WO2014208596A1 - 電気化学素子用セパレータ及びリチウムイオン二次電池 - Google Patents

電気化学素子用セパレータ及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014208596A1
WO2014208596A1 PCT/JP2014/066833 JP2014066833W WO2014208596A1 WO 2014208596 A1 WO2014208596 A1 WO 2014208596A1 JP 2014066833 W JP2014066833 W JP 2014066833W WO 2014208596 A1 WO2014208596 A1 WO 2014208596A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
resin
inorganic filler
glass fiber
electrochemical element
Prior art date
Application number
PCT/JP2014/066833
Other languages
English (en)
French (fr)
Inventor
響子 平井
河添 宏
広喜 葛岡
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2015524079A priority Critical patent/JPWO2014208596A1/ja
Publication of WO2014208596A1 publication Critical patent/WO2014208596A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for an electrochemical element, and particularly relates to a separator for an electrochemical element that is suitably used for a non-aqueous electrolyte solution.
  • the present invention also relates to a lithium ion secondary battery using such an electrochemical element separator.
  • Patent Document 1 describes that when the separator is melted by heat generation at the time of short circuit, the pores of the separator are closed to increase resistance, and excessive heat generation and ignition of the battery are suppressed.
  • the present invention has been made in view of such a situation, and provides a separator for an electrochemical element that has excellent heat resistance and battery characteristics and has sufficient strength, and is suitably used for a non-aqueous electrolyte.
  • the purpose is to do.
  • Another object of the present invention is to provide a lithium ion secondary battery using this separator.
  • the separator is a hybrid of an inorganic material and an organic material, and the air permeability and pore diameter are in a specific range. Completed.
  • the separator for an electrochemical element of the present invention is composed of a porous substrate containing glass fiber, an inorganic filler and a resin different from glass fiber, and part or all of the glass fiber and the inorganic filler are coated with a resin, Glass fibers and an inorganic filler are bound via a resin, the air permeability is 1 to 100 sec / 100 ml, and the pore diameter is 0.01 to 20 ⁇ m.
  • heat resistance is provided by using inorganic materials, such as glass fiber and an inorganic filler, and the battery safety
  • the separator is given strength, and the separator strength at the time of manufacturing the electrochemical element is increased. Can be secured.
  • binding here means that inorganic materials are physically bonded to each other through the resin in the process in which the resin temporarily softened by heat treatment or the like is cured again. Therefore, for example, in the case of simply mixing inorganic fibers or the like, it cannot be said that the inorganic fibers are “bound” even if the resin is interposed between the fibers. It is impossible to achieve both properties and strength.
  • the separator of the present invention has excellent battery characteristics (that is, a function of preventing positive and negative electrodes from being short-circuited) because the air permeability and the pore diameter are in the specific ranges. .
  • the separator of the present invention may contain further refined pulp from the viewpoint of achieving high strength and microporosity. That is, the porous substrate contains further refined pulp, and glass fiber, inorganic filler and part or all of the pulp are covered with the resin, and the glass fiber, inorganic filler and pulp are bound via the resin. May be.
  • the melting point of the resin is preferably 100 to 300 ° C. Thereby, it becomes easy to improve heat resistance, strength, and battery characteristics.
  • the mass ratio of the inorganic filler to the glass fiber is preferably 0.1 to 10. Thereby, it becomes easier to improve the strength as a separator.
  • the inorganic filler is preferably in the form of a fiber, more preferably contains sepiolite, and more preferably consists of sepiolite. By using a fibrous inorganic filler, it becomes easier to improve the strength as a separator.
  • the thickness of the separator is preferably 50 ⁇ m or less. Thereby, it can use more suitably for lithium ion secondary batteries.
  • the porous substrate is made from a papermaking body.
  • the strength and battery characteristics can be easily improved, and the manufacturing cost can be reduced and the thickness can be easily reduced.
  • the separator of the present invention is a hybrid of an inorganic material and an organic material, and further has a specific range of air permeability and pore diameter. Therefore, it is preferably used as a separator for non-aqueous electrolyte.
  • the present invention also provides a lithium ion secondary battery comprising the above-described electrochemical element separator. Since it is a battery using a separator that is excellent in heat resistance and battery characteristics and realizes sufficient strength, a battery that is practically extremely safe can be obtained.
  • the present invention it is possible to provide a separator for an electrochemical device that has excellent heat resistance and battery characteristics and has sufficient strength, and is suitably used for a non-aqueous electrolyte.
  • the present invention can also provide a lithium ion secondary battery using this separator.
  • FIG. 2 is a photomicrograph of the separator for electrochemical devices obtained in Example 1.
  • the separator for an electrochemical element of the present embodiment (hereinafter, also simply referred to as “separator”) is made of a porous substrate containing an inorganic filler and a resin different from glass fiber and glass fiber, and a part of glass fiber and inorganic filler or All are covered with resin, and glass fiber and inorganic filler are bound via resin.
  • the glass fiber may be alkali glass or non-alkali glass.
  • the fiber diameter of the glass fiber is not particularly limited, but the number average fiber diameter is preferably 0.5 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m, and 0.5 to 2. More preferably, it is 0 ⁇ m. If the fiber diameter of the glass fiber is 0.5 ⁇ m or more, it tends to be a uniform pore diameter, and if it is 5.0 ⁇ m or less, it is easy to produce a sufficiently thin (for example, 50 ⁇ m or less) electrochemical separator. In addition, it tends to be easy to obtain good papermaking properties at the time of papermaking described later.
  • the fiber length of the glass fiber is not particularly limited, but the number average fiber length is preferably 1.0 ⁇ m to 30 mm, more preferably 100 ⁇ m to 20 mm, and further preferably 500 ⁇ m to 10 mm.
  • the fiber length of the glass fiber is 1.0 ⁇ m or more, it tends to be a uniform pore diameter, and when it is 30 mm or less, the electrochemical separator has a sufficiently high strength (for example, a tensile strength of 5 MPa or more). It tends to be easy to produce, and it tends to be easy to obtain good papermaking properties at the time of papermaking described later.
  • the number average fiber diameter and the number average fiber length of the fibers are determined by, for example, direct observation using a dynamic image analysis method, a laser scanning method (for example, compliant with JIS L1081), a scanning electron microscope, or the like. Can be sought. Specifically, the fiber diameter and the fiber length can be obtained by observing about 50 fibers using these methods and taking the average value.
  • the content of the glass fiber is not particularly limited, but is preferably 30 to 85% by mass, more preferably 40 to 75% by mass, and 45 to 55% by mass based on the total mass of the separator. More preferably.
  • the glass fiber content is 30% by mass or more, sufficient heat resistance tends to be obtained, and when it is 85% by mass or less, sufficient strength tends to be obtained.
  • inorganic filler different from glass fiber can function as a binding aid between the glass fiber and the resin.
  • the inorganic filler itself can increase the heat resistance of the separator, trap impurities (hydrogen fluoride gas, heavy metal ions, etc.) in the non-aqueous electrolyte, and can reduce the pore size.
  • the inorganic filler examples include fillers made of electrically insulating metal oxides, metal nitrides, metal carbides, silicon oxides, and the like, and fillers made of carbon nanotubes, carbon nanofibers, and the like. These fillers may be used alone or in combination of two or more.
  • the metal oxide include Al 2 O 3 , SiO 2 (except for fibrous ones), sepiolite, attapulgite, wollastonite, montmorillonite, mica, ZnO, TiO 2 , BaTiO 3 , ZrO 2 , zeolite, Examples include imogolite. Among these, in this embodiment, a sepiolite filler can be used suitably.
  • Sepiolite is a clay mineral mainly composed of hydrous magnesium silicate and is generally represented by the following chemical formula (x). Mg 8 Si 2 O 30 (OH 2) 4 (OH) 4 ⁇ 6 ⁇ 8H 2 O ⁇ (x)
  • the content of the inorganic filler is preferably 10 to 65% by mass based on the total mass of the separator, more preferably 20 to 55% by mass, and further preferably 25 to 50% by mass.
  • the content of the inorganic filler is 10% by mass or more, the effect of the inorganic filler tends to be sufficiently obtained, and by setting the content to 65% by mass or less, the strength of the separator can be sufficiently secured, and the pores are easily refined. It is in.
  • the mass ratio of the inorganic filler to the glass fiber is preferably 0.1 to 10, more preferably 0.2 to 5, and preferably 0.2 to 2 is more preferable. That is, the mass ratio is preferably 0.1 or more, more preferably 0.2 or more, and preferably 10 or less, more preferably 5 or less, and 2 or less. More preferably.
  • the shape of the inorganic filler is not particularly limited, and may be any of crushed filler (amorphous filler), scaly filler (plate filler), fibrous filler (needle filler), and spherical filler, but separator strength From the viewpoint of further improving the thickness, a fibrous filler is preferable.
  • the number average fiber diameter is preferably 0.01 to 1.0 ⁇ m, more preferably 0.01 to 0.5 ⁇ m, and preferably 0.01 to 0.1 ⁇ m. Further preferred.
  • the fiber diameter of the fibrous filler is 0.01 ⁇ m or more, it tends to be a uniform pore diameter, and when it is 1.0 ⁇ m or less, a sufficiently thin (for example, 50 ⁇ m or less) electrochemical separator is manufactured. It tends to be easier.
  • the number average fiber length of the fibrous filler is preferably 0.1 to 500 ⁇ m, more preferably 0.1 to 300 ⁇ m, and further preferably 0.1 to 100 ⁇ m.
  • the fiber length of the fibrous filler is 0.1 ⁇ m or more, it tends to be easy to obtain a uniform pore diameter, and if it is 500 ⁇ m or less, it becomes easy to produce a sufficiently thin (eg, 50 ⁇ m or less) electrochemical separator. There is a tendency.
  • the resin is not particularly limited as long as it is a compound that acts as a binder for inorganic materials.
  • a resin having a melting point of 100 to 300 ° C. is preferable, a resin having a temperature of 100 to 180 ° C. is more preferable, and 100 to 160 is preferable.
  • a resin having a temperature of ° C is more preferable. That is, a resin having a melting point of 100 ° C. or higher is preferable, a resin of 300 ° C. or lower is preferable, a resin of 180 ° C. or lower is more preferable, and a resin of 160 ° C. or lower is more preferable.
  • the melting point of the resin is 100 ° C.
  • the melting point is a value measured based on JIS-K7121.
  • resins include polyolefin materials such as polyethylene, polypropylene, and copolymers thereof, polyimide resins, polyamideimide resins, phenol resins, acrylic resins, urethane resins, silicone resins, rubber materials such as polyisoprene, And modified products thereof.
  • the resin content is preferably 0.1 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 5 to 20% by mass based on the total mass of the separator. .
  • the resin content is 0.1% by mass or more, it tends to be a thin film, and when it is 40% by mass or less, the heat resistance tends to be improved more easily.
  • the porous substrate may contain further refined pulp. That is, the separator of the present embodiment contains pulp whose porous substrate is further refined, glass fiber, inorganic filler and part or all of the pulp are covered with resin, and the glass fiber, inorganic filler and pulp are It may be an embodiment in which it is bound via a resin.
  • the pulp content is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass, based on the total mass of the separator, and 0.5 to 1% by mass. % Is more preferable. When the pulp content is 0.5% by mass or more, good handleability tends to be obtained, and when it is 10% by mass or less, water absorption tends to be reduced.
  • the air permeability (Gurley value) of the separator is 1 to 100 sec / 100 ml.
  • the air permeability of the separator is preferably 5 to 100 sec / 100 ml, and more preferably 10 to 80 sec / 100 ml. That is, the air permeability of the separator is preferably 5 sec / 100 ml or more, more preferably 10 sec / 100 ml or more, and preferably 80 sec / 100 ml or less.
  • the air permeability of the separator can be measured according to JIS P8117.
  • the pore diameter of the separator is 0.01 to 20 ⁇ m.
  • the pore diameter of the separator is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 1 ⁇ m. That is, the pore diameter of the separator is preferably 10 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the pore diameter of the separator can be measured by a mercury intrusion method, a bubble point method (JIS K 3832 (1990)), or the like.
  • the thickness is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. In addition, as a minimum of thickness, it is preferable that it is 10 micrometers or more from a viewpoint of fully ensuring heat resistance, intensity
  • ⁇ Method for producing separator for electrochemical element> There is no restriction
  • This manufacturing method includes a step of preparing a slurry containing glass fiber, an inorganic filler and a resin, and if necessary pulp, a step of making a paper by making the slurry, and a thickness direction of the paper making using a pressure machine And a step of heat-treating the compressed body at a temperature equal to or higher than the softening point of the resin.
  • Step of preparing slurry a slurry is prepared by dispersing glass fibers, inorganic fillers and resins (excluding pulp) and, if necessary, raw material components such as pulp in a predetermined dispersion medium.
  • the slurry can be prepared, for example, with a mixer, a ball mill, or the like. Note that water is generally used as the dispersion medium.
  • Examples of the resin serving as a binder such as glass fiber and inorganic filler include at least one selected from organic fibers and polymer particles.
  • organic fibers include natural fibers, regenerated fibers, and synthetic fibers.
  • the organic fiber for example, at least one selected from the group consisting of aramid fiber, polyamide fiber, polyester fiber, polyurethane fiber, polyacrylic fiber, polyethylene fiber, and polypropylene fiber is preferably used. These organic fibers may be used alone or in combination of two or more.
  • polymer particles it is possible to use at least one selected from the group consisting of polyolefin particles, polybutyl acrylate particles, crosslinked polymethyl methacrylate particles, polytetrafluoroethylene particles, benzoguanamine particles, crosslinked polyurethane particles, crosslinked polystyrene particles, and melamine particles. preferable. These polymer particles may be used alone or in combination of two or more.
  • the pulp used as necessary may be wood pulp or non-wood pulp, and may be mechanical pulp or chemical pulp.
  • the pulp beating degree (CSF value) is preferably 300 or less (also expressed as “CSF-300 ml”), more preferably 150 or less.
  • the lower limit of the beating degree of a pulp is 0.
  • the slurry may contain a surfactant.
  • a surfactant By including the surfactant, it becomes easy to disperse the raw material components when manufacturing the separator.
  • the surfactant may be decomposed in a subsequent heat treatment.
  • any of a silane coupling agent, a cationic surfactant, an anionic surfactant or a nonionic surfactant may be used.
  • the content of the surfactant is preferably 0.01 to 1% by mass based on the total mass of the slurry.
  • an alkyl ammonium salt is preferably used, dioctyl dimethyl ammonium chloride, didecyl dimethyl ammonium chloride, dicoco dimethyl ammonium chloride, coco benzyl methyl ammonium chloride, coco (rectified) benzyl dimethyl ammonium chloride, Octadecyltrimethylammonium chloride, dioctadecyldimethylammonium chloride, dihexadecyldimethylammonium chloride, di (hydrogenated tallow) dimethylammonium chloride, di (hydrogenated tallow) benzylmethylammonium chloride, (hydrogenated tallow) benzyldimethylammonium chloride, chloride Dioleyldimethylammonium, di (ethylenehexadecanecarboxylate) dimethylammonium chloride, diallyldimethylammonium chloride, N dichloride Octadecyl-
  • anionic surfactants include carboxylates, N-acyl sarcosinates, alkane sulfonates, linear and branched alkyl aryl sulfonates, dialkyl sulfosuccinates, aryl sulfonates, naphthalene sulfonates, N -Acyl-N-alkyl laurates, 2-sulfoethyl esters of fatty acids, olefin sulfonates, alkyl sulfates, sulfated natural oils, sulfated alkylphenol alkoxylates, alkanols, phenol and alkylphenol alkoxy Rate phosphate esters, alkyl (aryl) sulfonates, sulfate esters, phosphate esters, alkyl (aryl) phosphates, alkyl Aryl) phosphonates, polyoxyethylene alkyl ether phosphates, carboxy
  • nonionic surfactants include polyoxyalkylene dialkyl esters, polyoxyalkylene alkyl esters, polyoxyalkylene alkyl ethers, and sorbitan alkyl esters.
  • the slurry may contain a flocculant.
  • the yield of the separator manufactured by including a flocculant can be improved.
  • the flocculant may be either a cationic polymer flocculant or an anionic polymer flocculant, and both may be used together.
  • the content of the flocculant is preferably 0.001 to 0.5% by mass based on the solid content of the slurry.
  • Steps for making a papermaking to steps for making a compacted body the slurry is made with a general papermaking machine, and then the papermaking body is made. Compress to make a compact. In order to obtain a desired compressed body, the papermaking body is preferably compressed at 1 to 30 MPa for 1 to 5 minutes.
  • Step of heat-treating the compacted body heat-treating the compacted body at a temperature equal to or higher than the softening point of the resin allows the resin to soften and reliably bind glass fibers, inorganic fillers, etc.
  • a resin By covering part or all of the surface of the fiber, inorganic filler or the like with a resin, flexibility can be imparted to the separator. Further, the resin can be partially decomposed to function as a template, and the holding power of the electrolytic solution can be improved.
  • the treatment temperature depends on the softening point of the resin and is not necessarily limited, but it is preferably performed at 100 to 300 ° C.
  • the treatment temperature is preferably performed at 100 to 300 ° C.
  • glass fibers, inorganic fillers and the like tend to be bound to each other, and by setting the processing temperature to 300 ° C. or lower, the manufacturing process is easily simplified.
  • a step of impregnating the produced compressed body into a dispersion medium in which a resin is dispersed may be added before heat treatment.
  • the resin and the dispersion medium the same ones as described above can be used.
  • the content of the resin in the dispersion medium is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • An electrochemical element can be manufactured using the separator obtained as described above.
  • Examples of the electrochemical element include a lithium ion secondary battery, an electric double layer capacitor, and an aluminum electrolytic capacitor.
  • FIG. 1 shows a schematic cross-sectional view of a lithium ion secondary battery.
  • a lithium ion secondary battery 10 includes a positive electrode 1 connected to a positive electrode lid 6 by a positive electrode tab 4 and a battery can by a negative electrode tab 5. (Negative electrode can) 7 and a negative electrode 2 connected to 7.
  • the positive electrode 1 and the negative electrode 2 are disposed to face each other via the separator 3 of the present embodiment, and these are impregnated in a non-aqueous electrolyte solution sealed with a gasket 8.
  • the separator 3 may be a two-layer structure separator that is overlapped with the separator of this embodiment and another separator.
  • the separator of this embodiment is suitable for the use of an electrochemical device using a non-aqueous electrolyte is that the separator can have a film thickness of 20 to 50 ⁇ m and has an air permeability of 1 to 100 sec / 100 ml. And having a pore diameter of 0.01 to 20 ⁇ m. Thereby, while preventing the short circuit between positive and negative electrodes, free movement of lithium ion is not prevented.
  • the separator specialized for the use of the electrochemical element using a water-system electrolyte generally does not have such a physical property.
  • the positive electrode active material contained in the positive electrode is a composite oxide of lithium and a transition metal such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 ; MnO 2 , V 2 O 5 Transition metal oxides such as MoS 2 and TiS; conductive polymer compounds such as polyacetylene, polyacene, polyaniline, polypyrrole, polythiophene; poly (2,5-dimercapto-1,3,4-thiadiazole) ) And the like.
  • a transition metal such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 ; MnO 2 , V 2 O 5 Transition metal oxides such as MoS 2 and TiS; conductive polymer compounds such as polyacetylene, polyacene, polyaniline, polypyrrole, polythiophene; poly (2,5-dimercapto-1,3,4-thiadiazole) ) And the like.
  • the positive electrode current collector examples include a metal foil such as aluminum, a punching metal, a net, and an expanded metal. Of these, aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
  • Examples of the negative electrode active material contained in the negative electrode include lithium alloys such as lithium metal and lithium aluminum alloy, carbonaceous materials capable of inserting and extracting lithium, cokes such as graphite, phenolic resin, and furan resin, carbon fiber, and glassy material. Examples thereof include carbon, pyrolytic carbon, activated carbon, and lithium titanium compound.
  • examples of the current collector include copper or nickel foil, punching metal, net, expanded metal, and the like. Of these, copper foil is preferably used.
  • the upper limit of the thickness of the negative electrode current collector is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m.
  • Examples of conductive aids used when producing electrodes using electrode active materials include carbon blacks such as acetylene black and ketjen black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, and aluminum. Or metal fibers, such as nickel, are mentioned. Among these, acetylene black or ketjen black that can ensure desired conductivity with a small amount of blend is preferable.
  • the content of the conductive assistant is preferably 0.5 to 20% by mass and more preferably 1 to 10% by mass with respect to the total mass of the electrode active material.
  • binder resin used together with the conductive aid various known binders can be used.
  • binders polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, fluoroolefin copolymer cross-linked polymer, styrene-butadiene copolymer, polyacrylonitrile, polyvinyl alcohol, polyacrylic acid, polyimide, petroleum pitch, coal pitch, phenol resin, etc. Is mentioned.
  • the non-aqueous electrolyte a solution in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and does not cause a side reaction such as decomposition in the voltage range used as a battery.
  • lithium salt examples include inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN
  • An organic lithium salt such as (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group], Is mentioned.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it dissolves the above lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery.
  • the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; ⁇ -butyrolactone Cyclic esters such as dimethoxyethane, diethyl ether, 1,3-dioxolane, chain ethers such as diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, propionitrile, methoxypro Examples include nitriles such as pionitrile; sulfites such as
  • vinylene carbonates 1,3-propane sultone, diphenyl disulfide, cyclohexane, biphenyl, fluoro, etc. are used for these electrolytes for the purpose of improving various characteristics such as safety, charge / discharge cycleability, and high-temperature storage stability.
  • Additives such as benzene and t-butylbenzene can be appropriately added.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2 mol / L, and more preferably 0.9 to 1.5 mol / L.
  • Examples of the form of the lithium ion secondary battery of the present embodiment include a cylindrical shape (for example, a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an exterior body (exterior can). Moreover, the form (soft package battery) which used the laminated film which vapor-deposited the metal as an exterior body as the same form is also mentioned.
  • non-aqueous electrolyte solution of the present embodiment can be used to insert and desorb lithium ions used in a lithium ion secondary battery, with one of the positive and negative electrodes used as a polarizable electrode used in an electric double layer capacitor.
  • the present invention can also be applied to a hybrid power storage device that uses an electrode having a material as an active material.
  • the lithium ion secondary battery of the present embodiment can be applied to the same uses as various uses in which conventionally known lithium ion secondary batteries are used.
  • Glass fiber Filatomica FS19EW (manufactured by Nippon Inorganic Co., Ltd.): number average fiber diameter 3.5 ⁇ m, number average fiber length 5 mm
  • Inorganic filler Milcon LS2 (manufactured by Hayashi Kasei Co., Ltd.): number average fiber diameter 0.2 ⁇ m, number average fiber length 50 ⁇ m, processed product of fibrous mineral mainly composed of sepiolite
  • Polymer particles acrylic mainly composed of butyl acrylate Resin particles: molecular weight 770000, particle diameter 145 ⁇ m
  • Pulp LBKF hardwood kraft pulp: Beating degree CSF-100ml
  • Example 1 ⁇ Preparation of separator>
  • a mixer 0.25 g of glass fiber, 0.125 g of inorganic filler, 50 mg of polymer particles and 500 ml of ion-exchanged water were added and stirred for 2 minutes.
  • 0.05 g (dry weight) of pulp was put into a mixer and stirred for 3 minutes to prepare a slurry.
  • This slurry was poured into a standard sheet machine papermaking apparatus (No. 2545 type, manufactured by Kumagai Riki Kogyo Co., Ltd.), filled with a predetermined amount of ion-exchanged water, sufficiently stirred, and then drained to obtain a papermaking product.
  • FIG. 2 is a photomicrograph of the separator for an electrochemical element obtained in this example.
  • Air permeability (Gurley value) The obtained separator was cut into a 4 cm square, and measured according to JIS P8117 using a Gurley type densometer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) as a measuring device. The results are shown in Table 1. 2. Pore size The pore size of the obtained separator was measured with a mercury porosimeter Autopore IV-9510 (manufactured by Shimadzu Corporation). Specifically, the obtained separator was cut into a size of 1 cm ⁇ 5 cm, put into a sample folder of a measuring device, and pressure was applied to cause mercury to enter the pores of the sample.
  • Lithium cobalt oxide (“Cell Seed 10N” manufactured by Nippon Chemical Industry Co., Ltd.) as the positive electrode active material
  • conductive carbon (“Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive additive
  • polyvinylidene fluoride stock
  • binder resin polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the coating amount was 9.5 mg / cm 2 , and the thickness of the active material layer after pressing was 31 ⁇ m.
  • a non-aqueous system in which 2% by weight of vinylene carbonate was added to a mixed solution of ethylene carbonate, diethyl carbonate and dimethyl carbonate (1: 1: 1 volume ratio) in which LiPF 6 was dissolved to 1.0 mol / l.
  • a lithium ion secondary battery was produced by an ordinary method using the electrolytic solution.
  • the battery characteristics of the produced separator were evaluated by a charge / discharge test of the obtained lithium ion secondary battery. Specifically, a CR2016 coin cell was produced, and a charge / discharge test was performed according to IEC61960 chapter7. The results are shown in Table 1. In addition, the numerical value in a table
  • Example 2 Except that after the compression body was obtained and before the heat treatment, the compression body was impregnated with a dispersion medium in which polypropylene particles (MGP-1650, Maruyoshi Chemical Co., Ltd. melting point 140 ° C.) were dispersed for 5 minutes. The experiment was conducted in the same manner as in 1. In addition, content of the polypropylene particle in a dispersion medium was 20 mass%. Each evaluation result is shown in Table 1.
  • Example 1 The experiment was performed in the same manner as in Example 1 except that the pulp was changed to a beating degree CSF-200 ml and the amount used was changed to 0.1 g (dry weight). Each evaluation result is shown in Table 1.
  • Example 2 The experiment was conducted in the same manner as in Example 2 except that the pulp was changed to a beating degree CSF-200 ml and the amount used was changed to 0.1 g (dry weight). Each evaluation result is shown in Table 1.
  • Example 3 (Comparative Example 3) The experiment was performed in the same manner as in Example 1 except that the amount of the inorganic filler used was changed to 0.05 g and that the pulp was not used. Each evaluation result is shown in Table 1.
  • the separators of the examples are excellent in heat resistance and battery characteristics and have sufficient strength. Furthermore, it turns out that this separator is used suitably in the electrochemical element for non-aqueous electrolyte solutions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、ガラス繊維、ガラス繊維とは異なる無機フィラー及び樹脂を含む多孔質基体からなり、ガラス繊維及び無機フィラーの一部又は全部が樹脂により被覆されており、ガラス繊維及び無機フィラーが樹脂を介して結着されており、透気度が1~100sec/100mlであり、細孔径が0.01~20μmである、電気化学素子用セパレータに関する。

Description

電気化学素子用セパレータ及びリチウムイオン二次電池
 本発明は、電気化学素子用セパレータに関するものであり、特に、非水系電解液に対し好適に用いられる電気化学素子用セパレータに関する。本発明は、また、このような電気化学素子用セパレータを用いたリチウムイオン二次電池に関する。
 近年、ノートパソコンあるいは携帯電話等のモバイル端末用電源として高電圧及び高エネルギー密度を有する二次電池が求められている。現在、この要求に応えるべく、非水系電解液を用いたリチウムイオン二次電池が注目されている。
 リチウムイオン二次電池は、電池電圧が高く、高エネルギーを有することから、電池の内部短絡時又は外部短絡時に大電流が流れることがある。そのため、短絡時には、ジュール発熱による電池の発熱の問題、又は電解液及びセパレータの溶融分解に伴うガス発生による電池の膨れ若しくは特性劣化の問題がある。これらの問題を解決するため、ポリプロピレン又はポリエチレン製の微孔性フィルムからなるセパレータを用いた電池が提案されている(例えば、特許文献1参照)。特許文献1には、このセパレータが短絡時の発熱によって溶融することにより、セパレータの細孔が閉じて高抵抗化し、電池の過剰な発熱及び発火が抑制されることが記載されている。
 現在、リチウムイオン二次電池の用途が広がるに伴って、このような内部短絡が生じた場合の、電池の安全性のさらなる向上が求められている。例えば、金属酸化物等の無機フィラーを含む層を多孔質基材表面に形成させることで、耐熱性を向上させたセパレータを用いた電池が提案されている(例えば、特許文献2、3)。また、セルロース製不織布に無機粒子を含む層を付与したセパレータが提案されている(例えば、特許文献4)。さらに、ガラス又はセラミック材料を用いて作製されたセパレータが提案されている(例えば、特許文献5)。
特開昭60-23954号公報 特開2005-38793号公報 特開2006-164761号公報 特開2011-238427号公報 特許第4320251号公報
 ところで、内部短絡が生じた場合、局所的な発熱によって短絡部分は600℃以上の高温となることがあると考えられる。このため、特許文献1に開示されるようなポリオレフィン樹脂からなる従来のセパレータでは、短絡時の熱によって短絡部分のセパレータが収縮してしまい、却って正極と負極との接触面積(短絡面積)が増大する可能性がある。また、特許文献2~4に開示されるセパレータにおいても、無機フィラー(無機粒子)を含む層の耐熱性が充分でなく、上記局所的な発熱による高温に対応することは難しい。さらに、特許文献5に開示されるセパレータはある程度の耐熱性を有するものの、セパレータ自体の強度が充分ではなく脆いため、実際の二次電池に組み込むことは容易ではない。
 本発明はこのような状況に鑑みてなされたものであり、優れた耐熱性及び電池特性を有するとともに、充分な強度を有する、非水系電解液に対し好適に用いられる電気化学素子用セパレータを提供することを目的とする。本発明は、また、このセパレータを用いたリチウムイオン二次電池を提供することを目的とする。
 発明者らが鋭意検討した結果、無機材料と有機材料とのハイブリッドであり、さらに透気度と細孔径とが特定の範囲であるセパレータであれば、上記課題を達成できることを見出し、本発明の完成に至った。
 すなわち、本発明の電気化学素子用セパレータは、ガラス繊維、ガラス繊維とは異なる無機フィラー及び樹脂を含む多孔質基体からなり、ガラス繊維及び無機フィラーの一部又は全部が樹脂により被覆されており、ガラス繊維及び無機フィラーが樹脂を介して結着されており、透気度が1~100sec/100mlであり、細孔径が0.01~20μmである。本発明のセパレータにおいては、ガラス繊維、無機フィラー等の無機材料を用いることにより耐熱性が付与されており、特に短絡時の高温における電池安全性を確保することができる。また、有機物である樹脂を用いて無機材料の一部又は全部を被覆し、なおかつ無機材料同士を結着しているため、セパレータに強度が付与されており、電気化学素子作製時のセパレータ強度を確保することができる。なお、ここでいう「結着」とは、熱処理等により一時的に軟化した樹脂が再度硬化する過程において、無機材料同士が樹脂を介して物理的に結合されることを意味する。したがって、例えば、単に無機繊維等を混抄しただけのものでは、たとえ繊維間に樹脂が介在していたとしても無機繊維同士が「結着」しているとは言えず、本発明のように耐熱性及び強度を両立することはできない。さらに本発明のセパレータは、上記のような利点に加え、透気度と細孔径とが上記特定の範囲であるため、優れた電池特性(すなわち、正負極の短絡防止機能)を有している。
 本発明のセパレータは、高強度化及び微多孔化を図るという観点から、さらに微細化したパルプを含有していてもよい。すなわち、多孔質基体がさらに微細化したパルプを含有し、ガラス繊維、無機フィラー及びパルプの一部又は全部が前記樹脂により被覆されており、ガラス繊維、無機フィラー及びパルプが樹脂を介して結着されていてもよい。
 樹脂の融点は100~300℃であることが好ましい。これにより耐熱性、強度及び電池特性を向上し易くなる。
 ガラス繊維に対する無機フィラーの質量比は0.1~10であることが好ましい。これにより、セパレータとしての強度をより向上し易くなる。
 上記無機フィラーが繊維状であることが好ましく、特にセピオライトを含むことがより好ましく、セピオライトからなることがさらに好ましい。繊維状の無機フィラーを用いることにより、セパレータとしての強度をより向上し易くなる。
 セパレータの厚みは50μm以下であることが好ましい。これにより、リチウムイオン二次電池用により好適に用いることができる。
 多孔質基体が抄造体から作製されたものであることが好ましい。これにより、強度及び電池特性を向上し易くなるとともに、作製費用の低コスト化と厚みの薄化を達成し易くなる。
 本発明のセパレータは無機材料と有機材料とのハイブリッドであり、さらに透気度と細孔径とが特定の範囲であるため、非水系電解質用のセパレータとして好適に用いられる。
 本発明はまた、上記電気化学素子用セパレータを備えるリチウムイオン二次電池を提供する。耐熱性及び電池特性に優れるとともに、充分な強度を実現するセパレータを用いた電池であるため、実用上極めて安全な電池を得ることができる。
 本発明によれば、優れた耐熱性及び電池特性を有するとともに、充分な強度を有する、非水系電解液に対し好適に用いられる電気化学素子用セパレータを提供することができる。本発明は、また、このセパレータを用いたリチウムイオン二次電池を提供することができる。
リチウムイオン二次電池の模式断面図を示すものである。 実施例1にて得られた電気化学素子用セパレータの顕微鏡写真である。
<電気化学素子用セパレータ>
 本実施形態の電気化学素子用セパレータ(以下、単に「セパレータ」ともいう)は、ガラス繊維、ガラス繊維とは異なる無機フィラー及び樹脂を含む多孔質基体からなり、ガラス繊維及び無機フィラーの一部又は全部が樹脂により被覆されており、ガラス繊維及び無機フィラーが樹脂を介して結着されている。
ガラス繊維
 ガラス繊維はアルカリガラスであっても無アルカリガラスであってもよい。ガラス繊維の繊維径に特に制限はないが、数平均繊維径が0.5~5.0μmであることが好ましく、0.5~4.0μmであることがより好ましく、0.5~2.0μmであることがさらに好ましい。ガラス繊維の繊維径が0.5μm以上であると均一な細孔径にし易くなる傾向にあり、また、5.0μm以下であると、充分に薄い(例えば、50μm以下)電気化学セパレータを製造し易くなり、また後述する抄造時に良好な抄造性を得易い傾向にある。また、ガラス繊維の繊維長に特に制限はないが、数平均繊維長が1.0μm~30mmであることが好ましく、100μm~20mmであることがより好ましく、500μm~10mmであることがさらに好ましい。ガラス繊維の繊維長が1.0μm以上であると均一な細孔径にし易くなる傾向にあり、また、30mm以下であると、充分に高い強度(例えば、引張強度が5MPa以上)を有する電気化学セパレータを製造し易くなり、また後述する抄造時に良好な抄造性を得易い傾向にある。なお、本実施形態において、繊維の数平均繊維径及び数平均繊維長は、例えば、動的画像解析法、レーザースキャン法(例えば、JIS L1081に準拠)、走査型電子顕微鏡等による直接観察などにより求めることができる。具体的には、これらの方法を用いて50本程度の繊維を観察し、その平均値をとることで、上記繊維径及び繊維長を求めることができる。
 ガラス繊維の含有量に特に制限は無いが、セパレータの全質量を基準として、30~85質量%であることが好ましく、40~75質量%であることがより好ましく、45~55質量%であることがさらに好ましい。ガラス繊維の含有量を30質量%以上とすることで充分な耐熱性を得られる傾向にあり、85質量%以下とすることで充分な強度を得られる傾向にある。
ガラス繊維とは異なる無機フィラー
 ガラス繊維とは異なる無機フィラー(以下、単に「無機フィラー」という)は、ガラス繊維と樹脂との結着助剤として機能させることができる。また、無機フィラー自身がセパレータの耐熱性を高めたり、非水系電解液中の不純物(フッ化水素ガス、重金属イオン等)をトラップしたり、孔径を微細化することもできる。
 無機フィラーとしては、電気絶縁性の金属酸化物、金属窒化物、金属炭化物、酸化ケイ素等からなるフィラー、及びカーボンナノチューブ、カーボンナノファイバー等からなるフィラーが挙げられる。これらのフィラーは、単独で用いてもよいし、2種以上を混合して用いてもよい。上記金属酸化物としては、Al、SiO(ただし、繊維状のものを除く)、セピオライト、アタパルジャイト、ワラストナイト、モンモリロナイト、雲母、ZnO、TiO、BaTiO、ZrO、ゼオライト、イモゴライト等が挙げられる。これらの中でも、本実施形態においてはセピオライトフィラーを好適に用いることができる。セピオライトフィラーを用いることで、電池作動時に電解液中に発生するフッ化水素をトラップすることができる。なお、セピオライトは含水マグネシウム珪酸塩を主成分とする粘土鉱物であり、一般的に以下の化学式(x)で表される。
  MgSi30(OH(OH)・6~8HO ・・・(x)
 無機フィラーの含有量は、セパレータの全質量を基準として10~65質量%であることが好ましく、20~55質量%であることがより好ましく、25~50質量%であることがさらに好ましい。無機フィラーの含有量が10質量%以上であると、無機フィラーの効果を充分に得られる傾向にあり、65質量%以下とすることでセパレータの強度を充分に確保でき、孔を微細化しやすい傾向にある。
 なお、セパレータとしての強度をより向上する観点から、ガラス繊維に対する無機フィラーの質量比は、0.1~10であることが好ましく、0.2~5であることがより好ましく、0.2~2であることがさらに好ましい。すなわち、当該質量比は、0.1以上であることが好ましく、0.2以上であることがより好ましく、また10以下であることが好ましく、5以下であることがより好ましく、2以下であることがさらに好ましい。
 無機フィラーの形状としては特に制限はなく、破砕フィラー(無定型フィラー)、鱗片状フィラー(板状フィラー)、繊維状フィラー(針状フィラー)、球形フィラーのいずれであってもよいが、セパレータ強度をより向上する観点から、繊維状フィラーが好ましい。
 繊維状フィラーを用いる場合、数平均繊維径が0.01~1.0μmであることが好ましく、0.01~0.5μmであることがより好ましく、0.01~0.1μmであることがさらに好ましい。繊維状フィラーの繊維径が0.01μm以上であると均一な細孔径にし易くなる傾向にあり、また、1.0μm以下であると、充分に薄い(例えば、50μm以下)電気化学セパレータを製造し易くなる傾向にある。また、繊維状フィラーの数平均繊維長は0.1~500μmであることが好ましく、0.1~300μmであることがより好ましく、0.1~100μmであることがさらに好ましい。繊維状フィラーの繊維長が0.1μm以上であると均一な細孔径にし易くなる傾向にあり、また、500μm以下であると、充分に薄い(例えば、50μm以下)電気化学セパレータを製造し易くなる傾向にある。
樹脂
 樹脂としては、無機材料の結着剤として作用する化合物であれば特に制限はないが、融点が100~300℃である樹脂が好ましく、100~180℃である樹脂がより好ましく、100~160℃である樹脂がさらに好ましい。すなわち、融点が100℃以上である樹脂が好ましく、また300℃以下である樹脂が好ましく、180℃以下である樹脂がより好ましく、160℃以下である樹脂がさらに好ましい。なお、樹脂の融点が100℃以上であると、短絡時のシャットダウン性を得易い傾向があり、また、300℃以下であると、製造工程(乾燥)を簡略にできる傾向がある。ここで、融点とは、JIS-K7121に基づき測定される値である。このような樹脂としては、例えば、ポリエチレン、ポリプロピレン、これらの共重合体等のポリオレフィン系材料、ポリイミド樹脂、ポリアミドイミド樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、ポリイソプレンなどのゴム材料、及びこれらの変性物が挙げられる。
 樹脂の含有量は、セパレータの全質量を基準として、0.1~40質量%であることが好ましく、5~30質量%であることがより好ましく、5~20質量%であることがさらに好ましい。樹脂の含有量を0.1質量%以上とすることで薄膜にし易い傾向にあり、40質量%以下とすることで耐熱性をより向上し易い傾向にある。
パルプ
 多孔質基体は、さらに微細化したパルプを含んでいてもよい。すなわち、本実施形態のセパレータは、多孔質基体がさらに微細化したパルプを含有し、ガラス繊維、無機フィラー及びパルプの一部又は全部が樹脂により被覆されており、ガラス繊維、無機フィラー及びパルプが樹脂を介して結着されている態様であってもよい。この場合、パルプの含有量は、セパレータの全質量を基準として、0.5~10質量%であることが好ましく、0.5~5質量%であることがより好ましく、0.5~1質量%であることがさらに好ましい。パルプの含有量を0.5質量%以上とすることで良好な取り扱い性を得られる傾向にあり、10質量%以下とすることで吸水性を低減し易い傾向にある。
セパレータの各種物性
 本実施形態において、セパレータの透気度(ガーレー値)は1~100sec/100mlである。透気度が1sec/100ml以上であると、イオン伝導度を上げ易くすることができ、100sec/100ml以下であると、短絡不良をより低減することができる。このような観点から、セパレータの透気度は5~100sec/100mlであることが好ましく、10~80sec/100mlであることがより好ましい。すなわち、セパレータの透気度は5sec/100ml以上であることが好ましく、10sec/100ml以上であることがより好ましく、また80sec/100ml以下であることが好ましい。なお、セパレータの透気度はJIS P8117に準拠して測定することができる。
 また、セパレータの細孔径は0.01~20μmである。細孔径が0.01μm以上であると、短絡不良を抑制することができ、20μm以下であると、イオン伝導度を上げ易くすることができる。このような観点から、セパレータの細孔径は0.01~10μmであることが好ましく、0.01~1μmであることがより好ましい。すなわち、セパレータの細孔径は、10μm以下であることが好ましく、1μm以下であることがより好ましい。なお、セパレータの細孔径は、水銀圧入法、バブルポイント法(JIS K 3832(1990))等により測定することができる。
 本実施形態のセパレータは、特にリチウムイオン二次電池用に好適に用いられるため、その厚みは50μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましい。なお、厚みの下限としては、耐熱性、強度、電池特性等を充分に確保する観点から、10μm以上であることが好ましい。
<電気化学素子用セパレータの製造方法>
 本実施形態のセパレータの製造方法に特に制限は無く、例えば、湿式抄造、乾式抄造等が挙げられる。本実施形態においては、これらの中でも、湿式法に基づく抄造法を採用することが好ましい。この製造方法は、ガラス繊維、無機フィラー及び樹脂、必要に応じパルプ等を含むスラリーを調製する工程と、スラリーを抄紙して抄造体を作製する工程と、加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する工程と、圧縮体を樹脂の軟化点以上の温度で熱処理する工程と、を備える。この方法により、低コストかつ薄いセパレータを容易に製造することができる。
スラリーを調製する工程
 本工程において、ガラス繊維、無機フィラー及び樹脂(ただしパルプを除く)、必要に応じパルプ等の原料成分を所定の分散媒体に分散させてスラリーを調製する。スラリーの調製は、例えばミキサー、ボールミル等により行うことができる。なお、分散媒体としては水が一般的に用いられている。
 スラリー中の各原料成分の含有量は、得られるセパレータ中の各原料成分の含有量が上記の範囲となるように調整すればよい。ただし、良好な抄紙性を確保する観点から、スラリーの全質量を基準として、ガラス繊維を30~85質量%、無機フィラーを10~65質量%、樹脂を0.1~40質量%、パルプを0~10質量%、残部を分散媒体として含有させることが好ましい。
 ガラス繊維、無機フィラー等の結着剤となる樹脂としては、有機繊維及びポリマー粒子から選ばれる少なくとも一種が挙げられる。
 有機繊維としては、天然繊維、再生繊維、合成繊維等を例示することができる。有機繊維としては、例えばアラミド繊維、ポリアミド繊維、ポリエステル繊維、ポリウレタン繊維、ポリアクリル繊維、ポリエチレン繊維及びポリプロピレン繊維からなる群より選ばれる少なくとも一種を用いることが好ましい。これらの有機繊維は単独で用いてもよいし、二種以上を混合して使用してもよい。
 ポリマー粒子としては、ポリオレフィン粒子、ポリブチルアクリレート粒子、架橋ポリメチルメタクリレート粒子、ポリテトラフルオロエチレン粒子、ベンゾグアナミン粒子、架橋ポリウレタン粒子、架橋ポリスチレン粒子及びメラミン粒子からなる群より選ばれる少なくとも一種を用いることが好ましい。これらのポリマー粒子は単独で用いてもよいし、二種以上を混合して使用してもよい。
 また、必要に応じ用いられるパルプとしては、木材パルプでも非木材パルプでもよく、また、機械パルプでも化学パルプでもよい。ただし、セパレータ強度をより良好にするために、パルプの叩解度(CSF値)は、300(「CSF-300ml」とも表記する)以下であることが好ましく、150以下であることがより好ましい。なお、パルプの叩解度の下限値は、0であることが好ましい。
 スラリーは界面活性剤を含んでいてもよい。界面活性剤を含むことで、セパレータを製造する際に原料成分を分散させやすくなる。界面活性剤は、後の熱処理において分解されてもよい。界面活性剤としては、シランカップリング剤、カチオン性界面活性剤、アニオン性界面活性剤又はノニオン性界面活性剤のいずれであってもよい。界面活性剤の含有量は、スラリーの全質量を基準として、0.01~1質量%とすることが好ましい。
 カチオン性界面活性剤としては、アルキルアンモニウム塩を用いることが好ましく、塩化ジオクチルジメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジココジメチルアンモニウム、塩化ココベンジルメチルアンモニウム、塩化ココ(精留)ベンジルジメチルアンモニウム、塩化オクタデシルトリメチルアンモニウム、塩化ジオクタデシルジメチルアンモニウム、塩化ジヘキサデシルジメチルアンモニウム、塩化ジ(水素化牛脂)ジメチルアンモニウム、塩化ジ(水素化牛脂)ベンジルメチルアンモニウム、塩化(水素化牛脂)ベンジルジメチルアンモニウム、塩化ジオレイルジメチルアンモニウム、塩化ジ(エチレンヘキサデカンカルボキシレート)ジメチルアンモニウム、塩化ジアリルジメチルアンモニウム、二塩化N-オクタデシル-N-ジメチル-N’-トリメチル-プロピレン-ジアンモニウム、ポリ(塩化ジオクチルジメチルアンモニウム)、ポリ(塩化ジデシルジメチルアンモニウム)、ポリ(塩化ジココジメチルアンモニウム)、ポリ(塩化ココベンジルメチルアンモニウム)、ポリ(塩化ココベンジルジメチルアンモニウム)、ポリ(塩化オクタデシルトリメチルアンモニウム)、ポリ(塩化ジオクタデシルジメチルアンモニウム)、ポリ(塩化ジヘキサデシルジメチルアンモニウム)、ポリ(塩化ジオレイルジメチルアンモニウム)、ポリ(塩化ジ(エチレンヘキサデカンカルボキシレート)ジメチルアンモニウム)、及びポリ(塩化ジアリルジメチルアンモニウム)を例示することができる。
 アニオン性界面活性剤としては、カルボキシレート類、N-アシルサルコシネート類、アルカンスルホネート類、直鎖及び分岐鎖アルキルアリールスルホネート類、ジアルキルスルホスクシネート類、アリールスルホネート類、ナフタリンスルホネート類、N-アシル-N-アルキルラウレート類、脂肪酸類の2-スルホエチルエステル類、オレフインスルホネート類、アルキルサルフェート類、サルフェート化した天然オイル類、サルフェート化したアルキルフェノールアルコキシレート類、アルカノール類、フェノール及びアルキルフェノールアルコキシレート類のホスフェートエステル類、アルキル(アリール)スルホネート類、スルフェートエステル類、ホスフェートエステル類、アルキル(アリール)ホスフェート類、アルキル(アリール)ホスホネート類、ポリオキシエチレンアルキルエーテルホスフェート類、カルボキシル化アルキルエトキシレート類、カルボキシル化ドデシルベンゼンスルホネート類、並びにアンモニウムポリオキシエチレンアルキルエーテルサルフェート類を例示することができる。
 ノニオン性界面活性剤としては、ポリオキシアルキレンジアルキルエステル類、ポリオキシアルキレンアルキルエステル類、ポリオキシアルキレンアルキルエーテル類、及びソルビタンアルキルエステル類を例示することができる。
 スラリーは凝集剤を含んでいてもよい。凝集剤を含むことで製造されるセパレータの歩留まりを向上することができる。凝集剤としては、カチオン性高分子凝集剤及びアニオン性高分子凝集剤のいずれであってもよく、両者を共に用いてもよい。凝集剤の含有量は、スラリーの固形分量を基準として、0.001~0.5質量%とすることが好ましい。
抄造体を作製する工程~圧縮体を作製する工程
 これらの工程では、スラリーを一般的な抄紙機を用いて抄紙し、抄造体を作製した後、さらに加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する。なお、所望の圧縮体を得るためには、抄造体を1~30MPaにて1~5分間圧縮することが好ましい。
圧縮体を熱処理する工程
 本工程において樹脂の軟化点以上の温度で圧縮体を熱処理することで、樹脂が軟化してガラス繊維、無機フィラー等同士を確実に結着させることができ、また、ガラス繊維、無機フィラー等の表面の一部又は全部を樹脂で被覆することで、セパレータに柔軟性を付与することができる。さらに、樹脂が一部分解してテンプレートとして機能し、電解液の保持力を向上することができる。
 なお、処理温度は樹脂の軟化点に依存するため必ずしも限定されないが、100~300℃で行うことが好ましい。処理温度を100℃以上とすることで、ガラス繊維、無機フィラー等同士を結着させ易くなる傾向にあり、300℃以下とすることで製造工程を簡略化し易くなる。なお、熱処理は、セパレータの構成材料に応じて、適宜加圧しながら行ってもよい。
 なお、セパレータ強度をより良好にするため、作製した圧縮体を、熱処理する前に、樹脂を分散させた分散媒体に含浸させる工程を追加してもよい。樹脂及び分散媒体としては、上記と同様のものを用いることができる。分散媒体中の樹脂の含有量は、1~30質量%であることが好ましく、5~20質量%であることがより好ましい。
<電気化学素子>
 上記のとおり得られたセパレータを用い、電気化学素子を製造することができる。電気化学素子としては、リチウムイオン二次電池、電気二重層キャパシタ、アルミニウム電解コンデンサ等が挙げられる。
<リチウムイオン二次電池>
 図1はリチウムイオン二次電池の模式断面図を示すものであり、リチウムイオン二次電池10は、正極タブ4にて正極蓋6に接続されている正極1と、負極タブ5にて電池缶(負極缶)7に接続されている負極2とを備えている。これら正極1及び負極2は、本実施形態のセパレータ3を介して対向配置されており、これらはガスケット8により封入された非水系電解液中に含浸されている。なお、セパレータ3は、本実施形態のセパレータと、他のセパレータと重ね合せた二層構造セパレータであってもよい。
 本実施形態のセパレータが、非水系電解質を用いる電気化学素子の用途に好適である理由として、同セパレータが、20~50μmの膜厚とすることができ、なおかつ1~100sec/100mlの透気度と、0.01~20μmの細孔径を有する点が挙げられる。これにより、正負極間の短絡を防止しながら、なおかつリチウムイオンの自由な移動を妨げることがない。なお、水系電解質を用いる電気化学素子の用途に特化したセパレータは、一般的にこのような物性を有しない。
 リチウムイオン二次電池の場合、正極に含まれる正極活物質としては、LiCoO、LiNiO、LiMnO、LiMn等のリチウムと遷移金属との複合酸化物;MnO、V等の遷移金属酸化物;MoS、TiS等の遷移金属硫化物;ポリアセチレン、ポリアセン、ポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子化合物;ポリ(2,5-ジメルカプト-1,3,4-チアジアゾール)等のジスルフィド化合物、などが挙げられる。
 正極の集電体としては、例えば、アルミニウム等の金属箔、パンチングメタル、網、エキスパンドメタルなどが挙げられる。これらのうち、厚みが10~30μmのアルミニウム箔が好適に用いられる。
 負極に含まれる負極活物質としては、例えば、リチウム金属、リチウムアルミニウム合金等のリチウム合金、リチウムを吸蔵及び放出できる炭素質材料、黒鉛、フェノール樹脂、フラン樹脂等のコークス類、炭素繊維、ガラス状炭素、熱分解炭素、活性炭、リチウムチタン化合物などが挙げられる。
 負極に集電体を用いる場合には、集電体としては、銅製又はニッケル製の箔、パンチングメタル、網、エキスパンドメタル等が挙げられる。これらのうち、銅箔が好適に用いられる。高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、この負極集電体の厚みの上限は30μmであることが好ましく、また、下限は5μmであることが好ましい。
 電極活物質を用いて電極を作製する際に用いられる導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウム又はニッケル等の金属繊維などが挙げられる。これらの中でも、少量の配合で所望の導電性を確保できるアセチレンブラック又はケッチェンブラックが好ましい。なお、導電助剤の含有量は、電極活物質の全質量に対して、0.5~20質量%であることが好ましく、1~10質量%であることがより好ましい。
 導電助剤と共に用いられるバインダー樹脂としては、公知の各種バインダーを用いることができる。例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、スチレンーブタジエン共重合体、ポリアクリロニトリル、ポリビニルアルコール、ポリアクリル酸、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂等が挙げられる。
 非水系電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解等の副反応を起こさないものであれば特に制限は無い。リチウム塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF等の無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕等の有機リチウム塩、が挙げられる。
 電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解等の副反応を起こさないものであれば特に限定されない。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;プロピオン酸メチル等の鎖状エステル;γ-ブチロラクトン等の環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライム等の鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル等のニトリル類;エチレングリコールサルファイト等の亜硫酸エステル類;イオン液体、などが挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。なお、より良好な特性の電池とするためには、エチレンカーボネート及び鎖状カーボネートの混合溶媒のような、高い導電率を得ることができる組み合わせで溶媒を併用することが望ましい。
 また、安全性、充放電サイクル性、高温貯蔵性等の諸特性を向上させる目的で、これらの電解液に対し、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t-ブチルベンゼン等の添加剤を適宜加えることもできる。
 このリチウム塩の電解液中の濃度としては、0.5~2mol/Lとすることが好ましく、0.9~1.5mol/Lとすることがより好ましい。
 本実施形態のリチウムイオン二次電池の形態としては、スチール缶、アルミニウム缶等を外装体(外装缶)として使用した筒形(例えば、角筒形又は円筒形)が挙げられる。また、同形態として、金属を蒸着したラミネートフィルムを外装体とした形態(ソフトパッケージ電池)も挙げられる。
 なお、本実施形態の非水系電解液は、正負極いずれか一方を電気二重層キャパシタで用いられる分極性電極とし、もう一方をリチウムイオン二次電池で用いられるリチウムイオンを挿入及び脱離可能な物質を活物質とする電極とした、ハイブリッド型の蓄電デバイスにも応用することができる。
 本実施形態のリチウムイオン二次電池は、従来公知のリチウムイオン二次電池が用いられている各種用途と同じ用途に適用することができる。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。
<各原料成分の準備>
ガラス繊維:フィラトミクタFS19EW(日本無機株式会社製):数平均繊維径3.5μm、数平均繊維長5mm
無機フィラー:ミルコンLS2(林化成株式会社製):数平均繊維径0.2μm、数平均繊維長50μm、セピオライトを主成分とする繊維状鉱物の加工品
ポリマー粒子:ブチルアクリレートを主成分とするアクリル樹脂粒子:分子量770000、粒子径145μm
パルプ:LBKF広葉樹クラフトパルプ:叩解度CSF-100ml
 (実施例1)
<セパレータの作製>
 ミキサーにガラス繊維0.25g、無機フィラー0.125g、ポリマー粒子50mg及びイオン交換水500mlを入れ、2分間撹拌した。次いで、ミキサーにパルプ0.05g(乾燥重量)を入れ3分間撹拌してスラリーを調製した。このスラリーをスタンダードシートマシン抄紙装置(No2545型、熊谷理機工業株式会社製)に流し込み所定量のイオン交換水で満たし、充分に撹拌した後、排水して抄造体を得た。次いで、ろ紙とダミー紙を抄造体に重ね静置してクーチングした後、抄造体をろ紙と共にダミー紙から剥がしとり、SUS板に抄造体が接するように載せて所定圧(2MPa)にて3分間加圧し圧縮体を得た。その後、圧縮体からろ紙を剥がし、圧縮体を105℃にて2時間乾燥し、最後に130℃にて総圧0.4t、ロール速度0.5m/分でロールプレスし、セパレータを得た。図2は、本実施例にて得られた電気化学素子用セパレータの顕微鏡写真である。
<セパレータの評価>
1.透気度(ガーレー値)
 得られたセパレータを4cm角に切り出し、測定装置としてガーレー式デンソメーター(株式会社安田精機製作所製)を用いて、JIS P8117に準拠して測定した。結果を表1に示す。
2.細孔径
 得られたセパレータの細孔径を水銀ポロシメータオートポアIV-9510(株式会社島津製作所製)にて測定した。具体的には、得られたセパレータを1cm×5cmのサイズに切り出し、これを測定装置のサンプルフォルダに入れ、圧力を加えて試料の細孔に水銀を侵入させた。そして、このときの圧力と圧入された水銀量から、セパレータの細孔分布を求め、細孔分布のピーク強度の一番高いところを細孔径とした。結果を表1に示す。
3.膜厚
 得られたセパレータの膜厚を測定した。具体的には、標準外側マイクロメータ(株式会社ミツトヨ製)を用いて測定した。結果を表1に示す。
4.強度(引張強度)
 得られたセパレータの強度を測定した。具体的にはオートグラフAGS-X(株式会社島津製作所製)を用いて測定した。結果を表1に示す。
5.耐熱性
 得られたセパレータの耐熱性を測定した。具体的には、セパレータの加熱寸法収縮性(5分/200℃)を評価した。結果を表1に示す。なお、表中「収縮なし」とは加熱前後で寸法変化が±10%以内であったことを意味し、「収縮あり」とは加熱前後で寸法変化が±10%を超えたことを意味する。また、「寸法変化」とは、4cm角に切り出したセパレータを熱風乾燥機を用いて200℃で5分間加熱したときに、下記の式より算出される値を意味する。
 寸法変化(%)={(加熱前のセパレータの任意の一辺長さ-加熱後のセパレータの任意の一辺長さ)/加熱前のセパレータの任意の一辺長さ}×100
<リチウムイオン二次電池の作製>
 正極活物質としてコバルト酸リチウム(日本化学工業株式会社製「セルシード10N」)と、導電助剤として導電性カーボン(電気化学工業株式会社製「デンカブラック」)と、バインダー樹脂としてポリフッ化ビニリデン(株式会社クレハ製「PVDF#1120」)と、塗工溶媒としてN-メチルピロリドン(以下、NMP)とを、活物質:導電性カーボン:バインダー樹脂:NMP=94:3:3:28(重量比)の割合で混合してペースト状にし、アルミ集電箔(日本蓄電器工業株式会社製「20CB」)に塗布し、80℃で3時間乾燥させた。その後、これを圧延し、直径14mmの円形に打ち抜いて、リチウムイオン二次電池用正極電極を得た。塗布量は9.5mg/cm、プレス後の活物質層の厚さは31μmであった。
 次に、対極として厚さ1mm、直径15mmの円状金属リチウムを用い、また作用極として上記で得られた正極を用い、実施例1のセパレータを裁断して得た直径19mmの円形セパレータとポリエチレン多孔膜(旭化成株式会社製「ハイポアN8416」、膜厚25μm)を各1枚ずつ介して対極と作用極を対向させた。ポリエチレン多孔膜は正極側に配した。更に、LiPFを1.0mol/lとなるように溶解させた、エチレンカーボネート、ジエチルカーボネート及びジメチルカーボネートの混合溶液(1:1:1容量比)に、ビニレンカーボネートを2重量%添加した非水系電解液を用いて通常の方法によってリチウムイオン二次電池を作製した。
<電池特性の評価>
 得られたリチウムイオン二次電池の充放電試験により、作製したセパレータの電池特性を評価した。具体的には、CR2016コインセルを作製し、IEC61960 chapter7に準じて充放電試験を実施した。結果を表1に示す。なお、表中の数値は、「合格個数/試験数(n=2)」を示す。なお、本評価においては、所定の電圧(4.1V)まで短絡なく定電流(0.2C)で電池を充電できた場合を合格とした。
(実施例2)
 圧縮体を得た後、熱処理を行う前に、圧縮体をポリプロピレン粒子(MGP-1650 丸芳化学株式会社製 融点140℃)を分散させた分散媒体に5分間含浸させたこと以外は、実施例1と同様にして実験を行った。なお、分散媒体中のポリプロピレン粒子の含有量は、20質量%であった。各評価結果を表1に示す。
(比較例1)
 パルプを叩解度CSF-200mlのものに変更し、使用量を0.1g(乾燥重量)に変更したこと以外は、実施例1と同様にして実験を行った。各評価結果を表1に示す。
(比較例2)
 パルプを叩解度CSF-200mlのものに変更し、使用量を0.1g(乾燥重量)に変更したこと以外は、実施例2と同様にして実験を行った。各評価結果を表1に示す。
(比較例3)
 無機フィラーの使用量を0.05gに変更したこと、及びパルプを使用しなかったこと以外は、実施例1と同様にして実験を行った。各評価結果を表1に示す。
(比較例4)
 セパレータとしてポリエチレン微多孔膜を使用した。各評価結果を表1に示す。
(比較例5)
 セパレータとしてシリカ-アルミナ系セラミックを含むポリエチレン微多孔膜を使用した。各評価結果を表1示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例のセパレータは、耐熱性及び電池特性に優れるとともに、充分な強度を有することが分かる。さらに、同セパレータは、非水系電解液用電気化学素子において好適に用いられることが分かる。
 1…正極、2…負極、3…セパレータ、4…正極タブ、5…負極タブ、6…正極蓋、7…電池缶(負極缶)、8…ガスケット、10…リチウムイオン二次電池。
 

Claims (10)

  1.  ガラス繊維、前記ガラス繊維とは異なる無機フィラー及び樹脂を含む多孔質基体からなり、
     前記ガラス繊維及び前記無機フィラーの一部又は全部が前記樹脂により被覆されており、
     前記ガラス繊維及び前記無機フィラーが前記樹脂を介して結着されており、
     透気度が1~100sec/100mlであり、
     細孔径が0.01~20μmである、電気化学素子用セパレータ。
  2.  前記多孔質基体がさらにパルプを含有し、
     前記ガラス繊維、前記無機フィラー及び前記パルプの一部又は全部が前記樹脂により被覆されており、
     前記ガラス繊維、前記無機フィラー及び前記パルプが前記樹脂を介して結着されている、請求項1記載の電気化学素子用セパレータ。
  3.  前記樹脂の融点が100~300℃である、請求項1又は2記載の電気化学素子用セパレータ。
  4.  前記ガラス繊維に対する前記無機フィラーの質量比が0.1~10である、請求項1~3のいずれか一項記載の電気化学素子用セパレータ。
  5.  前記無機フィラーが繊維状である、請求項1~4のいずれか一項記載の電気化学素子用セパレータ。
  6.  前記無機フィラーがセピオライトを含む、請求項1~5のいずれか一項記載の電気化学素子用セパレータ。
  7.  厚みが50μm以下である、請求項1~6のいずれか一項記載の電気化学素子用セパレータ。
  8.  前記多孔質基体が抄造体から作製されたものである、請求項1~7のいずれか一項記載の電気化学素子用セパレータ。
  9.  非水系電解質用である、請求項1~8のいずれか一項記載の電気化学素子用セパレータ。
  10.  請求項1~9のいずれか一項記載の電気化学素子用セパレータを備えるリチウムイオン二次電池。
PCT/JP2014/066833 2013-06-25 2014-06-25 電気化学素子用セパレータ及びリチウムイオン二次電池 WO2014208596A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015524079A JPWO2014208596A1 (ja) 2013-06-25 2014-06-25 電気化学素子用セパレータ及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-132851 2013-06-25
JP2013132851 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014208596A1 true WO2014208596A1 (ja) 2014-12-31

Family

ID=52141928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066833 WO2014208596A1 (ja) 2013-06-25 2014-06-25 電気化学素子用セパレータ及びリチウムイオン二次電池

Country Status (3)

Country Link
JP (1) JPWO2014208596A1 (ja)
TW (1) TW201517358A (ja)
WO (1) WO2014208596A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072951A (ja) * 2013-10-01 2015-04-16 日本板硝子株式会社 電気二重層キャパシタ用セパレータおよび電気二重層キャパシタ
CN105514326A (zh) * 2015-01-16 2016-04-20 万向A一二三系统有限公司 一种复合隔膜以及含有该复合隔膜的动力钛酸锂电池
JP5982080B1 (ja) * 2015-03-30 2016-08-31 日本板硝子株式会社 非水電解液二次電池用セパレータおよび非水電解液二次電池
WO2016158654A1 (ja) * 2015-03-30 2016-10-06 日本板硝子株式会社 非水電解液二次電池用セパレータおよび非水電解液二次電池
KR20190039494A (ko) * 2019-04-05 2019-04-12 한국화학연구원 글라스 울을 이용한 다공성 분리막 및 그의 제조방법
GB2570678A (en) * 2018-02-01 2019-08-07 Thermal Ceram Uk Ltd Electrochemical device and inorganic fibres for use therein
CN110892551A (zh) * 2017-07-18 2020-03-17 日本宝翎株式会社 电化学元件用隔膜
WO2020059873A1 (ja) * 2018-09-20 2020-03-26 株式会社村田製作所 二次電池
WO2020059874A1 (ja) * 2018-09-20 2020-03-26 株式会社村田製作所 二次電池
CN112038542A (zh) * 2020-09-11 2020-12-04 广东工业大学 一种纤维布基锂离子电池隔膜及其制备方法和应用
EP3937302A1 (en) * 2020-07-07 2022-01-12 SK Innovation Co., Ltd. Separator and electrochemical device using the same
EP3937301A1 (en) * 2020-07-07 2022-01-12 SK Innovation Co., Ltd. Separator and electrochemical device using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500627A (ja) * 1980-05-12 1982-04-08
JPH06176749A (ja) * 1992-12-01 1994-06-24 Nippon Muki Co Ltd 鉛蓄電池用袋状セパレータ
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
JPH11250889A (ja) * 1998-03-04 1999-09-17 Nippon Glass Fiber Co Ltd 低抵抗電池セパレータ
WO2001093350A1 (fr) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separateur pour dispositif electrochimique, procede de production de ce dernier et dispositif electrochimique
JP2003109566A (ja) * 2001-09-28 2003-04-11 Nippon Muki Co Ltd 密閉型鉛蓄電池用セパレータ
JP2006100163A (ja) * 2004-09-30 2006-04-13 Kri Inc 電極材料およびそれを用いた二次電源
JP2006310274A (ja) * 2005-03-31 2006-11-09 Nippon Sheet Glass Co Ltd 液式鉛蓄電池用セパレータ及び液式鉛蓄電池
JP2007317405A (ja) * 2006-05-23 2007-12-06 Nippon Sheet Glass Co Ltd 非水電解液電池用セパレータ及び非水電解液電池
JP2010146839A (ja) * 2008-12-18 2010-07-01 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2013051195A (ja) * 2011-05-09 2013-03-14 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500627A (ja) * 1980-05-12 1982-04-08
JPH06176749A (ja) * 1992-12-01 1994-06-24 Nippon Muki Co Ltd 鉛蓄電池用袋状セパレータ
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
JPH11250889A (ja) * 1998-03-04 1999-09-17 Nippon Glass Fiber Co Ltd 低抵抗電池セパレータ
WO2001093350A1 (fr) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separateur pour dispositif electrochimique, procede de production de ce dernier et dispositif electrochimique
JP2003109566A (ja) * 2001-09-28 2003-04-11 Nippon Muki Co Ltd 密閉型鉛蓄電池用セパレータ
JP2006100163A (ja) * 2004-09-30 2006-04-13 Kri Inc 電極材料およびそれを用いた二次電源
JP2006310274A (ja) * 2005-03-31 2006-11-09 Nippon Sheet Glass Co Ltd 液式鉛蓄電池用セパレータ及び液式鉛蓄電池
JP2007317405A (ja) * 2006-05-23 2007-12-06 Nippon Sheet Glass Co Ltd 非水電解液電池用セパレータ及び非水電解液電池
JP2010146839A (ja) * 2008-12-18 2010-07-01 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2013051195A (ja) * 2011-05-09 2013-03-14 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIICHI HONMA, PLASTIC POCKET BOOK, ENTIRELY REVISED EDITION, 15 March 2003 (2003-03-15), pages 122, 125 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072951A (ja) * 2013-10-01 2015-04-16 日本板硝子株式会社 電気二重層キャパシタ用セパレータおよび電気二重層キャパシタ
CN105514326A (zh) * 2015-01-16 2016-04-20 万向A一二三系统有限公司 一种复合隔膜以及含有该复合隔膜的动力钛酸锂电池
JP5982080B1 (ja) * 2015-03-30 2016-08-31 日本板硝子株式会社 非水電解液二次電池用セパレータおよび非水電解液二次電池
WO2016158654A1 (ja) * 2015-03-30 2016-10-06 日本板硝子株式会社 非水電解液二次電池用セパレータおよび非水電解液二次電池
CN110892551A (zh) * 2017-07-18 2020-03-17 日本宝翎株式会社 电化学元件用隔膜
GB2570678A (en) * 2018-02-01 2019-08-07 Thermal Ceram Uk Ltd Electrochemical device and inorganic fibres for use therein
WO2020059873A1 (ja) * 2018-09-20 2020-03-26 株式会社村田製作所 二次電池
WO2020059874A1 (ja) * 2018-09-20 2020-03-26 株式会社村田製作所 二次電池
KR20190039494A (ko) * 2019-04-05 2019-04-12 한국화학연구원 글라스 울을 이용한 다공성 분리막 및 그의 제조방법
KR102051636B1 (ko) * 2019-04-05 2019-12-03 한국화학연구원 글라스 울을 이용한 다공성 분리막 및 그의 제조방법
EP3937302A1 (en) * 2020-07-07 2022-01-12 SK Innovation Co., Ltd. Separator and electrochemical device using the same
EP3937301A1 (en) * 2020-07-07 2022-01-12 SK Innovation Co., Ltd. Separator and electrochemical device using the same
US20220013862A1 (en) * 2020-07-07 2022-01-13 Sk Innovation Co., Ltd. Separator and Electrochemical Device Using the Same
US11990643B2 (en) 2020-07-07 2024-05-21 Sk Innovation Co., Ltd. Separator having inorganic composite layer including inorganic particles and one-dimensional inorganic material without polymer-based organic binder and electrochemical device using the same
US12021258B2 (en) 2020-07-07 2024-06-25 Sk Innovation Co., Ltd. Separator having inorganic composite layer including inorganic particles and one-dimensional inorganic material and electrochemical device using the same
CN112038542A (zh) * 2020-09-11 2020-12-04 广东工业大学 一种纤维布基锂离子电池隔膜及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2014208596A1 (ja) 2017-02-23
TW201517358A (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
WO2014208596A1 (ja) 電気化学素子用セパレータ及びリチウムイオン二次電池
WO2013168755A1 (ja) 電気化学素子用セパレータ及びその製造方法
CN109074961B (zh) 用于储能装置的电极以及用于制造干储能装置电极膜的方法
US10811658B2 (en) Separator and method of preparing the same, and lithium ion secondary battery
US8920960B2 (en) Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
TWI624104B (zh) 鋰離子二次電池
US8637177B2 (en) Electrochemical device
KR102129497B1 (ko) 리튬 이온 2차 전지
US20110292568A1 (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
JP5157222B2 (ja) 電極及び電気化学デバイス
WO2010053058A1 (ja) 電気化学素子
JP2010121029A (ja) 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
JP2019501500A (ja) セパレータ及びそれを含む電気化学素子
JP2010135313A (ja) 電気化学素子
JPWO2019156090A1 (ja) 非水系リチウム蓄電素子
JPH11260338A (ja) 非水電解液電池並びに非水電解液電池用セパレータ
JPH11144763A (ja) 電 池
JP2016100181A (ja) 電気化学素子用セパレータ及びリチウムイオン二次電池
JP2018041921A (ja) 非水系リチウム蓄電素子
JP2018014398A (ja) 非水系リチウム蓄電素子
JP2006245386A (ja) 極細炭素繊維および/または極細活性炭素繊維を導電補助材として用いた電気二重層キャパシタ
WO2023189598A1 (ja) 二次電池用支持体、および二次電池
JP2016167371A (ja) 電極前駆体
JP2013211158A (ja) 多層セパレータ、及びそれを用いたリチウムイオン二次電池
JP2012209118A (ja) リチウムイオン二次電池用及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818535

Country of ref document: EP

Kind code of ref document: A1