WO2022210593A1 - ポリフェニレンエーテル樹脂組成物及び成形品 - Google Patents

ポリフェニレンエーテル樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2022210593A1
WO2022210593A1 PCT/JP2022/015165 JP2022015165W WO2022210593A1 WO 2022210593 A1 WO2022210593 A1 WO 2022210593A1 JP 2022015165 W JP2022015165 W JP 2022015165W WO 2022210593 A1 WO2022210593 A1 WO 2022210593A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
less
resin composition
polyphenylene ether
Prior art date
Application number
PCT/JP2022/015165
Other languages
English (en)
French (fr)
Inventor
直樹 蛸島
美穂子 山本
誠 今井
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US18/552,188 priority Critical patent/US20240174856A1/en
Priority to JP2023511297A priority patent/JPWO2022210593A1/ja
Priority to CN202280007888.4A priority patent/CN116529305A/zh
Priority to EP22780804.5A priority patent/EP4317289A4/en
Publication of WO2022210593A1 publication Critical patent/WO2022210593A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified

Definitions

  • the present invention relates to polyphenylene ether resin compositions and molded articles.
  • Patent Documents 3 and 4 As a means of meeting the demand for anti-tracking performance, for example, there is a known technique for improving anti-tracking performance by adding titanium oxide to a thermoplastic resin (see Patent Documents 3 and 4).
  • JP 2016-183294 A JP-A-2001-316587 Japanese Patent No. 5405738 WO2015/002145
  • thermoplastic resin compositions disclosed in these prior arts still have a further problem in achieving both high tracking resistance and rigidity.
  • an object of the present invention is to provide a resin composition that is excellent in anti-tracking performance and that can provide a molded product with rigidity.
  • the inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems.
  • the present invention is as follows. [1] (a) a resin component; (b) titanium oxide; (c) an inorganic filler; including The (c) inorganic filler has a thermal conductivity of 2 to 12 [W / (m K)],
  • the (a) resin component contains 50 to 90 parts by mass of (a1) polyphenylene ether out of 100 parts by mass of the (a) resin component,
  • the amount of the (b) titanium oxide is 5 to 40 parts by mass with respect to 100 parts by mass of the (a) resin component
  • the amount of the (c) inorganic filler is 5 to 50 parts by mass with respect to 100 parts by mass of the (a) resin component
  • a polyphenylene ether resin composition wherein the mass ratio ((b)/(c)) of the (b) titanium oxide and the (c) inorganic filler is 0.2 to 8.0.
  • the total content of the (b) titanium oxide and the (c) inorganic filler is 15 to 90 parts by mass with respect to 100 parts by mass of the (a) resin component [1] to [4] Polyphenylene ether resin composition according to any one of. [6] Any one of [1] to [5], wherein the (a) resin component contains 1 to 49 parts by mass of the (a2) polystyrene resin out of 100 parts by mass of the (a) resin component.
  • the polyphenylene ether resin composition according to 1. [8] The polyphenylene ether resin according to any one of [1] to [7], which contains 5 to 30 parts by mass of (d) a phosphate ester flame retardant with respect to 100 parts by mass of the (a) resin component. Composition. [9] The polyphenylene ether resin composition according to [8], wherein the (d) phosphoric acid ester-based flame retardant is a condensate of a phosphoric acid ester. [10] A molded article comprising the polyphenylene ether resin composition according to any one of [1] to [9].
  • this embodiment the form for carrying out the present invention (hereinafter also referred to as “this embodiment") will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and can be implemented in various modifications within the spirit of the present invention.
  • a resin component (b) titanium oxide, (c) an inorganic filler, (d) a phosphate ester flame retardant, (a1) polyphenylene ether, (a2) a polystyrene resin, (a3) Hydrogenated block copolymer, (c-1) calcium silicate fibrous material, and (c-2) talc, respectively, are simply the components (a), (b), (c), and (d). It may be referred to as a component, (a1) component, (a2) component, (a3) component, (c-1) component, and (c-2) component.
  • 50 to 90 parts by mass means 50 parts by mass or more and 90 parts by mass or less.
  • the polyphenylene ether resin composition of the present embodiment (hereinafter sometimes simply referred to as "the resin composition of the present embodiment") is (a) a resin component; (b) titanium oxide; (c) an inorganic filler; including The (c) inorganic filler has a thermal conductivity of 2 to 12 [W / (m K)],
  • the (a) resin component contains 50 to 90 parts by mass of (a1) polyphenylene ether out of 100 parts by mass of the (a) resin component,
  • the amount of the (b) titanium oxide is 5 to 40 parts by mass with respect to 100 parts by mass of the (a) resin component,
  • the amount of the (c) inorganic filler is 5 to 50 parts by mass with respect to 100 parts by mass of the (a) resin component, and
  • the mass ratio ((b)/(c)) between the (b) titanium oxide and the (c) inorganic filler is 0.2 to 8.0.
  • the (a) resin component in the resin composition of the present embodiment contains at least (a1) polyphenylene ether.
  • resin components other than (a1) polyphenylene ether include (a2) polystyrene resins and (a3) hydrogenated block copolymers.
  • polyphenylene ether examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl- 6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether) and the like.
  • polyphenylene ethers also include, for example, copolymers of 2,6-dimethylphenol and other phenols. Examples of such copolymers include copolymers of 2,6-dimethylphenol and 2,3,6-trimethylphenol; and copolymers of 2,6-dimethylphenol and 2-methyl-6-butylphenol. polymers.
  • particularly preferred polyphenylene ethers include poly(2,6-dimethyl-1,4-phenylene ether), copolymers of 2,6-dimethylphenol and 2,3,6-trimethylphenol, or A mixture.
  • Dibutylamine may be contained in some of the terminal groups in the polyphenylene ether.
  • the inclusion of dibutylamine in some terminal groups of the polyphenylene ether can be identified by a peak appearing at 3.620 ppm in NMR.
  • Polyphenylene ether can be produced by a known method.
  • Methods for producing polyphenylene ether include, for example, US Pat. No. 3,306,874, US Pat. No. 3,306,875, US Pat. 51197, JP-B-52-17880, JP-B-63-152628, and the like.
  • the preferred range of reduced viscosity of polyphenylene ether (0.5 g/dL chloroform solution, 30°C, measured with Ubbelohde viscosity tube) is 0.30 dL/g from the viewpoint of impact resistance and heat resistance of the molded product. ⁇ 0.80 dL/g, more preferably 0.35 dL/g to 0.75 dL/g, most preferably 0.38 dL/g to 0.55 dL/g.
  • the (a1) polyphenylene ether may be used singly, or two or more different in composition, molecular weight, reduced viscosity, etc. may be used in combination.
  • a known stabilizer can also be suitably used to stabilize the polyphenylene ether.
  • stabilizers include metallic stabilizers such as zinc oxide and zinc sulfide; organic stabilizers such as hindered phenol stabilizers, phosphorus stabilizers and hindered amine stabilizers.
  • a preferable blending amount of the stabilizer is less than 5 parts by mass with respect to 100 parts by mass of the (a1) polyphenylene ether.
  • known additives that can be added to polyphenylene ether may also be added in an amount of less than 10 parts by mass with respect to 100 parts by mass of (a1) polyphenylene ether.
  • the content of (a1) polyphenylene ether is 50 to 90 parts by mass, preferably 50 to 80 parts by mass, based on 100 parts by mass of the resin component, from the viewpoint of achieving a sufficiently good balance between tracking resistance and rigidity. Department.
  • (a2) polystyrene resin (a) As the resin component, (a2) a polystyrene resin can be used.
  • Polystyrene-based resins include, for example, homopolymers of styrene-based compounds and copolymers of styrene-based compounds with other monomers.
  • the polystyrene-based resin may be used singly or in combination of two or more.
  • the amount of structural units derived from the styrene compound in the copolymer is 5% by mass or more. , 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more is.
  • the amount of structural units derived from the styrene compound in the copolymer is 95% by mass. Below, 90% by mass or less, 80% by mass or less, 70% by mass or less, 60% by mass or less, 50% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 5% by mass It is below.
  • styrene compounds include styrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, p-methylstyrene, p-tert-butylstyrene and ethylstyrene. Styrene is preferred from the viewpoint of practicality as a raw material.
  • Examples of monomers other than styrene compounds include methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; acid anhydrides such as maleic anhydride; and ⁇ -olefins such as ethylene.
  • Polystyrene-based resins include, for example, atactic polystyrene and rubber-reinforced polystyrene.
  • rubber-reinforced polystyrene include high-impact polystyrene.
  • the polystyrene resin is preferably at least one selected from the group consisting of atactic polystyrene and high impact polystyrene.
  • the content of the polystyrene resin may be adjusted as appropriate. 1 to 49 parts by mass, preferably 5 to 49 parts by mass, more preferably 10 to 49 parts by mass. In one embodiment, the content of (a2) polystyrene resin is 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or 30 parts by mass with respect to 100 parts by mass of the resin component (a) parts or more, 40 parts by mass or more, or 45 parts by mass or more.
  • the content of the polystyrene resin is 49 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass with respect to 100 parts by mass of the resin component (a) parts or less, 10 parts by mass or less, or 5 parts by mass or less.
  • (a3) Hydrogenated block copolymer As the resin component, (a3) a hydrogenated block copolymer can be used. (a3) The hydrogenated block copolymer is a hydrogenated block copolymer obtained by hydrogenating a block copolymer of an aromatic vinyl compound and a conjugated diene compound.
  • a block copolymer of an aromatic vinyl compound and a conjugated diene compound is, for example, a block copolymer of styrene and a conjugated diene compound, that is, a block copolymer composed of a polystyrene block and a conjugated diene compound polymer block. .
  • the hydrogenation rate of unsaturated bonds derived from the conjugated diene compound by hydrogenation is preferably 60% or more, more preferably 80% or more, and still more preferably 95% or more from the viewpoint of heat resistance stability.
  • the block copolymer when the block copolymer is a block copolymer of styrene and a conjugated diene compound, the styrene block chain is S, the diene compound block chain is B, and the silicon atom is Examples of Si include SBS, SBSB, (SB-) 4 -Si, and SBSBS.
  • the microstructure of the diene compound polymer block can be arbitrarily selected.
  • the amount of vinyl bonds in the conjugated diene compound polymer block is the total amount of bonds in the diene compound polymer (1,2-vinyl bonds and 3,4- It is preferably 2 to 60%, more preferably 8 to 40% of the total of vinyl bonds and 1,4-conjugated bonds).
  • the number average molecular weight of the hydrogenated block copolymer may be adjusted as appropriate, for example, it is preferably 100,000 to 400,000, more preferably 150,000 to 350,000, and further Preferably it is 200,000 to 300,000. When the number average molecular weight is 100,000 or more, a resin composition having excellent impact resistance can be obtained. (a3) The impact resistance of the resin composition of the present embodiment is improved in proportion to the number average molecular weight of the hydrogenated block copolymer.
  • the hydrogenated block copolymer (a3) has a number average molecular weight of 400,000 or less, a polyphenylene ether resin composition having a low load during melt extrusion and excellent processing fluidity can be obtained, and (a3) The hydrogenated block copolymer has excellent dispersibility in the polyphenylene ether resin composition.
  • the hydrogenated block copolymer (a3) when the hydrogenated block copolymer (a3) has a styrene polymer block chain, at least one styrene polymer block chain has a number average molecular weight of 15,000 or more. more preferably 20,000 or more and 50,000 or less. More preferably, all styrene polymer block chains have a number average molecular weight of 15,000 or more.
  • the hydrogenated block copolymer is, when the (a3) hydrogenated block copolymer has a styrene polymer block chain, (a3) the proportion of the styrene polymer block chain in the hydrogenated block copolymer is not particularly limited as long as the number average molecular weight of at least one styrene polymer block chain is 15,000 or more. to 50% by mass, more preferably 30 to 40% by mass.
  • the hydrogenated block copolymer two or more hydrogenated block copolymers having different compositions or structures can be used in combination. For example, a combination of a hydrogenated block copolymer having a bound styrene polymer block content of 50% by mass or more and a hydrogenated block copolymer having a bound styrene polymer block content of 30% by mass or less, hydrogenated block copolymers having different molecular weights, etc.
  • the "bound styrene polymer block content" is the proportion of styrene polymer block chains in (a3) the hydrogenated block copolymer.
  • the hydrogenated block copolymer preferably has a Li (lithium) content as a residual metal component of 100 mass ppm or less.
  • the Li content is 100 ppm by mass or less, the resin composition of the present embodiment is excellent in long-term heat aging resistance or flame retardancy after heat aging.
  • the Li content of the (a3) hydrogenated block copolymer is more preferably 50 ppm by mass or less, and even more preferably 20 ppm by mass or less.
  • the Li content is determined by dry ashing, that is, after pretreatment by a method of weighing a sample, putting it in a crucible, and heat-treating it at 500 to 600° C. for 5 to 20 minutes using a burner heating or an electric furnace. , can be measured by applying the ICP-AES method using iCAP6300 Duo manufactured by Thermo Fisher Scientific.
  • the hydrogenated block copolymer may be dispersed in particles in the polyphenylene ether resin composition.
  • the average particle diameter thereof is preferably 0.1 to 3.0 ⁇ m, more preferably 0.2 to 2.0 ⁇ m, More preferably, it is 0.3 to 1.0 ⁇ m.
  • the resin composition of the present embodiment has excellent impact resistance.
  • the average particle size of the hydrogenated block copolymer refers to the weight average particle size.
  • the content of the (a3) hydrogenated block copolymer may be adjusted as appropriate, and is, for example, in the range of 1 to 49 parts by mass, preferably 1 to 35 parts by mass, based on 100 parts by mass of the resin component (a). parts, more preferably 1 to 25 parts by mass.
  • (a3) When the content of the hydrogenated block copolymer is 1 part by mass or more, excellent impact strength can be obtained in the resin composition of the present embodiment.
  • the content of (a3) the hydrogenated block copolymer is 49 parts by mass or less, the compatibility with (a3) polyphenylene ether is excellent, the impact resistance is high, and the rigidity such as flexural modulus and flexural strength is obtained. is obtained.
  • the (b) titanium oxide used in the resin composition of the present embodiment is not particularly limited, and known titanium oxides can be used.
  • the average primary particle size of titanium oxide is preferably 0.01 to 0.5 ⁇ m, more preferably 0.05 to 0, from the viewpoint of the balance between dispersibility, whiteness, and handling during production. 0.4 ⁇ m, more preferably 0.15 to 0.3 ⁇ m.
  • Titanium oxide is at least one of oxides of metals such as aluminum, magnesium, titanium zirconia and tin, hydrous oxides of these metals, higher fatty acid salts of these metals such as stearic acid, or organic silicon compounds. It may be contained as a surface treatment agent.
  • Titanium oxide can be produced by a dry method or a wet method.
  • the crystal structure of titanium oxide may be either a rutile type or an anatase type, and the rutile type is preferred from the viewpoint of the white colorability and thermal stability of the thermoplastic resin composition used in the present embodiment.
  • Titanium oxide may be used singly or in combination of two or more.
  • the content of (b) titanium oxide is 5 to 40 parts per 100 parts by mass of the (a) resin component. Parts by mass, preferably 10 to 40 parts by mass, more preferably 15 to 40 parts by mass.
  • the content of component (b) is 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, 25 parts by mass or more per 100 parts by mass of component (a). It is 30 parts by mass or more, or 35 parts by mass or more.
  • the content of component (b) is 40 parts by mass or less, 35 parts by mass or less, 30 parts by mass or less, 25 parts by mass or less, or 20 parts by mass or less per 100 parts by mass of component (a). , 15 parts by mass or less, or 10 parts by mass or less.
  • the resin composition of the present embodiment contains (c) an inorganic filler with a thermal conductivity of 2 to 12 [W/(m ⁇ K)].
  • An inorganic filler having a thermal conductivity within this range is considered to have a higher thermal conductivity than, for example, glass fibers, which are general inorganic fillers, and have good heat dissipation properties in the resin. For this reason, it is considered that carbonized conductive paths are difficult to form, and the decrease in anti-tracking performance that may occur when adding an inorganic filler is small.
  • Component (c) is not particularly limited as long as it is an inorganic filler with a thermal conductivity of 2 to 12 [W/(mK)]. c-2) talc and the like.
  • (c-1) Calcium silicate fibrous material exhibits an effect of maintaining anti-tracking performance and an effect of improving physical properties.
  • (c-1) calcium silicate-based fibrous material known materials containing CaO and SiO 2 as main components can be used. Among them, for example, wollastonite and xonotlite are preferable. Wollastonite is more preferred.
  • Wollastonite has a composition given by CaO.SiO 2 .
  • Wollastonite includes both natural and synthetic products. Natural products usually exist as aggregates of fibers and are used after being pulverized and classified. The aspect ratio (fiber length/fiber diameter) of wollastonite varies depending on the pulverization method and production area in the case of natural products. A substantially uniform synthetic product can be obtained.
  • Xonotlite has a composition represented by 6CaO.6SiO2.H2O .
  • Xonotlite includes both natural and synthetic products.
  • Talc is a mineral containing magnesium hydroxide and silicate, and the chemical name is hydrated magnesium silicate. Talc is generally based on about 60% SiO2 , about 30% MgO, and 4.8% water of crystallization.
  • the surface treatment agent is not particularly limited, and examples thereof include silane coupling agents such as aminosilane and epoxysilane; titanate coupling agents; fatty acids (saturated fatty acids, unsaturated fatty acids); alicyclic carboxylic acids; ; metallic soap; and the like.
  • the amount of the surface treatment agent added is not particularly limited, but is preferably 3% by mass or less, more preferably 2% by mass or less, relative to 100% by mass of talc, and is substantially not added. is most preferred.
  • the thermal conductivity of the (c) inorganic filler is 2.0 [W/(m K)] or more, 2.5 [W/(m K)] or more, 3.0 [W/ (m K)] or more, 3.5 [W / (m K)] or more, 4.0 [W / (m K)] or more, 4.5 [W / (m K)] or more, 5.0 [W/(m K)] or more, 5.5 [W/(m K)] or more, 6.0 [W/(m K)] or more, 6.5 [W/(m ⁇ K)] or more, 7.0 [W/(m ⁇ K)] or more, 7.5 [W/(m ⁇ K)] or more, 8.0 [W/(m ⁇ K)] or more, 8.
  • the thermal conductivity of the (c) inorganic filler is 12.0 [W/(mK)] or less, 11.5 [W/(mK)] or less, 11.0 [W / (m K)] or less, 10.5 [W / (m K)] or less, 10.0 [W / (m K)] or less, 9.5 [W / (m K) ] or less, 9.0 [W / (m K)] or less, 8.5 [W / (m K)] or less, 8.0 [W / (m K)] or less, 7.5 [W /(m K)] or less, 7.0 [W/(m K)] or less, 6.5 [W/(m K)] or less, 6.0 [W/(m K)] or less , 5.5 [W / (m K)] or less, 5.0 [W / (m K)] or less, 4.5 [W / (m K)] or less, 4.0 [W / ( m K)] or less,
  • the inorganic filler may be used singly or in combination of two or more.
  • the resin composition of the present embodiment has an inorganic filler ("other (referred to as “inorganic filler”) may or may not be included.
  • other inorganic fillers the amount of the other inorganic fillers is, for example, the average thermal conductivity of (c) the inorganic filler and the other inorganic filler is 2 to 12 [W / (m K)]. can be any amount.
  • the content of the (c) inorganic filler in the resin composition of the present embodiment is 100 parts by mass of the resin component (a) from the viewpoint of sufficiently good balance among processability, heat resistance, tracking resistance and rigidity. 5 to 50 parts by mass, preferably 5 to 45 parts by mass, more preferably 10 to 40 parts by mass. In one embodiment, the content of component (c) is 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, 25 parts by mass or more per 100 parts by mass of component (a). 30 parts by mass or more, 35 parts by mass or more, 40 parts by mass or more, or 45 parts by mass or more.
  • the content of component (c) is 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, 35 parts by mass or less, or 30 parts by mass or less per 100 parts by mass of component (a). , 25 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less.
  • the mass ratio ((b)/(c)) of component (b) to component (c) is 0.2 to 8.0.
  • a potential well generated by the component (b) dispersed in the resin when a voltage is applied traps charges and stabilizes the space charge, thereby improving the tracking resistance.
  • a high degree of both anti-tracking performance and rigidity can be achieved by setting the ratio of the component (c) to 0.2 to 8.0. The reason for this is thought to be that the deterioration in tracking resistance due to the carbonized conductive paths formed by the component (c) is moderately suppressed, while the rigidity improving effect by the component (c) is exhibited.
  • the mass ratio ((b)/(c)) is 0.20 or greater, 0.50 or greater, 0.60 or greater, 0.65 or greater, 0.70 or greater, 0.80 or greater, 0.20 or greater, 0.65 or greater, 0.70 or greater, 0.80 or greater.
  • 90 or more 1.00 or more, 1.10 or more, 1.20 or more, 1.30 or more, 1.40 or more, 1.50 or more, 1.60 or more, 1.70 or more, 1.80 or more, 1. 90 or more, 2.00 or more, 2.50 or more, 3.00 or more, 3.30 or more, 3.50 or more, 4.00 or more, 4.50 or more, 5.00 or more, 5.50 or more, 6. 00 or greater, 6.50 or greater, 7.00 or greater, or 7.50 or greater.
  • the mass ratio ((b)/(c)) is 8.00 or less, 7.50 or less, 7.00 or less, 6.50 or less, 6.00 or less, 5.50 or less, 5 .00 or less, 4.50 or less, 4.00 or less, 3.50 or less, 3.00 or less, 2.50 or less, 2.00 or less, 1.90 or less, 1.80 or less, 1.70 or less, 1 .60 or less, 1.50 or less, 1.40 or less, 1.30 or less, 1.20 or less, 1.10 or less, 1.00 or less, 0.65 or less, or 0.50 or less.
  • the mass ratio ((b)/(c)) is preferably 0.5 to 5.0, more preferably 0.6 to 4.0, and 0.65 to 3.5. is particularly preferred.
  • the total content of the component (b) and the component (c) is 15 to 90 parts by mass with respect to 100 parts by mass of the resin component (a) from the viewpoint of achieving a good balance between tracking resistance and rigidity. preferably 20 to 80 parts by mass, and particularly preferably 20 to 75 parts by mass.
  • the resin composition of the present embodiment may contain (d) a phosphate ester flame retardant.
  • a phosphate ester-based flame retardant When containing a phosphate ester-based flame retardant, (a1) the effect of promoting flame retardancy of polyphenylene ether and (d) the effect of imparting flame retardancy of the phosphate ester-based flame retardant are combined to form the resin composition of the present embodiment. It is highly effective in imparting flame retardancy to
  • Phosphate ester-based flame retardants include, for example, phosphate esters represented by the following general formula (1) and condensates thereof. ... (1)
  • R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl-substituted alkyl group, an aryl group, a halogen-substituted aryl group, and an alkyl-substituted represents any one selected from the group consisting of aryl groups, which may be the same or different.
  • X represents an arylene group.
  • Typical phosphate ester monomers include, for example, triphenyl phosphate, tricresyl phosphate and trixylenyl phosphate.
  • n can have an average value of 1, 2, 3, 4 or 5, preferably an average value of 1, 2 or 3.
  • R 1 , R 2 , R 3 and R 4 in formula (1) is an aryl group. are preferred, and more preferably all of R 1 , R 2 , R 3 and R 4 are aryl groups.
  • Aryl groups include, for example, phenyl, xylenyl, cresyl, or halogenated derivatives thereof.
  • Preferred examples of X include residues obtained by removing two hydroxyl groups from resorcinol, hydroquinone, bisphenol A, biphenol, or halogenated derivatives thereof.
  • condensed phosphate ester compounds examples include resorcinol-bisphenyl phosphate compounds, bisphenol A-polyphenyl phosphate compounds and bisphenol A-polycresyl phosphate compounds.
  • Phosphate ester-based flame retardants may be used singly or in combination of two or more.
  • the content of the phosphate ester-based flame retardant may be adjusted as appropriate. It is 5 to 30 parts by mass, preferably 5 to 25 parts by mass, more preferably 5 to 20 parts by mass.
  • the resin composition of the present embodiment has Other components may be contained as necessary within a range that does not impair the anti-tracking performance and rigidity of the polyphenylene ether resin composition.
  • thermoplastic elastomers polyolefin elastomers
  • heat stabilizers antioxidants, metal deactivators, crystal nucleating agents
  • flame retardants other than phosphate ester flame retardants e.g. , ammonium polyphosphate compounds, silicone flame retardants, etc.
  • plasticizers e.g., low molecular weight polyethylene, epoxidized soybean oil, polyethylene glycol, fatty acid esters, etc.
  • weather resistance improvers e.g., light resistance improvers, slip agents
  • organic fillers organic reinforcing materials (eg, polyacrylonitrile fiber, aramid fiber, etc.), colorants, release agents, and the like.
  • the other components may be used singly or in combination of two or more.
  • the resin composition of the present embodiment can be produced by melt-kneading essential components and optional components.
  • the apparatus and conditions described in JP-A-2018-062608 can be employed.
  • the resin composition of the present embodiment As a specific method for producing the resin composition of the present embodiment, it is possible to use an extruder in which the oxygen concentration of each raw material supply port is controlled to less than 1.0% by volume, and to carry out the following method 1 or 2. preferable.
  • All or part of the components (a) and (b) contained in the resin composition of the present embodiment are melt-kneaded (first kneading step), and the molten kneaded product obtained in the first kneading step is , a production method in which the remaining components of the resin composition are supplied and melt-kneaded (second kneading step). 2.
  • first kneading step to the second kneading step in 1 above it may be avoided to melt the kneaded product once, pelletize the component (a1), and then melt it again.
  • the molded article of this embodiment contains the polyphenylene ether resin composition of this embodiment.
  • the shape of the molded article of the present embodiment is not particularly limited, and examples thereof include film, sheet, and box shapes.
  • the method for manufacturing the molded article of the present embodiment is not particularly limited, and a known method for manufacturing a molded article using a resin composition can be used.
  • methods for producing the molded article of the present embodiment include injection molding (for example, insert molding, hollow molding, multicolor molding, etc.), blow molding, compression molding, extrusion molding, thermoforming, cutting from a thick plate, and the like. is mentioned. Among them, injection molding is preferable from the viewpoint of mass productivity.
  • the molded article of the present embodiment is an injection molded article, blow molded article, compression molded article, extrusion molded article, thermoformed article, and cutting from a thick plate of the polyphenylene ether resin composition of the present embodiment. It is one or more selected from the group consisting of products. In another embodiment, the molded article of the present embodiment is one or more selected from the group consisting of insert molded articles, hollow molded articles and multicolor molded articles of the polyphenylene ether resin composition of the present embodiment.
  • the flexural modulus is an index that represents the rigidity of molded products.
  • the flexural modulus of the molded article is not particularly limited, and is, for example, 2000 MPa or higher, 2500 MPa or higher, 3000 MPa or higher, 3500 MPa or higher, 4000 MPa or higher, 4500 MPa or higher, 5000 MPa or higher, 5500 MPa or higher, 6000 MPa or higher, or 6500 MPa or higher.
  • the bending elastic modulus of the molded product is, for example, 8000 MPa or less, 7500 MPa or less, 7000 MPa or less, 6500 MPa or less, 6000 MPa or less, 5500 MPa or less, 5000 MPa or less, 4500 MPa or less, 4000 MPa or less, 3500 MPa or less, 3000 MPa or less, or 2500 MPa or less.
  • the flexural modulus is 3000 MPa or more
  • the molded product has such rigidity that it can be applied to mechanical parts or structures.
  • the resin composition of the present embodiment can be used for applications in which anti-tracking performance and rigidity are important, and can be suitably used for electric parts, electronic parts, and electric/electronic parts for automobiles.
  • Applications of electrical components include, for example, office machines, measuring instruments, chassis, electrical equipment, power adapters, recording media, recording media drives, sensor devices, terminal blocks, secondary batteries, fuel cells, solar cells, generators, Examples include smart meters, power transmission equipment, cable terminals, automobiles, connection structures for photovoltaic modules (module connectors, junction boxes, etc.), hybrid automobiles, and electric automobiles.
  • the obtained pellets of the resin composition are supplied to a small injection molding machine (trade name: EC75SXII, manufactured by Toshiba Machine Co., Ltd.) set at a cylinder temperature of 280 ° C., and the mold temperature is 80 ° C. and the injection pressure is 120 MPa. It was formed into a flat plate of 70 mm x 3 mm. With respect to the flat plate, the maximum voltage (V) at which tracking breakdown does not occur was measured according to IEC60112:2003 (electrolyte used: solution A, number of drops: 50 drops) to evaluate tracking resistance. It was determined that the higher the maximum voltage value, the better the tracking resistance.
  • V maximum voltage
  • Titanium oxide/titanium oxide “trade name: TIOXIDE R-TC30 manufactured by Huntsman”, average particle size (average primary particle size): 0.21 ⁇ m, crystal structure: rutile type
  • Inorganic filler (c) Calcium silicate-based fibrous substance: Wollastonite “Product name: KTP-H02S manufactured by Kansai Matek Co., Ltd.”, thermal conductivity 2.7 [W / (m K)] (c-2) Talc “Product name: Crown Talc PK-MMB, manufactured by Matsumura Sangyo Co., Ltd.”, thermal conductivity 5.2 to 10.7 [W / (m K)]
  • Comparative inorganic filler (c′-1) Glass fiber “Product name: ECS03T-249 manufactured by Nippon Electric Glass Co., Ltd.” Thermal conductivity 1.0 [W / (m K)] (c′-2) Mica “Product name: C-100IF manufactured by Repco” thermal conductivity 0.67 [W / (m K)] (c′-3) Fibrous basic magnesium sulfate “Trade name: Mos-Hige, manufactured by Ube Materials Co., Ltd.” Thermal conductivity 0.1 [W / (m K)]
  • Example 1 Using a twin-screw extruder (ZSK-25: manufactured by Coperion), the first raw material supply port is provided upstream with respect to the flow direction of the raw material, and downstream from this, the first vacuum vent, the second raw material supply port, the second Three raw material supply ports were provided, and a second vacuum vent was provided downstream thereof.
  • the cylinder temperature was set from 320°C upstream to 300°C downstream. According to the mixing ratio (parts by mass) shown in Table 1, component (a) was supplied from the first supply port, component (b) was supplied from the second supply port, and component (c) was supplied from the third supply port.
  • the liquid (d) phosphate flame retardant was supplied from a downstream injection nozzle and melt-kneaded.
  • the screw rotation speed was set to 200 rotations/minute, and the discharge amount was set to 15 kg/h. Further, an opening (vent) was provided in the cylinder block, and residual volatilization was removed by vacuum suction. The degree of pressure reduction (pressure) at this time was 0.09 MPa.
  • the strand extruded from the die was cooled and cut continuously with a cutter to obtain resin composition pellets of Example 1 having a length of about 3 mm and a diameter of 3 mm.
  • Example 2-13 and Comparative Examples 1-6 In Example 1, except that the formulation was changed as shown in Tables 1 to 3, the same operation as in Example 1 was performed to obtain resin pellets.
  • the resin composition which is excellent in anti-tracking performance and can obtain the molded article which gave rigidity can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、耐トラッキング性能に優れ且つ、剛性を付与した成形品を得ることができる樹脂組成物を提供することを目的とする。(a)樹脂成分と、(b)酸化チタンと、(c)無機フィラーと、を含み、(c)無機フィラーは、熱伝導率が2~12[W/(m・K)]であり、(a)樹脂成分は、(a)樹脂成分100質量部のうち、(a1)ポリフェニレンエーテルを50~90質量部含み、(b)酸化チタンの量は、(a)樹脂成分100質量部に対して、5~40質量部であり、(c)無機フィラーの量は、(a)樹脂成分100質量部に対して、5~50質量部であり、かつ、(b)酸化チタンと前記(c)無機フィラーとの質量比((b)/(c))が、0.2~8.0である、ポリフェニレンエーテル樹脂組成物。

Description

ポリフェニレンエーテル樹脂組成物及び成形品 関連出願の相互参照
 本願は、2021年3月29日に出願の日本国特許出願第2021-055524号の優先権の利益を主張するものであり、その内容は、参照により本願に組み込まれる。
 本発明は、ポリフェニレンエーテル樹脂組成物及び成形品に関する。
 電気電子機器分野では、電気的負荷による発火に対する安全性の確保のため、電気的特性の一つである耐トラッキング性に優れていることが必要である。そして、近年、電気電子機器部品および電装部品は、機器自体の小型化高密度化が急速に進行している。その結果、絶縁距離が小さくなり、これら部品(成形品)の耐トラッキング性等への要求はますます厳しくなってきている(特許文献1参照)。
 また、電気電子機器部品および電装部品の筐体には剛性が求められてきている(特許文献2参照)。
 耐トラッキング性能の要求に応えるものとして、例えば、熱可塑性樹脂に酸化チタンを添加することで耐トラッキング性能が向上する技術が公知である(特許文献3、4参照)。
特開2016-183294号公報 特開2001-316587号公報 特許第5405738号公報 国際公開第2015/002145号
 しかしながら、これらの従来技術で開示されている熱可塑性樹脂組成物では、高い耐トラッキング性と、剛性との両立にさらなる課題が残されている。
 上記課題を鑑みて、本発明は、耐トラッキング性能に優れ且つ、剛性を付与した成形品を得ることができる樹脂組成物を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討した結果、本発明を完成させるに至った。
 すなわち、本発明は下記の通りである。
[1](a)樹脂成分と、
 (b)酸化チタンと、
 (c)無機フィラーと、
を含み、
 前記(c)無機フィラーは、熱伝導率が2~12[W/(m・K)]であり、
 前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a1)ポリフェニレンエーテルを50~90質量部含み、
 前記(b)酸化チタンの量は、前記(a)樹脂成分100質量部に対して、5~40質量部であり、
 前記(c)無機フィラーの量は、前記(a)樹脂成分100質量部に対して、5~50質量部であり、かつ、
 前記(b)酸化チタンと前記(c)無機フィラーとの質量比((b)/(c))が、0.2~8.0である、ポリフェニレンエーテル樹脂組成物。
[2]前記(c)無機フィラーが、(c-1)ケイ酸カルシウム系繊維状物、及び(c-2)タルクからなる群から選ばれる1種以上である、[1]に記載のポリフェニレンエーテル樹脂組成物。
[3]前記(c)無機フィラーが、前記(c-1)ケイ酸カルシウム系繊維状物である、[2]に記載のポリフェニレンエーテル樹脂組成物。
[4]前記(c-1)ケイ酸カルシウム系繊維状物が、ワラストナイトである、[2]に記載のポリフェニレンエーテル樹脂組成物。
[5]前記(b)酸化チタンと前記(c)無機フィラーとの合計含有量が、前記(a)樹脂成分100質量部に対して15~90質量部である、[1]~[4]のいずれか一に記載のポリフェニレンエーテル樹脂組成物。
[6]前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a2)ポリスチレン系樹脂を1~49質量部含む、[1]~[5]のいずれか一に記載のポリフェニレンエーテル樹脂組成物。
[7]前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a3)水添ブロック共重合体を1~49質量部含む、[1]~[6]のいずれか一に記載のポリフェニレンエーテル樹脂組成物。
[8]前記(a)樹脂成分100質量部に対して、(d)リン酸エステル系難燃剤を5~30質量部含む、[1]~[7]のいずれか一に記載のポリフェニレンエーテル樹脂組成物。
[9]前記(d)リン酸エステル系難燃剤が、リン酸エステルの縮合物である、[8]に記載のポリフェニレンエーテル樹脂組成物。
[10][1]~[9]のいずれか一のいずれか一項に記載のポリフェニレンエーテル樹脂組成物を含む、成形品。
 本発明によれば、耐トラッキング性能に優れ且つ、剛性を付与した成形品を得ることができる樹脂組成物を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。
 本実施形態においては、(a)樹脂成分、(b)酸化チタン、(c)無機フィラー、(d)リン酸エステル系難燃剤、(a1)ポリフェニレンエーテル、(a2)ポリスチレン系樹脂、(a3)水添ブロック共重合体、(c-1)ケイ酸カルシウム系繊維状物、及び(c-2)タルクをそれぞれ、単に、(a)成分、(b)成分、(c)成分、(d)成分、(a1)成分、、(a2)成分、(a3)成分、(c-1)成分、(c-2)成分ということがある。
 本実施形態では、数値範囲は、別段の記載のない限り、その範囲の下限値および上限値を含むことを意図している。例えば、50~90質量部は、50質量部以上90質量部以下を意味する。
[ポリフェニレンエーテル樹脂組成物]
 本実施形態のポリフェニレンエーテル樹脂組成物(以下、単に「本実施形態の樹脂組成物ということがある。」)は、
 (a)樹脂成分と、
 (b)酸化チタンと、
 (c)無機フィラーと、
を含み、
 前記(c)無機フィラーは、熱伝導率が2~12[W/(m・K)]であり、
 前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a1)ポリフェニレンエーテルを50~90質量部含み、
 前記(b)酸化チタンの量は、前記(a)樹脂成分100質量部に対して、5~40質量部であり、
 前記(c)無機フィラーの量は、前記(a)樹脂成分100質量部に対して、5~50質量部であり、かつ、
 前記(b)酸化チタンと前記(c)無機フィラーとの質量比((b)/(c))が、0.2~8.0である。この構成により、耐トラッキング性能に優れ且つ、剛性を付与した成形品を得ることができる。
 以下、本実施形態の樹脂組成物の構成成分について例示説明する。
[(a)樹脂成分]
 本実施形態の樹脂組成物における(a)樹脂成分は、(a1)ポリフェニレンエーテルを少なくとも含む。(a1)ポリフェニレンエーテル以外の(a)樹脂成分としては、例えば、(a2)ポリスチレン系樹脂および(a3)水添ブロック共重合体等が挙げられる。
[(a1)ポリフェニレンエーテル]
 (a1)ポリフェニレンエーテルとしては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等が挙げられる。さらに、(a1)ポリフェニレンエーテルとしては、例えば、2,6-ジメチルフェノールと他のフェノール類との共重合体も挙げられる。このような共重合体としては、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体;および2,6-ジメチルフェノールと2-メチル-6-ブチルフェノールとの共重合体が挙げられる。これらの中でも特に好ましいポリフェニレンエーテルとしては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、又はこれらの混合物である。
 ポリフェニレンエーテルにおける一部の末端基にジブチルアミンが含まれていてもよい。ポリフェニレンエーテルの一部の末端基にジブチルアミンを含むことはNMRにおいて、3.620ppmに現れるピークにより同定することができる。
 (a1)ポリフェニレンエーテルの製造方法は、公知の方法で製造することができる。(a1)ポリフェニレンエーテルの製造方法としては、例えば、米国特許第3306874号明細書、米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特開昭50-51197号公報、特公昭52-17880号公報及び特公昭63-152628号公報等に記載された製造方法等が挙げられる。
 (a1)ポリフェニレンエーテルの還元粘度(0.5g/dLクロロホルム溶液、30℃、ウベローデ型粘度管で測定)の好ましい範囲は、成形品の耐衝撃性および耐熱性の観点から、0.30dL/g~0.80dL/g、より好ましくは、0.35dL/g~0.75dL/g、最も好ましくは0.38dL/g~0.55dL/gである。
 (a1)ポリフェニレンエーテルは、1種単独で用いてもよいし、組成、分子量、還元粘度などの異なる2種以上を組み合わせて用いてもよい。
 ポリフェニレンエーテルの安定化のため、公知の安定剤も好適に使用することができる。安定剤の例としては、酸化亜鉛、硫化亜鉛等の金属系安定剤;ヒンダードフェノール系安定剤、リン系安定剤、ヒンダードアミン系安定剤等の有機安定剤などが挙げられる。安定剤の好ましい配合量は、(a1)ポリフェニレンエーテル100質量部に対して5質量部未満である。
 さらに、ポリフェニレンエーテルに添加することが可能な公知の添加剤等も(a1)ポリフェニレンエーテル100質量部に対して10質量部未満の量で添加してもよい。
 (a1)ポリフェニレンエーテルの含有量は、耐トラッキング性能および剛性のバランスを十分に良好なものとする観点から、樹脂成分100質量部のうち、50~90質量部であり、好ましくは50~80質量部である。
[(a2)ポリスチレン系樹脂]
 (a)樹脂成分として、(a2)ポリスチレン系樹脂を用いることができる。
 (a2)ポリスチレン系樹脂としては、例えば、スチレン系化合物の単独重合体およびスチレン系化合物と、他の単量体との共重合体などが挙げられる。
 (a2)ポリスチレン系樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 一実施形態では、(a2)ポリスチレン系樹脂がスチレン系化合物と他の単量体との共重合体である場合、共重合体のスチレン系化合物に由来する構成単位の量は、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上または95質量%以上である。別の実施形態では、(a2)ポリスチレン系樹脂がスチレン系化合物と他の単量体との共重合体である場合、共重合体のスチレン系化合物に由来する構成単位の量は、95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下または5質量%以下である。
 スチレン系化合物としては、例えば、スチレン、α-メチルスチレン、2,4-ジメチルスチレン、モノクロロスチレン、p-メチルスチレン、p-tert-ブチルスチレンおよびエチルスチレン等が挙げられる。原材料の実用性の観点から、スチレンが好ましい。
 また、スチレン系化合物以外の単量体としては、例えば、メチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル類;無水マレイン酸等の酸無水物;およびエチレン等のα-オレフィン等が挙げられる。
 (a2)ポリスチレン系樹脂としては、例えば、アタクチックポリスチレン、ゴム補強されたポリスチレン等が挙げられる。ゴム補強されたポリスチレンとしては、例えば、ハイインパクトポリスチレンなどが挙げられる。(a2)ポリスチレン系樹脂としては、アタクチックポリスチレンおよびハイインパクトポリスチレンからなる群から選択される少なくとも一種が好ましい。
 (a2)ポリスチレン系樹脂の含有量は、適宜調節すればよく、例えば、加工性、耐熱性、耐トラッキング性能および剛性のバランスを十分に良好なものとする観点から、(a)樹脂成分100質量部のうち1~49質量部であり、好ましくは5~49質量部、さらに好ましくは10~49質量部である。一実施形態では、(a2)ポリスチレン系樹脂の含有量は、(a)樹脂成分100質量部に対して、1質量部以上、5質量部以上、10質量部以上、20質量部以上、30質量部以上、40質量部以上または45質量部以上である。別の実施形態では、a2)ポリスチレン系樹脂の含有量は、(a)樹脂成分100質量部に対して、49質量部以下、45質量部以下、40質量部以下、30質量部以下、20質量部以下、10質量部以下または5質量部以下である。
[(a3)水添ブロック共重合体]
 (a)樹脂成分として、(a3)水添ブロック共重合体を用いることができる。(a3)水添ブロック共重合体とは、芳香族ビニル化合物と共役ジエン系化合物とのブロック共重合体を、水素添加して得られる水添ブロック共重合体である。芳香族ビニル化合物と共役ジエン系化合物とのブロック共重合体は、例えば、スチレンと共役ジエン化合物とのブロック共重合体、すなわちポリスチレンブロックと共役ジエン化合物重合体ブロックとからなるブロック共重合体である。
 水素添加による共役ジエン化合物由来の不飽和結合の水添率は、耐熱安定性の観点から60%以上が好ましく、より好ましくは80%以上、さらに好ましくは95%以上である。
 水素添加前のブロック共重合体の構造としては、当該ブロック共重合体がスチレンと共役ジエン化合物とのブロック共重合体である場合、スチレンブロック鎖をS、ジエン化合物ブロック鎖をB、ケイ素原子をSiと表すと、例えば、S-B-S、S-B-S-B、(S-B-)-Si、S-B-S-B-S等が挙げられる。
 ジエン化合物重合体ブロックのミクロ構造は、任意に選択することができる。
 共役ジエン化合物重合体ブロックのビニル結合量(1,2-ビニル結合と3,4-ビニル結合との合計)は、ジエン化合物重合体の結合量全体(1,2-ビニル結合と3,4-ビニル結合と1,4-共役結合との合計)に対し、2~60%が好ましく、より好ましくは8~40%の範囲である。
 (a3)水添ブロック共重合体の数平均分子量は、適宜調節すればよく、例えば、100,000~400,000であることが好ましく、より好ましくは150,000~350,000であり、さらに好ましくは200,000~300,000である。数平均分子量が100,000以上であると、耐衝撃性に優れる樹脂組成物が得られる。(a3)水添ブロック共重合体の数平均分子量に比例して本実施形態の樹脂組成物の耐衝撃性が向上する。また、(a3)水添ブロック共重合体の数平均分子量が400,000以下であると、溶融押出し時の負荷が低く加工流動性に優れたポリフェニレンエーテル樹脂組成物が得られ、かつ(a3)水添ブロック共重合体のポリフェニレンエーテル樹脂組成物中への分散性が優れたものとなる。
 (a3)水添ブロック共重合体は、当該(a3)水添ブロック共重合体がスチレン重合体ブロック鎖を有する場合、少なくとも1個のスチレン重合体ブロック鎖が数平均分子量15,000以上であることが好ましく、より好ましくは20,000以上、50,000以下である。さらに好ましくは全てのスチレン重合体ブロック鎖の数平均分子量が15,000以上である。
 (a3)水添ブロック共重合体は、当該(a3)水添ブロック共重合体がスチレン重合体ブロック鎖を有する場合、(a3)水添ブロック共重合体中のスチレン重合体ブロック鎖が占める割合は、少なくとも1個のスチレン重合体ブロック鎖の数平均分子量が15,000以上であれば特に限定されず、耐衝撃性の観点から、10~70質量%であることが好ましく、より好ましくは20~50質量%であり、さらに好ましくは30~40質量%である。
 (a3)水添ブロック共重合体としては、組成または構造の異なる2種以上の水添ブロック共重合体を併用することもできる。例えば、結合スチレン重合体ブロック含有量50質量%以上の水添ブロック共重合体と結合スチレン重合体ブロック含有量30質量%以下の水添ブロック共重合体との併用、分子量の異なる水添ブロック共重合体同士の併用、上記のようなスチレンと共役ジエンとのブロック共重合体と、スチレンと共役ジエンのランダム共重合体ブロックを含有するブロック共重合体を水添して得られる水添ランダムブロック共重合体との併用が挙げられる。
 本明細書において、「結合スチレン重合体ブロック含有量」とは、(a3)水添ブロック共重合体中のスチレン重合体ブロック鎖が占める割合である。
 (a3)水添ブロック共重合体は、残留金属成分としてのLi(リチウム)含有量が100質量ppm以下であることが好ましい。Li含有量が100質量ppm以下であることにより、本実施形態の樹脂組成物は、長期の耐熱エージング性または熱エージング後の難燃性に優れたものとなる。同様の観点から、(a3)水添ブロック共重合体のLi含有量は、50質量ppm以下がより好ましく、20質量ppm以下がさらに好ましい。
 Li含有量は、乾式灰化、すなわち、試料を秤量してるつぼに入れ、バーナー加熱や電気炉等を用いて500~600℃で5~20分熱処理を行う方法にて前処理を行った後、サーモフィッシャーサイエンティフィック社製iCAP6300 Duoを用いてICP-AES法を適用することにより測定することができる。
 (a3)水添ブロック共重合体は、ポリフェニレンエーテル樹脂組成物中で粒子状に分散していてもよい。(a3)水添ブロック共重合体が粒子状に分散している場合、その平均粒子径は0.1~3.0μmであることが好ましく、より好ましくは0.2~2.0μmであり、さらに好ましくは0.3~1.0μmである。平均粒子径が0.1μm~3.0μmであると、本実施形態の樹脂組成物は耐衝撃性に優れる。
 (a3)水添ブロック共重合体の平均粒子径は、重量平均粒子径を指す。
 (a3)水添ブロック共重合体の含有量は、適宜調節すればよいが、例えば、(a)樹脂成分100質量部のうち、1~49質量部の範囲であり、好ましくは1~35質量部であり、より好ましくは1~25質量部である。(a3)水添ブロック共重合体の含有量が1質量部以上であると、本実施形態の樹脂組成物において優れた衝撃強度が得られる。一方、(a3)水添ブロック共重合体の含有量が49質量部以下であると(a3)ポリフェニレンエーテルとの相溶性に優れ、耐衝撃性が高く、かつ曲げ弾性率や曲げ強度などの剛性が優れた樹脂組成物が得られる。
[(b)酸化チタン]
 本実施形態の樹脂組成物に用いる(b)酸化チタンとしては、特に限定されず、公知の酸化チタンを使用できる。
 (b)酸化チタンの平均一次粒径は、分散性、白色着色性と製造時のハンドリング性のバランスの観点から、好ましくは0.01~0.5μmであり、より好ましくは0.05~0.4μmであり、さらに好ましくは0.15~0.3μmである。
 (b)酸化チタンは、アルミニウム、マグネシウム、ジルコニアチタン、錫等の金属の酸化物、これら金属の含水酸化物、これら金属のステアリン酸等の高級脂肪酸塩、又は有機珪素化合物のうち、少なくとも一種を表面処理剤として含んでいてもよい。
 (b)酸化チタンは、乾式法、又は湿式法により製造することができる。
 (b)酸化チタンの結晶構造は、ルチル型とアナターゼ型のいずれでもよく、本実施の形態において用いる熱可塑性樹脂組成物の白色着色性及び熱安定性の観点からルチル型が好ましい。
 (b)酸化チタンは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 後述する(b)と(c)との質量比0.2~8.0を満たす範囲内で、(b)酸化チタンの含有量は、(a)樹脂成分100質量部に対して5~40質量部、好ましくは10~40質量部であり、より好ましくは15~40質量部である。(b)酸化チタンの含有量が5~40質量部であれば加工性、耐トラッキング性能のバランスを十分に良好なものとすることができる。一実施形態では、(b)成分の含有量は、(a)成分100質量部に対して、5質量部以上、10質量部以上、15質量部以上、20質量部以上、25質量部以上、30質量部以上または35質量部以上である。別の実施形態では、(b)成分の含有量は、(a)成分100質量部に対して、40質量部以下、35質量部以下、30質量部以下、25質量部以下、20質量部以下、15質量部以下または10質量部以下である。
[(c)無機フィラー]
 本実施形態の樹脂組成物は、熱伝導率2~12[W/(m・K)]の(c)無機フィラーを含む。当該範囲の熱伝導率を有する無機フィラーは、例えば、一般的な無機フィラーであるガラス繊維等と比較して熱伝導率が高く、樹脂中での放熱性が良いと考えられる。このため、炭化導電路を形成しにくく、無機フィラー添加時に生じ得る耐トラッキング性能の低下が小さいと考えられる。
 (c)成分としては、熱伝導率2~12[W/(m・K)]の無機フィラーであれば特に限定されず、例えば、(c-1)ケイ酸カルシウム系繊維状物、及び(c-2)タルクなどが挙げられる。
[(c-1)ケイ酸カルシウム系繊維状物]
 (c-1)ケイ酸カルシウム系繊維状物は、耐トラッキング性能の維持効果及び物理的特性の向上効果を示す。(c-1)ケイ酸カルシウム系繊維状物としては、CaO及びSiOを主成分とする公知のものが使用できるが、その中でも、例えば、ワラストナイト、ゾノトライトが好ましい。さらに好ましくはワラストナイトである。
 ワラストナイトは、CaO・SiOで示される組成を有する。ワラストナイトには、天然品及び合成品がある。通常天然品は、繊維の集合体として存在し、粉砕及び分級して用いられる。ワラストナイトのアスペクト比(繊維長/繊維径)は、天然品の場合は粉砕方法及び産地によって異なる。合成品は、ほぼ均一なものが得られる。
 ゾノトライトは、6CaO・6SiO・HOで示される組成を有する。ゾノトライトには、天然品及び合成品がある。
[(c-2)タルク]
 タルクは、水酸化マグネシウムとケイ酸塩とを含む鉱物であり、化学名が含水珪酸マグネシウムである鉱物である。タルクは、一般的に、SiO約60%、MgO約30%、結晶水4.8%を主成分とする。
 タルクは、樹脂との親和性を向上させる観点から、表面処理剤を用いて処理されていてもよい。表面処理剤としては、特に限定されることなく、例えば、アミノシラン、エポキシシラン等のシランカップリング剤;チタネート系カップリング剤;脂肪酸(飽和脂肪酸、不飽和脂肪酸);脂環族カルボン酸;樹脂酸;金属石鹸;等が挙げられる。表面処理剤の添加量は、特に限定されることなく、タルク100質量%に対して、3質量%以下であることが好ましく、2質量%以下であることが更に好ましく、実質的に添加されないことが最も好ましい。
 一実施形態では、(c)無機フィラーの熱伝導率は、2.0[W/(m・K)]以上、2.5[W/(m・K)]以上、3.0[W/(m・K)]以上、3.5[W/(m・K)]以上、4.0[W/(m・K)]以上、4.5[W/(m・K)]以上、5.0[W/(m・K)]以上、5.5[W/(m・K)]以上、6.0[W/(m・K)]以上、6.5[W/(m・K)]以上、7.0[W/(m・K)]以上、7.5[W/(m・K)]以上、8.0[W/(m・K)]以上、8.5[W/(m・K)]以上、9.0[W/(m・K)]以上、9.5[W/(m・K)]以上、10.0[W/(m・K)]以上、10.5[W/(m・K)]以上、11.0[W/(m・K)]以上または11.5[W/(m・K)]以上である。また、別の実施形態では、(c)無機フィラーの熱伝導率は、12.0[W/(m・K)]以下、11.5[W/(m・K)]以下、11.0[W/(m・K)]以下、10.5[W/(m・K)]以下、10.0[W/(m・K)]以下、9.5[W/(m・K)]以下、9.0[W/(m・K)]以下、8.5[W/(m・K)]以下、8.0[W/(m・K)]以下、7.5[W/(m・K)]以下、7.0[W/(m・K)]以下、6.5[W/(m・K)]以下、6.0[W/(m・K)]以下、5.5[W/(m・K)]以下、5.0[W/(m・K)]以下、4.5[W/(m・K)]以下、4.0[W/(m・K)]以下、3.5[W/(m・K)]以下、3.0[W/(m・K)]以下または2.5[W/(m・K)]以下である。
 (c)無機フィラーは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物は、(c)無機フィラー以外に、熱伝導率が2[W/(m・K)]未満または12[W/(m・K)]を超える無機フィラー(「その他の無機フィラー」という)を含んでいてもよいし、含まなくてもよい。その他の無機フィラーを含む場合は、その他の無機フィラーの量は、例えば、(c)無機フィラーとその他の無機フィラーとの熱伝導率の平均が2~12[W/(m・K)]となる量とすることができる。
 本実施形態の樹脂組成物における(c)無機フィラーの含有量は、加工性、耐熱性、耐トラッキング性能および剛性のバランスを十分に良好なものとする観点から、(a)樹脂成分100質量部に対して5~50質量部であり、5~45質量部であることが好ましく、10~40質量部であることがより好ましい。一実施形態では、(c)成分の含有量は、(a)成分100質量部に対して、5質量部以上、10質量部以上、15質量部以上、20質量部以上、25質量部以上、30質量部以上、35質量部以上、40質量部以上または45質量部以上である。別の実施形態では、(c)成分の含有量は、(a)成分100質量部に対して、50質量部以下、45質量部以下、40質量部以下、35質量部以下、30質量部以下、25質量部以下、20質量部以下、15質量部以下または10質量部以下である。
[(b)成分と(c)成分との質量比]
 本実施形態において、(b)成分と(c)成分との質量比((b)/(c))は0.2~8.0である。当該質量比であることで、電圧を印加した際に樹脂中に分散している(b)成分により発生したポテンシャルの井戸によって、電荷をトラップし空間電荷が安定することによって、耐トラッキング性が向上すると推測される。また、(c)成分との比率が0.2~8.0であることで、耐トラッキング性能と剛性の高度な両立が可能となると考えられる。この理由は、(c)成分により形成される炭化導電路による耐トラッキング性の低下が適度に抑制されつつ、(c)成分による剛性向上効果が発揮されると考えられるためである。
 一実施形態では、質量比((b)/(c))は、0.20以上、0.50以上、0.60以上、0.65以上、0.70以上、0.80以上、0.90以上、1.00以上、1.10以上、1.20以上、1.30以上、1.40以上、1.50以上、1.60以上、1.70以上、1.80以上、1.90以上、2.00以上、2.50以上、3.00以上、3.30以上、3.50以上、4.00以上、4.50以上、5.00以上、5.50以上、6.00以上、6.50以上、7.00以上または7.50以上である。別の実施形態では、質量比((b)/(c))は、8.00以下、7.50以下、7.00以下、6.50以下、6.00以下、5.50以下、5.00以下、4.50以下、4.00以下、3.50以下、3.00以下、2.50以下、2.00以下、1.90以下、1.80以下、1.70以下、1.60以下、1.50以下、1.40以下、1.30以下、1.20以下、1.10以下、1.00以下、0.65以下または0.50以下である。質量比((b)/(c))は、0.5~5.0であることが好ましく、0.6~4.0であることがより好ましく、0.65~3.5であることが特に好ましい。
 (b)成分と(c)成分との合計含有量は、耐トラッキング性と剛性のバランスを良好なものとする観点から、(a)樹脂成分100質量部に対して15~90質量部であることが好ましく、20~80質量部であることがより好ましく、20~75質量部であることが特に好ましい。
[(d)リン酸エステル系難燃剤]
 本実施形態の樹脂組成物は、(d)リン酸エステル系難燃剤を含むことができる。(d)リン酸エステル系難燃剤を含む場合、(a1)ポリフェニレンエーテルの助難燃効果と(d)リン酸エステル系難燃剤の難燃性付与効果とが相まって、本実施形態の樹脂組成物に対する難燃性付与に大きな効果を奏する。
 (d)リン酸エステル系難燃剤としては、公知のリン酸エステル系難燃剤を用いることができる。(d)リン酸エステル系難燃剤としては、例えば、下記一般式(1)により表されるリン酸エステル及びその縮合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
・・・(1)
式(1)中、R、R、R及びRは、それぞれ、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール置換アルキル基、アリール基、ハロゲン置換アリール基、及びアルキル置換アリール基からなる群より選ばれるいずれかを表し、それぞれ同一であっても異なっていてもよい。Xはアリーレン基を表す。nは0、1、2、3、4または5の整数である。なお、n=0である場合は、式(1)の化合物は、リン酸エステル単量体を示す。nが1~5の整数である場合は、式(1)の化合物は、リン酸エステルの縮合物を示す。
 代表的なリン酸エステル単量体としては、例えば、トリフェニルホスフェート、トリクレジルホスフェートおよびトリキシレニルホスフェート等が挙げられる。
 リン酸エステルの縮合物としては、通常nは、平均値で1、2、3、4または5であり得、好ましくは平均値で1、2または3である。
 また、他の樹脂に混練した際に発現される難燃性及び耐熱性の観点から、式(1)中、R、R、R及びRのうち少なくとも一つがアリール基であることが好ましく、より好ましくはR、R、R及びRの全てがアリール基である。アリール基としては、例えば、フェニル、キシレニル、クレジル又はこれらのハロゲン化誘導体が挙げられる。
 好ましいXの例としては、レゾルシノール、ハイドロキノン、ビスフェノールA、ビフェノール又はこれらのハロゲン化誘導体から2個の水酸基が脱離した残基が挙げられる。
 縮合型のリン酸エステル化合物としては、例えば、レゾルシノール-ビスフェニルホスフェート化合物、ビスフェノールA-ポリフェニルホスフェート化合物およびビスフェノールA-ポリクレジルホスフェート化合物等が挙げられる。
 (d)リン酸エステル系難燃剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (d)リン酸エステル系難燃剤の含有量は、適宜調節すればよいが、例えば、(a)樹脂成分100質量部に対して、流動性、耐熱性及び難燃性のバランスの観点から、5~30質量部であり、好ましくは5~25質量部であり、より好ましくは5~20質量部である。
[その他の成分]
 本実施形態の樹脂組成物は、必須成分である(a1)成分、(b)成分および(c)成分ならびに任意成分である(a2)成分、(a3)成分および(d)成分の他に、ポリフェニレンエーテル樹脂組成物の、耐トラッキング性能および剛性を損なわない範囲で、必要に応じてその他の成分を含有してもよい。
 その他の成分としては、例えば、熱可塑性エラストマー(ポリオレフィン系エラストマー)、熱安定剤、酸化防止剤、金属不活性化剤、結晶核剤、(d)リン酸エステル系難燃剤以外の難燃剤(例えば、ポリリン酸アンモニウム系化合物、シリコーン系難燃剤等)、可塑剤(例えば、低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、耐候性改良剤、耐光性改良剤、スリップ剤、有機充填材、有機強化材(例えば、ポリアクリロニトリル繊維、アラミド繊維等)、着色剤および離型剤等が挙げられる。
 その他の成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物は、必須成分および任意成分を溶融混練することにより製造することができる。例えば、特開2018-062608号公報に記載の装置および条件を採用することができる。
 本実施形態の樹脂組成物の具体的な製造方法としては、各原料供給口の酸素濃度を1.0体積%未満に制御した押出機を用い、かつ下記1または2の方法を実施することが好ましい。
1.本実施形態の樹脂組成物に含まれる(a)成分と(b)成分の全量又は一部を溶融混練し(第一混練工程)、第一混練工程で得られた溶融状態の混練物に対し、樹脂組成物の残りの成分を供給して溶融混練(第二混練工程)する製造方法。
2.本実施形態の樹脂組成物に含まれる(a)~(d)成分の全量を溶融混練する方法。
 上記1の第一混練工程から第二混練工程において、上記混練物を溶融状態として、(a1)成分を、一度溶融させてペレット化した後に、再度溶融させることを避けてもよい。
〔成形品〕
 本実施形態の成形品は、本実施形態のポリフェニレンエーテル樹脂組成物を含む。本実施形態の成形品の形状には特に制限はなく、例えば、フィルム状、シート状または箱状等が挙げられる。
 本実施形態の成形品の製造方法としては、特に限定されず、樹脂組成物を用いた公知の成形品の製造方法を用いることができる。本実施形態の成形品の製造方法としては、例えば、射出成形(例えば、インサート成形、中空成形および多色成形等)、ブロー成形、圧縮成形、押出し成形、熱成形および厚板からの切削加工等が挙げられる。中でも、量産性の観点から射出成形が好ましい。
 一実施形態では、本実施形態の成形品は、本実施形態のポリフェニレンエーテル樹脂組成物の、射出成形品、ブロー成形品、圧縮成形品、押出し成形品、熱成形品および厚板からの切削加工品からなる群より選択される1種以上である。別の実施形態では、本実施形態の成形品は、本実施形態のポリフェニレンエーテル樹脂組成物のインサート成形品、中空成形品および多色成形品からなる群より選択される1種以上である。
 成型品の剛性を表す指標として、曲げ弾性率が挙げられる。成型品の曲げ弾性率は、特に限定されず、例えば、2000MPa以上、2500MPa以上、3000MPa以上、3500MPa以上、4000MPa以上、4500MPa以上、5000MPa以上、5500MPa以上、6000MPa以上または6500MPa以上である。また、成型品の曲げ弾性率は、例えば、8000MPa以下、7500MPa以下、7000MPa以下、6500MPa以下、6000MPa以下、5500MPa以下、5000MPa以下、4500MPa以下、4000MPa以下、3500MPa以下、3000MPa以下または2500MPa以下である。特に、曲げ弾性率が3000MPa以上である場合、成型品は、機構部品または構造物への適用も可能な剛性を有する。
[用途]
 本実施形態の樹脂組成物の用途は、特に限定されない。本実施形態の樹脂組成物は、耐トラッキング性能、剛性が重要な用途に使用でき、電気部品、電子部品及び自動車用電気電子部品に好適に使用可能である。
 電気部品の用途としては、例えば、事務機、計測器、シャーシ、電気機器、電源アダプター、記録媒体、記録媒体のドライブ、センサー機器、端子台、二次電池、燃料電池、太陽電池、発電機、スマートメーター、送電設備、ケーブル端末、自動車、太陽光発電モジュール用接続構造体(モジュールコネクター、ジャンクションボックス等)、ハイブリッド自動車、電気自動車などが挙げられる。
 以下、本実施形態について、具体的な実施例及び比較例を挙げて説明するが、本実施形態はこれらに限定されるものではない。
測定方法
 実施例及び比較例に用いた測定方法を以下に示す。
剛性(曲げ弾性率)
 得られた樹脂組成物ペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:EC75SXII、東芝機械社製)に供給し、金型温度80℃、射出圧力120MPa、射出時間15秒、冷却時間20秒の条件で成形し、評価用ISOダンベルを作製した。このISOダンベルについて、ISO 178に従い、曲げ弾性率(MPa)を測定し、剛性を評価した。曲げ弾性率の値が大きい程、剛性に優れていると判定した。
耐トラッキング性能(CTI)
 得られた樹脂組成物のペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:EC75SXII、東芝機械社製)に供給し、金型温度80℃、射出圧力120MPaの条件で、70mm×70mm×3mmの平板に成形した。その平板について、IEC60112:2003(使用電解液:溶液A、滴下数:50滴)に準じて、トラッキング破壊が発生しない最大電圧(V)を測定し、耐トラッキング性を評価した。最大電圧値が大きい程、耐トラッキング性に優れていると判定した。
 実施例及び比較例に用いた原材料を以下に示す。
(a1)ポリフェニレンエーテル
・ポリ(2,6-ジメチル-1,4-フェニレンエーテル)「商品名:S201A 旭化成社製」、還元粘度(0.5g/dLのクロロホルム溶液、30℃測定、ウベローデ型粘度管で測定):0.5dL/g。
(a2)ポリスチレン系樹脂
・ポリスチレン「商品名:ポリスチレン685 PSJ社製」
 ゴム成分を含まないポリスチレン、即ち、ゴム強化されていないポリスチレンである。
・ハイインパクトポリスチレン「商品名:CT60 Petrochemicals社製」
(a3)水添ブロック共重合体
・SEBS「商品名:TAIPOL6151 TSRC社製」
(b)酸化チタン
・酸化チタン「商品名:TIOXIDE R-TC30 Huntsman社製」、平均粒子径(平均一次粒径):0.21μm、結晶構造:ルチル型
(c)無機フィラー
(c-1)ケイ酸カルシウム系繊維状物:ワラストナイト「商品名:KTP-H02S 関西マテック社製」、熱伝導率2.7[W/(m・K)]
(c-2)タルク「商品名:クラウンタルクPK-MMB 松村産業社製」、熱伝導率5.2~10.7[W/(m・K)]
比較無機フィラー
(c‘-1)ガラス繊維「商品名:ECS03T-249 日本電気硝子社製」熱伝導率1.0[W/(m・K)]
(c‘-2)マイカ「商品名:C-100IF レプコ社製」熱伝導率0.67[W/(m・K)]
(c‘-3)繊維状塩基性硫酸マグネシウム「商品名:モスハイジ 宇部マテリアルズ社製」熱伝導率0.1[W/(m・K)]
(d)リン酸エステル系難燃剤
・芳香族縮合リン酸エステル「商品名:CR-741 大八化学工業社製」。
実施例1
 二軸押出機(ZSK-25:コペリオン社製)を用い、原料の流れ方向に対して上流側に第1原料供給口を設け、これより下流に第1真空ベント、第2原料供給口、第3原料供給口を設け、さらにその下流に第二真空ベントを設けた。シリンダー温度を上流側320℃~下流側300℃に設定した。表1に示す配合割合(質量部)に従い、第一供給口より(a)成分を供給し、第二供給口より(b)成分、第3供給口より(c)成分を供給した。液体の(d)リン酸エステル系難燃剤は、下流の圧入ノズルから供給して溶融混練した。
 このときのスクリュー回転数は200回転/分とし、吐出量は15kg/hとした。また、シリンダーブロックに開口部(ベント)を設け、減圧吸引により残存揮発の除去を行った。この時の減圧度(圧力)は0.09MPaであった。
 ダイから押し出されたストランドを冷却し、カッターにて連続切断して約3mm長さ×3mm径の実施例1の樹脂組成物ペレットを得た。
実施例2~13および比較例1~6
 実施例1において、配合を表1~3に示すように変更したこと以外は、実施例1と同様にして操作を行い、樹脂ペレットを得た。
 得られた樹脂組成物ペレットを用いて、剛性と耐トラッキング性能の評価を実施した。評価結果を、下記表1~3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、耐トラッキング性能に優れ且つ、剛性を付与した成形品を得ることができる樹脂組成物を提供することができる。
 

Claims (10)

  1.  (a)樹脂成分と、
     (b)酸化チタンと、
     (c)無機フィラーと、
    を含み、
     前記(c)無機フィラーは、熱伝導率が2~12[W/(m・K)]であり、
     前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a1)ポリフェニレンエーテルを50~90質量部含み、
     前記(b)酸化チタンの量は、前記(a)樹脂成分100質量部に対して、5~40質量部であり、
     前記(c)無機フィラーの量は、前記(a)樹脂成分100質量部に対して、5~50質量部であり、かつ、
     前記(b)酸化チタンと前記(c)無機フィラーとの質量比((b)/(c))が、0.2~8.0である、ポリフェニレンエーテル樹脂組成物。
  2.  前記(c)無機フィラーが、(c-1)ケイ酸カルシウム系繊維状物、及び(c-2)タルクからなる群から選ばれる1種以上である、請求項1に記載のポリフェニレンエーテル樹脂組成物。
  3.  前記(c)無機フィラーが、前記(c-1)ケイ酸カルシウム系繊維状物である、請求項2に記載のポリフェニレンエーテル樹脂組成物。
  4.  前記(c-1)ケイ酸カルシウム系繊維状物が、ワラストナイトである、請求項2に記載のポリフェニレンエーテル樹脂組成物。
  5.  前記(b)酸化チタンと前記(c)無機フィラーとの合計含有量が、前記(a)樹脂成分100質量部に対して15~90質量部である、請求項1~4のいずれか一項に記載のポリフェニレンエーテル樹脂組成物。
  6.  前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a2)ポリスチレン系樹脂を1~49質量部含む、請求項1~5のいずれか一項に記載のポリフェニレンエーテル樹脂組成物。
  7.  前記(a)樹脂成分は、前記(a)樹脂成分100質量部のうち、(a3)水添ブロック共重合体を1~49質量部含む、請求項1~6のいずれか一項に記載のポリフェニレンエーテル樹脂組成物。
  8.  前記(a)樹脂成分100質量部に対して、(d)リン酸エステル系難燃剤を5~30質量部含む、請求項1~7のいずれか一項に記載のポリフェニレンエーテル樹脂組成物。
  9.  前記(d)リン酸エステル系難燃剤が、リン酸エステルの縮合物である、請求項8に記載のポリフェニレンエーテル樹脂組成物。
  10.  請求項1~9のいずれか一項に記載のポリフェニレンエーテル樹脂組成物を含む、成形品。
     
PCT/JP2022/015165 2021-03-29 2022-03-28 ポリフェニレンエーテル樹脂組成物及び成形品 WO2022210593A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/552,188 US20240174856A1 (en) 2021-03-29 2022-03-28 Polyphenylene ether resin composition and molded article
JP2023511297A JPWO2022210593A1 (ja) 2021-03-29 2022-03-28
CN202280007888.4A CN116529305A (zh) 2021-03-29 2022-03-28 聚苯醚树脂组合物和成型品
EP22780804.5A EP4317289A4 (en) 2021-03-29 2022-03-28 POLY(PHENYLENE ETHER) RESIN COMPOSITION AND MOLDED ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055524 2021-03-29
JP2021-055524 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210593A1 true WO2022210593A1 (ja) 2022-10-06

Family

ID=83459247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015165 WO2022210593A1 (ja) 2021-03-29 2022-03-28 ポリフェニレンエーテル樹脂組成物及び成形品

Country Status (5)

Country Link
US (1) US20240174856A1 (ja)
EP (1) EP4317289A4 (ja)
JP (1) JPWO2022210593A1 (ja)
CN (1) CN116529305A (ja)
WO (1) WO2022210593A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
JPS5051197A (ja) 1973-09-06 1975-05-07
JPS5217880B2 (ja) 1974-05-25 1977-05-18
JPS5883053A (ja) * 1981-09-23 1983-05-18 ゼネラル・エレクトリツク・カンパニイ ポリフエニレンエ−テル組成物
JP2005097477A (ja) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd 熱可塑性樹脂組成物および自動車外板成形品
JP2018062608A (ja) 2016-10-14 2018-04-19 旭化成株式会社 樹脂組成物
CN108148393A (zh) * 2016-12-05 2018-06-12 深圳光启尖端技术有限责任公司 一种超材料基材及其制备方法
JP2018090656A (ja) * 2016-11-30 2018-06-14 旭化成株式会社 樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077948B2 (ja) * 1991-12-27 2000-08-21 日本ジーイープラスチックス株式会社 樹脂組成物
US9991622B2 (en) * 2013-07-05 2018-06-05 Asahi Kasei Chemicals Corporation Electrical component comprising insulating resin molded article, and method for stabilizing flame retardance

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
JPS5051197A (ja) 1973-09-06 1975-05-07
JPS5217880B2 (ja) 1974-05-25 1977-05-18
JPS5883053A (ja) * 1981-09-23 1983-05-18 ゼネラル・エレクトリツク・カンパニイ ポリフエニレンエ−テル組成物
JP2005097477A (ja) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd 熱可塑性樹脂組成物および自動車外板成形品
JP2018062608A (ja) 2016-10-14 2018-04-19 旭化成株式会社 樹脂組成物
JP2018090656A (ja) * 2016-11-30 2018-06-14 旭化成株式会社 樹脂組成物
CN108148393A (zh) * 2016-12-05 2018-06-12 深圳光启尖端技术有限责任公司 一种超材料基材及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317289A4

Also Published As

Publication number Publication date
JPWO2022210593A1 (ja) 2022-10-06
CN116529305A (zh) 2023-08-01
EP4317289A4 (en) 2024-08-14
US20240174856A1 (en) 2024-05-30
EP4317289A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US9991622B2 (en) Electrical component comprising insulating resin molded article, and method for stabilizing flame retardance
TWI617618B (zh) Flame-retardant resin composition and connection structure for solar power generation module
JP7097167B2 (ja) 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体
JP5550393B2 (ja) 樹脂組成物
JP5840482B2 (ja) 絶縁樹脂成形体
US20140045979A1 (en) Poly(phenylene ether) composition and injection molded article thereof
JP6586362B2 (ja) 熱可塑性樹脂組成物、及び太陽光発電モジュール用接続構造体
CN108117738B (zh) 树脂组合物
JP2008195801A (ja) 樹脂組成物及びその製法
JP2023551833A (ja) 熱可塑性組成物、その製造方法、及び熱可塑性組成物を含む物品
JP5264790B2 (ja) 熱可塑性樹脂組成物及び成形品
JP2010260964A (ja) 難燃性樹脂組成物及びその成形体
JP6243795B2 (ja) 難燃性樹脂組成物を含む成形体
WO2022210593A1 (ja) ポリフェニレンエーテル樹脂組成物及び成形品
JP6100069B2 (ja) 難燃性樹脂組成物
JP2010260963A (ja) 難燃性樹脂組成物及びその成形体
JP2016110796A (ja) 供受給電部品
JP2015127357A (ja) 難燃性樹脂組成物
WO2022255015A1 (ja) ポリフェニレンエーテル系樹脂組成物および成形品
JP5312928B2 (ja) 樹脂組成物、その製造方法並びにこれからなる成形品、ケーブル用被覆材及びケーブル
JP2015078275A (ja) 成形体
CN106957520B (zh) 无卤阻燃聚苯醚组合物及由其制备的制品
JP2017082044A (ja) 熱可塑性樹脂組成物及びそれを用いる太陽光発電モジュール用接続構造体
JP2017014321A (ja) 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体、太陽光発電モジュール用ジャンクションボックス、及び太陽光発電モジュール用コネクタ
JP2013234287A (ja) 難燃性樹脂組成物、及びその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511297

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280007888.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18552188

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022780804

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780804

Country of ref document: EP

Effective date: 20231030