to insert, and the energized state between both members 10 and 20 is formed by this. As shown in FIG.
  • the male side terminal 11 and the female side terminal 21, which are live parts, are respectively connected to the outer surface portion of the electrical component by the male side insulating resin molded body 13 and the female side insulating resin molded body 23. Separated. Specifically, it is the length between the outer surface of the cap 24 of the female side member 20 and the female side terminal 21, and is the length formed along the surface of the female side insulating resin molded body 23.
  • the shortest distance including the length of the broken line AB is an example of the creepage distance.
  • the shortest distance including the length formed along the surfaces of the both insulating resin molded bodies 13 and 23, that is, the length of the broken line CD is another example of the creepage distance.
  • the shortest distance including the formed length, that is, the length of the broken line EF is another example of the creepage distance.
  • a plurality of creeping distances may exist because a plurality of components are combined.
  • the insulating resin molded body constituting the electric component of the present embodiment includes an electric / power / heat / light transmission component and various insulating components in various industries such as automobiles, electric / electronics, housing, and energy, and such components. It can be suitably used as a housing or housing for storing or holding, or a sheet / film-like molded body.
  • the electrical component which comprises the insulating resin molding of this embodiment is suitable for solar cell module uses, such as a solar cell connector and a solar cell junction box, a power supply adapter, and an inverter component use.
  • the tracking resistance of the insulating resin molded body constituting the electrical component of the present embodiment is important for maintaining long-term safety in the electrical component. In particular, in an electrical component that has been reduced in size and thickness in recent years, the distance between conductive portions tends to be shortened, and thus higher tracking resistance is required.
  • the insulating resin molded body constituting the electrical component of the present embodiment is obtained by molding a specific thermoplastic resin composition, and is excellent in insulation and impact resistance.
  • the impact resistance of the thermoplastic resin composition can be evaluated by the method described in [Example] described later.
  • the method of molding the thermoplastic resin composition is not particularly limited, but includes injection molding (including insert molding, hollow molding, multicolor molding, etc.), blow molding, compression molding, extrusion molding, thermoforming, Examples include cutting.
  • injection molding is preferable from the viewpoint of mass productivity, and multicolor molding and metal insert molding are more preferable from the viewpoint of heat resistance, dimensional stability, and rigidity.
  • the thermoplastic resin composition is resistant to an elastomer additive that bleeds after long-term use.
  • thermoplastic resin composition for obtaining the insulating resin molded body constituting the electrical component of the present embodiment has chemical resistance to the elastomer additive by having the above-described composition.
  • chemical resistance to the elastomer additive for example, it is effective to increase the content of the (A) polyphenylene ether resin.
  • the presence or absence of chemical resistance with respect to the additive of the elastomer can be evaluated by the method described in [Example] described later.
  • the thermoplastic resin composition for obtaining the insulating resin molding which comprises the electrical component of this embodiment is excellent in tracking property.
  • the insulating resin molded body constituting the electrical component of the present embodiment is an electrolyte solution (0.1% by mass of ammonium chloride) until tracking occurs when a voltage of 400 V is applied in a tracking test based on IEC60112.
  • the number of drops of the aqueous solution) is preferably 50 drops or more, more preferably 60 drops or more, and still more preferably 80 drops or more in all tests during the test conducted 5 times.
  • the number of electrolytic droplets until tracking occurs is preferably 80 drops or more in all tests during the test performed five times.
  • the tracking test an increase in the number of drops of the electrolytic solution indicates that tracking is difficult to occur.
  • the tracking is a phenomenon in which the insulation is gradually lost due to the occurrence of a discharge between the conducting portions, and the energization / ignition is finally generated. Therefore, in order to prevent the tracking, it is preferable to secure a sufficient creepage distance between the live part and the outer surface of the insulating resin molded body in the electrical component including the insulating resin molded body. .
  • the thermoplastic resin composition for obtaining an insulating resin molded body constituting the electrical component includes (A) a polyphenylene ether-based resin, (B) a hydrogenated block copolymer, (C) It shall contain flame retardant and (D) titanium oxide, and by specifying these contents in an appropriate range, good tracking resistance can be expressed, and the creeping distance should be shortened. Can do.
  • at least one of the creeping distances described above is 15 mm or more and 40 mm or less. By setting the creeping distance to the above numerical range, good tracking resistance can be exhibited.
  • they are 20 mm or more and 40 mm or less, More preferably, they are 20 mm or more and 30 mm or less. If the creepage distance exceeds 40 mm, good insulation performance can be maintained without using the thermoplastic resin composition used in the present embodiment, but the manufacturing process may be complicated by the above-mentioned design measures. There is a possibility that miniaturization of electrical parts cannot be realized. When the creepage distance is in the above range, an electrical component including an insulating resin molded body with less shape design restrictions for preventing tracking fire can be obtained. The tracking resistance of the insulating resin molded body obtained by molding the thermoplastic resin composition can be evaluated by the method described in [Example] described later.
  • the electrical component including the insulating resin molded body of the present embodiment it is important that the thermoplastic resin composition used for forming the insulating resin molded body has good impact resistance and rigidity. .
  • the electrical component including the insulating resin molded body of the present embodiment is assumed to be used under severe environmental conditions such as factories and outdoors, as well as for general households. For this reason, the shock resistance in the case of dropping due to messy handling or flying objects outdoors, the rigidity required for fitting with snap fitting characteristics or mounting with metal parts, It is also important to have sufficient heat resistance to prevent deformation due to heat generation of parts, and particularly, a good balance between impact resistance and rigidity is required.
  • the insulating resin molded body constituting the electrical component of the present embodiment has not only high impact resistance but also sufficient rigidity required as a housing or a structure. Generally, there is a contradictory relationship between rigidity and impact resistance, but the insulating resin molded body constituting the electrical component of the present embodiment is a heat that specifies the ratio between the Charpy impact strength and the flexural modulus as follows. By using the plastic resin composition, rigidity and impact resistance can be improved in a well-balanced manner.
  • the thermoplastic resin composition used in the present embodiment is obtained by dividing the Charpy impact strength (unit: kJ / m 2 ) at 23 ° C. by the flexural modulus (unit: GPa) at 23 ° C. (Charpy impact strength / flexural elasticity). Ratio) is preferably 10 or more, more preferably 12 or more, and still more preferably 14 or more.
  • the upper limit value of the Charpy impact strength is not particularly limited, but the lower limit value of the flexural modulus is preferably 1.5 GPa or more, more preferably 1.8 GPa or more. When the flexural modulus is 1.5 GPa or more, excellent thermal rigidity is obtained as a molded body.
  • the upper limit of the Charpy impact strength / bending elastic modulus is not particularly limited, but indicates that the impact resistance of the insulating resin molded body and that the member made of the insulating resin molded body is securely mated with another member. From the viewpoint of balance with the feeling of rigidity, it is preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less.
  • the content of (A) a polyphenylene ether resin or a mixed resin of a polyphenylene ether resin and a styrene resin, and (B) a hydrogenated block copolymer With respect to a total of 100 parts by mass of A), (B), and (C), the content of the component (A) is 60 to 80 parts by mass, the content of the component (B) is 5 to 30 parts by mass,
  • the Charpy impact strength / bending elastic modulus at 23 ° C. can be controlled within the above range by producing a thermoplastic resin composition by melting and kneading each component with an extruder, which will be described later.
  • the thermoplastic resin composition used in the present embodiment is excellent in impact resistance.
  • the Charpy impact strength at 23 ° C. is preferably at 9 kJ / m 2 or more, more preferably 15 kJ / m 2 or more, further preferably 20 kJ / m 2 or more.
  • the upper limit of the Charpy impact strength at 23 ° C. is not particularly limited, but is, for example, 100 kJ / m 2 or less from the viewpoint of maintaining rigidity and flame retardancy as an electrical component.
  • the Charpy impact strength at 23 ° C. and the flexural modulus at 23 ° C. can be measured by the methods described in “Examples” described later.
  • the thermoplastic resin composition used in the present embodiment preferably has a combustion level of V-0 measured based on a UL-94 vertical combustion test using a test piece having a thickness of 1.5 mm.
  • the combustion level is more preferably V-0.
  • the thermoplastic resin composition used in the present embodiment in order to realize the combustion level, it is effective to manufacture the thermoplastic resin composition by a manufacturing method described later.
  • thermoplastic resin composition constituting the electrical component of the present embodiment includes (A) a polyphenylene ether resin or a mixed resin of a polyphenylene ether and a styrene resin, (B) a hydrogenated block copolymer, and (C). A flame retardant and (D) titanium oxide are included.
  • the content of (A) is 60 to 80 parts by mass and the content of (B) is 5 to 30 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C).
  • the content of (C) is 9 to 25 parts by mass, and the content of (D) is 0.1 to 3 parts by mass.
  • each component which comprises a thermoplastic resin composition is demonstrated in detail.
  • the polyphenylene ether-based resin constituting the (A) polyphenylene ether-based resin or the mixed resin of the polyphenylene ether-based resin and the styrene-based resin used in the present embodiment is represented by the following general formula (1) and / or general formula (2). It is preferably a homopolymer or a copolymer having a repeating unit represented. As will be described later, a modified body having a predetermined modifying group can also be applied.
  • R1, R2, R3, R4, R5, and R6 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 9 carbon atoms. Or represents a halogen atom, provided that R5 and R6 are not hydrogen at the same time.
  • the homopolymer of polyphenylene ether is not limited to the following, but examples thereof include poly (2,6-dimethyl-1,4-phenylene) ether and poly (2-methyl-6-ethyl-1,4).
  • -Phenylene) ether poly (2,6-diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n) -Propyl-1,4-phenylene) ether, poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-chloroethyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly (2-methyl- - chloroethyl-1,4-phenylene)
  • the polyphenylene ether copolymer is a copolymer having a repeating unit represented by the general formula (1) and / or the general formula (2) as a main repeating unit. “Main” means that the polyphenylene ether copolymer contains 60% by mass or more of the repeating unit represented by the general formula (1) and / or the general formula (2).
  • Examples of the polyphenylene ether copolymer include, but are not limited to, a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, and 2,6-dimethylphenol and o. And a copolymer of -cresol and a copolymer of 2,6-dimethylphenol, 2,3,6-trimethylphenol and o-cresol.
  • the polyphenylene ether resin is preferably poly (2,6-dimethyl-1,4-phenylene) ether from the viewpoint of thermal stability. Further, 2- (dialkylaminomethyl) -6-methylphenylene ether unit and 2- (N-alkyl-N-phenylaminomethyl) -6-methylphenylene described in JP-A-63-301222 and the like Polyphenylene ether containing an ether unit or the like as a partial structure is more preferable from the viewpoint of improving the thermal stability of the polyphenylene ether resin.
  • the reduced viscosity (unit: dl / g, chloroform solution, measured at 30 ° C.) of the polyphenylene ether resin is preferably in the range of 0.25 to 0.6, more preferably from the viewpoint of fluidity, toughness, and chemical resistance. It is in the range of 35 to 0.55.
  • modified polyphenylene ether obtained by modifying a part or all of polyphenylene ether with an unsaturated carboxylic acid or a derivative thereof can be used as the polyphenylene ether resin.
  • This modified polyphenylene ether is disclosed in Japanese Patent Laid-Open No. 2-276823 (US Pat. Nos. 5,159,027 and 35695), Japanese Patent Laid-Open No. 63-108059 (US Pat. Nos. 5,214,109 and 5216089), and Japanese Patent 59-59724 and the like.
  • the modified polyphenylene ether can be produced, for example, by melting and kneading an unsaturated carboxylic acid or a derivative thereof with polyphenylene ether in the presence or absence of a radical initiator. Or it can manufacture by dissolving polyphenylene ether, unsaturated carboxylic acid, and its derivative (s) in the organic solvent in the presence or absence of a radical initiator, and making it react in a solution.
  • Examples of the unsaturated carboxylic acid or derivative thereof include, but are not limited to, maleic acid, fumaric acid, itaconic acid, halogenated maleic acid, cis-4-cyclohexene 1,2-dicarboxylic acid, endo -Cis-bicyclo (2,2,1) -5-heptene-2,3-dicarboxylic acid, etc., acid anhydrides, esters, amides, imides, etc. of these dicarboxylic acids, acrylic acid, methacrylic acid, and these Examples include monocarboxylic acid esters and amides.
  • the modified polyphenylene ether which is itself a thermal decomposition at the reaction temperature at the time of producing the modified polyphenylene ether and is used in this embodiment is the polyphenylene ether resin (A)
  • a saturated carboxylic acid that can be a derivative of can also be used. Specific examples include malic acid and citric acid. These may be used alone or in combination of two or more.
  • the polyphenylene ether resin is generally available as a powder.
  • the average particle size of the polyphenylene ether resin is preferably 1 to 1000 ⁇ m, more preferably 10 to 700 ⁇ m, still more preferably 100 to 500 ⁇ m. From the viewpoint of handleability during processing, the average particle size of the polyphenylene ether resin powder is preferably 1 ⁇ m or more, and preferably 1000 ⁇ m or less from the viewpoint of suppressing the generation of unmelted material during melt kneading.
  • the average particle size of the polyphenylene ether-based resin powder can be measured, for example, with a laser particle size meter.
  • a mixed resin of a polyphenylene ether resin and a styrene resin can be used as the component (A).
  • the styrene resin refers to a polymer obtained by polymerizing a styrene compound or a styrene compound and a compound copolymerizable with the styrene compound in the presence or absence of a rubbery polymer.
  • styrene compound examples include, but are not limited to, styrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, p-methylstyrene, p-tert-butylstyrene, and ethylstyrene. Etc., and styrene is preferable.
  • the compounds copolymerizable with the styrene compound are not limited to the following, but include, for example, methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile.
  • An acid anhydride such as maleic anhydride is used, and is used together with a styrenic compound.
  • the amount of the compound copolymerizable with the styrene compound is preferably 20% by mass or less, more preferably 15% by mass or less, based on the total amount with the styrene compound.
  • the rubbery polymer include conjugated diene rubbers, copolymers of conjugated dienes and aromatic vinyl compounds, and ethylene-propylene copolymer rubbers. Specifically, polybutadiene and styrene-butadiene copolymer are preferable.
  • the rubber polymer it is more preferable to use partially hydrogenated polybutadiene having an unsaturation degree of 80 to 20% or polybutadiene containing 90% or more of 1,4-cis bonds.
  • styrene resin examples include, but are not limited to, polystyrene, rubber-reinforced polystyrene, styrene-acrylonitrile copolymer (AS resin), rubber-reinforced styrene-acrylonitrile copolymer (ABS resin), and others. And styrene-based copolymers. Particularly preferred is a combination of polystyrene and rubber reinforced polystyrene using partially hydrogenated polybutadiene having a degree of unsaturation of 80-20%.
  • styrene-based resin in the component (A) constituting the thermoplastic resin composition used in the present embodiment homopolystyrene is preferable, and both atactic polystyrene and syndiotactic polystyrene can be used.
  • the styrene resin is preferably 20% by mass or less, more preferably 10% when the component (A) is 100% by mass. It is contained by mass% or less, more preferably 5 mass% or less.
  • the above-mentioned styrene resin is used in the form of replacing a part of the polyphenylene ether resin in the component (A), and the amount of the polyphenylene ether resin in the component (A) by the content of the styrene resin. Is reduced.
  • the content of the styrene resin in the component (A) is increased, the fluidity is improved, but it is preferably 20% by mass or less from the viewpoint of heat resistance and flame retardancy.
  • a thermoplastic resin composition excellent in heat resistance and flame retardancy can be obtained, and in the case of no addition, particularly excellent in heat resistance and heat aging resistance.
  • a thermoplastic resin composition is obtained.
  • the content of component (A) varies arbitrarily depending on other components, but the total amount of component (A), component (B) and component (C) is 100.
  • the range is 60 to 80 parts by mass, preferably 65 to 80 parts by mass, and more preferably 65 to 75 parts by mass.
  • the content of the component (A) is 60 parts by mass or more, the heat resistant temperature is high and the heat aging characteristics are excellent.
  • liquidity becomes favorable as content of (A) component is 80 mass parts or less.
  • the content of the component (A) is decreased within the above range and the content of the component (B) described later is increased, a thermoplastic resin composition having excellent impact resistance can be obtained.
  • the thermoplastic resin composition used for the electrical component of this embodiment contains (B) a hydrogenated block copolymer.
  • B a hydrogenated block copolymer, a hydrogenated block copolymer obtained by hydrogenating a block copolymer of styrene and a conjugated diene compound, that is, a block copolymer comprising a polystyrene block and a conjugated diene compound polymer block.
  • a polymer can be preferably used.
  • the hydrogenation rate of the unsaturated bond derived from the conjugated diene compound by hydrogenation is preferably 60% or more, more preferably 80% or more, and still more preferably 95% or more.
  • the structure of the block copolymer before hydrogenation of the component (B) is such that the component (B) is a hydrogenated block copolymer obtained by hydrogenating a block copolymer of styrene and a conjugated diene compound.
  • the block chain is represented as S
  • the diene compound block chain is represented as B, SSB, SSBSB, (SB—) 4 -Si, SBSSBSS, etc.
  • the structure which has is mentioned.
  • the microstructure of the diene compound polymer block can be arbitrarily selected.
  • the amount of vinyl bonds is the total of diene compound polymer bonds (1,2-vinyl bonds, 3,4-vinyl bonds and 1,4-bonds). In the range of 2 to 60%, more preferably 8 to 40%.
  • the hydrogenated block copolymer As the hydrogenated block copolymer, at least one hydrogenated block copolymer having a number average molecular weight of preferably 150,000 to 350,000, more preferably 200,000 to 300,000 is selected. It is preferable to use it. (B) If the number average molecular weight of the hydrogenated block copolymer is 150,000 or more, the impact resistance of the thermoplastic resin composition tends to be excellent. (B) The impact resistance of the thermoplastic resin composition is improved in proportion to the number average molecular weight of the hydrogenated block copolymer, and a practically sufficient impact resistance is obtained by being 150,000 or more. 350,000 or less, the load at the time of melt extrusion of the thermoplastic resin composition is reduced, excellent processing fluidity is obtained, and the component (B) is sufficiently dispersed in the thermoplastic resin composition. be able to.
  • the (B) hydrogenated block copolymer is a hydrogenated block copolymer obtained by hydrogenating a block copolymer of styrene and a conjugated diene compound
  • at least one styrene polymer block chain has a number average molecular weight. It is preferably 15,000 or more, more preferably 20,000 or more and 50,000 or less. More preferably, the number average molecular weight of all styrene polymer block chains is 15,000 or more. The number average molecular weight can be measured by gel permeation chromatography (GPC).
  • the hydrogenated block copolymer is a hydrogenated block copolymer obtained by hydrogenating a block copolymer of styrene and a conjugated diene compound
  • the styrene polymer block is (B) a hydrogenated block copolymer.
  • the range occupied by the polymer is not particularly limited as long as the number average molecular weight of the styrene polymer block chain is within the above range, but is preferably 10 to 70% by mass, more preferably from the viewpoint of the balance between fluidity and impact resistance. Is in the range of 20-50% by weight.
  • a hydrogenated block copolymer 2 or more types of hydrogenated block copolymers from which a composition and a structure differ can also be used together. For example, combined use of a hydrogenated block copolymer having a bound styrene polymer block content of 50% by mass or more and a hydrogenated block copolymer having a bound styrene polymer block content of 30% by mass or less, or hydrogenations having different molecular weights.
  • a block copolymer may be used in combination, or a hydrogenated random block copolymer obtained by hydrogenating a block copolymer containing a random copolymer block of styrene and conjugated diene may be used in combination.
  • the content of the (B) hydrogenated block copolymer is 100 parts by mass of the total of the (A) component, the (B) component, and the (C) component described later. In this case, the range is 5 to 30 parts by mass, preferably 10 to 25 parts by mass, and more preferably 10 to 20 parts by mass.
  • (B) By setting the content of the hydrogenated block copolymer to 5 parts by mass or more, a thermoplastic resin composition excellent in impact resistance and tracking resistance is obtained, and by setting it to 30 parts by mass or less, A thermoplastic resin composition having excellent flexural modulus, flame retardancy, and stabilization of flame retardancy after heat aging can be obtained.
  • thermoplastic resin composition used in the present embodiment, (B) the hydrogenated block copolymer is dispersed in the form of particles.
  • the average particle size of the component (B) particles dispersed in the thermoplastic resin composition is preferably 0.2 to 1.0 ⁇ m, more preferably 0.3 to 1.0 ⁇ m, Preferably, it is 0.3 to 0.6 ⁇ m.
  • the average particle size of the component (B) particles is 0.2 to 1.0 ⁇ m, a thermoplastic resin composition having excellent impact resistance, a balance between impact resistance and bending elastic modulus, and tracking resistance can be obtained. .
  • the content of the component (A) and the component (B) is set to 60 to 60 parts by weight with respect to a total of 100 parts by weight of the components (A), (B), and (C). 80 parts by mass, the content of the component (B) is 5 to 30 parts by mass, and the method for producing a thermoplastic resin composition described later is used to control the average particle size of the particles (B) within the above range. can do.
  • distributed in a thermoplastic resin composition can be measured by the method as described in the Example mentioned later.
  • the thermoplastic resin composition used in the present embodiment contains (C) a flame retardant.
  • C) a flame retardant at least 1 sort (s) chosen from the group which consists of an inorganic flame retardant, a silicone compound, and an organic phosphorus compound is mentioned as a preferable thing.
  • the inorganic flame retardant is not limited to the following, but is generally used as a flame retardant for synthetic resins, such as magnesium hydroxide containing crystal water and alkali metal water such as aluminum hydroxide. Examples thereof include oxides or alkaline earth metal hydroxides, zinc borate compounds, zinc stannate compounds, and the like.
  • the silicone compound examples include organopolysiloxane or a modified product containing organopolysiloxane.
  • the silicone compound may be liquid at normal temperature or solid.
  • the skeleton structure of the organopolysiloxane may be either a linear structure or a branched structure, but preferably contains a branched structure by having a trifunctional or tetrafunctional structure in the molecule, and further a three-dimensional structure.
  • the bonding group of the main chain or branched side chain of the silicone compound include hydrogen or a hydrocarbon group, preferably a phenyl group, a methyl group, an ethyl group, and a propyl group, but other hydrocarbon groups may be bonded to the bonding group. You may have as.
  • the terminal linking group of the silicone compound may be any of an —OH group, an alkoxy group, or a hydrocarbon group.
  • any of four types of siloxane units (M unit: R 3 SiO 0.5 , D unit: R 2 SiO 1.0 , T unit: RSiO 1.5 , Q unit: SiO 2.0 ) is polymerized. The polymer formed is mentioned.
  • thermoplastic resin composition of the present embodiment of the silicone compound used as (C) a flame retardant, preferred organopolysiloxanes, in the total amount of the four siloxane units represented by the formula RSiO 1.5
  • the siloxane unit (T unit) is preferably 60 mol% or more, more preferably 90 mol% or more, still more preferably 100 mol%, and in all silicone compounds to be used, bonds in all siloxane units represented by R
  • the hydrocarbon group is preferably one having at least 60 mol%, more preferably 80 mol% or more having a phenyl group.
  • organopolysiloxane (C) that is a flame retardant
  • a modified silicone in which a bonding group is substituted with an amino group, an epoxy group, a mercapto group, or another modifying group can also be used.
  • a modified product obtained by chemically or physically adsorbing organopolysiloxane on an inorganic filler such as silica or calcium carbonate can also be used.
  • organophosphorus compound that is the flame retardant (C) examples include, but are not limited to, phosphoric acid flame retardants and phosphazene compounds.
  • the organophosphorus compound can be improved in flame retardancy by addition, and any organophosphorus compound generally used as a flame retardant can be used.
  • a phosphoric acid-based flame retardant is preferably used because high flame retardancy is obtained.
  • the phosphoric acid flame retardant it is particularly preferable to use a phosphate ester compound.
  • Examples of the phosphoric acid ester compound include, but are not limited to, for example, triphenyl phosphate, trisnonyl phenyl phosphate, resorcinol bis (diphenyl phosphate), resorcinol bis [di (2,6-dimethylphenyl). ) Phosphate], 2,2-bis ⁇ 4- [bis (phenoxy) phosphoryloxy] phenyl ⁇ propane, 2,2-bis ⁇ 4- [bis (methylphenoxy) phosphoryloxy] phenyl ⁇ propane, and the like.
  • phosphorus-based flame retardants other than those described above are not limited to the following, but examples include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, tricresyl phosphate, cresyl phenyl.
  • Phosphate ester flame retardants such as phosphate, octyl diphenyl phosphate, diisopropylphenyl phosphate, diphenyl-4-hydroxy-2,3,5,6-tetrabromobenzyl phosphonate, dimethyl-4-hydroxy-3,5-dibromo Benzyl phosphonate, diphenyl-4-hydroxy-3,5-dibromobenzyl phosphonate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) Pyr) phosphate, bis (2,3-dibromopropyl) -2,3-dichloropropyl phosphate, tris (2,3-dibromopropyl) phosphate, and bis (chloropropyl) monooctyl phosphate, hydroquinonyl diphenyl phosphate, phenyl Examples thereof include mono
  • aromatic condensed phosphate compounds are preferred because they generate less gas during processing and are excellent in thermal stability and the like.
  • the aromatic condensed phosphate compound is generally commercially available, and for example, CR741, CR733S, PX200 manufactured by Daihachi Chemical Industry Co., Ltd., FP600, FP700, FP800 manufactured by ADEKA Co., Ltd., and the like can be used.
  • the aromatic condensed phosphate ester compound is preferably a condensed phosphate ester represented by the following formula (I) or formula (II).
  • Q1, Q2, Q3 and Q4 are each a substituent and each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R11 and R12 are each a methyl group.
  • R13 and R14 each independently represent a hydrogen atom or a methyl group.
  • n is an integer of 1 or more, and n1 and n2 each independently represents an integer of 0 to 2.
  • m1, m2, m3 and m4 each independently represents an integer of 0 to 3.
  • each molecule has n as an integer of 1 or more, preferably an integer of 1 to 3, as described above.
  • preferable condensed phosphate esters include condensed phosphate esters in which m1, m2, m3, m4, n1 and n2 in formula (I) are 0, and R13 and R14 are methyl groups.
  • Q1, Q2, Q3, Q4, R13 and R14 are methyl groups, n1 and n2 are 0, and m1, m2, m3 and m4 are integer condensed phosphate esters of 1 to 3.
  • n is preferably in the range of 1 to 3, particularly preferably 50% by mass or more of a phosphoric acid ester in which n is 1.
  • aromatic condensed phosphate compounds particularly preferred are aromatic condensed phosphate compounds having an acid value of 0.1 or less (value obtained according to JIS K2501) from the viewpoint of heat aging resistance. Is mentioned.
  • phosphazene compound which is the flame retardant (C) phenoxyphosphazene and its crosslinked body are preferable, and an acid value of 0.1 or less (value obtained in accordance with JIS K2501) from the viewpoint of heat aging resistance. Phenoxyphosphazene compounds are more preferred.
  • the content of the (C) flame retardant varies depending on the required flame retardant level, but the total amount of the component (A), the component (B) and the component (C) When it is 100 parts by mass, it is in the range of 9-25 parts by mass, preferably in the range of 9-20 parts by mass, more preferably in the range of 10-20 parts by mass.
  • (C) By setting the flame retardant content to 9 parts by mass or more, excellent flame retardancy and tracking resistance can be obtained. By setting the content to 25 parts by mass or less, high impact resistance can be maintained. A thermoplastic resin composition having an excellent balance between impact resistance and flexural modulus can be obtained.
  • the thermoplastic resin composition used in this embodiment contains (D) titanium oxide.
  • the primary particle size of (D) titanium oxide in the raw material stage is preferably 0.01 to 0.5 ⁇ m, more preferably 0.05 to 0.00 ⁇ m, from the viewpoint of the balance between dispersibility and handleability during production.
  • the thickness is 4 ⁇ m, more preferably 0.15 to 0.3 ⁇ m.
  • Titanium oxide may contain, as a surface treatment agent, a hydrous oxide such as aluminum, magnesium, zirconia titanium and tin and / or an oxide, a higher fatty acid salt such as stearic acid, or an organosilicon compound. .
  • Titanium oxide can be produced by a dry method or a wet method. Further, the resulting structure of (D) titanium oxide may be either a rutile type or an anatase type, but the rutile type is preferred from the viewpoint of the thermal stability of the thermoplastic resin composition used in the present embodiment.
  • the compounding amount of titanium oxide is 0.1 to 3.0 parts by mass, preferably 100 parts by mass with respect to the total amount of component (A), component (B), and component (C), preferably The amount is 0.5 to 2.5 parts by mass, more preferably 0.7 to 2.0 parts by mass.
  • tracking resistance improves, 3.0 By setting the amount to be equal to or less than the mass part, the low temperature impact strength can be ensured, and the balance between the impact strength and the flexural modulus can be improved.
  • thermoplastic resin composition containing the components described above Furthermore, by adding (D) titanium oxide to the thermoplastic resin composition containing the components described above, the flame resistance after thermal aging (A), (B), and (C) is as follows. Can be stabilized.
  • the flame retardant stabilization method of this embodiment is (A) a polyphenylene ether resin, or a mixed resin of a polyphenylene ether resin and a styrene resin, (B) the hydrogenated block copolymer; The flame retardant (C); A thermoplastic resin composition containing (D) Titanium oxide coexists.
  • the flame retardant (C) is a phosphoric acid flame retardant
  • the effect of improving the stability of flame retardancy is large and preferable.
  • the “after heat-resistant aging” includes, for example, conditions after an aging test at 150 ° C. for 500 hours.
  • thermoplastic resin composition For a total of 100 parts by mass of (A), (B), and (C), The content of (A) is 60 to 80 parts by mass, and the content of (B) is 5 to 30 parts by mass. The content of the (C) is 9 to 25 parts by mass, with respect to the thermoplastic resin composition contained, When the addition amount of (D) is 0.1 to 3 parts by mass, The effect of stabilizing the flame retardancy (UL94 vertical combustion test) of the thermoplastic resin composition is high, which is preferable.
  • thermoplastic resin composition in addition to the components (A) to (D), a predetermined material described later may be included.
  • a predetermined material described later may be included.
  • the thermoplastic resin composition used in the present embodiment is described as (E) alkaline earth metal carbonate and / or sulfate (hereinafter referred to as component (E).
  • component (E) alkaline earth metal carbonate and / or sulfate
  • the alkaline earth metal in component (E) is at least one element included in Group IIa of the periodic table, preferably calcium, barium, strontium, and magnesium, and more preferably calcium and barium.
  • the average particle size of the component (E) is not particularly limited, but the average particle size is preferably 0.05 to 3 ⁇ m, more preferably 0.05 to 1 ⁇ m.
  • the average particle diameter of the component (E) can be obtained by observing particles at the raw material stage of the component (E) at 20,000 times the electron microscope and calculating the arithmetic average value.
  • a component may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the content of the component (E) in the thermoplastic resin composition used in the present embodiment is 0.01 when the total amount of the component (A), the component (B), and the component (C) is 100 parts by mass. Is preferably 1.0 to 1.0 part by mass, more preferably 0.01 to 0.5 part by mass, and still more preferably 0.01 to 0.1 part by mass.
  • the content of the component (E) is 0.01 part by mass or more, tracking resistance can be stabilized, and when it is 1.0 part by mass or less, practically good impact resistance is obtained. can get.
  • additives In order to impart desired characteristics to the thermoplastic resin composition used in the present embodiment, other additives may be contained within a range that does not impair the effects of the present invention.
  • Other additives include, but are not limited to, for example, heat stabilizers, ultraviolet absorbers, light absorbers, plasticizers, antioxidants, various stabilizers, antistatic agents, mold release agents, Examples include dyes and pigments, epoxy compounds, and resins other than the component (A), such as polyethylene.
  • a solar cell module application such as a solar cell connector or a solar cell junction box, which is a suitable application of the electrical component of the present embodiment, it is often used outdoors, and therefore it is preferably black. For this reason, it is preferable to contain carbon black as a dye / pigment.
  • the preferable content of carbon black is preferably 0.1 to 3.0 parts by weight, and preferably 0.1 to 1.0 parts by weight with respect to 100 parts by weight of the total amount of the components (A) to (D) described above. More preferred is 0.2 to 0.6 parts by mass. If it is 0.1 to 3.0 parts by mass, a thermoplastic resin composition having a good appearance can be obtained, and even if it contains titanium oxide, a thermoplastic resin composition exhibiting a sufficient black color can be obtained.
  • other conventionally known flame retardants other than the above-described component (C) and flame retardant aids can also be blended, whereby the flame retardancy can be further improved.
  • thermoplastic resin composition having further excellent dimensional accuracy and heat resistance can be obtained.
  • thermoplastic resin composition used in the present embodiment may further contain other polymers and oligomers.
  • Such other polymers and oligomers are not limited to the following, but include, for example, petroleum resins, terpene resins and hydrogenated resins, coumarone resins, coumarone indene resins, or flame retardants as fluidity improvers. Examples thereof include silicone resins and phenol resins.
  • thermoplastic resin composition used in the present embodiment can be obtained by melt-kneading the above-described components with an extruder.
  • a twin screw extruder is suitable.
  • twin screw extruder include, but are not limited to, a twin screw extruder with a screw diameter of 58 mm, a barrel number of 13, and a vacuum vent port.
  • a method for producing a thermoplastic resin composition using the twin screw extruder will be specifically described.
  • the component (A), the component (B), the component (D), and the component (E) as necessary are in the barrel 1 on the upstream side with respect to the flow direction of the twin-screw extruder.
  • the component (C) is fed from the injection nozzle to the side of the extruder from the second (liquid) supply port on the downstream side of the first supply port, and extruded.
  • the screw configuration of the twin-screw extruder is preferably 45 to 75%, more preferably 60 to 70% from the upstream side of the barrel when the total length of the unmelted mixing zone is 100%. preferable.
  • a kneading element having a phase of 45 degrees (usually indicated as R), a kneading element having a phase of 90 degrees (usually indicated as N), and a kneading element having a negative phase of 45 degrees (Usually indicated as L) is preferably used, and the kneading element (usually indicated as R) having a phase of 45 degrees is used in the unmelted mixing zone after feeding the flame retardant from the second supply port. It is preferable to do.
  • the screw in the melt-kneading zone is not limited to the following.
  • a kneading disc R (L (screw length) / combination of 3 to 7 discs combined at a twist angle of 15 to 75 degrees) D (positive screw element having a screw diameter) of 0.5 to 2.0) and kneading disc N (3 to 7 discs are combined at a twist angle of 90 degrees, L / D is 0.5 to 2 .. neutral screw element), kneading disc L (reverse screw screw element with L / D of 0.5 to 1.0, combining 3 to 7 discs with a twist angle of 15 to 75 degrees), etc.
  • a screw structure in which the screw is combined as appropriate and a reverse screw (two-thread reverse screw element with L / D of 0.5 to 1.0)
  • SME screw screw element with an L / D of 0.5 to 1.5 with a notch in the positive screw to improve kneadability
  • ZME screw notch on the reverse screw screw to improve kneadability
  • An improved screw element such as an improved screw element having an L / D of 0.5 to 1.5
  • the resin temperature during melt kneading is preferably in the range of 290 to 350 ° C.
  • the former stage temperature of the twin-screw extruder is preferably in the range of 150 to 250 ° C.
  • the latter stage temperature is preferably in the range of 250 to 330 ° C.
  • the die outlet resin temperature is not particularly limited, but 290 It is preferable that the temperature be in the range of ⁇ 350 ° C.
  • the screw speed of the twin screw extruder is preferably in the range of 150 to 600 rpm.
  • thermoplastic resin composition By producing a thermoplastic resin composition according to the above-described production method, a thermoplastic resin composition in which (B) hydrogenated block copolymer particles are dispersed in a numerical range of 0.2 to 1.0 ⁇ m is obtained. It is done. Thereby, the thermoplastic resin composition excellent in tracking resistance, impact resistance, and flame retardancy is obtained.
  • the electrical component of the present embodiment is manufactured by molding the above-described thermoplastic resin composition into a predetermined shape according to the application, obtaining an insulating resin molded body, and combining this with a predetermined active part according to the application. can do.
  • the molding method is not particularly limited, and includes injection molding (including insert molding, hollow molding, multicolor molding, etc.), blow molding, compression molding, extrusion molding, thermoforming, cutting from a thick plate, and the like. Among these, injection molding is preferable from the viewpoint of mass productivity, and multicolor molding and metal insert molding are more preferable from the viewpoint of heat resistance, dimensional stability, and rigidity.
  • the two-color molding with an elastomer is suitable because the thermoplastic resin composition is resistant to an elastomer additive that bleeds after long-term use.
  • the live part various selections are possible depending on the application of the electrical component, and examples thereof include a metal terminal and a conductive wire.
  • thermoplastic resin composition is (A) a polyphenylene ether resin, or a mixed resin of a polyphenylene ether resin and a styrene resin, (B) the hydrogenated block copolymer; Containing,
  • the combustion level of the thermoplastic resin composition is V-0, In the tracking resistance test according to IEC60112 of the thermoplastic resin composition (30 mm ⁇ 30 mm test piece), the drop amount until tracking occurs in all of 300 V, 400 V, 500 V, and 600 V is 80 drops or more, It is a length between the live part and the outer surface part of the electrical component that is electrically separated by the insulation resin molding, and is formed along the surface of the insulation resin molding An electrical component
  • the said thermoplastic resin composition can be manufactured by melt-kneading said (A) component, (B) component, and another component as needed.
  • the insulating resin molding can be manufactured by molding the thermoplastic resin composition into a predetermined shape.
  • the electrical component can be manufactured by combining the insulating resin molded body and a predetermined live part according to the application.
  • the UL94 vertical combustion test can be carried out by the method described in [Example] described later.
  • the tracking test can be carried out by the method described in [Example] described later.
  • the electrical components of this embodiment are industrial equipment such as office machines, measuring instruments, chassis, internal parts of electrical equipment, home appliance related power adapters, recording media and their drives, sensor equipment, terminal blocks, energy For secondary batteries, fuel cells and solar cells in the environmental field, solar power generation, geothermal power generation, wind power generation, electric meters used in smart meters, etc., electrical components constituting power transmission facilities, cable terminals, automobile parts, solar cells It can be used as a connector, junction box for solar cells, and parts for hybrid and electric vehicles. In particular, it is preferably used for a solar cell connector, a solar cell junction box, and a power adapter.
  • each example and each comparative example are as follows.
  • Component (A) PPE: polyphenylene ether resin
  • Poly-2,6-dimethyl-1,4-phenylene ether product name “Zylon S201A” manufactured by Asahi Kasei Chemicals Corporation.
  • PS polystyrene
  • Homopolystyrene Product name “PSJ-polystyrene 685” manufactured by PS Japan Corporation.
  • HIPS high impact polystyrene
  • High impact polystyrene Product name “PSJ-polystyrene H9302” manufactured by PS Japan Co., Ltd.
  • (B) Hydrogenated block copolymer The following hydrogenated block copolymer (polystyrene-poly (ethylene-butylene) -polystyrene bond structure) obtained by hydrogenating a styrene-butadiene block copolymer (polystyrene-polybutadiene-polystyrene bond structure) was obtained.
  • SEBS-2 Hydrogenated block copolymer having a number average molecular weight of 80,000, a styrene polymer block of 60% by mass, and a hydrogenation rate of butadiene units of 98% or more: Kuraray Co., Ltd., trade name “Septon 8104”.
  • SEBS-3 Hydrogenated block copolymer having a number average molecular weight of 80,000, a styrene polymer block of 30% by mass, and a hydrogenation rate of 98% or more of butadiene units: manufactured by Kraton Polymers LLC, registered trademark “Clayton G1650”.
  • the number average molecular weight is measured by gel permeation chromatography (GPC)
  • the styrene polymer block amount is measured by an osmium tetroxide decomposition method
  • the hydrogenation rate of the butadiene unit is determined by infrared spectroscopy. And were measured by nuclear magnetic resonance analysis.
  • (C) Flame retardant The following phosphate ester flame retardants were used.
  • thermoplastic resin composition Characteristic evaluation of the thermoplastic resin compositions produced in Examples and Comparative Examples described later was performed by the following methods and conditions.
  • thermoplastic resin compositions produced in the examples and comparative examples described later are dried at 100 ° C. for 2 hours, and then are manufactured by Toshiba Machine Co., Ltd. IS-100GN type injection molding machine (cylinder temperature is 280 ° C., mold)
  • a test piece according to ISO-15103 and a flat plate of 150 mm ⁇ 150 mm ⁇ 3 mm were manufactured using a temperature of 80 ° C.).
  • the average particle diameter of the (B) hydrogenated block copolymer dispersed in a particulate form in the thermoplastic resin composition was measured as follows. Using the test piece according to ISO-15103 produced in the above (manufacture of test piece), the flow end portion of the test piece was selected to produce an ultrathin section. Next, the ultrathin section was stained with ruthenium tetroxide, and then photographed using a transmission electron microscope. Each particle diameter of (B) hydrogenated block copolymer was measured using a 20000 times photograph (visual field 15 cm ⁇ 12 cm), and an average particle diameter was calculated.
  • each dispersed particle size was measured using image analysis software (Image-Pro Plus manufactured by Nippon Roper). Each particle size was substituted by using a software program and projecting the corresponding ellipse and reading the major axis of the particle as the diameter. The average particle size was the average value of 150 samples in the field of view.
  • a terminal block molded product was injection molded using pellets of the thermoplastic resin composition produced in Examples and Comparative Examples described later. Plane portion of this terminal block molded product: 30 mm ⁇ 30 mm is cut out, and 0.1% by mass of ammonium chloride is applied to a test piece in a state where a voltage of 300 V, 400 V, 500 V, and 600 V is applied, respectively, using a test apparatus conforming to IEC60112 % Aqueous solution was dropped every 30 seconds, and the number of drops until tracking occurred was measured. The measurement test of the number of drops was performed 5 times.
  • A very good in the case of 80 or more drops in 3 or more tests
  • B good in practical use in the case of 50 drops or more
  • 1 in less than 50 drops in the test conducted 5 times The case where there were also times was defined as C (defect).
  • the Charpy impact strength / flexural modulus Charpy / FM ratio
  • the Charpy impact strength / bending elastic modulus was calculated from the measured values of the Charpy impact strength and the flexural modulus. When this value was 10 or more, it was evaluated that the balance between impact resistance and rigidity was good.
  • thermoplastic resin composition pellets manufactured in Examples and Comparative Examples described later injection molding was performed by the method described in the above (Manufacture of test pieces) to obtain a flat plate of 150 mm ⁇ 150 mm ⁇ 3 mm, and 10 mm from the flat plate.
  • a test piece was obtained by cutting out a ⁇ 50 mm strip so that the longitudinal direction was perpendicular to the flow direction of the resin.
  • the test piece was attached to a bending bar, applied with a strain of 1.5%, and then the surface of the strip was coated with Beijing TONSAN Adhesive Co. , Ltd. Silicone 1527 was applied, and it was observed whether cracks occurred on the surface of the strip after 48 hours.
  • the occurrence of the crack was used as a measure of chemical resistance and evaluated according to the following criteria. ⁇ Evaluation criteria for chemical resistance> ⁇ : No cracks are visually observed. (Triangle
  • thermoplastic resin composition (Manufacture of thermoplastic resin composition) According to the melt extrusion conditions in the following Table 1 and the blending amounts shown in the following Table 2, the above components were blended to produce a thermoplastic resin composition as follows. Each component was melt-kneaded using a screw diameter of 58 mm, a barrel number of 13 and a twin screw extruder with a reduced pressure vent (TEM58SS: manufactured by Toshiba Machine Co., Ltd.). During the melt kneading, (A) polyphenylene ether (PPE) and polystyrene (PS), (B) hydrogenated block copolymer (SEBS-1), (D) titanium dioxide (above D-1) are extruded.
  • PPE polyphenylene ether
  • PS polystyrene
  • SEBS-1 hydrogenated block copolymer
  • D titanium dioxide
  • the flame retardant (FR-1) is fed from the injection nozzle to the side of the extruder using a gear pump from the second (liquid) supply port downstream from the first supply port, and the strand Extruded.
  • the extruded strand was cut by cooling to obtain a thermoplastic resin composition pellet.
  • the screw configuration of the extruder was such that the unmelted mixing zone was 70% of the total barrel length.
  • a kneading element having a phase of 45 degrees (indicated as R), a kneading element having a phase of 90 degrees (indicated as N), and a kneading element having a negative phase of 45 degrees (indicated as L) were used.
  • a kneading element (labeled R) having a phase of 45 degrees was used after (C) the flame retardant (FR-1 above) was fed from the second supply port.
  • a vacuum degassing zone was provided in the barrel 11 and degassed under reduced pressure at -900 hPa.
  • the barrel 5 was provided with a second supply port for supplying the flame retardant (FR-1). Screw rotation with barrel set temperature as barrel 1: water cooling, barrel 2: 100 ° C, barrel 3-6: 200 ° C, barrel 7: 250 ° C, barrel 8: 270 ° C, barrel 9-13: 280 ° C, die: 290 ° C Extrusion was performed under conditions of several 350 rpm and a discharge rate of 400 kg / hr. The properties of the thermoplastic resin composition and the molded body obtained as described above were evaluated according to the method described above. The evaluation results are shown in Table 2 below.
  • Examples 2 to 13 [Comparative Examples 1 to 6] The formulation shown in Table 2 below was used. Other conditions produced the thermoplastic resin composition pellet similarly to Example 1, and evaluated the characteristic of the thermoplastic resin composition and a molded object. The evaluation results are shown in Table 2 below. In Table 2, Examples 1 to 13 are described as “Examples 1 to 13”, and Comparative Examples 1 to 6 are described as “Comparative 1 to 6”.
  • Examples 1 to 13 molded articles having excellent tracking resistance, excellent balance between impact resistance and rigidity, and stable flame resistance even after heat aging were obtained. Therefore, it was found that by using the insulating resin molding, even an electrical component having at least one creepage distance of 15 mm or more and 40 mm or less can be used as an electrical component having excellent tracking resistance.
  • the electrical parts of the present invention include industrial machines such as office machines, measuring instruments, chassis, internal parts of electrical equipment, power adapters for home appliances, recording media and their drives, sensor equipment, terminal blocks, energy / environment. Electric and electronic parts used in secondary batteries, fuel cells and solar cells, solar thermal power generation, geothermal power generation, wind power generation, smart meters, etc. in the field, electrical components constituting power transmission equipment, cable terminals, automobile parts, especially solar cells There are industrial applicability as connectors for solar cells, junction boxes for solar cells, and parts for hybrid and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

活電部と、 当該活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、 を具備する電気部品であって、 前記熱可塑性樹脂組成物が、 (A)60~80質量部のポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、 (B)60~80質量部の水添ブロック共重合体と、 (C)5~30質量部の難燃剤と、 (D)0.1~3質量部の酸化チタンと、 を含み(前記含有量は、前記(A)~(C)の合計100質量部に対する。)、 前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である、電気部品。

Description

絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法
 本発明は、エージング特性が安定化された絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法に関する。
 近年、電気エネルギー利用の増加により、様々な用途で絶縁樹脂成形体を具備する電気部品が求められている。
 特に、耐トラッキング性能に代表される電気絶縁特性を必要とした電気部品に用いられる絶縁樹脂成形体においては、優れた絶縁性を有し、かつ優れた難燃性、機械的特性、衝撃特性、耐水性、耐薬品性、及び寸法安定性等も有していることが求められる。
 従来の各種電気・電子部品用途向けの樹脂材料としては、例えば、ポリエステル樹脂又はポリアミド樹脂が挙げられる。
 また、耐トラッキング性能及び難燃性について改良された樹脂組成物としては、例えば、ベース樹脂、ハロゲン系難燃剤、及び酸素酸成分を含む樹脂組成物が提案されている(例えば、特許文献1参照。)。
 さらに、非ハロゲン系難燃剤としてリン系難燃剤を含有する樹脂組成物が提案されている(例えば、特許文献2参照。)。
 さらにまた、ポリカーボネートポリオルガノシロキサン共重合体、有機スルホン酸のアルカリ金属塩、ポリテトラフルオロエチレン、及び被覆層を有する二酸化チタン粒子を含む樹脂組成物が提案されている(例えば、特許文献3参照。)。
 一方、寸法精度に優れ、非ハロゲン系難燃剤を含有させる用途向けの材料としては、ポリカーボネート(以下「PC」とも記す。)や、変性ポリフェニレンエーテル(以下「変性PPE」とも記す。)が提案されている。
 これらの樹脂材料は、その特徴を活かし、電気・電子部品のハウジングやシャーシ部品等で使用されている。
 またさらに、ポリフェニレンエーテル樹脂、カーボンブラック、及びアルカリ土類金属の炭酸塩及び/又は硫酸塩を含み、耐トラッキング性能を改善させた熱可塑性樹脂組成物が提案されている(例えば、特許文献4参照。)。
特開2006-265539号公報 特開2013-40288号公報 国際公開第2012/063652号パンフレット 国際公開第2012/035976号パンフレット
 しかしながら、ポリエステル樹脂又はポリアミド樹脂は、機械特性、耐薬品性に優れているが、これらの特性と、寸法安定性や耐水性等との両立が困難であるという問題を有している。
 また、特許文献1に開示されている樹脂組成物は、ハロゲン化難燃剤を用いているため、近年の環境安全志向を十分満足できているとは言えない、という問題を有している。
 さらに、特許文献2に開示されている樹脂組成物は、耐熱エージング後の難燃性が十分に確保できないという問題を有している。
 さらにまた、特許文献3に開示されている樹脂組成物は、ポリカーボネートと特殊表面処理した酸化チタンとを組み合せたものであり、機械的特性、耐水性、寸法安定性の観点から、改善すべき余地がある。
 またさらに、特許文献4に開示されている熱可塑性樹脂組成物は、トラッキングは250V及び275Vでのみ評価されており、これにより高い電圧を適用する部品においては、より長い沿面距離を求められる可能性があり、部品の小型化が困難であるという問題を有している。また、カーボンブラックを必須成分としており、黒色以外の部品への展開に制約があるという問題を有している。
 近年、電気エネルギー分野における電気部品に用いられる絶縁樹脂成形体の使用形態は、太陽電池、燃料電池や蓄電池、電気自動車やLED照明、スマートメーターのように多岐に広がっている。
 そして、これらの絶縁樹脂成形体は、電気部品の小型化、多機能化が要求されている。
 そのため、電気部品に組み込まれている絶縁樹脂成形体において、トラッキングによる作動不良を避けるための活電部間及び活電部と当該絶縁樹脂成形体の外表部との間の十分な絶縁距離を確保することが困難になってきている。
 さらに、特に小型化された電気部品においては、絶縁樹脂成形体が活電部の発熱の影響を受けやすいため、耐熱エージング後も難燃性などの物性が保持されることが強く要求されている。
 一方において、上述したように、従来、環境安全志向の観点から非ハロゲン系難燃剤として、例えばリン系難燃剤を用いた樹脂組成物においては、耐熱エージング後に難燃性が低下してしまうという問題を有している。
 そこで本発明においては、上述した従来技術の問題点に鑑み、難燃性、機械的特性、耐水性、及び寸法安定性を併せて満足するポリフェニレンエーテル系樹脂に注目し、高性能化及び小型化を実現可能な、ポリフェニレンエーテル系樹脂を含む熱可塑性樹脂組成物の成形体を具備する電気部品を提供することを目的とする。
 すなわち、本発明においては、絶縁距離低減化を可能とする耐トラッキング性を有し、耐衝撃性及び剛性のバランスに優れ、かつリン系難燃剤を用いた場合であっても耐熱エージング後も安定した難燃性が維持できる絶縁樹脂成形体を具備する電気部品を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、活電部に接する絶縁樹脂成形体として、ポリフェニレンエーテル系樹脂(以下、「PPE系樹脂」とも言う。)に、水添ブロック共重合体と難燃剤と酸化チタンとを添加した熱可塑性樹脂組成物の成形体を用いることにより、従来の優れた樹脂性能に加え、高い耐トラッキング性を有し、かつ耐衝撃性及び剛性に優れ、耐熱エージング後も安定した難燃性が維持できることを見出し、本発明を完成するに至った。
 すなわち本発明は以下の通りである。
〔1〕
 活電部と、
 当該活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、
を具備する電気部品であって、
 前記熱可塑性樹脂組成物が、
 (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
 (B)水添ブロック共重合体と、
 (C)難燃剤と、
 (D)酸化チタンと、
を、含み、
 前記(A)、(B)、及び(C)の合計100質量部に対し、
 前記(A)の含有量が60~80質量部であり、
 前記(B)の含有量が5~30質量部であり、
 前記(C)の含有量が9~25質量部であり、
 前記(D)の含有量が0.1~3質量部であり、
 前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である、電気部品。
〔2〕
 前記(C)難燃剤が、リン酸系難燃剤である、前記〔1〕に記載の電気部品。
〔3〕
 前記熱可塑性樹脂組成物中に前記(B)水添ブロック共重合体が粒子状に分散しており、
 当該分散した(B)水添ブロック共重合体の粒子の平均粒子径が0.2~1.0μmである、前記〔1〕又は〔2〕に記載の電気部品。
〔4〕
 前記熱可塑性樹脂組成物の23℃におけるシャルピー衝撃強度(kJ/m2)を、
 前記熱可塑性樹脂組成物の23℃における曲げ弾性率(GPa)で除した値(シャルピー衝撃強度/曲げ弾性率)が10以上であり、
 前記熱可塑性樹脂組成物(厚さ1.5mm)の、UL94垂直燃焼試験に基づき測定した燃焼レベルがV-0である、前記〔1〕乃至〔3〕のいずれか一に記載の電気部品。
〔5〕
 前記(A)、(B)、及び(C)の合計100質量部に対し、
 (E)アルカリ土類金属の炭酸塩及び/又は硫酸塩を、0.01~1質量部、さらに含む、前記〔1〕乃至〔4〕のいずれか一に記載の電気部品。
〔6〕
 前記(A)、(B)、及び(C)の合計100質量部に対し、
 前記(A)の含有量が65~75質量部であり、
 前記(B)の含有量が10~25質量部であり、
 前記(C)の含有量が10~20質量部である、
前記〔1〕乃至〔5〕のいずれか一に記載の電気部品。
〔7〕
 前記(A)、(B)、及び(C)の合計100質量部に対し、
前記(D)の含有量が、0.7~2.0質量部である、
前記〔1〕及至〔6〕のいずれか一に記載の電気部品。
〔8〕
 前記(A)ポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂が、前記スチレン系樹脂を20質量%以下含む、前記〔1〕乃至〔7〕のいずれか一に記載の電気部品。
〔9〕
 活電部と、
 当該活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、
を具備する電気部品であって、
 前記熱可塑性樹脂組成物が、
 (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
 (B)水添ブロック共重合体と、
を、含有し、
 前記熱可塑性樹脂組成物(厚さ1.5mm)の、UL94垂直燃焼試験に基づき測定した燃焼レベルがV-0であり、
 前記熱可塑性樹脂組成物(30mm×30mmの試験片)の、IEC60112に準拠した耐トラッキング性試験において、300V、400V、500V、600Vの全てにおいてトラッキングを生じるまでの滴下量が80滴以上であり、
 前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である、電気部品。
〔10〕
 太陽電池用コネクタに用いられる、前記〔1〕乃至〔9〕のいずれか一に記載の電気部品。
〔11〕
 太陽電池用ジャンクションボックスに用いられる、前記〔1〕乃至〔9〕のいずれか一に記載の電気部品。
〔12〕
 電源アダプターに用いられる、前記〔1〕乃至〔9〕のいずれか一に記載の電気部品。
〔13〕
 (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
 (B)水添ブロック共重合体と、
 (C)難燃剤と、
を、含む、熱可塑性樹脂組成物に、
 (D)酸化チタンを共存させる、
熱可塑性樹脂組成物の、UL94垂直燃焼試験による難燃性の安定化方法。
〔14〕
 前記(C)がリン酸系難燃剤である、
前記〔13〕に記載の熱可塑性樹脂組成物の、UL94垂直燃焼試験による難燃性の安定化方法。
〔15〕
 前記〔13〕又は〔14〕に記載の難燃性が、
耐熱エージング後(150℃、500時間後)の、UL94垂直燃焼試験による難燃性である、前記〔13〕又は〔14〕に記載の難燃性の安定化方法。
〔16〕
 前記熱可塑性樹脂組成物が、前記(A)、(B)、及び(C)の合計100質量部に対し、
 前記(A)の含有量が60~80質量部であり
 前記(B)の含有量が5~30質量部であり、
 前記(C)の含有量が9~25質量部であり、
 前記(D)の含有量が0.1~3質量部である、
前記〔13〕乃至〔15〕のいずれか一に記載の熱可塑性樹脂組成物の、UL94垂直燃焼試験による難燃性の安定化方法。
 本発明によれば、耐トラッキング性、耐衝撃性及び剛性のバランスに優れ、耐熱エージング後においても安定した難燃性が維持できる絶縁樹脂成形体を具備する、電気部品を提供できる。
本実施形態の電気部品の一例の概略断面図を示す。 本実施形態の電気部品の一例を用いた、沿面距離の説明図を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、図を参照して詳細に説明する。
 本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。
 また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとし、図面の寸法比率は図示の比率に限られるものではない。
〔電気部品〕
 本実施形態の電気部品は、
 活電部と、
 前記活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、
を具備している。
 前記熱可塑性樹脂組成物は、
 (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂(以下、(A)成分と記載する場合がある。)と、
 (B)水添ブロック共重合体(以下、(B)成分と記載する場合がある。)と、
 (C)難燃剤(以下、(C)成分と記載する場合がある。)と、
 (D)酸化チタン(以下、(D)成分と記載する場合がある。)と、
を、含有する。
 前記(A)、(B)、及び(C)の合計100質量部に対し、
 前記(A)の含有量が60~80質量部であり、
 前記(B)の含有量が5~30質量部であり、
 前記(C)の含有量が9~25質量部であり、
 前記(D)の含有量が0.1~3質量部である。
 前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である。
 本実施形態の電気部品は、上記のように、活電部と、当該電部に接する熱可塑性樹脂組成物の成形体である絶縁樹脂成形体とを具備している。
 前記活電部とは、電気部品に含まれる、各種導電性部材であって、使用時に通電される部分をいい、例えば、金属端子、導線等が含まれる。
 本実施形態の電気部品においては、前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である。
 なお、前記「電気部品の外表部」とは、電気部品の使用時、すなわち通電状態における当該電気部品の外表部を意味する。
 ここで、「沿面距離」とは、例えば、JIS6950-1において、異なる二つの活電部相互間、又は活電部と電気機器の境界表面との間を、絶縁物の表面に沿って測定した場合の最短距離、と定義されている。
 また、このJIS規格によれば、前記「境界表面」とは、「アクセス可能な絶縁物表面に,金属はくが押し付けられているものとみなした、電気的エンクロージャの外側表面」と定義されている。
 すなわち、「アクセス可能な絶縁物表面」とは、「それほどの力を加えることなしに指で触れることができるところ」であり、このアクセス可能な絶縁物表面に金属箔を押し付けて電気導電性を有する表面にした場合、「もともとの活電部と、この金属箔との間にある距離であって、絶縁物の表面に沿って形成された距離」が沿面距離になる。又は活電部と電気機器の境界表面との間を、絶縁物の表面に沿って測定した場合の最短距離と定義される。異なる二つの活電部相互間又は活電部と電気機器の境界表面との間を通るルートが2つ以上存在する場合は、短い方のルートを通る最短距離をいう。
 本実施形態の電気部品の「沿面距離」について、電気部品としてコネクタを適用した場合を例にとり、以下、図を参照して具体的に説明する。
 図1に示すように、本実施形態の電気部品、例えばコネクタは、オス側部材10とメス側部材20により構成されている。
 オス側部材10は、活電部であるオス側端子11に、所定の電気ケーブル12が連結されており、前記オス側端子11は筒状のオス側絶縁樹脂成形体13によって囲まれた構成を有している。
 前記オス側絶縁樹脂成形体13と前記電気ケーブル12とは、キャップ14によって固定されている。
 メス側部材20は、活電部であるメス側端子21に、所定の電気ケーブル22が連結されており、前記メス側端子21は筒状のメス側絶縁樹脂成形体23によって囲まれた構成を有している。
 前記メス側絶縁樹脂成形体23と前記電気ケーブル22とは、キャップ24によって固定されている。
 前記メス側絶縁樹脂成形体23はオス側部材10とメス側部材20とを勘合させるための爪部25を具備しており、前記オス側絶縁樹脂成形体13は、前記爪部25を挿入するスリット15を具備している。
 また、前記メス側端子21は開口部26を具備している。
 図2に示すように、前記オス側部材10とメス側部材20とが勘合すると、図1に示すスリット15に爪部25が挿入され、かつ図1に示す開口部26にオス側端子11が挿入されるようになされ、これにより両部材10及び20間における通電状態が形成される。
 図2に示すように、活電部であるオス側端子11及びメス側端子21は、それぞれ、オス側絶縁樹脂成形体13及びメス側絶縁樹脂成形体23によって、電気部品の外表部と、電気的に隔てられている。
 具体的には、メス側部材20のキャップ24の外表部と、メス側端子21との間の長さであって、メス側絶縁樹脂成形体23の表面に沿って形成されている長さ分を含む最短距離、すなわち破線ABの長さが、沿面距離の一例となる。
 同様に、勘合したオス側絶縁樹脂成形体13とメス側絶縁樹脂成形体23との境界部分と、同じく勘合したオス側端子11とメス側端子21との境界部分との長さであって、両絶縁樹脂成形体13及び23の表面に沿って形成されている長さ分を含む最短距離、すなわち、破線CDの長さが沿面距離の他の一例となる。
 また同様に、キャップ14とオス側絶縁樹脂成形体13との境界部分と、ケーブル12とオス側端子11との境界部分との長さであって、オス側絶縁樹脂成形体13の表面に沿って形成されている長さ分を含む最短距離、すなわち、破線EFの長さが沿面距離の他の一例となる。
 上記のように、絶縁樹脂成形体を具備する電気部品においては、複数の部品を組み合わせるため複数の沿面距離が存在しうる。
 本実施形態の電気部品を構成する絶縁樹脂成形体は、自動車、電気・電子、住設、エネルギー等の各種産業における電気・力・熱・光伝達部品や各種絶縁部品、及びこのような部品を収納又は保持するための筐体や躯体、あるいはシート・フィルム状成形体として好適に用いることができる。
 中でも、本実施形態の絶縁樹脂成形体を具備する電気部品は、太陽電池用コネクタ、太陽電池用ジャンクションボックス等の太陽電池モジュール用途、電源アダプターやインバーター部品用途に好適である。
 本実施形態の電気部品を構成する絶縁樹脂成形体の耐トラッキング性は、電気部品において長期の安全を維持する上で重要である。特に近年の小型化・薄型化が進んでいる電気部品においては、導通部同士の距離が短くなる傾向があるため、より高い耐トラッキング性が必要となる。
 本実施形態の電気部品を構成する絶縁樹脂成形体は、特定の熱可塑性樹脂組成物を成形して得られ、絶縁性と耐衝撃性とに優れている。
 熱可塑性樹脂組成物の耐衝撃性に関しては、後述する〔実施例〕に記載の方法により評価することができる。
 当該熱可塑性樹脂組成物の成形方法としては、特に限定されないが、射出成形(インサート成形、中空成形、多色成形等を含む)、ブロー成形、圧縮成形、押出し成形、熱成形、厚板からの切削加工等が挙げられる。
 中でも、量産性の観点から射出成形が好ましく、耐熱性、寸法安定性、剛性の観点から多色成形や金属インサート成形がより好ましい。
 特に、エラストマーとの2色成形等を行う場合には、長期使用によってブリードしてくるエラストマーの添加剤に対して熱可塑性樹脂組成物が耐性を有していることが好ましい。
 本実施形態の電気部品を構成する絶縁樹脂成形体を得るための熱可塑性樹脂組成物は、上述した組成を有することにより、エラストマーの添加剤に対する耐薬品性を有する。
 エラストマーの添加剤に対する耐薬品性を高めるためには、例えば、(A)ポリフェニレンエーテル系樹脂の含有量を増やすことが有効である。
 なお、エラストマーの添加剤に対する耐薬品性の有無は、後述する〔実施例〕に記載の方法により評価することができる。
 また、本実施形態の電気部品を構成する絶縁樹脂成形体を得るための熱可塑性樹脂組成物は、トラッキング性に優れている。
 具体的には、本実施形態の電気部品を構成する絶縁樹脂成形体は、IEC60112に準拠したトラッキング試験において、400V電圧を印加した場合にトラッキングを起こすまでの電解液(塩化アンモニウム0.1質量%水溶液)の滴下数が、5回実施する試験中、すべての試験で50滴以上であることが好ましく、より好ましくは60滴以上、さらに好ましくは80滴以上である。
 加えて600Vの電圧を印加した場合にトラッキングを起こすまでの電解液滴下数が、5回実施する試験中、すべての試験で80滴以上であることが好ましい。
 ここで、前記トラッキング試験において、電解液の滴下数が多くなるということは、トラッキングが起きにくくなることを示す。
 また、前記トラッキングとは、導通部間に放電を生じることで徐々に絶縁性が損なわれ、ついに通電・発火を生じる現象である。
 したがって、前記トラッキングを防止するためには、前記絶縁樹脂成形体を具備する電気部品においては、活電部と絶縁樹脂成形体の外表面との間で、十分な沿面距離を確保することが好ましい。前記沿面距離は長ければ長いほど、絶縁樹脂成形体のトラッキング火災を防ぎやすくなるが、一方において、絶縁樹脂成形体の寸法を大きくしたり、リブを増やしたりする等のデザイン上の対策が必要となる。
 本実施形態の電気部品においては、当該電気部品を構成する絶縁樹脂成形体を得るための熱可塑性樹脂組成物が、(A)ポリフェニレンエーテル系樹脂と、(B)水添ブロック共重合体と、(C)難燃剤と、(D)酸化チタンとを含有するものとし、かつこれらの含有量を適切な範囲に特定することにより、良好な耐トラッキング性を発現でき、前記沿面距離を短くすることができる。
 本実施形態の電気部品においては、上述した沿面距離のうちの少なくとも一つが15mm以上40mm以下である。沿面距離を前記数値範囲とすることにより良好な耐トラッキング性を発現できる。好ましくは20mm以上40mm以下、より好ましくは20mm以上30mm以下である。
 沿面距離が40mmを超えると、本実施形態に用いる熱可塑性樹脂組成物を用いなくても、良好な絶縁性能を維持できるが、前記デザイン上の対策により製造工程が複雑化するおそれがあり、また、電気部品の小型化を実現できないおそれがある。
 前記沿面距離が前記範囲にあることで、トラッキング火災を防ぐための形状デザイン制約が少ない絶縁樹脂成形体を具備する電気部品を得ることができる。
 熱可塑性樹脂組成物を成形した絶縁樹脂成形体の耐トラッキング性については、後述する〔実施例〕に記載する方法により評価することができる。
 本実施形態の絶縁樹脂成形体を具備する電気部品においては、絶縁樹脂成形体を形成するために用いる熱可塑性樹脂組成物が、良好な耐衝撃性及び剛性を有していることが重要である。
 本実施形態の絶縁樹脂成形体を具備する電気部品は、一般家庭用の他、工場や屋外といった過酷な環境条件下での使用が想定される。このため、乱雑な扱いによる落下や、屋外での飛来物等があった場合の耐衝撃性や、スナップフィット特性を使った勘合や金属部品のネジによる取り付けを行う場合に必要な剛性や、内部部品の発熱による変形を防止するために十分な耐熱性を有していることも重要であり、特に耐衝撃性と剛性とが良好なバランスを有していることが求められる。
 本実施形態の電気部品を構成する絶縁樹脂成形体は、単に高い耐衝撃性を有するだけでなく、筐体や構造体として求められる十分な剛性も有している。
 一般に剛性と耐衝撃性とは相反する関係にあるが、本実施形態の電気部品を構成する絶縁樹脂成形体は、以下のように、シャルピー衝撃強度と、曲げ弾性率との比率を特定した熱可塑性樹脂組成物を用いることによって、剛性と耐衝撃性とをバランス良く向上させることができる。
 本実施形態に用いる熱可塑性樹脂組成物は、23℃におけるシャルピー衝撃強度(単位:kJ/m2)を、23℃における曲げ弾性率(単位:GPa)で除した値(シャルピー衝撃強度/曲げ弾性率)が、10以上であることが好ましく、12以上であることがより好ましく、14以上であることがさらに好ましい。
 この関係において、シャルピー衝撃強度の上限値は特に限定されないが、曲げ弾性率の下限値は1.5GPa以上が好ましく、より好ましくは1.8GPa以上である。
 曲げ弾性率が1.5GPa以上であることにより、成形体として優れた熱時剛性が得られる。
 シャルピー衝撃強度/曲げ弾性率の上限値は、特に限定されないが、絶縁樹脂成形体の耐衝撃性と、絶縁樹脂成形体よりなる部材が他の部材と勘合した際に確実に勘合したことを示す剛性感とのバランスの観点から、好ましくは40以下であり、より好ましくは30以下であり、さらに好ましくは20以下である。
 本実施形態において用いる熱可塑性樹脂組成物において、(A)ポリフェニレンエーテル系樹脂又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、(B)水添ブロック共重合体との含有量を、(A)、(B)、及び(C)の合計100質量部に対して、(A)成分の含有量を60~80質量部とし、(B)成分の含有量を5~30質量部とし、例えば、後述の製造方法、すなわち、各成分を押出機で溶融混練して熱可塑性樹脂組成物を得ることにより、23℃におけるシャルピー衝撃強度/曲げ弾性率を上記範囲内に制御することができる。
 本実施形態に用いる熱可塑性樹脂組成物は、耐衝撃性に優れている。例えば、23℃におけるシャルピー衝撃強度が、9kJ/m2以上であることが好ましく、15kJ/m2以上であることがより好ましく、20kJ/m2以上であることがさらに好ましい。
 23℃におけるシャルピー衝撃強度の上限は、特に限定されないが、例えば、電気部品として剛性や、難燃性の維持の観点から、100kJ/m2以下である。
 なお、本実施形態において、23℃におけるシャルピー衝撃強度及び23℃における曲げ弾性率は、後述の〔実施例〕に記載の方法で測定することができる。
 本実施形態に用いる熱可塑性樹脂組成物は、厚さ1.5mmの試験片を用いてUL-94垂直燃焼試験に基づき測定した燃焼レベルがV-0であることが好ましい。特に1.5mm未満の薄肉の試験片の場合においても、燃焼レベルがV-0であることがより好ましい。
 本実施形態に用いる熱可塑性樹脂組成物において、前記燃焼レベルを実現するためには、後述する製造方法により熱可塑性樹脂組成物を製造することが有効である。
(熱可塑性樹脂組成物)
 本実施形態の電気部品を構成する熱可塑性樹脂組成物は、(A)ポリフェニレンエーテル系樹脂又はポリフェニレンエーテルとスチレン系樹脂との混合樹脂と、(B)水添ブロック共重合体と、(C)難燃剤と、(D)酸化チタンを含む。
 前記(A)、(B)、及び(C)の合計100質量部に対し、前記(A)の含有量が60~80質量部であり、前記(B)の含有量が5~30質量部であり、前記(C)の含有量が9~25質量部であり、前記(D)の含有量が0.1~3質量部である。
 以下、熱可塑性樹脂組成物を構成する各成分について詳細に説明する。
<(A)ポリフェニレンエーテル系樹脂又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂>
 本実施形態で用いられる(A)ポリフェニレンエーテル系樹脂又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂を構成するポリフェニレンエーテル系樹脂は、下記一般式(1)及び/又は一般式(2)で表される繰り返し単位を有する単独重合体、あるいは共重合体であることが好ましい。
 なお、後述するように、所定の変性基を有する変性体も適用できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(一般式(1)及び(2)中、R1、R2、R3、R4、R5、R6は、各々独立して、水素原子、炭素数1~4のアルキル基、炭素数6~9のアリール基、又はハロゲン原子を表す。但し、R5、R6は同時に水素ではない。)
 ポリフェニレンエーテルの単独重合体としては、以下に限定されるものではないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル等が挙げられる。
 ポリフェニレンエーテル共重合体とは、一般式(1)及び/又は一般式(2)で表される繰り返し単位を主たる繰返し単位とする共重合体である。
 「主たる」とは、ポリフェニレンエーテル共重合体中、一般式(1)及び/又は一般式(2)で表される繰り返し単位を、60質量%以上含有することをいう。
 当該ポリフェニレンエーテル共重合体としては、以下に限定されるものではないが、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、及び2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとo-クレゾールとの共重合体等が挙げられる。
 前記ポリフェニレンエーテル系樹脂としては、熱安定性の観点から、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルが好ましい。
 また、特開昭63-301222号公報等に記載されている、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテルユニットや2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテルユニット等を部分構造として含んでいるポリフェニレンエーテルは、前記ポリフェニレンエーテル系樹脂の熱安定性改善の観点からより好ましい。
 ポリフェニレンエーテル系樹脂の還元粘度(単位dl/g、クロロホルム溶液、30℃測定)は、流動性、靱性、耐薬品性の観点から好ましくは0.25~0.6の範囲、より好ましくは0.35~0.55の範囲である。
 本実施形態においては、前記ポリフェニレンエーテル系樹脂として、ポリフェニレンエーテルの一部又は全部を不飽和カルボン酸又はその誘導体で変性した変性ポリフェニレンエーテルを用いることができる。
 この変性ポリフェニレンエーテルは、日本国特開平2-276823号公報(米国特許5159027号、35695号)、日本国特開昭63-108059号公報(米国特許5214109号、5216089号)、日本国特開昭59-59724号公報等に記載されている。
 変性ポリフェニレンエーテルは、例えば、ラジカル開始剤の存在下又は非存在下において、ポリフェニレンエーテルに不飽和カルボン酸やその誘導体を溶融混練して反応させることによって製造することができる。あるいは、ポリフェニレンエーテルと、不飽和カルボン酸やその誘導体とを、ラジカル開始剤存在下又は非存在下で有機溶剤に溶かし、溶液中で反応させることによって製造することができる。
 前記不飽和カルボン酸又はその誘導体としては、以下に限定されるものではないが、例えば、マレイン酸、フマル酸、イタコン酸、ハロゲン化マレイン酸、シス-4-シクロヘキセン1,2-ジカルボン酸、エンド-シス-ビシクロ(2,2,1)-5-ヘプテン-2,3-ジカルボン酸等や、これらジカルボン酸の酸無水物、エステル、アミド、イミド等、さらにはアクリル酸、メタクリル酸や、これらモノカルボン酸のエステル、アミド等が挙げられる。
 また、前記不飽和カルボン酸やその誘導体の他にも、変性ポリフェニレンエーテルを製造する際の反応温度でそれ自身が熱分解し、本実施形態で用いる(A)ポリフェニレンエーテル系樹脂である変性ポリフェニレンエーテルの誘導体となり得る飽和カルボン酸も用いることができる。具体的にはリンゴ酸、クエン酸等が挙げられる。
 これらは1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記ポリフェニレンエーテル系樹脂は、一般に粉体として入手できる。
 前記ポリフェニレンエーテル系樹脂の粒子サイズは、平均粒子径が1~1000μmであることが好ましく、より好ましくは10~700μm、さらに好ましくは100~500μmである。
 加工時の取り扱い性の観点からポリフェニレンエーテル系樹脂の粉体の平均粒子径は1μm以上が好ましく、溶融混練する際において未溶融物の発生を抑制する観点から1000μm以下が好ましい。
 なお、ポリフェニレンエーテル系樹脂の粉体の平均粒子径は、例えばレーザー粒度計により測定することができる。
 前記(A)成分としては、ポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂を用いることもできる。
 スチレン系樹脂とは、スチレン系化合物、又はスチレン系化合物とスチレン系化合物に共重合可能な化合物とを、ゴム質重合体存在下または非存在下に重合して得られる重合体をいう。
 前記スチレン系化合物としては、以下に限定されるものではないが、例えば、スチレン、α-メチルスチレン、2,4-ジメチルスチレン、モノクロロスチレン、p-メチルスチレン、p-tert-ブチルスチレン、エチルスチレン等が挙げられ、スチレンが好ましい。
 また、スチレン系化合物と共重合可能な化合物としては、以下に限定されるものではないが、例えば、メチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル化合物類;無水マレイン酸等の酸無水物等が挙げられ、スチレン系化合物とともに使用される。スチレン系化合物と共重合可能な化合物の使用量は、スチレン系化合物との合計量に対して20質量%以下が好ましく、より好ましくは15質量%以下である。
 また、前記ゴム質重合体としては、共役ジエン系ゴムあるいは共役ジエンと芳香族ビニル化合物との共重合体あるいはエチレン-プロピレン共重合体ゴム等が挙げられる。具体的には、ポリブタジエン及びスチレン-ブタジエン共重合体が好ましい。また、ゴム質重合体としては、部分的に水素添加された不飽和度80~20%のポリブタジエン、または1,4-シス結合を90%以上含有するポリブタジエンを用いることがより好ましい。
 前記スチレン系樹脂としては、以下に限定されるものではないが、例えば、ポリスチレン、ゴム補強ポリスチレン、スチレン-アクリロニトリル共重合体(AS樹脂)、ゴム補強スチレン-アクリロニトリル共重合体(ABS樹脂)、その他のスチレン系共重合体等が挙げられる。特にポリスチレン及び部分的に水素添加された不飽和度80~20%のポリブタジエンを用いたゴム補強ポリスチレンの組合せが好ましい。
 本実施形態に用いる、熱可塑性樹脂組成物を構成する(A)成分中のスチレン系樹脂としては、ホモポリスチレンが好ましく、アタクチックポリスチレン、シンジオタクチックポリスチレンのいずれも使用できる。
 (A)成分がポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂である場合、スチレン系樹脂は、当該(A)成分を100質量%とした場合、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、含有されている。
 ここで、上述したスチレン系樹脂は、(A)成分中のポリフェニレンエーテル系樹脂の一部を置き換える形で用いられ、スチレン系樹脂の含有量分だけ(A)成分中のポリフェニレンエーテル系樹脂の量は減じられる。
 (A)成分中のスチレン系樹脂の含有量が増加すると流動性は向上するが、耐熱性及び難燃性の観点から20質量%以下とすることが好ましい。スチレン系樹脂の含有量を20質量%以下とすることにより、耐熱性及び難燃性に優れた熱可塑性樹脂組成物が得られ、無添加の場合は、特に耐熱性及び耐熱エージング性に優れた熱可塑性樹脂組成物が得られる。
 本実施形態において用いる熱可塑性樹脂組成物において、(A)成分の含有量は、他の成分によって任意に変動するが、(A)成分、(B)成分及び(C)成分の合計量を100質量部としたとき、60~80質量部の範囲とし、好ましくは65~80質量部、より好ましくは65~75質量部とする。
 (A)成分の含有量が60質量部以上であると、耐熱温度が高く、耐熱エージング特性が優れる。また、(A)成分の含有量が80質量部以下であると、流動性が良好となる。
 また、前記範囲内で(A)成分の含有量を少なくし、後述する(B)成分の含有量を多くすると、耐衝撃性に優れた熱可塑性樹脂組成物が得られる。
<(B)水添ブロック共重合体>
 本実施形態の電気部品に用いられる熱可塑性樹脂組成物は、(B)水添ブロック共重合体を含有する。
 (B)水添ブロック共重合体としては、スチレンと共役ジエン化合物とのブロック共重合体すなわちポリスチレンブロックと共役ジエン化合物重合体ブロックからなるブロック共重合体を水素添加して得られる水添ブロック共重合体を好ましく用いることができる。
 (B)成分における、水素添加による共役ジエン化合物由来の不飽和結合の水添率は60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは95%以上である。
 (B)成分の、水素添加前のブロック共重合体の構造は、当該(B)成分がスチレンと共役ジエン化合物とのブロック共重合体を水添した水添ブロック共重合体である場合、スチレンブロック鎖をS、ジエン化合物ブロック鎖をBと表すと、S-B-S、S-B-S-B、(S-B-)4-Si、S-B-S-B-S等を有する構造が挙げられる。
 また、ジエン化合物重合体ブロックのミクロ構造は任意に選ぶことができる。
 ビニル結合量(1,2-ビニル結合と3,4-ビニル結合との合計)は、ジエン化合物重合体の結合全体(1,2-ビニル結合と3,4-ビニル結合と1,4-結合との合計)に対し好ましくは2~60%、より好ましくは8~40%の範囲である。
 (B)水添ブロック共重合体としては、好ましくは数平均分子量が150,000~350,000、より好ましくは200,000~300,000の水添ブロック共重合体を少なくとも1種選択して用いることが好ましい。
 (B)水添ブロック共重合体の数平均分子量が150,000以上であると、熱可塑性樹脂組成物の耐衝撃性が優れる傾向にある。
 (B)水添ブロック共重合体の数平均分子量に比例して、熱可塑性樹脂組成物の耐衝撃性は向上し、150,000以上であることにより、実用上十分な耐衝撃性が得られ、350,000以下であることにより、熱可塑性樹脂組成物の溶融押出し時の負荷が低くなり、優れた加工流動性が得られ、(B)成分を熱可塑性樹脂組成物中に十分に分散させることができる。
 前記(B)水添ブロック共重合体が、スチレンと共役ジエン化合物とのブロック共重合体を水添した水添ブロック共重合体である場合、少なくとも1個のスチレン重合体ブロック鎖が数平均分子量15,000以上であることが好ましく、より好ましくは20,000以上50,000以下である。さらに好ましくは全てのスチレン重合体ブロック鎖の数平均分子量が15,000以上である。
 なお、前記数平均分子量は、ゲル・パーミエーション・クロマトグラフィ(GPC)により測定することができる。
 (B)水添ブロック共重合体が、スチレンと共役ジエン化合物とのブロック共重合体を水添した水添ブロック共重合体である場合における、スチレン重合体ブロックが(B)水添ブロック共重合体に占める範囲は、スチレン重合体ブロック鎖の数平均分子量が上記の範囲であれば特に制限されないが、流動性と耐衝撃性とのバランスの観点から、好ましくは10~70質量%、より好ましくは20~50質量%の範囲である。
 (B)水添ブロック共重合体としては、組成や構造の異なる2種以上の水添ブロック共重合体を併用することもできる。
 例えば、結合スチレン重合体ブロック含有量50質量%以上の水添ブロック共重合体と、結合スチレン重合体ブロック含有量30質量%以下の水添ブロック共重合体との併用や、分子量の異なる水添ブロック共重合体の併用、あるいはスチレンと共役ジエンのランダム共重合体ブロックを含有するブロック共重合体を水添して得られる水添ランダムブロック共重合体を併用することもできる。
 本実施形態に用いる熱可塑性樹脂組成物において、(B)水添ブロック共重合体の含有量は、(A)成分、(B)成分、及び後述する(C)成分の合計を100質量部としたとき、5~30質量部の範囲であり、好ましくは10~25質量部であり、より好ましくは10~20質量部である。
 (B)水添ブロック共重合体の含有量を5質量部以上とすることにより、耐衝撃性と耐トラッキング性に優れた熱可塑性樹脂組成物が得られ、30質量部以下とすることにより、曲げ弾性率、難燃性及び耐熱エージング後の難燃性の安定化に優れた熱可塑性樹脂組成物が得られる。
 また、(B)水添ブロック共重合体の含有量が30質量部以下であると、上述した(A)成分と(B)成分との相溶性が良好となり、成形体において層状の剥離の発生を防止できる。
 本実施形態に用いる熱可塑性樹脂組成物において、(B)水添ブロック共重合体は、粒子状に分散している。
 熱可塑性樹脂組成物中において分散している(B)成分の粒子の平均粒子径は、0.2~1.0μmであることが好ましく、より好ましくは0.3~1.0μmであり、さらに好ましくは0.3~0.6μmである。
 (B)成分の粒子の平均粒子径が0.2~1.0μmであると、耐衝撃性、耐衝撃性と曲げ弾性率のバランス、耐トラッキング性に優れた熱可塑性樹脂組成物が得られる。
 (A)成分と(B)成分の含有量を、上述したように、(A)、(B)、及び(C)の合計100質量部に対して、(A)成分の含有量を60~80質量部とし、(B)成分の含有量を5~30質量部とし、後述する熱可塑性樹脂組成物の製造方法を用いることにより、(B)の粒子の平均粒子径を上記範囲内に制御することができる。
 なお、熱可塑性樹脂組成物中に分散している(B)成分の粒子の平均粒子径は、後述する実施例に記載の方法により測定することができる。
 さらに、電気部品に具備される成形品から平均粒子径を測定する場合は、成形による配向の影響を小さくするため、流動末端から5mm以内の場所において測定を行うことが好ましい。
<(C)難燃剤>
 本実施形態で用いられる熱可塑性樹脂組成物は、(C)難燃剤を含有する。
 (C)難燃剤としては、無機難燃剤、シリコーン化合物、及び有機リン化合物からなる群より選ばれる少なくとも1種が好ましいものとして挙げられる。
 前記無機難燃剤としては、以下に限定されるものではないが、合成樹脂の難燃剤として一般的に用いられている、結晶水を含有する水酸化マグネシウムや、水酸化アルミニウム等の、アルカリ金属水酸化物又はアルカリ土類金属水酸化物、ホウ酸亜鉛化合物、スズ酸亜鉛化合物等が挙げられる。
 前記シリコーン化合物としては、オルガノポリシロキサン又はオルガノポリシロキサンを含む変性物が挙げられる。シリコーン化合物は、常温で液状であってもよく、固体状であってもよい。オルガノポリシロキサンの骨格構造は、線状構造、分岐構造のいずれでもよいが、分子中に三官能性や四官能性構造を有することによる分岐構造さらには3次元構造を含むことが好ましい。シリコーン化合物の主鎖や分岐した側鎖の結合基としては、水素又は炭化水素基が挙げられ、好ましくはフェニル基、メチル基、エチル基及びプロピル基であるが、その他の炭化水素基を結合基として有していてもよい。シリコーン化合物の末端結合基としては、-OH基、アルコキシ基、又は炭化水素基のいずれであってもよい。
 一般に難燃剤として用いられるシリコーン化合物としては、4種のシロキサン単位(M単位:R3SiO0.5、D単位:R2SiO1.0、T単位:RSiO1.5、Q単位:SiO2.0)のいずれかが重合してなるポリマーが挙げられる。
 本実施形態の熱可塑性樹脂組成物において、(C)難燃剤として使用されるシリコーン化合物のうち、好ましいオルガノポリシロキサンとしては、前記4種のシロキサン単位の合計量の中、式RSiO1.5で示されるシロキサン単位(T単位)を、好ましくは60モル%以上、より好ましくは90モル%以上、さらに好ましくは100モル%有し、使用する全シリコーン化合物において、前記Rで示される全シロキサン単位中の結合炭化水素基が、好ましくは少なくとも60モル%、より好ましくは80モル%以上がフェニル基を有するものである。
 前記(C)難燃剤であるオルガノポリシロキサンとしては、結合基がアミノ基、エポキシ基、メルカプト基、その他の変性基で置換された変性シリコーンも使用することができる。
 また、オルガノポリシロキサンをシリカや炭酸カルシウム等の無機充填剤に化学吸着或いは物理吸着させた変性物も使用することができる。
 前記(C)難燃剤である有機リン化合物としては、以下に限定されるものではないが、リン酸系難燃剤、ホスファゼン化合物等が挙げられる。
 有機リン化合物は、添加により難燃性の向上を図ることができ、難燃剤として一般的に用いられる有機リン化合物であればいずれも用いることができる。
 特に高い難燃性が得られることから、リン酸系難燃剤を用いることが好ましい。リン酸系難燃剤としては、特にリン酸エステル化合物を用いることが好ましい。
 当該リン酸エステル化合物としては、以下に限定されるものではないが、例えば、トリフェニルフォスフェート、トリスノニルフェニルフォスフェート、レゾルシノールビス(ジフェニルフォスフェート)、レゾルシノールビス[ジ(2,6-ジメチルフェニル)フォスフェート]、2,2-ビス{4-[ビス(フェノキシ)ホスホリルオキシ]フェニル}プロパン、2,2-ビス{4-[ビス(メチルフェノキシ)ホスホリルオキシ]フェニル}プロパン等が挙げられる。
 さらに上記以外のリン系難燃剤としては、以下に限定されるものではないが、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルフォスフェート、トリブトキシエチルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジイソプロピルフェニルホスフェート等のリン酸エステル系難燃剤、ジフェニル-4-ヒドロキシ-2,3,5,6-テトラブロモベンジルホスフォネート、ジメチル-4-ヒドロキシ-3,5-ジブロモベンジルホスフォネート、ジフェニル-4-ヒドロキシ-3,5-ジブロモベンジルホスフォネート、トリス(クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(クロロプロピル)ホスフェート、ビス(2、3-ジブロモプロピル)-2、3-ジクロロプロピルホスフェート、トリス(2,3-ジブロモプロピル)ホスフェート、およびビス(クロロプロピル)モノオクチルホスフェート、ハイドロキノニルジフェニルホスフェート、フェニルノニルフェニルハイドロキノニルホスフェート、フェニルジノニルフェニルホスフェート等のモノリン酸エステル化合物、及び芳香族縮合リン酸エステル化合物等が挙げられる。
 これらの中、加工時のガス発生が少なく、熱安定性等に優れることから、芳香族縮合リン酸エステル化合物が好ましい。
 前記芳香族縮合リン酸エステル化合物は、一般に市販されており、例えば、大八化学工業(株)のCR741、CR733S、PX200、(株)ADEKAのFP600、FP700、FP800等を用いることができる。
 前記芳香族縮合リン酸エステル化合物としては、下記式(I)、又は式(II)で示される縮合リン酸エステルが好ましい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(一般式(I)及び(II)中、Q1、Q2、Q3及びQ4は、各々置換基であって各々独立して炭素数1~6のアルキル基を表す。R11及びR12は、各々メチル基を表す。
 R13及びR14は各々独立して水素原子又はメチル基を表す。nは1以上の整数であり、n1及びn2は各々独立して0~2の整数を示す。m1、m2、m3及びm4は各々独立して0~3の整数を示す。)
 上記式(I)及び(II)で示される縮合リン酸エステルは、それぞれの分子が、上記のようにnは1以上の整数であり、好ましくは1から3の整数である。
 この中で、好ましい縮合リン酸エステルとしては、式(I)におけるm1、m2、m3、m4、n1及びn2が0であって、R13及びR14がメチル基である縮合リン酸エステルが挙げられ、また、式(I)におけるQ1、Q2、Q3、Q4、R13及びR14がメチル基であり、n1、n2が0であり、m1、m2、m3及びm4が1~3の整数の縮合リン酸エステルであって、nの範囲は1~3、特にnが1であるリン酸エステルを50質量%以上含有するものが好ましいものとして挙げられる。
 上述した芳香族縮合リン酸エステル化合物で特に好ましいものとしては、耐熱エージング性の観点から、酸価が0.1以下(JIS K2501に準拠して得られた値)の芳香族縮合リン酸エステル化合物が挙げられる。
 また、前記(C)難燃剤であるホスファゼン化合物としては、フェノキシホスファゼン及びその架橋体が好ましく、耐熱エージング性の観点から酸価が0.1以下(JIS K2501に準拠して得られた値)のフェノキシホスファゼン化合物がより好ましい。
 本実施形態に用いる熱可塑性樹脂組成物において、(C)難燃剤の含有量は、必要な難燃性レベルにより異なるが、(A)成分、(B)成分及び(C)成分の合計量を100質量部とした場合、9~25質量部の範囲であり、好ましくは9~20質量部の範囲であり、より好ましくは10~20質量部の範囲である。
 (C)難燃剤の含有量を、9質量部以上とすることにより、優れた難燃性と耐トラッキング性が得られ、25質量部以下とすることにより、高い耐衝撃性を維持でき、また耐衝撃性と曲げ弾性率のバランスに優れた熱可塑性樹脂組成物が得られる。
<(D)酸化チタン>
 本実施形態に用いる熱可塑性樹脂組成物は、(D)酸化チタンを含有する。
 原料段階における(D)酸化チタンの1次粒径は、分散性と製造時のハンドリング性のバランスの観点から、好ましくは0.01~0.5μmであり、より好ましくは0.05~0.4μmであり、さらに好ましくは0.15~0.3μmである。
 (D)酸化チタンは、アルミニウム、マグネシウム、ジルコニアチタン、錫等の含水酸化物及び/又は酸化物やステアリン酸等の高級脂肪酸塩あるいは有機珪素化合物の少なくとも一種を表面処理剤として含んでいてもよい。
 (D)酸化チタンは、乾式法、又は湿式法により製造することができる。また、(D)酸化チタンの結品構造は、ルチル型、アナターゼ型のいずれでもよいが、本実施形態において用いる熱可塑性樹脂組成物の熱安定性の観点からルチル型が好ましい。
 (D)酸化チタンの配合量は、(A)成分、(B)成分、及び(C)成分の合計量を100質量部としたとき、0.1~3.0質量部であり、好ましくは0.5~2.5質量部、より好ましくは0.7~2.0質量部である。
 (D)成分の配合量を(A)、(B)、及び(C)の合計量100質量部に対し、0.1質量部以上とすることにより、耐トラッキング性が向上し、3.0質量部以下とすることにより低温衝撃強度を確保し、衝撃強度と曲げ弾性率とのバランスを良好なものとすることができる。
 さらに、上述した成分を含む熱可塑性樹脂組成物に、(D)酸化チタンを含有させることにより、以下のように耐(A)、(B)、及び(C)熱エージング後の難燃性を安定化できる。
〔酸化チタンを共存させる難燃性の安定化方法〕
 本実施形態の難燃性の安定化方法は、
 前記(A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
 前記(B)水添ブロック共重合体と、
 前記(C)難燃剤と、
を、含む、熱可塑性樹脂組成物に、
 前記(D)酸化チタンを共存させるものである。
 当該方法を実施することにより、耐熱エージング後においても、安定した熱可塑性樹脂組成物の難燃性(UL94垂直燃焼試験)が得られる、という効果が得られる。
 特に、前記(C)難燃剤がリン酸系難燃剤である場合において、難燃性の安定化を高める効果が大きく、好ましい。
 なお、前記「耐熱エージング後」とは、例えば、150℃、500時間のエージング試験を実施した後、の条件が一例として挙げられる。
 更に、本実施形態の難燃性の安定化方法においては、
 前記(A)、(B)、及び(C)の合計100質量部に対し、
 前記(A)の含有量が60~80質量部であり
 前記(B)の含有量が5~30質量部であり、
 前記(C)の含有量が9~25質量部、含有する熱可塑性樹脂組成物に対し、
 前記(D)の添加量を0.1~3質量部とした場合において、
熱可塑性樹脂組成物の難燃性(UL94垂直燃焼試験)の安定化の効果が高く、好ましい。
(その他の成分)
 上述した熱可塑性樹脂組成物においては、前記(A)~(D)成分の他、後述する所定の材料を含有させてもよい。
<(E)アルカリ土類金属の炭酸塩及び/又は硫酸塩>
 本実施形態に用いる熱可塑性樹脂組成物は、上述した(A)~(D)成分に加え、(E)アルカリ土類金属の炭酸塩及び/又は硫酸塩(以下、(E)成分と記載する場合がある。)をさらに含有してもよい。
 (E)成分中のアルカリ土類金属は、周期表第IIa族に含まれる元素の少なくとも1種であるが、好ましくはカルシウム、バリウム、ストロンチウム、マグネシウムであり、より好ましくはカルシウム、バリウムである。
 (E)成分の平均粒子径については、特に限定されるものではないが、平均粒子径0.05~3μmが好ましく、より好ましくは、0.05~1μmである。
 (E)成分の平均粒子径は、当該(E)成分の原料段階での粒子を電子顕微鏡の2万倍で観察し、算術平均値を求めることにより得ることができる。
 (E)成分は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 本実施形態において用いる熱可塑性樹脂組成物中の(E)成分の含有量は、(A)成分、(B)成分、及び(C)成分の合計量を100質量部としたとき、0.01~1.0質量部が好ましく、より好ましくは0.01~0.5質量部であり、さらに好ましくは0.01~0.1質量部である。
 (E)成分の含有量が0.01質量部以上であることにより、耐トラッキング性の安定化を図ることができ、1.0質量部以下であることにより、実用上良好な耐衝撃性が得られる。
<他の添加剤>
 本実施形態に用いる熱可塑性樹脂組成物には、所望の特性を付与するため、本発明の効果を損なわない範囲で、他の添加剤を含有させてもよい。
 他の添加剤としては、以下に限定されるものではないが、例えば、熱安定剤、紫外線吸収剤、光吸収剤、可塑剤、酸化防止剤、各種安定剤、帯電防止剤、離型剤、染顔料、エポキシ化合物、(A)成分以外の樹脂、例えばポリエチレン等が挙げられる。
 本実施形態の電気部品の好適な用途である太陽電池用コネクタ、太陽電池用ジャンクションボックス等の太陽電池モジュール用途においては、屋外で使用されることが多いため、黒色であることが好ましい。このため、染顔料としてカーボンブラックを含むことが好ましい。
 カーボンブラックの好ましい含有量としては、上述した(A)~(D)成分の合計量100質量部に対して0.1~3.0質量部が好ましく、0.1~1.0質量部がより好ましく、0.2~0.6質量部がさらに好ましい。0.1~3.0質量部であれば外観が良好な熱可塑性樹脂組成物が得られ、また酸化チタンを含有する場合であっても十分な黒色を呈する熱可塑性樹脂組成物が得られる。
 また、従来公知の、上述した(C)成分以外の他の難燃剤、及び難燃助剤を配合することもでき、これにより、難燃性をさらに向上させることもできる。
 前記(C)成分以外の他の難燃剤及び難燃助剤としては、以下に限定されるものではないが、例えば、カオリンクレー、タルク等の無機ケイ素化合物等が挙げられる。
 その他、ガラス繊維、ガラスフレーク等の無機充填剤、その他の繊維状補強剤等を配合することもでき、これにより、寸法精度や耐熱性がさらに優れた熱可塑性樹脂組成物が得られる。
 また、本実施形態に用いる熱可塑性樹脂組成物には、さらに、他のポリマーやオリゴマーを含有させてもよい。当該他のポリマーやオリゴマーとしては、以下に限定されるものではないが、例えば、流動性改良剤としての石油樹脂、テルペン樹脂及びその水添樹脂、クマロン樹脂、クマロンインデン樹脂、あるいは難燃性を改善するためのシリコーン樹脂やフェノール樹脂等が挙げられる。
〔熱可塑性樹脂組成物の製造方法〕
 本実施形態に用いる熱可塑性樹脂組成物は、上述した各成分を押出機で溶融混練することにより得ることができる。
 押出機としては、二軸押出機が好適である。
 二軸押出機としては、以下に限定されるものではないが、例えば、スクリュー直径58mm、バレル数13、減圧ベント口付二軸押出機が挙げられる。
 当該二軸押出機を用いて、熱可塑性樹脂組成物を製造する方法について、具体的に説明する。
 例えば溶融混練する際に(A)成分、(B)成分、(D)成分、及び必要に応じて(E)成分を、前記二軸押出機の流れ方向に対して上流側のバレル1にある第1供給口より供給する。
 その後、(C)成分を、第1供給口より下流側にある第2(液体)供給口よりギアポンプを使って押出機のサイドに注入ノズルからフィードして押出する。
 前記二軸押出機のスクリュー構成は、未溶融混合ゾーンを、全バレル長を100%としたとき、バレルの上流側から45~75%とすることが好ましく、60~70%とすることがより好ましい。
 前記二軸押出機中の、溶融混練ゾーンには、位相45度のニーディングエレメント(通常Rと表示)、位相90度のニーディングエレメント(通常Nと表示)、負位相45度のニーディングエレメント(通常Lと表示)を使用することが好ましく、前記未溶融混合ゾーンには、(C)難燃剤を第2供給口よりフィードした後に位相45度のニーディングエレメント(通常Rと表示)を使用することが好ましい。
 前記溶融混練ゾーンのスクリューにおいては、以下に限定されるものではないが、例えば、ニーディングディスクR(3~7枚のディスクを捻れ角度15~75度で組み合わせた、L(スクリュー長さ)/D(スクリュー径)が0.5~2.0である正ネジスクリューエレメント)、ニーディングディスクN(3~7枚のディスクを捻れ角度90度で組み合わせた、L/Dが0.5~2.0であるニュートラルスクリューエレメント)、ニーディングディスクL(3~7枚のディスクを捻れ角度15~75度で組み合わせた、L/Dが0.5~1.0である逆ネジスクリューエレメント)等を適宜組み合わせたスクリュー構成を有することが好ましく、逆ネジスクリュー(L/Dが0.5~1.0である二条の逆ネジスクリューエレメント)、SMEスクリュー(正ネジスクリューに切り欠きをつけて混練性を良くした、L/Dが0.5~1.5であるスクリューエレメント)、ZMEスクリュー(逆ネジスクリューに切り欠きをつけて混練性を向上させた、L/Dが0.5~1.5であるスクリューエレメント)等のスクリューエレメントを、スクリュー構成中に適宜組み入れて混練を行ってもよい。
 本実施形態に用いる熱可塑性樹脂組成物の製造工程における溶融混練においては、さらに減圧脱気を行うことが好ましい。
 また、溶融混練時の樹脂温度は、290~350℃の範囲とすることが好ましい。具体的には、二軸押出機の前段温度を150~250℃の範囲とすることが好ましく、後段温度を250~330℃の範囲とすることが好ましく、ダイ出口樹脂温度は特に限定されないが290~350℃の範囲とすることが好ましい。
 二軸押出機のスクリュー回転数は、150~600rpmの範囲であることが好ましい。
 上述した製造方法に従い、熱可塑性樹脂組成物を製造することにより、(B)水添ブロック共重合体の粒子が、0.2~1.0μmの数値範囲で分散した熱可塑性樹脂組成物が得られる。これにより、耐トラッキング性、耐衝撃性、難燃性に優れた熱可塑性樹脂組成物が得られる。
〔電気部品の製造方法〕
 本実施形態の電気部品は、用途に応じて所定の形状に上述した熱可塑性樹脂組成物を成形し、絶縁樹脂成形体を得、これに用途に応じた所定の活電部を組み合わせることにより製造することができる。
 成形方法としては、特に限定されないが、射出成形(インサート成形、中空成形、多色成形等を含む)、ブロー成形、圧縮成形、押出し成形、熱成形、厚板からの切削加工等が挙げられる。
 中でも、量産性の観点から射出成形が好ましく、耐熱性、寸法安定性、剛性の観点から多色成形や金属インサート成形がより好ましい。
 特に、エラストマーとの2色成形等では、長期使用によってブリードしてくるエラストマーの添加剤に対して前記熱可塑性樹脂組成物は耐性があるため好適である。
 前記活電部としては、電気部品の用途により種々の選択が可能であるが、例えば、金属端子、導線等が挙げられる。
(電気部品の他の形態)
 本実施形態の電気部品の他の一形態としては、
 活電部と、
 当該活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、
を具備する電気部品であって、
 前記熱可塑性樹脂組成物が、
 前記(A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
 前記(B)水添ブロック共重合体と、
を、含有し、
 前記熱可塑性樹脂組成物(厚さ1.5mm)の、UL94垂直燃焼試験に基づき測定した燃焼レベルがV-0であり、
 前記熱可塑性樹脂組成物(30mm×30mmの試験片)の、IEC60112に準拠した耐トラッキング性試験において、300V、400V、500V、600Vの全てにおいてトラッキングを生じるまでの滴下量が80滴以上であり、
 前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である電気部品、が挙げられる。
 前記熱可塑性樹脂組成物は、前記(A)成分、(B)成分、及び必要に応じてその他の成分を溶融混練することにより製造できる。
 絶縁樹脂成形体は、前記熱可塑性樹脂組成物を所定の形状に成形することにより製造できる。
 電気部品は、前記絶縁樹脂成形体と、用途に応じた所定の活電部とを組み合わせることにより製造できる。
 前記UL94垂直燃焼試験については、後述する〔実施例〕に記載された方法により実施できる。
 前記トラッキング性試験については、後述する〔実施例〕に記載された方法により実施できる。
〔用途〕
 本実施形態の電気部品は、産業用機器である事務機、計測器、シャーシ、電気機器の内部パーツ部品、家電関連機器等の電源アダプター、記録媒体やそのドライブ、センサー機器、端子台、エネルギー・環境分野における二次電池、燃料電池や太陽電池、太陽熱発電、地熱発電、風力発電、スマートメーター等に使用される電気電子部品、送電設備を構成する電気部品、ケーブル端末、自動車部品、太陽電池用コネクタ、太陽電池用ジャンクションボックス、ハイブリッド自動車・電気自動車用部品として利用できる。特に、太陽電池用コネクタ、太陽電池用ジャンクションボックス、電源アダプターに用いることが好ましい。
 以下、本発明について、具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
 各実施例及び各比較例で用いた成分は、以下のとおりである。
〔(A)成分〕
 (PPE:ポリフェニレンエーテル系樹脂)
 ポリ-2,6-ジメチル-1,4-フェニレンエーテル:旭化成ケミカルズ(株)製、商品名「ザイロン S201A」。
 (PS:ポリスチレン)
 ホモポリスチレン:PSジャパン(株)製、商品名「PSJ-ポリスチレン 685」。
 (HIPS:ハイインパクトポリスチレン)
 ハイインパクトポリスチレン:PSジャパン(株)製、商品名「PSJ-ポリスチレンH9302 」。
〔(B)水添ブロック共重合体〕
 スチレン-ブタジエンブロック共重合体(ポリスチレン-ポリブタジエン-ポリスチレンの結合構造)を水素添加して得られた、以下の水添ブロック共重合体(ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレンの結合構造)を用いた。
 (SEBS-1)
 数平均分子量250,000、スチレン重合体ブロック33質量%、ブタジエンユニットの水素添加率98%以上の水添ブロック共重合体:Kraton Polymers LLC製、商品名「クレイトン G1651」。
 (SEBS-2)
 数平均分子量80,000、スチレン重合体ブロック60質量%、ブタジエンユニットの水素添加率98%以上の水添ブロック共重合体:クラレ(株)製、商品名「セプトン 8104」。
 (SEBS-3)
 数平均分子量80,000、スチレン重合体ブロック30質量%、ブタジエンユニットの水素添加率98%以上の水添ブロック共重合体:Kraton Polymers LLC製、登録商標「クレイトン G1650」。
 なお、本実施例において、数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定し、スチレン重合体ブロック量は、四酸化オスミウム分解法により測定し、ブタジエンユニットの水素添加率は、赤外線分光分析や核磁気共鳴分析により測定した。
〔(C)難燃剤〕
 以下のリン酸エステル難燃剤を用いた。
 (FR-1)
 ビスフェノールA系縮合リン酸エステル:大八化学(株)製、商品名「CR-741」
〔(D)酸化チタン〕
 (D-1)
 平均粒子径0.2μmの二酸化チタン
 (D-2)
 平均粒子径0.05μmの二酸化チタン
 前記平均粒子径については、(D)成分の粒子を、電子顕微鏡を用いて2万倍で観察し、粒子20個の最大直径から求めた算術平均値を算出し、これを平均粒子径とした。
〔(E)アルカリ土類金属の炭酸塩及び/又は硫酸塩〕
 (E-1)
 平均粒子径0.8μmの硫酸バリウム
 (E-2)
 平均粒子径0.15μmの炭酸カルシウム
 前記平均粒子径については、(E)成分の粒子を、電子顕微鏡を用いて2万倍で観察し、粒子20個の最大直径から求めた算術平均値を算出し、これを平均粒子径とした。
〔(F)カーボンブラック〕
以下のカーボンブラックを用いた。
 (F-1)三菱化学(株)製、商品名「三菱カーボンブラック#52」
〔熱可塑性樹脂組成物の特性評価方法〕
 後述する実施例及び比較例において製造した熱可塑性樹脂組成物の特性評価を、以下の方法及び条件で行った。
(試験片の製造)
 後述する実施例及び比較例において製造した熱可塑性樹脂組成物のペレットを、100℃で2時間乾燥した後、東芝機械(株)製IS-100GN型射出成形機(シリンダー温度を280℃、金型温度を80℃に設定)を用いて、ISO-15103に準じた試験片、及び150mm×150mm×3mmの平板を製造した。
(平均粒子径の測定)
 熱可塑性樹脂組成物中に粒子状に分散した(B)水添ブロック共重合体の平均粒子径を以下に従い測定した。
 上記(試験片の製造)において製造した、ISO-15103に準じた試験片を用い、当該試験片の流動末端部を選択して超薄切片を製造した。
 次に、当該超薄切片を四酸化ルテニウムで染色した後、透過型電子顕微鏡を用いて写真撮影した。
 20000倍の写真(視野15cm×12cm)を用いて、(B)水添ブロック共重合体の各粒子径を測定し、平均粒子径を算出した。
 この際、分散粒子の形状は不規則であるため、それぞれの分散粒子径は、画像解析ソフト(日本ローパー社製 Image-Pro Plus)を用いて測定した。
 個々の粒径はソフトウェアのプログラムを用い、相当する楕円を投影して粒子の長軸を直径として読み取ることで代用した。
 平均粒径は視野の中の150個を標本としてその平均値とした。
(トラッキング性能:トラッキングまでの滴下数の評価)
 後述する実施例及び比較例において製造した熱可塑性樹脂組成物のペレットを用いて、端子台成形品を射出成形した。
 この端子台成形品の平面部:30mm×30mmを切り出し、IEC60112に準拠した試験装置にて、それぞれ300V、400V、500V、600Vの、電圧を印加した状態の試験片に、塩化アンモニウム0.1質量%水溶液を30秒ごとに滴下し、トラッキングを生じるまでの滴下数を測定した。
 滴下数の測定試験は5回行った。
 5回実施する試験中3回以上の試験で80滴以上の場合をA(極めて良好)、50滴以上の場合をB(実用上良好)、5回実施する試験の中で50滴未満が1回でもあった場合をC(不良)とした。
(シャルピー衝撃強度)
 上記(試験片の製造)において製造した、ISO-15103に準じた試験片を用い、シャルピー衝撃試験規格であるISO179/1eAに準拠して、熱可塑性樹脂組成物の23℃と-40℃におけるシャルピー衝撃強度を測定した。
(曲げ弾性率)
 上記(試験片の製造)で製造したISO-15103に準じた試験片(厚さ4mm)を用いてISO178に準拠し、23℃の条件で樹脂組成物の曲げ弾性率(FM)を測定した。
(シャルピー衝撃強度/曲げ弾性率:シャルピー/FM比)
 上記シャルピー衝撃強度及び曲げ弾性率の測定値により、シャルピー衝撃強度/曲げ弾性率を算出した。
 この値が10以上であることにより、耐衝撃性と剛性とのバランスが良好であると評価した。
(難燃性)
 UL94燃焼試験に基づき、後述する実施例及び比較例の熱可塑性樹脂組成物を用いて製造した試験片(1.5mm厚の短冊形状試験片)を用いて垂直燃焼試験を行った。
 前記1.5mm厚の短冊形状試験片を用い、UL94-V試験に準じ、5サンプルに対し接炎を各2回、合計10回行い、消炎時間の平均秒数及び最大秒数を測定し、UL94燃焼試験の基準に基づき、ランク付けした。
(耐熱エージング後の難燃性)
 後述する実施例及び比較例の熱可塑性樹脂組成物を用いて製造した試験片(1.5厚の短冊状試験片)を用い、150℃に設定した空気循環オーブン内で500時間の耐熱エージングを実施し、その後、上記(難燃性)と同様にUL94-V試験に準じ、5サンプルに対し接炎を各2回、合計10回行い、消炎時間の平均秒数及び最大秒数を測定し、UL94燃焼試験の基準に基づき、ランク付けした。
(耐薬品性)
 エラストマーとの接触時の耐薬品性を評価した。
 後述する実施例及び比較例において製造した熱可塑性樹脂組成物ペレットを用い、前記(試験片の製造)に記載した方法により射出成形して、150mm×150mm×3mmの平板を得、当該平板から10mm×50mmの短冊を長手方向が樹脂の流動方向と直角になるように切り出し、試験片を得た。
 当該試験片をベンディングバーに取り付け、1.5%のひずみを与え、その後、短冊の表面にBeijing TONSAN Adhesive Co.,Ltd社製 シリコーン1527を塗布し、48時間後の短冊の表面にクラックが発生するか否かを観察した。
 当該クラックの発生状況を耐薬品性の尺度とし、以下の基準により評価した。
 <耐薬品性の評価基準>
 ○:目視にてクラックの発生なし。
 △:目視にてミクロクラックの発生を確認した。
〔実施例1〕
 (熱可塑性樹脂組成物の製造)
 下記表1の溶融押出条件及び下記表2に示す配合量に従い、上記の成分を配合して熱可塑性樹脂組成物を以下のようにして製造した。
 スクリュー直径58mm、バレル数13、減圧ベント口付二軸押出機(TEM58SS:東芝機械社製)を用いて、各成分を溶融混練した。
 前記溶融混練する際に、(A)ポリフェニレンエーテル(PPE)及びポリスチレン(PS)、(B)水添ブロック共重合体(SEBS-1)、(D)二酸化チタン(上記D-1)を、押出機の流れ方向に対して上流側のバレル1にある第1供給口より供給した。
 その後、(C)難燃剤(上記FR-1)を、第1供給口より下流側にある第2(液体)供給口よりギアポンプを使って押出機のサイドに注入ノズルからフィードして、ストランドを押出した。
 押出されたストランドを冷却裁断して熱可塑性樹脂組成物ペレットを得た。
 押出機のスクリュー構成は、未溶融混合ゾーンを全バレル長の70%とした。
 溶融混練ゾーンには、位相45度のニーディングエレメント(Rと表示)、位相90度のニーディングエレメント(Nと表示)、負位相45度のニーディングエレメント(Lと表示)を使用した。
 更に未溶融混合ゾーンには、(C)難燃剤(上記FR-1)を、第2供給口よりフィードした後に位相45度のニーディングエレメント(Rと表示)を使用した。
 真空脱気ゾーンをバレル11に設け、-900hPaで減圧脱気した。
 (C)難燃剤(FR-1)を供給する第2供給口をバレル5に設けた。
 バレル設定温度をバレル1:水冷、バレル2:100℃、バレル3~6:200℃、バレル7:250℃、バレル8:270℃、バレル9~13:280℃、ダイス:290℃としてスクリュー回転数350rpm、吐出量400kg/hrの条件で押出をした。
 上述のようにして得られた熱可塑性樹脂組成物及び成形体の特性を、上述した方法に従い評価した。評価結果を下記表2に示す。
〔実施例2~13〕、〔比較例1~6〕
 下記表2に示す配合とした。その他の条件は、実施例1と同様にして熱可塑性樹脂組成物ペレットを製造し、熱可塑性樹脂組成物、及び成形体の特性を評価した。評価結果を下記表2に示す。
 なお、表2中、実施例1~13を「実施1~13」と記載し、比較例1~6を「比較1~6」と記載する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~13においては、耐トラッキング性に優れ、かつ耐衝撃性と剛性とのバランスに優れ、かつ耐熱エージング後においても安定した難燃性が維持できる成形体が得られた。従って、当該絶縁樹脂成形体を用いることにより、少なくとも1つの沿面距離が15mm以上40mm以下と短い電気部品であっても、優れた耐トラッキング性を有する電気部品として活用可能であることが分かった。
 本出願は、2013年7月5日に日本国特許庁へ出願された日本特許出願(特願2013-142097)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の電気部品は、産業用機器である事務機、計測器、シャーシ、電気機器の内部パーツ部品、家電関連機器等の電源アダプター、記録媒体やそのドライブ、センサー機器、端子台、エネルギー・環境分野における二次電池、燃料電池や太陽電池、太陽熱発電、地熱発電、風力発電、スマートメーター等に使用される電気電子部品、送電設備を構成する電気部品、ケーブル端末、自動車部品、特に、太陽電池用コネクタ、太陽電池用ジャンクションボックス、ハイブリッド自動車・電気自動車用部品として産業上の利用可能性がある。
10 オス側部材
11 オス側端子
12 電気ケーブル
13 オス側絶縁樹脂成形体
14 キャップ
15 スリット
20 メス側部材
21 メス側端子
22 電気ケーブル
23 メス側絶縁樹脂成形体
24 キャップ
25 爪部
26 開口部

Claims (16)

  1.  活電部と、
     当該活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、
    を具備する電気部品であって、
     前記熱可塑性樹脂組成物が、
     (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
     (B)水添ブロック共重合体と、
     (C)難燃剤と、
     (D)酸化チタンと、
    を、含み、
     前記(A)、(B)、及び(C)の合計100質量部に対し、
     前記(A)の含有量が60~80質量部であり、
     前記(B)の含有量が5~30質量部であり、
     前記(C)の含有量が9~25質量部であり、
     前記(D)の含有量が0.1~3質量部であり、
     前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である、電気部品。
  2.  前記(C)難燃剤が、リン酸系難燃剤である、請求項1に記載の電気部品。
  3.  前記熱可塑性樹脂組成物中に前記(B)水添ブロック共重合体が粒子状に分散しており、
     当該分散した(B)水添ブロック共重合体の粒子の平均粒子径が0.2~1.0μmである、
    請求項1又は2に記載の電気部品。
  4.  前記熱可塑性樹脂組成物の23℃におけるシャルピー衝撃強度(kJ/m2)を、
     前記熱可塑性樹脂組成物の23℃における曲げ弾性率(GPa)で除した値(シャルピー衝撃強度/曲げ弾性率)が10以上であり、
     前記熱可塑性樹脂組成物(厚さ1.5mm)の、UL94垂直燃焼試験に基づき測定した燃焼レベルがV-0である、請求項1乃至3のいずれか一項に記載の電気部品。
  5.  前記(A)、(B)、及び(C)の合計100質量部に対し、
     (E)アルカリ土類金属の炭酸塩及び/又は硫酸塩を、0.01~1質量部、さらに含む、
    請求項1乃至4のいずれか一項に記載の電気部品。
  6.  前記(A)、(B)、及び(C)の合計100質量部に対し、
     前記(A)の含有量が65~75質量部であり、
     前記(B)の含有量が10~25質量部であり、
     前記(C)の含有量が10~20質量部である、
    請求項1乃至5のいずれか一項に記載の電気部品。
  7.  前記(A)、(B)、及び(C)の合計100質量部に対し、
    前記(D)の含有量が、0.7~2.0質量部である、
    請求項1及至6のいずれか一項に記載の電気部品。
  8.  前記(A)ポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂が、前記スチレン系樹脂を20質量%以下含む、請求項1乃至7のいずれか一項に記載の電気部品。
  9.  活電部と、
     当該活電部に接する、熱可塑性樹脂組成物の成形体である絶縁樹脂成形体と、
    を具備する電気部品であって、
     前記熱可塑性樹脂組成物が、
     (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
     (B)水添ブロック共重合体と、
    を、含有し、
     前記熱可塑性樹脂組成物(厚さ1.5mm)の、UL94垂直燃焼試験に基づき測定した燃焼レベルがV-0であり、
     前記熱可塑性樹脂組成物(30mm×30mmの試験片)の、IEC60112に準拠した耐トラッキング性試験において、300V、400V、500V、600Vの全てにおいてトラッキングを生じるまでの滴下量が80滴以上であり、
     前記活電部と、当該活電部が前記絶縁樹脂成形体によって電気的に隔てられた前記電気部品の外表部との間の長さであって、前記絶縁樹脂成形体の表面に沿って形成されている長さ分を含む沿面距離のうちの少なくとも一つが15mm以上40mm以下である、電気部品。
  10.  太陽電池用コネクタに用いられる、請求項1乃至9のいずれか一項に記載の電気部品。
  11.  太陽電池用ジャンクションボックスに用いられる、請求項1乃至9のいずれか一項に記載の電気部品。
  12.  電源アダプターに用いられる、請求項1乃至9のいずれか一項に記載の電気部品。
  13.  (A)ポリフェニレンエーテル系樹脂、又はポリフェニレンエーテル系樹脂とスチレン系樹脂との混合樹脂と、
     (B)水添ブロック共重合体と、
     (C)難燃剤と、
    を、含む、熱可塑性樹脂組成物に、
     (D)酸化チタンを共存させる、
    熱可塑性樹脂組成物の、UL94垂直燃焼試験による難燃性の安定化方法。
  14.  前記(C)がリン酸系難燃剤である、
    請求項13に記載の熱可塑性樹脂組成物の、UL94垂直燃焼試験による難燃性の安定化方法。
  15.  請求項13又は14に記載の難燃性が、
    耐熱エージング後(150℃、500時間後)の、UL94垂直燃焼試験による難燃性である、請求項13又は14に記載の難燃性の安定化方法。
  16.  前記熱可塑性樹脂組成物が、前記(A)、(B)、及び(C)の合計100質量部に対し、
     前記(A)の含有量が60~80質量部であり
     前記(B)の含有量が5~30質量部であり、
     前記(C)の含有量が9~25質量部であり、
     前記(D)の含有量が0.1~3質量部である、
    請求項13乃至15のいずれか一項に記載の熱可塑性樹脂組成物の、UL94垂直燃焼試験による難燃性の安定化方法。
PCT/JP2014/067404 2013-07-05 2014-06-30 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法 WO2015002145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015525206A JP6120965B2 (ja) 2013-07-05 2014-06-30 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法
US14/901,215 US9991622B2 (en) 2013-07-05 2014-06-30 Electrical component comprising insulating resin molded article, and method for stabilizing flame retardance
DE112014003158.5T DE112014003158B4 (de) 2013-07-05 2014-06-30 Elektrisches Bauteil, umfassend ein Isolierharz-Formteil, sowie Verfahren zur Stabilisierung der Flammhemmung
CN201480035784.XA CN105340024B (zh) 2013-07-05 2014-06-30 具备绝缘树脂成型体的电气部件以及阻燃性的稳定化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-142097 2013-07-05
JP2013142097 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015002145A1 true WO2015002145A1 (ja) 2015-01-08

Family

ID=52143720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067404 WO2015002145A1 (ja) 2013-07-05 2014-06-30 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法

Country Status (6)

Country Link
US (1) US9991622B2 (ja)
JP (1) JP6120965B2 (ja)
CN (1) CN105340024B (ja)
DE (1) DE112014003158B4 (ja)
TW (1) TWI518135B (ja)
WO (1) WO2015002145A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110072A (ja) * 2015-12-15 2017-06-22 旭化成株式会社 熱可塑性樹脂組成物、及び太陽光発電モジュール用接続構造体
US12095110B2 (en) 2019-05-17 2024-09-17 Asahi Kasei Kabushiki Kaisha Wiring component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
DE102016221063B4 (de) * 2016-10-26 2021-09-16 BSH Hausgeräte GmbH Haushaltsgerät mit zumindest einem Stecker für eine elektrische Verbindung
DE102017208650A1 (de) 2017-05-22 2018-11-22 BSH Hausgeräte GmbH Haushaltsgerät mit zumindest einem Stecker für eine elektrische Verbindung
JP6981164B2 (ja) * 2017-10-13 2021-12-15 トヨタ自動車株式会社 正極板および非水電解質二次電池
JP7062546B2 (ja) * 2018-07-23 2022-05-06 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物及び成形体並びに燃焼時間のバラツキの改善方法
JP7259455B2 (ja) * 2019-03-22 2023-04-18 株式会社オートネットワーク技術研究所 コネクタ付きケース、コネクタ付きワイヤーハーネス、及びエンジンコントロールユニット
CN111072313A (zh) * 2019-12-31 2020-04-28 李爱军 一种应用于电力绝缘模塑料的陶瓷化阻燃材料
CN116348548A (zh) * 2020-11-17 2023-06-27 旭化成株式会社 通信设备用部件
JPWO2022210593A1 (ja) * 2021-03-29 2022-10-06
DE102022205874A1 (de) 2022-06-09 2023-12-14 Siemens Aktiengesellschaft Bauteil für ein elektrisches Gerät und elektrischer Schalter mit solch einem Bauteil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189517A (ja) * 2009-02-17 2010-09-02 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物、ポリフェニレンエーテル系樹脂組成物の製造方法、ポリフェニレンエーテル系樹脂組成物の成形体
WO2011090023A1 (ja) * 2010-01-20 2011-07-28 東レ株式会社 太陽電池モジュール用裏面封止シートおよび太陽電池モジュール
WO2012035976A1 (ja) * 2010-09-16 2012-03-22 三菱エンジニアリングプラスチックス株式会社 ポリフェニレンエーテル系樹脂組成物及びその成形品
WO2012111628A1 (ja) * 2011-02-14 2012-08-23 旭化成ケミカルズ株式会社 太陽光発電モジュール用接続構造体
WO2012161134A1 (ja) * 2011-05-20 2012-11-29 旭化成ケミカルズ株式会社 難燃樹脂フィルム及びそれを用いた太陽電池バックシート
JP2013133384A (ja) * 2011-12-26 2013-07-08 Asahi Kasei Chemicals Corp 絶縁樹脂成形体
JP2013182805A (ja) * 2012-03-02 2013-09-12 Hitachi Cable Ltd 接着フィルムおよびそれを用いたフラットケーブル

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35695A (en) 1862-06-24 Improvement in machines for upsetting tires
US5216089A (en) 1986-08-28 1993-06-01 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
EP0257486A1 (en) 1986-08-28 1988-03-02 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
US5214109A (en) 1986-08-28 1993-05-25 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
JP2523322B2 (ja) 1987-06-01 1996-08-07 旭化成工業株式会社 ポリフェニレンエ−テル共重合体
US5159027A (en) 1989-01-27 1992-10-27 Asahi Kasei Kogyo Kabushiki Kaisha Stabilized polyphenylene ether resin and process for the preparation of the same
FR2815038B1 (fr) 2000-10-09 2003-01-17 Cit Alcatel Composition de vernis , procede de fabrication de la composition , fil de bobinage revetu et bobine resultante
JP4474134B2 (ja) * 2003-08-26 2010-06-02 日本ユニカー株式会社 ポリマー碍子用樹脂組成物及びポリマー碍子
JP2006143761A (ja) * 2004-11-16 2006-06-08 Nippon Unicar Co Ltd ポリマー碍子用樹脂組成物及びポリマー碍子
JP5006554B2 (ja) 2005-02-23 2012-08-22 ポリプラスチックス株式会社 難燃性樹脂組成物
JP5197463B2 (ja) * 2009-03-27 2013-05-15 旭化成ケミカルズ株式会社 樹脂組成物およびその成形体
JP5706667B2 (ja) 2010-11-08 2015-04-22 出光興産株式会社 ポリカーボネート系樹脂組成物、成形品、及び太陽光発電用構造部材
JP5875225B2 (ja) 2010-12-22 2016-03-02 三菱エンジニアリングプラスチックス株式会社 太陽光発電モジュール用接続構造体
JP2013040288A (ja) 2011-08-17 2013-02-28 Asahi Kasei Chemicals Corp 耐薬品性と低温衝撃に優れた熱可塑性樹脂からなる成形体
CN103044894B (zh) * 2011-10-14 2016-05-11 比亚迪股份有限公司 一种改性聚苯醚组合物及其制备方法
KR101417274B1 (ko) 2012-05-23 2014-07-09 삼성전자주식회사 연마패드 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189517A (ja) * 2009-02-17 2010-09-02 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物、ポリフェニレンエーテル系樹脂組成物の製造方法、ポリフェニレンエーテル系樹脂組成物の成形体
WO2011090023A1 (ja) * 2010-01-20 2011-07-28 東レ株式会社 太陽電池モジュール用裏面封止シートおよび太陽電池モジュール
WO2012035976A1 (ja) * 2010-09-16 2012-03-22 三菱エンジニアリングプラスチックス株式会社 ポリフェニレンエーテル系樹脂組成物及びその成形品
WO2012111628A1 (ja) * 2011-02-14 2012-08-23 旭化成ケミカルズ株式会社 太陽光発電モジュール用接続構造体
WO2012161134A1 (ja) * 2011-05-20 2012-11-29 旭化成ケミカルズ株式会社 難燃樹脂フィルム及びそれを用いた太陽電池バックシート
JP2013133384A (ja) * 2011-12-26 2013-07-08 Asahi Kasei Chemicals Corp 絶縁樹脂成形体
JP2013182805A (ja) * 2012-03-02 2013-09-12 Hitachi Cable Ltd 接着フィルムおよびそれを用いたフラットケーブル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110072A (ja) * 2015-12-15 2017-06-22 旭化成株式会社 熱可塑性樹脂組成物、及び太陽光発電モジュール用接続構造体
US12095110B2 (en) 2019-05-17 2024-09-17 Asahi Kasei Kabushiki Kaisha Wiring component

Also Published As

Publication number Publication date
US20160372853A1 (en) 2016-12-22
JPWO2015002145A1 (ja) 2017-02-23
CN105340024A (zh) 2016-02-17
DE112014003158T5 (de) 2016-03-31
TWI518135B (zh) 2016-01-21
CN105340024B (zh) 2017-06-30
DE112014003158B4 (de) 2022-12-15
US9991622B2 (en) 2018-06-05
JP6120965B2 (ja) 2017-04-26
TW201502201A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
JP6120965B2 (ja) 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法
JP5840482B2 (ja) 絶縁樹脂成形体
JP6328664B2 (ja) 難燃性樹脂組成物、及び太陽光発電モジュール用接続構造体
JP6392940B2 (ja) 太陽光発電モジュール用接続構造体
US20100240813A1 (en) Thermoplastic resin composition, and molded product and sheet comprising the composition
JP7097167B2 (ja) 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体
CN107236279B (zh) 聚苯醚系树脂组合物
JP6586362B2 (ja) 熱可塑性樹脂組成物、及び太陽光発電モジュール用接続構造体
JP6037731B2 (ja) 樹脂組成物
JP2013040288A (ja) 耐薬品性と低温衝撃に優れた熱可塑性樹脂からなる成形体
JP6827783B2 (ja) 樹脂組成物
JP2016110796A (ja) 供受給電部品
JP5264790B2 (ja) 熱可塑性樹脂組成物及び成形品
JP5794863B2 (ja) 熱可塑性樹脂組成物
JP2015127357A (ja) 難燃性樹脂組成物
JP2011190371A (ja) 樹脂組成物
JP2008101200A (ja) 熱可塑性樹脂組成物
JP6234304B2 (ja) 樹脂組成物、成形体、太陽電池モジュール部品、コネクター及び接続箱
JP2017082044A (ja) 熱可塑性樹脂組成物及びそれを用いる太陽光発電モジュール用接続構造体
WO2022210593A1 (ja) ポリフェニレンエーテル樹脂組成物及び成形品
JP2017014321A (ja) 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体、太陽光発電モジュール用ジャンクションボックス、及び太陽光発電モジュール用コネクタ
JP2021188017A (ja) 樹脂組成物
JP2017165908A (ja) 難燃性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035784.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525206

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901215

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014003158

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820374

Country of ref document: EP

Kind code of ref document: A1