WO2023189598A1 - 二次電池用支持体、および二次電池 - Google Patents

二次電池用支持体、および二次電池 Download PDF

Info

Publication number
WO2023189598A1
WO2023189598A1 PCT/JP2023/010066 JP2023010066W WO2023189598A1 WO 2023189598 A1 WO2023189598 A1 WO 2023189598A1 JP 2023010066 W JP2023010066 W JP 2023010066W WO 2023189598 A1 WO2023189598 A1 WO 2023189598A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
solid electrolyte
fibers
electrolyte layer
solid
Prior art date
Application number
PCT/JP2023/010066
Other languages
English (en)
French (fr)
Inventor
健太 森本
健太郎 小川
正寛 黒岩
Original Assignee
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッポン高度紙工業株式会社 filed Critical ニッポン高度紙工業株式会社
Publication of WO2023189598A1 publication Critical patent/WO2023189598A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery support included in a solid electrolyte layer interposed between a positive electrode and a negative electrode of a secondary battery, and a secondary battery equipped with a solid electrolyte layer having this support.
  • a lithium ion secondary battery using a liquid electrolyte (hereinafter referred to as electrolyte) is used.
  • a lithium ion secondary battery using an electrolyte has a structure in which a separator is interposed between a positive electrode and a negative electrode, and the separator is filled with an electrolyte.
  • Lithium ion secondary batteries mainly use organic electrolytes as electrolytes. Since organic electrolytes are liquids, there are concerns about leakage and ignition because they are flammable. Therefore, in order to improve the safety of lithium ion secondary batteries, secondary batteries that use solid electrolytes instead of electrolytes (hereinafter referred to as all-solid-state batteries) have been developed. All-solid-state batteries naturally have a solid electrolyte, so they do not leak, and they are flame retardant and have higher heat resistance than electrolytes, so they are attracting attention as secondary batteries with excellent safety. There is. Because all-solid-state batteries have a high level of safety, small-sized all-solid-state batteries are being mass-produced for use in wearable devices that come in direct contact with the skin.
  • All-solid-state batteries have less characteristic deterioration at high temperatures, so they do not require a cooling device and can improve the energy density per volume of the battery pack. It is also an advantageous secondary battery. All-solid-state batteries are advantageous as secondary batteries with high volumetric energy density, so they are expected to become even larger for use in electric vehicles and other applications.
  • an all-solid battery has a solid electrolyte layer interposed between a positive electrode and a negative electrode, instead of a separator filled with an electrolyte.
  • a solid electrolyte layer interposed between a positive electrode and a negative electrode, instead of a separator filled with an electrolyte.
  • the solid electrolyte layer interposed between the positive and negative electrodes of an all-solid-state battery has the function of ionically conducting carrier ions between the positive and negative electrodes, and the function of preventing short circuits between the positive and negative active materials. is required.
  • the solid electrolyte layer is required to be thin in order to have excellent volumetric energy density and low internal resistance.
  • Methods for forming the solid electrolyte layer include mixing a solid electrolyte and a binder and rolling it under heat to form a sheet, or coating a solid electrolyte slurry on the electrode and drying it. ing.
  • the solid electrolyte layer obtained by rolling it under heat and forming it into a sheet may crack during handling. or cracks may occur.
  • a method is used in which a slurry containing a solid electrolyte is applied onto an electrode and then dried, the solid electrolyte layer is strained during drying, resulting in cracks. Therefore, it is difficult to form a stable, thin, and uniform solid electrolyte layer. If a stable, thin, and uniform solid electrolyte layer cannot be formed, ion conduction will deteriorate and short circuits will occur.
  • the thickness of the solid electrolyte layer can be increased, but if the thickness is thick, the battery size will increase, the volumetric energy density will decrease, and the distance between electrodes will increase. , the internal resistance becomes high.
  • Patent Document 1 discloses a technique related to a solid electrolyte sheet having a plurality of through holes formed by etching a film serving as a support. It is disclosed that an all-solid-state battery with excellent energy density and output characteristics can be provided by filling the through-holes formed by etching with a solid electrolyte.
  • the solid electrolyte sheet of Patent Document 1 the solid electrolyte is filled in the through holes, so the solid electrolyte is filled only inside the formed through holes. Therefore, since the film portion, which is an insulator, remains except for the through-hole, an interface between the positive electrode or the negative electrode and the film portion that does not allow carrier ions to pass occurs.
  • the interfacial resistance between the solid electrolyte sheet and the positive electrode or the negative electrode tends to be high, and even in an all-solid-state battery using this support, there has been a demand for further reduction in resistance of the all-solid-state battery.
  • Patent Document 2 discloses a technology related to a solid electrolyte sheet containing a solid electrolyte on the surface and inside of the nonwoven fabric, in which the weight per square meter of the nonwoven fabric used is 8 g or less and the thickness is 10 to 25 ⁇ m. There is.
  • the solid electrolyte layer formed using the nonwoven fabric described in Patent Document 2 as a support is self-supporting and can retain the solid electrolyte necessary for ion conduction between the positive electrode and the negative electrode, producing a battery that suppresses an increase in impedance. can do.
  • Patent Document 3 discloses a technology related to a solid electrolyte sheet having a porosity of 60% or more and 95% or less, a thickness of 5 ⁇ m or more and less than 20 ⁇ m, and a heat-resistant support filled with a solid electrolyte. It is disclosed that this solid electrolyte sheet is self-supporting despite its thin thickness and has excellent heat resistance, so that short circuits can be prevented even when pressed at high temperatures. In addition, it is disclosed that this solid electrolyte sheet can sinter the solid electrolyte by high-temperature pressing, resulting in lower interfacial resistance and improved battery output.
  • the supports described in Patent Document 2 and Patent Document 3 have sufficient voids, when the support forming material contains thin fibers, the supports have a dense structure. As a result, the solid electrolyte slurry could not be penetrated into the support, and the solid electrolyte was insufficiently filled into the support, resulting in a battery with high internal resistance. Further, in the supports described in Patent Document 2 and Patent Document 3, when the number of fibers that are constituent materials of the support is small, the contact area between the support constituent materials and the solid electrolyte becomes small.
  • the solid electrolyte layer had a high resistance.
  • Patent Document 4 discloses a technology related to a nonwoven fabric for supporting a solid electrolyte, which contains fibrillated heat-resistant fibers in an amount of 2% by mass or more and 40% by mass or less, and contains synthetic resin fibers. It is disclosed that this solid electrolyte-supporting nonwoven fabric has a small thickness, high tensile strength, and excellent process runnability when coating a coating liquid containing a solid electrolyte.
  • the solid electrolyte supporting nonwoven fabric of Patent Document 4 may not be able to uniformly hold the solid electrolyte slurry due to the small contact area between the support constituent material and the solid electrolyte.
  • the contact area between the support and the solid electrolyte is increased, in other words, a large amount of fibrillated heat-resistant fibers is blended into the solid electrolyte-supporting nonwoven fabric, and beating treatment is performed.
  • Patent Document 5 discloses a technology related to a nonwoven fabric base material for a lithium secondary battery separator, which is characterized by containing undrawn polyester fibers and wet heat adhesive fibers as binder fibers. Undrawn polyester fibers are softened or melted by heat-pressure treatment using a calender or the like, and are firmly adhered to other fibers. It is disclosed that the wet heat adhesive fibers flow or easily deform in a wet state to exhibit an adhesive function. It is disclosed that by containing these binders in a nonwoven fabric base material, it is possible to provide a nonwoven fabric base material for a lithium secondary battery separator that has high tensile strength and high productivity.
  • the heat-and-moisture adhesive fibers contained in the nonwoven fabric base material of Patent Document 5 undergo flow or deformation when exhibiting the adhesive function, so the heat-and-moisture adhesive fibers in this nonwoven fabric base maintain their fibrous state.
  • the voids inside the support were filled.
  • the density will become high.
  • the penetration of the solid electrolyte slurry into the nonwoven fabric base material is insufficient, and it is difficult to uniformly fill the solid electrolyte inside the nonwoven fabric base material, resulting in a battery with high internal resistance.
  • Patent Document 6 discloses a technology related to a separator for alkaline batteries characterized in that the separator has a specific surface area of 0.80 m 2 /g or more, and the larger the specific surface area, the better the electrolyte retention ability. It is described as being excellent. Therefore, it is disclosed that the alkaline battery separator described in Patent Document 6 has a large area that can come into contact with the electrolyte, and thus has excellent electrolyte retention.
  • the present invention has been made in view of the above-mentioned problems, and by using a support having voids that can be filled with the necessary amount of solid electrolyte, a solid electrolyte layer with the required amount of solid electrolyte filled inside the support can be created.
  • the purpose is to form a solid electrolyte layer with low resistance.
  • it is intended to suppress cracks occurring inside the solid electrolyte layer and contribute to lowering the resistance of the solid electrolyte layer.
  • the object of the present invention is to provide a method for reducing the interfacial resistance between a positive electrode or a negative electrode and a solid electrolyte layer. Another object of the present invention is to provide a secondary battery with low internal resistance by using this support.
  • the support according to the present invention has been made for the purpose of solving the above problems, and includes, for example, the following configuration. That is, paper is a support included in a solid electrolyte layer of a secondary battery, and the support has a porosity of 60 to 90% and a specific surface area per volume of 0.1 to 1.0 m 2 /cm 3 . Alternatively, it is characterized by being a nonwoven fabric. Further, the secondary battery of the present invention is characterized by comprising a solid electrolyte layer having the support of the present invention.
  • the support by setting the porosity of the support in the range of 60 to 90%, the support can be made to have voids that can be filled with the required amount of solid electrolyte, and a solid with low resistance can be formed.
  • An electrolyte layer can be obtained.
  • the specific surface area per volume of the support in the range of 0.1 to 1.0 m 2 /cm 3 , a sufficient contact area between the support constituent material and the solid electrolyte can be secured, and the support The solid electrolyte can be held uniformly inside, and the occurrence of cracks can be suppressed. As a result, a solid electrolyte layer with low resistance can be obtained.
  • a support made of paper or nonwoven fabric it is possible to obtain a support having a structure having various voids and through holes.
  • a solid electrolyte layer using this support can form continuous carrier ion path lines in the thickness direction and surface direction, and can obtain a solid electrolyte layer with low resistance.
  • a solid electrolyte layer that contributes to a reduction in interfacial resistance with the electrolyte layer can be obtained.
  • a support is used to form a solid electrolyte layer interposed between a positive electrode and a negative electrode in a secondary battery.
  • the support of the present invention is a support included in a solid electrolyte layer of a secondary battery, and the support has a porosity of 60 to 90% and a specific surface area per volume of 0.1 to 1.0 m 2 /cm. 3 , paper or non-woven fabric.
  • the solid electrolyte layer interposed between the positive and negative electrodes is required to conduct carrier ions between the positive and negative electrodes during charging and discharging.
  • carrier ion pass lines must be formed between the positive electrode and the solid electrolyte layer, inside the solid electrolyte layer, and between the solid electrolyte layer and the negative electrode. That is, if the interfacial resistance between the positive electrode and the solid electrolyte layer, between the solid electrolyte layer and the negative electrode, and the resistance inside the solid electrolyte layer can be reduced, the internal resistance of the all-solid-state battery can be lowered.
  • the support constituting the solid electrolyte layer needs to have enough voids to be filled with the solid electrolyte.
  • the support of the present invention preferably has a porosity in the range of 60 to 90%. More preferably, it is in the range of 65 to 85%.
  • the porosity of the support is less than 60%, when the solid electrolyte slurry permeates the support, the solid electrolyte slurry will clog inside the support, making it impossible to uniformly fill the support in the thickness direction. As a result, the resistance of the solid electrolyte layer becomes high.
  • the porosity is over 90%, the solid electrolyte cannot remain on the support because there are many voids and there is little material constituting the support, and the solid electrolyte is It will be filled unevenly. Furthermore, the reinforcing effect of the solid electrolyte layer by the support is no longer obtained, leading to the occurrence of cracks.
  • one of the factors that hinders further reduction in the resistance of the solid electrolyte layer is that the contact area between the support constituent material and the solid electrolyte is small, so the support does not have sufficient reinforcing effect on the solid electrolyte layer. It was found that this was due to the occurrence of cracks inside the solid electrolyte layer. If the contact area between the support constituent material and the solid electrolyte is small, when the solid electrolyte slurry is infiltrated into the support, the solid electrolyte slurry cannot be held uniformly inside the support, and cracks may occur inside the solid electrolyte layer. I had left it behind.
  • the specific surface area per volume measured by the transmission method was used as an index for measuring the specific surface area inside the support.
  • the specific surface area by the permeation method is determined from the flow rate and pressure loss when air is flowed in the thickness direction of the support. In other words, the surface area of the portion through which air can flow inside the support can be measured. If the specific surface area per volume measured by the permeation method is large, it indicates that the surface area inside the support that can be penetrated by the solid electrolyte slurry is large, that is, the contact area between the support constituent material and the solid electrolyte is large.
  • the support of the present invention has a specific surface area per volume controlled within the range of 0.1 to 1.0 m 2 /cm 3 . Furthermore, from the viewpoint of suppressing the increase in resistance due to the occurrence of cracks inside the solid electrolyte layer and non-uniform filling of the solid electrolyte inside the support in the thickness direction, the specific surface area per volume is 0.15 to 0. A range of .9 m 2 /cm 3 is more preferable.
  • a support having a specific surface area per volume within the above range can support and reinforce the solid electrolyte, so it can withstand strain when drying the solid electrolyte slurry.
  • the solid electrolyte slurry can be held uniformly. As a result, the occurrence of cracks inside the solid electrolyte layer can be suppressed. Due to the above effects, the pass line of carrier ions inside the formed solid electrolyte layer can be maintained, and an increase in resistance can be suppressed. In other words, by using this support, the internal resistance of the all-solid-state battery can be lowered.
  • the specific surface area per volume of the support is less than 0.1 m 2 /cm 3 , the contact area between the support constituent material and the solid electrolyte will be small, so the effect of using the support will be reduced, or the inside of the support will be The solid electrolyte slurry may not be held uniformly, and cracks may occur when the solid electrolyte slurry is dried. As a result, the carrier ion path line that had been formed is cut off.
  • the specific surface area per volume of the support is more than 1.0 m 2 /cm 3 , the contact area between the support constituent material and the solid electrolyte is large, that is, the resistance when the substance permeates in the thickness direction is large. Since the solid electrolyte slurry is high, the solid electrolyte slurry will clog inside the support. As a result, the amount of solid electrolyte that can be filled inside the support decreases, and the resistance of the solid electrolyte layer increases.
  • the support of the present invention is made of paper or nonwoven fabric. This is due to the following reasons. Paper refers to products made by gluing plant fibers and other fibers together. In addition, nonwoven fabrics are created by processing various fiber webs such as natural, recycled, and synthetic fibers mechanically, chemically, thermally, or by a combination thereof without using a loom, and using adhesives or the fusing strength of the fibers themselves. Refers to a sheet-like material made by bonding fibers together. In other words, since paper or nonwoven fabric has a structure in which fibers are randomly arranged, it has innumerable voids of various sizes and through holes of various sizes inside. Therefore, the applied solid electrolyte slurry can spread not only in the thickness direction but also in the surface direction.
  • the coated solid electrolytes remain on the surface of the support, some remain inside the support, and some pass through the through holes from the front side and reach the back side. Therefore, in a solid electrolyte layer prepared using paper or nonwoven fabric as a support, the solid electrolyte is filled not only on the surface of the support but also inside the support, and a good path line for carrier ions can be formed. As a result, not only the resistance of the solid electrolyte layer can be reduced, but also the interfacial resistance between the solid electrolyte layer and the positive electrode or the negative electrode can be reduced. As a result, the internal resistance of the all-solid-state battery can be reduced.
  • the thickness of the support of the present invention is preferably in the range of 5 to 40 ⁇ m. More preferably, it is in the range of 8 to 35 ⁇ m. If the thickness is less than 5 ⁇ m, the thickness of the solid electrolyte layer becomes thin, making it difficult to prevent short circuits between the positive electrode and the negative electrode, or the amount required to form the solid electrolyte layer on the support may be reduced. It may become impossible to fill the solid electrolyte. Furthermore, in order to widen the distance between the electrodes for the purpose of preventing short circuits, a thick solid electrolyte layer can be formed on the surface of the support, but a layer consisting only of solid electrolyte is generated.
  • the basis weight of the support is preferably in the range of 1.0 to 15.0 g/m 2 . More preferably, it is in the range of 2.0 to 13.0 g/m 2 .
  • the basis weight is less than 1.0 g/m 2 , the number of fibers constituting the support decreases, and the number of voids in the support increases. Therefore, the solid electrolyte does not remain on the support, and it becomes difficult to uniformly support and reinforce the solid electrolyte, making it impossible to obtain the effect of reinforcing the solid electrolyte layer by the support.
  • the basis weight exceeds 15.0 g/ m2 , the number of fibers constituting the support increases, and the permeability of the solid electrolyte slurry into the inside of the support deteriorates, causing the solid electrolyte to be sufficiently filled inside the support. It may not be possible. Therefore, the resistance of the solid electrolyte layer becomes high.
  • the tensile strength of the support is preferably 1.0 N/15 mm or more. If the tensile strength is less than 1.0 N/15 mm, it is likely to break during filling with the solid electrolyte.
  • the support contains fibers with adhesive strength.
  • fibers having adhesive strength include fibers having fibrils on the fiber surface (hereinafter referred to as fibrillated fibers), synthetic resin binders, and the like.
  • the adhesive strength of fibrillated cellulose fibers includes physical bonding due to entanglement of cellulose fibers and chemical bonding due to hydrogen bonding of hydroxyl groups possessed by cellulose. Further, the adhesive strength of fibrillated polyamide fibers and acrylic fibers is due to physical bonding due to intertwining of the fibers. Bonding using any type of fiber is preferable because it contributes to maintaining the shape of the support and developing tensile strength.
  • Examples of synthetic resin binder fibers include those that retain their fibrous state after forming a support, and those that cannot maintain their fibrous state and become, for example, in the form of a film. Synthetic resin binder fibers that maintain their fibrous state when forming a support are preferred binder fibers because they are less likely to impede permeability and can improve the tensile strength of the support. The synthetic resin binder fibers that maintain their fiber shape in the state of forming a support exhibit adhesive strength by thermally bonding the intertwined points of the fibers.
  • the synthetic resin binder fibers that maintain their fibrous state as a constituent material of the support can reduce breakage when forming the solid electrolyte layer, and bond only the fiber contacts, so that the solid electrolyte slurry does not enter the inside of the support. Hard to inhibit penetration.
  • synthetic resin binder fibers that cannot maintain their fibrous state when forming a support are heated during the support manufacturing process, causing the fibers to change into a film shape due to heat at temperatures close to the melting point or softening point of the resin constituting the fibers. By adding , the resin melts and the fibers are fused at the intertwined points.
  • the binder component when a binder that is not in a fibrous state is used in a state in which a support is formed, the binder component will form a large number of film layers in the fiber gaps of the support and fill the voids when the binder function is expressed. As a result, the penetration of the solid electrolyte into the support may be inhibited, so care must be taken when using the solid electrolyte in its amount.
  • Materials that can be used as adhesive fibers are not particularly limited, as long as they do not repel the solid electrolyte slurry, do not physically or chemically affect the solid electrolyte, and have insulating properties.
  • fibrillated fibers such as beaten cellulose fibers, beaten polyamide fibers, beaten acrylic fibers, polyamide binder fibers, polyester binder fibers, polyethylene binder fibers, polypropylene-polyethylene core-sheath type binder fibers, etc.
  • one or more types of fibers selected from these fibers can be used.
  • constituent materials are not particularly limited as long as they do not repel the solid electrolyte slurry, do not physically or chemically affect the solid electrolyte, and have insulating properties, such as cellulose.
  • examples include organic fibers such as fibers, polyamide fibers, polyester fibers, polypropylene fibers, and acrylic fibers, and inorganic fibers such as glass fibers and alumina fibers.
  • one or more types of fibers selected from these fibers can be used. By using these fibers, a support with excellent solid electrolyte filling properties can be obtained.
  • the specific surface area per volume As a method for adjusting the specific surface area per volume to a range of 0.1 to 1.0 m 2 /cm 3 , for example, in the case of fibrillated fibers, it is possible to use fibers whose CSF value is controlled to be 1 to 500 ml. Further, in the case of fibers having no fibrils on the fiber surface, it is possible to use fibers having an average fiber diameter of 1 to 15 ⁇ m. However, this is not the case as long as the specific surface area per volume can be within the range of 0.1 to 1.0 m 2 /cm 3 .
  • the method for manufacturing the support is not particularly limited, and it can be manufactured by a dry method or a wet method, but preferably a paper-making method in which fibers dispersed in water are deposited on a wire, dehydrated, and dried to form paper. is preferable from the viewpoint of homogeneity of the formation of the support.
  • paper or wet-laid nonwoven fabric formed using a papermaking method is employed as the method for manufacturing the support.
  • the paper making method of the support is not particularly limited as long as the porosity, specific surface area per volume, thickness, and basis weight can be satisfied, and paper making methods such as Fourdrinier paper, short net paper, and cylinder paper can be adopted.
  • additives such as dispersants, antifoaming agents, paper strength enhancers, etc. may be added, and after forming the paper layer, paper strength strengthening processing, lyophilic processing, calendar processing, thermal calendar processing, embossing processing, etc. Post-processing may also be performed.
  • Method for producing support and all-solid-state battery and method for measuring properties The method for manufacturing the support and the all-solid-state battery of this embodiment and the method for measuring the characteristics were performed under the following conditions and methods.
  • ⁇ thickness ⁇ The thickness of one support was measured at equal intervals using a dial thickness gauge G type (measurement reaction force 2N, measuring head: ⁇ 10mm), and the average value of the measurement points was calculated as the thickness of the support ( ⁇ m ).
  • Basis weight The basis weight of the support in an absolutely dry state was measured by the method specified in "JIS C 2300-2 'Electrical Cellulose Paper - Part 2: Test Methods' 6 Basis Weight".
  • Density (g/cm 3 ) W/T W: basis weight (g/m 2 ), T: thickness ( ⁇ m)
  • Porosity (1-(D/S)) x 100
  • D Support density (g/cm 3 )
  • S Specific gravity of constituent fibers (g/cm 3 )
  • the specific surface area per mass (m 2 /g) was measured by a gas permeation method using a Parm-Porometer manufactured by PMI.
  • the specific surface area per volume (m 2 /cm 3 ) was calculated from the product of the obtained specific surface area per mass (m 2 /g) and the measured density (g/cm 3 ) of the support.
  • LiNiCoAlO 2 ternary powder was used as a positive electrode active material
  • Li 2 SP 2 S 5 amorphous powder was used as a sulfide solid electrolyte
  • carbon fiber was used as a conductive additive.
  • a dehydrated xylene solution in which SBR (styrene butadiene rubber) was dissolved as a binder was mixed with this mixed powder to prepare a positive electrode coating liquid.
  • a positive electrode structure was obtained by applying a positive electrode coating liquid to an aluminum foil current collector serving as a positive electrode current collector, drying it, and further rolling it.
  • Graphite was used as the negative electrode active material, Li 2 SP 2 S 5 amorphous powder was used as the sulfide solid electrolyte, PVdF (polyvinylidene fluoride) was used as the binder, and NMP (N-methyl-2-pyrrolidone) was used as the solvent. ) were used and mixed to prepare a negative electrode coating solution.
  • a negative electrode structure was obtained by applying a negative electrode coating liquid to a copper foil current collector serving as a negative electrode current collector, drying it, and further rolling it.
  • a solid electrolyte slurry was prepared by mixing Li 2 SP 2 S 5 amorphous powder as a sulfide-based solid electrolyte, SBR as a binder, and xylene as a solvent.
  • a solid electrolyte slurry was coated on the supports of each Example, each Comparative Example, each Conventional Example, and each Reference Example shown below and dried to obtain a solid electrolyte layer.
  • a single cell of an all-solid-state battery is created by stacking a negative electrode structure with a size of 88 mm x 58 mm, a solid electrolyte layer with a size of 92 mm x 62 mm, and a positive electrode structure with a size of 87 mm x 57 mm, dry laminating them, and bonding them together. I got it. The obtained single cell was placed in an aluminum laminate film attached with a terminal, degassed, heat-sealed, and packed.
  • the all-solid-state battery was charged to 4.0 V at a current density of 0.1 C in an environment of 25° C., and the impedance was measured in a frequency range of 0.1 Hz to 1 MHz using an LCR meter.
  • the arc portion of the obtained Cole-Cole plot was fitted to the shape of a semicircle with the x-axis as the base, and the value at the intersection of the right end of the semicircle and the x-axis was taken as the resistance value.
  • the all-solid-state battery was charged to 4.0V at a current density of 0.1C in an environment of 25°C, then discharged to 2.5V at a current density of 0.1C, and the discharge capacity at that time was measured. .
  • Example 1 Fourdrinier paper was made using polyamide fibers having a CSF value of 10 ml to obtain a support having a thickness of 35 ⁇ m, a basis weight of 15.0 g/m 2 , and a density of 0.43 g/cm 3 .
  • the properties of the support of Example 1 are summarized in Table 2.
  • Example 2 Short net paper was made using cellulose fibers with a CSF value of 20 ml. The obtained paper was calendered to obtain a support having a thickness of 5 ⁇ m, a basis weight of 2.6 g/m 2 and a density of 0.52 g/cm 3 . The properties of the support of Example 2 are summarized in Table 2.
  • Example 3 Cylindrical paper was made using a mixture of 80% by mass of polyester fibers with an average fiber diameter of 3 ⁇ m and 20% by mass of polyester binder fibers with an average fiber diameter of 4 ⁇ m, with a thickness of 9 ⁇ m and a basis weight of 2.0 g/m 2 . A support with a density of 0.22 g/cm 3 was obtained. The properties of the support of Example 3 are summarized in Table 2.
  • Example 4 Fourdrinier paper is made using a raw material that is a mixture of 50% by mass of polyamide fibers with a CSF value of 100ml and 50% by mass of cellulose fibers with a CSF value of 10ml, and has a thickness of 35 ⁇ m, a basis weight of 13.0 g/m 2 , and a density of 0. A support of 37 g/cm 3 was obtained.
  • the properties of the support of Example 4 are summarized in Table 2.
  • Example 5 Short net paper was made using a mixture of 20% by mass of polyester fibers with an average fiber diameter of 3 ⁇ m and 80% by mass of polyester binder fibers with an average fiber diameter of 4 ⁇ m, with a thickness of 8 ⁇ m and a basis weight of 1.1 g/m 2 . A support with a density of 0.14 g/cm 3 was obtained. The properties of the support of Example 5 are summarized in Table 2.
  • Example 6 Cylindrical paper was made using a mixture of 30% by mass of cellulose fibers with a CSF value of 500ml and 70% by mass of polyamide binder fibers with an average fiber diameter of 10 ⁇ m, with a thickness of 40 ⁇ m, a basis weight of 12.0g/m 2 , and a density. A support of 0.30 g/cm 3 was obtained. The properties of the support of Example 6 are summarized in Table 2.
  • Example 7 Using a raw material that mixed 50% by mass of acrylic fibers with a CSF value of 100ml and 50% by mass of acrylic fibers with an average fiber diameter of 10 ⁇ m, a short net paper was made, and the paper had a thickness of 30 ⁇ m, a basis weight of 5.5g/m 2 , and a density of 0. A support of .18 g/cm 3 was obtained.
  • the properties of the support of Example 7 are summarized in Table 2.
  • Example 8 Using a raw material that is a mixture of 30% by mass of polypropylene fibers with an average fiber diameter of 1 ⁇ m and 70% by mass of polypropylene-polyethylene core-sheath type fibers with an average fiber diameter of 15 ⁇ m, short net paper is made to have a thickness of 20 ⁇ m and a basis weight of 7.5 g. /m 2 and a density of 0.38 g/cm 3 was obtained.
  • the properties of the support of Example 8 are summarized in Table 2.
  • Example 9 Fourdrinier paper is made using a raw material that is a mixture of 80% by mass of cellulose fibers with a CSF value of 1 ml and 20% by mass of polyester binder fibers with an average fiber diameter of 4 ⁇ m, and has a thickness of 30 ⁇ m, a basis weight of 10.0 g/m 2 , and a density. A support of 0.33 g/cm 3 was obtained. The properties of the support of Example 9 are summarized in Table 2.
  • Comparative example 1 Short net paper was made using cellulose fibers with a CSF value of 20 ml. The obtained paper was calendered to obtain a support having a thickness of 4 ⁇ m, a basis weight of 2.0 g/m 2 and a density of 0.50 g/cm 3 . The characteristics of the support of Comparative Example 1 are summarized in Table 2.
  • Comparative example 2 Using a raw material that mixed 20% by mass of polyester fibers with an average fiber diameter of 3 ⁇ m and 80% by mass of polyester binder fibers with an average fiber diameter of 4 ⁇ m, a short net paper was made, and the thickness was 5 ⁇ m and the basis weight was 0.7 g/m 2 . A support with a density of 0.14 g/cm 3 was obtained. The characteristics of the support of Comparative Example 2 are summarized in Table 2.
  • Comparative example 3 Fourdrinier paper was made using polyamide fibers having a CSF value of 100 ml to obtain a support having a thickness of 40 ⁇ m, a basis weight of 16.0 g/m 2 , and a density of 0.40 g/cm 3 .
  • the characteristics of the support of Comparative Example 3 are summarized in Table 2.
  • Comparative example 4 Using a raw material that mixed 50% by mass of acrylic fibers with an average CSF value of 300ml and 50% by mass of acrylic fibers with an average fiber diameter of 10 ⁇ m, paper was made into a short net, with a thickness of 30 ⁇ m, a basis weight of 3.0g/m 2 , and a density. A support of 0.10 g/cm 3 was obtained. The characteristics of the support of Comparative Example 4 are summarized in Table 2.
  • Comparative example 5 Using a raw material that is a mixture of 30% by mass of polypropylene fibers with an average fiber diameter of 1 ⁇ m and 70% by mass of polypropylene-polyethylene core-sheath type fibers with an average fiber diameter of 10 ⁇ m, short paper is made to have a thickness of 20 ⁇ m and a basis weight of 8.5 g. /m 2 and a density of 0.43 g/cm 3 was obtained.
  • the characteristics of the support of Comparative Example 5 are summarized in Table 2.
  • Comparative example 6 Fourdrinier paper is made using a raw material that is a mixture of 85% by mass of cellulose fibers with a CSF value of 0ml and 15% by mass of polyester binder fibers with an average fiber diameter of 4 ⁇ m, and has a thickness of 30 ⁇ m, a basis weight of 12.0g/m 2 , and a density. A support of 0.40 g/cm 3 was obtained. The characteristics of the support of Comparative Example 6 are summarized in Table 2.
  • Cylindrical paper was made using a raw material that was a mixture of 15% by mass of cellulose fibers with a CSF value of 500ml and 85% by mass of polyamide binder fibers with an average fiber diameter of 16 ⁇ m, and the paper had a thickness of 40 ⁇ m, a basis weight of 8.0g/m 2 , and a density. A support of 0.20 g/cm 3 was obtained. The characteristics of the support of Comparative Example 7 are summarized in Table 2.
  • a support was produced using a method similar to that described in Example 2 of Patent Document 1, and the support of Conventional Example 1 was obtained.
  • a polyimide film was etched to form holes of 200 ⁇ m square to obtain a support having a thickness of 30 ⁇ m, a basis weight of 8.8 g/m 2 , and a density of 0.29 g/cm 3 .
  • the characteristics of the support of Conventional Example 1 are summarized in Table 2.
  • Table 1 shows the blended fiber names and blending ratios of each support of Examples 1 to 9, Comparative Examples 1 to 7, Conventional Examples 1 to 2, and Reference Examples described above.
  • Table 2 shows the evaluation results of the characteristics of the supports, the self-sustainability of the solid electrolyte layer, and the battery characteristics of each of the Examples, Comparative Examples, Conventional Examples, and Reference Examples described above.
  • the solid electrolyte layer using the support of each example was able to form a self-supporting solid electrolyte layer.
  • the all-solid-state battery using the support of each example has low resistance and high discharge capacity, and functions as a battery.
  • the support of Comparative Example 1 is thinner than the supports of each Example. Since the support of Comparative Example 1 was as thin as 4 ⁇ m, it is considered that short circuit between the positive electrode and the negative electrode could not be prevented. In addition, various battery evaluations of the all-solid-state battery using the support of Comparative Example 1 could not be performed because a short circuit occurred. In other words, from a comparison between each Example and Comparative Example 1, it can be seen that the thickness of the support is preferably 5 ⁇ m or more.
  • the all-solid-state battery using the support of Comparative Example 2 has higher resistance and lower discharge capacity than the all-solid-state battery using the support of each Example. Further, the support of Comparative Example 2 has a lower basis weight than the supports of each Example. Since the support of Comparative Example 2 has a low basis weight of 0.7 g/m 2 , the solid electrolyte cannot remain uniformly on the support due to the small number of fibers that make up the support, resulting in a uniform solid state. This is probably because an electrolyte layer could not be obtained. In other words, from a comparison between each Example and Comparative Example 2, it can be seen that the basis weight of the support is preferably 1.0 g/m 2 or more.
  • the support of Comparative Example 3 has a higher basis weight than the supports of each Example. Since the support of Comparative Example 3 has a high basis weight of 16.0 g/ m2 , the solid electrolyte slurry cannot penetrate into the support due to the large number of fibers that make up the support. It stayed on the surface. As a result, the solid electrolyte slurry was dried while remaining on the surface of the support, and a solid electrolyte layer was formed on the surface of the support. Since the solid electrolyte layer formed on the surface of the support was dried without the support, cracks occurred because the solid electrolyte layer was not reinforced by the support, and when the solid electrolyte layer was lifted, However, cracks occurred and the structure lacked independence.
  • the all-solid-state battery using the support of Comparative Example 4 has higher resistance and lower discharge capacity than the all-solid-state battery using the support of each Example. Further, the support of Comparative Example 4 has a higher porosity than the supports of each Example. Since the support of Comparative Example 4 had a high porosity of 93%, the solid electrolyte could not stay uniformly on the support due to the small amount of support constituent materials, and a uniform solid electrolyte layer could not be obtained. This is probably because there was no such thing. In other words, from a comparison between each Example and Comparative Example 4, it can be seen that the porosity of the support is preferably 90% or less.
  • the support of Comparative Example 5 has a lower porosity than each of the Examples.
  • the support of Comparative Example 5 has a low porosity of 55%, so when the solid electrolyte slurry was applied to the support of Comparative Example 5, the solid electrolyte slurry clogged inside the support, and the support It stayed on the surface. Therefore, as in Comparative Example 3, cracks occurred because the solid electrolyte layer was not reinforced by the support. As a result, when the solid electrolyte layer was lifted up, cracks occurred and it was not self-supporting. Although cracks occurred in the solid electrolyte layer using the support of Comparative Example 5, an all-solid-state battery could be produced by overlapping the positive electrode and the negative electrode.
  • the all-solid-state battery using the support of Comparative Example 5 had a much higher resistance than the all-solid-state battery using the support of each Example, and the battery could not be discharged. This is considered to be because the porosity was as low as 55% and the solid electrolyte could not be filled inside the solid electrolyte layer.
  • a comparison between each Example and Comparative Example 5 shows that the porosity of the support is preferably 60% or more.
  • the support of Comparative Example 6 has a larger specific surface area per volume than each of the Examples. Since the support of Comparative Example 6 has a large specific surface area per volume of 1.2 m 2 /cm 3 , the permeability of the solid electrolyte slurry in the thickness direction of the support is poor, and the solid electrolyte slurry does not penetrate inside the support. It's clogged. As a result, as in Comparative Examples 3 and 5, a solid electrolyte layer was formed on the surface of the support, and cracks occurred because the solid electrolyte layer was not reinforced by the support. As a result, when the solid electrolyte layer was lifted up, cracks occurred and it was not self-supporting.
  • the all-solid-state battery using the support of Comparative Example 7 has higher resistance and lower discharge capacity than the all-solid-state battery using the support of each Example. Further, the support of Comparative Example 7 has a smaller specific surface area per volume than the supports of each Example. Since the support of Comparative Example 7 has a small specific surface area per volume of 0.04 m 2 /cm 3 , the contact area between the support constituent material and the solid electrolyte is small, reducing the effect of using the support. It is considered that a uniform solid electrolyte layer could not be obtained.
  • a comparison between each Example and Comparative Example 7 shows that the specific surface area per volume of the support is preferably 0.1 m 2 /cm 3 or more.
  • the support of Conventional Example 1 is a support in which through-holes are formed in a film, unlike the paper or nonwoven fabric supports of the respective Examples.
  • the through-holes of the support in Conventional Example 1 can be filled with a solid electrolyte, the solid electrolyte can only be filled inside the formed through-holes.
  • the solid electrolyte layer made of the support of Conventional Example 1 it is thought that an interface between the film, which is an insulator, and the positive or negative electrode exists at the interface between the positive electrode or negative electrode and the solid electrolyte layer.
  • the support of Conventional Example 1 has a small specific surface area per volume of 0.02 m 2 /cm 3 .
  • the support of Conventional Example 2 had a small specific surface area of 0.06 m 2 /cm 3 , when the solid electrolyte slurry was applied to the support, the solid electrolyte could not be held uniformly. Therefore, the all-solid-state battery using the support of Conventional Example 2 had high resistance and low discharge capacity.
  • the all-solid-state battery using the support of the reference example has higher resistance and lower discharge capacity than the all-solid-state battery using the support of each example.
  • the support of the reference example is a support containing 20% by mass of polyvinyl alcohol fibers in addition to acrylic fibers.
  • Polyvinyl alcohol fibers are effective fibers for improving tensile strength. Polyvinyl alcohol fibers can reinforce the fiber contact points and improve the tensile strength of the support by changing their shape due to moist heat.
  • the polyvinyl alcohol fiber is formed into a support, it is not in a fibrous state but forms a film layer inside the support, filling the gaps between the fibers.
  • the blending amount of the synthetic resin binder fibers that cannot maintain the fiber state is preferably less than 20% by mass.
  • compositions of carrier ions, solid electrolytes, positive electrodes, negative electrodes, etc. can be changed as appropriate by those skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

抵抗の低い固体電解質層を得ること、かつ、正極もしくは負極と固体電解質層との界面抵抗の低減を図ること、ができる二次電池用支持体を提供する。二次電池の固体電解質層に含まれる支持体であって、空隙率が60~90%、体積あたりの比表面積が0.1~1.0m2/cm3の範囲の、紙もしくは不織布である二次電池用支持体を構成する。

Description

二次電池用支持体、および二次電池
 本発明は、二次電池の正極、負極間に介在する固体電解質層に含まれる二次電池用支持体、およびこの支持体を有した固体電解質層を備えた二次電池に関する。
 エネルギー密度の高い二次電池として、液体の電解質(以下、電解液)を用いたリチウムイオン二次電池が用いられている。電解液を用いたリチウムイオン二次電池は、正極と負極との間にセパレータを介在させ、電解液を充填した構成を有している。
 リチウムイオン二次電池には、電解液として、主に有機系電解液が使用されている。有機系電解液は、液体であるための液漏れや、可燃性であるための発火が懸念される。そのため、リチウムイオン二次電池の安全性を高めるために、電解液ではなく、固体電解質を用いた二次電池(以下、全固体電池)が開発されている。全固体電池は、当然ながら、電解質が固体であるため、液漏れもなく、かつ電解液と比較して難燃性で耐熱性も高いことから、安全性に優れた二次電池として注目されている。全固体電池は、高い安全性を有することから、肌身に直接触れるウエアラブル機器向け等、小型の全固体電池が量産されている。
 また、全固体電池は、電解液を用いるリチウムイオン二次電池とは異なり、高温での特性劣化が小さい電池であることから、冷却装置が不要となり、電池パックの体積当たりのエネルギー密度の向上に対しても有利な二次電池である。全固体電池は、体積エネルギー密度の高い二次電池として有利な点から、電気自動車向け等、さらなる大型化が期待されている。
 全固体電池は、正極と負極との間に、電解液を用いた二次電池とは異なり、電解液を充填したセパレータではなく、固体電解質層が介在する。例えば、リチウムイオン全固体電池の場合、充電時には、リチウムイオンが正極から固体電解質層を通り、負極まで達する。一方、放電時には、リチウムイオンが負極から固体電解質層を通り、正極まで達する。
 このように、正極-負極間を伝導するイオン(以下、キャリアイオン)種として、全固体電池の場合、リチウムイオンはもちろん、資源の安定供給問題回避の観点等からナトリウムイオンといった様々なイオン種が検討されている。
 つまり、全固体電池の正極と負極との間に介在する固体電解質層には、キャリアイオンが正極-負極間をイオン伝導する機能と、正極活物質と負極活物質との短絡を防止する機能とが求められる。加えて、体積エネルギー密度に優れ、かつ内部抵抗を低くするために、固体電解質層の厚さは薄いことが求められる。
 固体電解質層を形成する方法としては、固体電解質とバインダーとを混合し、加熱下で圧延してシート状に形成する方法や、固体電解質スラリーを電極上に塗工、乾燥する方法等が採用されている。
 しかしながら、電気自動車向け等、大型の電池に使用する全固体電池用固体電解質層を形成する場合、例えば、加熱下で圧延してシート状に形成する方法で得られる固体電解質層は、取り扱い時に割れやクラックが生じてしまう。
 また、固体電解質を含むスラリーを電極上に塗工、乾燥する方法を用いると、乾燥時に固体電解質層にひずみが生じ、クラックが生じてしまう。そのため、安定して薄く、均一な固体電解質層を形成することが困難である。安定して薄く、均一な固体電解質層を形成できなければ、イオン伝導の悪化や、更には短絡が生じてしまう。
 一方、短絡を防止するために、固体電解質層の厚さを厚くすることもできるが、厚さが厚い場合、電池の大きさが大きくなり、体積エネルギー密度の低下や、極間距離が長くなり、内部抵抗が高くなってしまう。
 以上の問題を解決するために、薄膜状シート(以下、支持体)に固体電解質を含ませ、固体電解質と支持体とが一体化した固体電解質層を全固体電池に用いることが知られている。そして、全固体電池用支持体、リチウム二次電池セパレータ用不織布基材に関する、種々の構成が提案されている(例えば、特許文献1~特許文献6を参照。)。
特開2017-103146号公報 特開2016-31789号公報 特開2020-77488号公報 特開2020-24860号公報 特開2020-161243号公報 特開2018-88375号公報
 特許文献1には、支持体となるフィルムをエッチング処理することによって形成した、複数の貫通孔を有する固体電解質シートに関する技術が開示されている。固体電解質を、エッチング処理によって形成された貫通孔に充填することで、エネルギー密度、出力特性に優れた全固体電池を提供できると開示されている。
 しかしながら、特許文献1の固体電解質シートを作製する場合、固体電解質を貫通孔に充填するため、固体電解質は、形成された貫通孔の内部にのみ充填される。そのため、貫通孔以外は絶縁物であるフィルム部が残存しているため、正極もしくは負極と、フィルム部とによる、キャリアイオンを通さない界面が生じてしまう。
 つまり、固体電解質シートと、正極もしくは負極との界面抵抗は高くなりやすく、この支持体を用いた全固体電池であっても、更なる全固体電池の低抵抗化が求められていた。
 特許文献2には、固体電解質を不織布の表面および内部に含む固体電解質シートであって、使用する不織布の平方メートルあたりの重量が8g以下、厚さが10~25μmである不織布に関する技術が開示されている。
 特許文献2に記載の不織布を支持体として形成した固体電解質層は、自立性を有しながら、正極-負極間のイオン伝導に必要な固体電解質を保持でき、インピーダンスの上昇を抑えた電池を作製することができる。
 特許文献3には、空隙率が60%以上95%以下、かつ厚みが5μm以上20μm未満であって、耐熱性を有する支持体に固体電解質を充填した固体電解質シートに関する技術が開示されている。この固体電解質シートは、厚さが薄いながらも自立性を有し、耐熱性にも優れるため、高温でのプレスを実施しても短絡を防止できると開示されている。加えて、この固体電解質シートは、高温プレスによって固体電解質を焼結することができ、その結果、界面抵抗が下がり、電池の出力を向上させることができると開示されている。
 しかしながら、特許文献2や特許文献3に記載の支持体は、十分な空隙を有した支持体であるものの、支持体形成材料が細い繊維を含む場合、緻密な構造の支持体になってしまう。その結果、支持体内部に固体電解質スラリーを浸透させることができず、支持体内部への固体電解質の充填が不十分となり、内部抵抗が高い電池となってしまっていた。
 また、特許文献2や特許文献3に記載の支持体は、支持体構成材料である繊維の本数が少ない場合、支持体構成材料と固体電解質との接触面積が小さくなってしまう。その結果、固体電解質スラリーを支持体に浸透させた際、固体電解質スラリーが支持体内部に留まることができず、支持体を用いる効果が十分発揮できなかったりしてしまい、クラックの発生につながっていた。その結果、抵抗が高い固体電解質層になってしまっていた。
 特許文献4には、フィブリル化耐熱性繊維を2質量%以上40質量%以下含み、合成樹脂繊維を含有してなる、固体電解質担持用不織布に関する技術が開示されている。この固体電解質担持用不織布は、厚さが薄く、引張強度が強く、固体電解質を含む塗工液を塗工する際のプロセス走行性に優れると開示されている。
 しかしながら、特許文献4の固体電解質担持用不織布も、特許文献2や特許文献3と同様に、支持体構成材料と固体電解質との接触面積が小さい影響で、固体電解質スラリーを均一に保持できない場合や、固体電解質担持用不織布内部の繊維表面に接触している固体電解質が少ない場合があり、固体電解質層内部にクラックが発生していた。
 一方、固体電解質スラリーを均一に保持できるようにするために、支持体と固体電解質との接触面積を大きく、つまり、固体電解質担持用不織布に、フィブリル化耐熱性繊維を多く配合したり、叩解処理を十分に行った繊維を配合したりすることもできるが、固体電解質スラリーの固体電解質担持用不織布内部への浸透性が悪化してしまう。その結果、固体電解質の充填が不十分な固体電解質層になり、抵抗が高くなってしまう。
 つまり、クラック発生の抑制と、支持体内部への固体電解質スラリーの浸透性とを両立することは困難であった。
 特許文献5には、バインダー繊維として、未延伸ポリエステル繊維と湿熱接着性繊維とを含有することを特徴とする、リチウム二次電池セパレータ用不織布基材に関する技術が開示されている。
 未延伸ポリエステル繊維は、カレンダー等の熱圧処理により、軟化又は溶融し、その他繊維と強固に接着する。湿熱接着性繊維は、湿潤状態において、流動又は容易に変形して、接着機能を発現する、と開示されている。不織布基材に、これらバインダーを含有することで、引張強度が高く、生産性の高いリチウム二次電池セパレータ用不織布基材を提供できると開示されている。
 しかしながら、特許文献5の不織布基材に含まれる湿熱接着性繊維は、上述の通り、接着機能発現に際し、流動又は変形を経るため、この不織布基材の中の湿熱接着性繊維は繊維状態を保持できておらず、支持体内部の空隙を埋めてしまう場合があった。更に、繊維形状を保持できないバインダー繊維を多く含むと、密度が高くなってしまう。その結果、固体電解質スラリーの不織布基材内部への浸透が不十分となり、固体電解質を不織布基材内部に均一に充填することが困難なため、内部抵抗が高い電池となってしまっていた。
 その他、関連する技術として、電解液を均一に保持でき、電解液の保持性に優れるアルカリ電池用セパレータに関する技術が開示されている。
 特許文献6には、セパレータの比表面積が0.80m/g以上であることを特徴とするアルカリ電池用セパレータに関する技術が開示されており、比表面積は、広ければ広いほど電解液の保持性に優れると記載されている。そのため、特許文献6に記載のアルカリ電池用セパレータは、電解液と接触できる面積が広いため、電解液の保持性に優れていると開示されている。
 しかしながら、セパレータの比表面積は、広ければ広いほど、セパレータを構成する繊維と浸透させる物質との接触頻度が高くなるため、浸透させる物質のセパレータ内部へ浸透が困難になってしまう。例えば、特許文献6のセパレータを全固体電池用支持体として用いると、固体電解質スラリーのセパレータへの浸透性が悪く、つまり、セパレータ内部に固体電解質が入り込まないため、セパレータが保持できる固体電解質が少なくなり、内部抵抗の高い電池となってしまう。
 加えて、特許文献6のセパレータを実用化に耐えうる程度の全固体電池用支持体のように薄く、低坪量にすると、機械的強度が弱くなってしまい、固体電解質スラリーを均一に塗工することができなくなってしまう。
 本発明は上記課題に鑑みてなされたものであり、必要量の固体電解質を充填できる空隙を有した支持体を使用することで、支持体内部に固体電解質を必要量充填させた固体電解質層を形成し、抵抗の低い固体電解質層を得ることを目的とする。更に、支持体構成繊維と固体電解質との接触面積を制御することで、固体電解質層内部に生じるクラックを抑制し、固体電解質層の低抵抗化に寄与することを目的とする。加えて、紙もしくは不織布を支持体として用いることで、支持体の表面および内部に、固体電解質を充填することができ、良好なキャリアイオンのパスラインを形成することで、抵抗の低い固体電解質層を得ること、かつ正極もしくは負極と固体電解質層との界面抵抗の低減に寄与することを目的とする。
 また、この支持体を用いることで、内部抵抗の低い二次電池を提供することを目的とする。
 本発明に係る支持体は、上記課題を解決することを目的としてなされたものであり、例えば、以下の構成を備える。
 即ち、二次電池の固体電解質層に含まれる支持体であって、支持体の空隙率が60~90%、体積あたりの比表面積が0.1~1.0m/cmの範囲の紙もしくは不織布であることを特徴とする。
 また、本発明の二次電池は、上記本発明の支持体を有した固体電解質層を備えていることを特徴とする。
 上述の本発明によれば、支持体の空隙率を60~90%の範囲にすることで、支持体中に必要量の固体電解質を充填できる空隙を有した支持体にでき、抵抗の低い固体電解質層を得ることができる。
 また、支持体の体積あたりの比表面積を0.1~1.0m/cmの範囲にすることで、支持体構成材料と固体電解質との接触面積を十分に確保し、かつ、支持体内部に固体電解質を均一に保持させることができ、クラックの発生を抑制できる。その結果、抵抗の低い固体電解質層を得ることができる。
 加えて、紙もしくは不織布からなる支持体とすることで、様々な空隙、貫通孔を有した構造の支持体を得ることができる。その結果、この支持体を用いた固体電解質層は、厚さ方向および面方向に連続したキャリアイオンのパスラインを形成でき、抵抗の低い固体電解質層を得ることができ、かつ正極もしくは負極と固体電解質層との界面抵抗低減に寄与する固体電解質層を得ることができる。
 以下、本発明を実施するための形態について、詳細に説明する。
 本発明では、二次電池において、正極-負極間に介在する固体電解質層を形成するために用いられる、支持体を構成する。
 本発明の支持体は、二次電池の固体電解質層に含まれる支持体であって、支持体の空隙率が60~90%、体積あたりの比表面積が0.1~1.0m/cmの範囲である、紙もしくは不織布である。
 正極-負極間に介在する固体電解質層は、充放電時にキャリアイオンが正極-負極間を伝導することが要求される。この為には、正極-固体電解質層間、固体電解質層内部、固体電解質層-負極間に、キャリアイオンのパスラインが形成されている必要がある。つまり、正極-固体電解質層間、固体電解質層-負極間の界面抵抗の低減および、固体電解質層内部の抵抗を低減できれば、全固体電池の内部抵抗を低くできる。
 支持体を用いた固体電解質層の抵抗を低くするために、固体電解質層を構成する支持体には、固体電解質を十分充填できるだけの空隙が必要である。
 本発明の支持体は、空隙率が60~90%の範囲であることが好ましい。より好ましくは、65~85%の範囲である。
 支持体の空隙率が60%未満の場合、固体電解質スラリーを支持体に浸透させると、固体電解質スラリーが支持体内部で目詰まりしてしまい、支持体の厚さ方向に均一に充填できなくなる。その結果、固体電解質層の抵抗が高くなってしまう。
 一方、空隙率が90%超の場合、空隙が多く、支持体構成材料が少ないため、固体電解質が支持体に留まることができず、厚さ方向だけでなく面方向に対しても固体電解質が不均一に充填されてしまう。更に、支持体による固体電解質層の補強効果が得られなくなってしまい、クラックの発生につながってしまう。
 従来の支持体では、固体電解質層の抵抗の更なる低減を阻害していた一要因として、支持体構成材料と固体電解質との接触面積が小さいため、支持体による固体電解質層の補強効果が十分に得られず、固体電解質層内部にクラックが発生しているためであることを見出した。支持体構成材料と固体電解質との接触面積が小さいと、固体電解質スラリーを支持体に浸透させた際、支持体内部に均一に固体電解質スラリーを保持できず、固体電解質層内部にクラックが発生してしまっていた。
 固体電解質層内部にクラックが生じると、固体電解質層内部のキャリアイオンのパスラインが切断され、抵抗が高くなってしまう。この固体電解質層内部のクラックは、支持体を用いていない場合と同様に、固体電解質スラリーを乾燥する際に、固体電解質層内部にひずみが生じ、クラックが発生していた。
 一方、このクラックを抑制するために、支持体構成材料と固体電解質との接触面積を大きくすることもできるが、支持体内部に目詰まりが生じ、支持体表面から支持体内部への固体電解質スラリーの浸透が阻害されてしまい、抵抗の高い固体電解質層となってしまう。
 支持体構成材料と固体電解質との接触面積、つまり、支持体内部の比表面積を最適化することで、固体電解質層内部のクラックの発生を抑制でき、固体電解質スラリーの支持体への浸透性を良好にできることを見出した。その結果、固体電解質層の抵抗の低減が可能となった。
 本発明の実施の形態では、支持体内部の比表面積を測る指標として、透過法による体積あたりの比表面積を採用した。透過法による比表面積は、支持体の厚さ方向に空気を流した際の流量と圧力損失から求められる。つまり、支持体内部の空気が流れることができる部分の表面積を測定できる。
 透過法による体積あたりの比表面積が大きければ、固体電解質スラリーを浸透させることができる支持体内部の表面積が大きい、つまり、支持体構成材料と固体電解質との接触面積が大きいことを示す。
 本発明の支持体は、体積あたりの比表面積を0.1~1.0m/cmの範囲に制御したものである。更に、固体電解質層内部のクラックの発生、および固体電解質の支持体内部への厚さ方向に対する不均一な充填、による抵抗の上昇を抑制する観点から、体積あたりの比表面積は0.15~0.9m/cmの範囲であればより好ましい。
 上記範囲の体積あたりの比表面積を有する支持体は、支持体によって、固体電解質を支持、補強できるため、固体電解質スラリーを乾燥させる際のひずみに耐えることができる。加えて、固体電解質スラリーを均一に保持できるようになる。その結果、固体電解質層内部のクラックの発生を抑制することができる。以上の効果により、形成された固体電解質層内部のキャリアイオンのパスラインを維持でき、抵抗の上昇を抑制できる。つまり、この支持体を用いることで、全固体電池の内部抵抗を低くすることができる。
 支持体の体積あたりの比表面積が0.1m/cm未満であると、支持体構成材料と固体電解質との接触面積が小さいため、支持体を用いる効果が低減したり、支持体内部に固体電解質スラリーを均一に保持できなくなったりして、固体電解質スラリーの乾燥時にクラックが発生してしまう。それにより、形成されていたキャリアイオンのパスラインが切断されてしまう。
 一方、支持体の体積あたりの比表面積が1.0m/cm超の場合、支持体構成材料と固体電解質との接触面積が大きい、つまり、物質を厚さ方向へ浸透させる際の抵抗が高いため、支持体内部で固体電解質スラリーが目詰まりしてしまう。その結果、支持体内部に充填させることのできる固体電解質の量が少なくなってしまい、固体電解質層の抵抗が高くなってしまう。
 本発明の支持体は、紙もしくは不織布で構成する。それは、以下の理由による。
 紙は、植物繊維、その他の繊維を膠着させて製造したものを指す。また、不織布は、織機を使わずに、天然、再生、合成繊維など各種の繊維ウェブを機械的、化学的、熱的、またはそれらの組合せによって処理し、接着剤又は繊維自体の融着力によって構成繊維を互いに接合して作ったシート状材料を指す。
 つまり、紙もしくは不織布は、繊維がランダムに配置された構成であるので、その内部に、様々な大きさの空隙や、様々な大きさの貫通孔を無数有している。そのため、塗工された固体電解質スラリーは、厚さ方向だけでなく、面方向に対しても広がることができる。つまり、塗工された固体電解質は、支持体表面に留まるもの、支持体内部に留まるもの、表面側から貫通孔を通り抜け、裏面側まで達するものが存在する。
 そのため、紙もしくは不織布を支持体として作製された固体電解質層は、固体電解質が支持体の表面はもちろん、支持体内部にも充填されており、良好なキャリアイオンのパスラインを形成できる。その結果、固体電解質層の抵抗の低減とともに、固体電解質層と、正極もしくは負極との界面抵抗を低くできる。結果として、全固体電池の内部抵抗の低減につなげることができる。
 また、本発明の支持体の厚さは、5~40μmの範囲が好ましい。より好ましくは、8~35μmの範囲である。
 厚さが5μm未満の場合、固体電解質層の厚さが薄くなってしまうため、正極-負極間の短絡を防止することが困難となったり、支持体に固体電解質層の形成に必要な量の固体電解質を充填できなくなったりしてしまう。また、短絡防止を目的に極間距離を広げるため、支持体表面に厚く固体電解質層を形成することもできるが、固体電解質のみの層が生じる。つまり、支持体のない部分は、乾燥時に生じる固体電解質層のひずみを抑制できなかったりして、クラックの発生につながる場合がある。
 一方、厚さが40μm超の場合、固体電解質層の厚さが厚くなってしまい、全固体電池の小型化に寄与しない。
 支持体の坪量は、1.0~15.0g/mの範囲であることが好ましい。より好ましくは、2.0~13.0g/mの範囲である。
 坪量が1.0g/m未満の場合、支持体を構成する繊維本数が少なくなり、支持体中の空隙が多くなる。そのため、固体電解質が支持体に留まらず、固体電解質を均一に支持、補強することが困難となり、支持体による固体電解質層の補強効果が得られなくなってしまう。
 一方、坪量が15.0g/m超の場合、支持体を構成する繊維本数が多くなり、固体電解質スラリーの支持体内部への浸透性が悪化し、固体電解質を支持体内部に十分充填できない場合がある。そのため、固体電解質層の抵抗が高くなってしまう。
 本発明に係る支持体において、支持体の引張強さは、1.0N/15mm以上であることが好ましい。引張強さが1.0N/15mm未満の場合、固体電解質の充填時に破断しやすくなる。
 支持体の形態維持、および引張強さの観点から、支持体には接着力を有する繊維を含有することが望ましい。接着力を有する繊維として、繊維表面にフィブリルを有した繊維(以下、フィブリル化繊維)、合成樹脂バインダー等が挙げられる。
 例えば、フィブリル化セルロース繊維の接着力は、セルロース繊維同士の交絡による物理結合と、セルロースが有する水酸基の水素結合による化学結合とがある。
 また、フィブリル化ポリアミド繊維、アクリル繊維の接着力は、繊維同士の交絡による物理結合がある。
 いずれの繊維による結合も、支持体の形態維持や、引張強さの発現に寄与するので好ましい。
 合成樹脂バインダー繊維には、支持体を形成した状態で、繊維状態を保持しているものと、繊維状態を保持できず、例えば膜状になったものとが挙げられる。支持体を形成した状態で、繊維状態を保持している合成樹脂バインダー繊維は、浸透性を阻害しにくく、かつ支持体の引張強さを向上できる点で好ましいバインダー繊維である。
 支持体を形成した状態で、繊維形状を保持している合成樹脂バインダー繊維は、繊維交絡点を熱接着することによって、接着力を発現する。そのため、支持体の構成材料として繊維状態を保持した合成樹脂バインダー繊維は、固体電解質層を形成する際の破断を低減でき、かつ繊維接点のみを接着するため、固体電解質スラリーの支持体内部への浸透を阻害しにくい。
 一方、支持体を形成した状態で繊維状態を保持できない合成樹脂バインダー繊維は、支持体製造工程で、繊維が熱で膜状に変化し、繊維を構成する樹脂の融点、または軟化点近傍の熱が加えられることで樹脂が溶融し、繊維の交絡点で融着する。つまり、支持体を形成した状態において、繊維状態ではないバインダーを用いた場合、バインダー機能発現にあたり、バインダー成分が支持体の繊維間隙にフィルム層を多数形成する等、空隙を埋めてしまう。その結果、固体電解質の支持体内部への浸透を阻害してしまう場合があり、使用する場合には、配合量に注意が必要である。
 接着力を有する繊維として用いることができる材料は、固体電解質スラリーをはじかないものであって、物理的、化学的に固体電解質に悪影響を与えず、絶縁性を備えた繊維であれば、特に限定はなく、例えば、叩解したセルロース繊維、叩解したポリアミド繊維、叩解したアクリル繊維等のフィブリル化繊維、ポリアミドバインダー繊維、ポリエステルバインダー繊維、ポリエチレンバインダー繊維、ポリプロピレン-ポリエチレン芯鞘型バインダー繊維等が挙げられる。また、これら繊維から選択される、一種以上の繊維を使用することができる。
 その他構成材料として用いることのできる材料は、固体電解質スラリーをはじかず、物理的、化学的に固体電解質に悪影響を与えず、絶縁性を備えた繊維であれば、特に限定はなく、例えば、セルロース繊維、ポリアミド繊維、ポリエステル繊維、ポリプロピレン繊維、アクリル繊維といった有機繊維や、ガラス繊維、アルミナ繊維といった無機繊維等が挙げられる。また、これら繊維から選択される、一種以上の繊維を使用することができる。これらの繊維を用いることで、固体電解質の充填性に優れた支持体を得ることができる。
 体積あたりの比表面積を0.1~1.0m/cmの範囲にする方法として、例えば、フィブリル化繊維の場合、CSF値が1~500mlに制御した繊維を用いることが挙げられる。また、繊維表面にフィブリルを有していない繊維の場合、平均繊維径が1~15μmの繊維を用いることが挙げられる。しかし、体積当たりの比表面積を0.1~1.0m/cmの範囲にすることができれば、この限りではない。
 支持体の製造方法には特に限定はなく、乾式法、湿式法で製造可能であるが、好ましくは、水中に分散させた繊維をワイヤー上に堆積させ、脱水、乾燥して抄き上げる抄紙法が、支持体の地合等の均質性の観点から好ましい。
 本発明を実施するための形態では、支持体の製造方法として、抄紙法を用いて形成した、紙もしくは湿式不織布を採用した。支持体の抄紙形式は、空隙率、体積あたりの比表面積、厚さ、坪量を満足することができれば、特に限定はなく、長網抄紙や短網抄紙、円網抄紙といった抄紙形式が採用でき、またこれらの抄紙法によって形成された層を複数合わせたものであってもよい。また、抄紙に際しては、分散剤や消泡剤、紙力増強剤等の添加剤を加えてもよく、紙層形成後に紙力増強加工、親液加工、カレンダー加工、熱カレンダー加工、エンボス加工等の後加工を施してもよい。
(支持体および全固体電池の作製方法および特性の測定方法)
 本実施の形態の支持体および全固体電池の作製方法および特性の測定方法は、以下の条件および方法で行った。
〔CSF値〕
 「JIS P8121-2『パルプ-ろ水度試験法-第2部:カナダ標準ろ水度法』(ISO5267-2『Pulps-Determination of drainability-Part2:“Canadian Standard”freeness method』)」に従って、CSF値を測定した。
〔平均繊維径〕
 走査型電子顕微鏡を用いて、無作為に100本の繊維の繊維幅を測長し、その平均値を、平均繊維径(μm)とした。
〔厚さ〕
 支持体1枚の厚さを、ダイヤルシックネスゲージGタイプ(測定反力2N、測定子:φ10mm)を用いて均等な間隔で測定し、さらに測定箇所の平均値を、支持体の厚さ(μm)とした。
〔坪量〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 6 坪量」に規定された方法で、絶乾状態の支持体の坪量を測定した。
〔密度〕
 以下の式を用いて、支持体の密度を計算した。
  密度(g/cm)=W/T
W:坪量(g/m)、T:厚さ(μm)
〔空隙率〕    
 以下の式を用いて、支持体の空隙率を計算した。なお、支持体を構成する材料を複数混用している場合には、混用率に比例した計算を行って構成繊維の平均比重を求めてから、算出した。
  空隙率(%)=(1-(D/S))×100
D:支持体密度(g/cm)、S:構成繊維の比重(g/cm
〔体積あたりの比表面積〕
 PMI社製Parm-Porometerのガス透過法により、質量あたりの比表面積(m/g)を測定した。得られた質量あたりの比表面積(m/g)と、測定した支持体の密度(g/cm)との積から、体積当たりの比表面積(m/cm)を算出した。
〔引張強さ〕
 「JIS P 8113 『紙及び板紙-引張特性の試験方法-第2部:定速伸張法』」(ISO1924-2『Paper and board-Determination
 of tensile properties-Part2:Constant rate of elongati on method』)に規定された方法で、試験幅15mmで、支持体の縦方向(製造方向)の最大引張荷重を測定し、支持体の引張強さとした。
〔全固体電池の作製工程〕
 以下に示す各実施例、各比較例、各従来例、参考例の支持体を用いて、全固体電池を作製した。
 具体的な作製方法は、以下の通りである。
(正極構造体)
 正極活物質としてLiNiCoAlO三元系粉末を、硫化物系固体電解質としてLiS-P非晶質粉末を、導電助剤として炭素繊維を、それぞれ用いて混合した。この混合粉末に、結着剤としてSBR(スチレンブタジエンゴム)を溶解させた脱水キシレン溶液を混合し、正極塗工液を作製した。正極集電体であるアルミ箔集電体に、正極塗工液を塗工、乾燥し、更に圧延することで、正極構造体を得た。
(負極構造体)
 負極活物質として黒鉛を、硫化物系固体電解質としてLiS-P非晶質粉末を、結着剤としてPVdF(ポリフッ化ビニリデン)を、溶媒としてNMP(N-メチル-2-ピロリドン)を、それぞれ用いて混合し、負極塗工液を作製した。負極集電体である銅箔集電体に、負極塗工液を塗工、乾燥し、更に圧延することで、負極構造体を得た。
(固体電解質層)
 硫化物系固体電解質としてLiS-P非晶質粉末を、結着剤としてSBRを、溶媒としてキシレンを、それぞれ用いて混合し、固体電解質スラリーを作製した。
 以下に示す、各実施例、各比較例、各従来例、参考例の支持体に、固体電解質スラリーを塗工して、乾燥し、固体電解質層を得た。
〔固体電解質層の自立性の評価〕
 作製したそれぞれの固体電解質層について、自立性の評価を行った。
 作製した大きさ92mm×62mmの固体電解質層を、水平に持ち上げことができるか評価した。固体電解質層を、形状を保持したまま水平に持ち上げることができた場合を〇として、水平に持ち上げた際に状態が保持されていなかった場合を×とした。
〔全固体電池の製造〕
 大きさ88mm×58mmの負極構造体、大きさ92mm×62mmの固体電解質層、大きさ87mm×57mmの正極構造体を積層し、ドライラミネート加工を行い、貼り合わせることにより、全固体電池の単セルを得た。
 得られた単セルを、端子を取り付けたアルミニウムラミネートフィルムに入れ、脱気、ヒートシールを行いパックした。
〔全固体電池の評価方法〕
 作製した全固体電池の具体的な性能評価は、以下の条件および方法で行った。
〔抵抗〕
 全固体電池に対して、25℃の環境下で0.1Cの電流密度で4.0Vまで充電を行い、LCRメーターを用いて、周波数0.1Hz~1MHzの範囲のインピーダンスを測定した。得られたコールコールプロットの円弧部分を、x軸を底辺とした半円の形にフィッティングし、半円の右端とx軸とが交わる部分の数値を抵抗値とした。
〔放電容量〕
 全固体電池に対して、25℃の環境下で0.1Cの電流密度で4.0Vまで充電を行い、その後0.1Cの電流密度で2.5Vまで放電し、その時の放電容量を測定した。
 以下、本発明の実施の形態に係る支持体の具体的な実施例等について説明する。
〔実施例1〕
 CSF値10mlのポリアミド繊維を用いて、長網抄紙し、厚さ35μm、坪量15.0g/m、密度0.43g/cmの支持体を得た。実施例1の支持体の特性を、表2にまとめた。
〔実施例2〕
 CSF値20mlのセルロース繊維を用いて、短網抄紙した。得られた紙にカレンダー加工を行い、厚さ5μm、坪量2.6g/m、密度0.52g/cmの支持体を得た。実施例2の支持体の特性を、表2にまとめた。
〔実施例3〕
 平均繊維径3μmのポリエステル繊維80質量%と、平均繊維径4μmのポリエステルバインダー繊維20質量%とを混合した原料を用いて、円網抄紙し、厚さ9μm、坪量2.0g/m、密度0.22g/cmの支持体を得た。実施例3の支持体の特性を、表2にまとめた。
〔実施例4〕
 CSF値100mlのポリアミド繊維50質量%と、CSF値10mlのセルロース繊維50質量%とを混合した原料を用いて、長網抄紙し、厚さ35μm、坪量13.0g/m、密度0.37g/cmの支持体を得た。実施例4の支持体の特性を、表2にまとめた。
〔実施例5〕
 平均繊維径3μmのポリエステル繊維20質量%と、平均繊維径4μmのポリエステルバインダー繊維80質量%とを混合した原料を用いて、短網抄紙し、厚さ8μm、坪量1.1g/m、密度0.14g/cmの支持体を得た。実施例5の支持体の特性を、表2にまとめた。
〔実施例6〕
 CSF値500mlのセルロース繊維30質量%と、平均繊維径10μmのポリアミドバインダー繊維70質量%とを混合した原料を用いて、円網抄紙し、厚さ40μm、坪量12.0g/m、密度0.30g/cmの支持体を得た。実施例6の支持体の特性を、表2にまとめた。
〔実施例7〕
 CSF値100mlのアクリル繊維50質量%と、平均繊維径10μmのアクリル繊維50質量%とを混合した原料を用いて、短網抄紙し、厚さ30μm、坪量5.5g/m、密度0.18g/cmの支持体を得た。実施例7の支持体の特性を、表2にまとめた。
〔実施例8〕
 平均繊維径1μmのポリプロピレン繊維30質量%と、平均繊維径15μmのポリプロピレン-ポリエチレン芯鞘型繊維70質量%とを混合した原料を用いて、短網抄紙し、厚さ20μm、坪量7.5g/m、密度0.38g/cmの支持体を得た。実施例8の支持体の特性を、表2にまとめた。
〔実施例9〕
 CSF値1mlのセルロース繊維80質量%と、平均繊維径4μmのポリエステルバインダー繊維20質量%とを混合した原料を用いて、長網抄紙し、厚さ30μm、坪量10.0g/m、密度0.33g/cmの支持体を得た。実施例9の支持体の特性を、表2にまとめた。
〔比較例1〕
 CSF値20mlのセルロース繊維を用いて、短網抄紙した。得られた紙にカレンダー加工を行い、厚さ4μm、坪量2.0g/m、密度0.50g/cmの支持体を得た。比較例1の支持体の特性を、表2にまとめた。
〔比較例2〕
 平均繊維径3μmのポリエステル繊維20質量%と、平均繊維径4μmのポリエステルバインダー繊維80質量%とを混合した原料を用いて、短網抄紙し、厚さ5μm、坪量0.7g/m、密度0.14g/cmの支持体を得た。比較例2の支持体の特性を、表2にまとめた。
〔比較例3〕
 CSF値100mlのポリアミド繊維を用いて、長網抄紙し、厚さ40μm、坪量16.0g/m、密度0.40g/cmの支持体を得た。比較例3の支持体の特性を、表2にまとめた。
〔比較例4〕
 平均CSF値300mlのアクリル繊維50質量%と、平均繊維径10μmのアクリル繊維50質量%とを混合した原料を用いて、短網抄紙し、厚さ30μm、坪量3.0g/m、密度0.10g/cmの支持体を得た。比較例4の支持体の特性を、表2にまとめた。
〔比較例5〕
 平均繊維径1μmのポリプロピレン繊維30質量%と、平均繊維径10μmのポリプロピレン-ポリエチレン芯鞘型繊維70質量%とを混合した原料を用いて、短網抄紙し、厚さ20μm、坪量8.5g/m、密度0.43g/cmの支持体を得た。比較例5の支持体の特性を、表2にまとめた。
〔比較例6〕
 CSF値0mlのセルロース繊維85質量%と、平均繊維径4μmのポリエステルバインダー繊維15質量%とを混合した原料を用いて、長網抄紙し、厚さ30μm、坪量12.0g/m、密度0.40g/cmの支持体を得た。比較例6の支持体の特性を、表2にまとめた。
〔比較例7〕
 CSF値500mlのセルロース繊維15質量%と、平均繊維径16μmのポリアミドバインダー繊維85質量%とを混合した原料を用いて、円網抄紙し、厚さ40μm、坪量8.0g/m、密度0.20g/cmの支持体を得た。比較例7の支持体の特性を、表2にまとめた。
〔従来例1〕
 特許文献1の実施例2に記載の方法と同様の方法で製造した支持体を作製し、従来例1の支持体を得た。従来例1では、ポリイミドフィルムをエッチング処理して、200μm角の穴を形成して、厚さ30μm、坪量8.8g/m、密度0.29g/cmの支持体を得た。従来例1の支持体の特性を、表2にまとめた。
〔従来例2〕
 平均繊維径10μmのポリエステル繊維85質量%と、平均繊維径10μmのポリエステルバインダー繊維15質量%とを混合した原料を用いて、特許文献2の実施例1に記載の支持体の製造方法を参考に、円網抄紙し、厚さ10μm、坪量3.0g/m、密度0.30g/cmの支持体を得た。従来例2の支持体の特性を、表2にまとめた。
〔参考例〕
 CSF値100mlのアクリル繊維40質量%と、平均繊維径10μmのアクリル繊維40質量%と、平均繊維径10μmのポリビニルアルコール繊維20質量%とを混合した原料を用いて、短網抄紙し、厚さ15μm、坪量3.0g/m、密度0.20g/cmの支持体を得た。参考例の支持体の特性を、表2にまとめた。
 以上に記載した実施例1~実施例9、比較例1~比較例7、従来例1~従来例2、参考例の各支持体の配合繊維名と配合率について、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表2は、以上に説明した各実施例、各比較例、各従来例、参考例の各支持体の特性、固体電解質層の自立性、電池特性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 以下、各実施例、各比較例、各従来例、参考例の支持体を用いた、全固体電池の評価結果を詳細に説明する。
 各実施例の支持体を用いた固体電解質層は、自立性を有した固体電解質層を形成できた。
 各実施例の支持体を用いた全固体電池は、抵抗は低く、放電容量は高く、電池として機能することがわかる。
 比較例1の支持体は、各実施例の支持体と比較して厚さが薄い。比較例1の支持体は、厚さが4μmと薄いため、正極、負極間の短絡を防止できなかったと考えられる。なお、短絡が生じたため、比較例1の支持体を用いた全固体電池の各種電池評価を行うことはできなかった。つまり、各実施例と比較例1との比較から、支持体の厚さは5μm以上が好ましいと分かる。
 比較例2の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が高く、放電容量が低い。また、比較例2の支持体は、各実施例の支持体と比較して、坪量が低い。
 比較例2の支持体は、坪量が0.7g/mと低いため、支持体を構成する繊維本数が少ない影響で、固体電解質が均一に支持体に留まることができず、均一な固体電解質層を得ることができなかったためと考えられる。
 つまり、各実施例と比較例2との比較から、支持体の坪量は1.0g/m以上が好ましいと分かる。
 比較例3の支持体は、各実施例の支持体と比較して、坪量が高い。比較例3の支持体は、坪量が16.0g/mと高いため、支持体を構成する繊維本数が多い影響で、固体電解質スラリーを支持体内部に浸透させることができず、支持体表面に留まっていた。その結果、固体電解質スラリーは支持体表面上に留まった状態で乾燥され、支持体表面上に固体電解質層が形成されていた。そして、支持体表面上に形成された固体電解質層は支持体がない状態で乾燥されたことから、固体電解質層が支持体によって補強されていないため、クラックが生じ、固体電解質層を持ち上げた際に、割れが生じてしまい、自立性が無かった。
 比較例3の支持体を用いた固体電解質層は、クラックが生じたものの、正極、負極と重ね合わせることで全固体電池を作製することができた。
 比較例3の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が非常に高く、電池の放電ができなかった。これは、坪量が16.0g/mと高く、固体電解質を固体電解質層内部に充填できていなかったことが原因と考えられる。
 各実施例と比較例3との比較から、支持体の坪量は15.0g/m以下が好ましいと分かる。
 比較例4の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が高く、放電容量が低い。また、比較例4の支持体は、各実施例の支持体と比較して、空隙率が高い。
 比較例4の支持体は、空隙率が93%と高いため、支持体構成材料が少ない影響で、固体電解質が支持体に均一に留まることができず、均一な固体電解質層を得ることができなかったためと考えられる。
 つまり、各実施例と比較例4との比較から、支持体の空隙率は90%以下が好ましいと分かる。
 比較例5の支持体は、各実施例と比較して、空隙率が低い。比較例5の支持体は、空隙率が55%と低いため、固体電解質スラリーを比較例5の支持体に塗工した際に、固体電解質スラリーが支持体内部で目詰まりしてしまい、支持体表面に留まっていた。そのため、比較例3と同様に、固体電解質層が支持体によって補強されなかったため、クラックが生じた。その結果、固体電解質層を持ち上げた際に、割れが生じてしまい、自立性が無かった。
 比較例5の支持体を用いた固体電解質層は、クラックが生じたものの、正極、負極と重ね合わせることで全固体電池を作製することができた。
 比較例5の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が非常に高く、電池の放電ができなかった。これは、空隙率が55%と低く、固体電解質を固体電解質層内部に充填できていなかったことが原因と考えられる。
 各実施例と比較例5との比較から、支持体の空隙率は60%以上が好ましいと分かる。
 比較例6の支持体は、各実施例と比較して、体積当たりの比表面積が大きい。比較例6の支持体は、体積当たりの比表面積が1.2m/cmと大きいため、固体電解質スラリーの支持体の厚さ方向への浸透性が悪く、固体電解質スラリーが支持体内部で目詰まりしてしまった。その結果、比較例3および比較例5と同様に、支持体表面上に固体電解質層が形成され、固体電解質層が支持体によって補強されなかったため、クラックが生じた。その結果、固体電解質層を持ち上げた際に、割れが生じてしまい、自立性が無かった。
 比較例6の支持体を用いた固体電解質層は、クラックが生じたものの、正極、負極と重ね合わせることで全固体電池を作製することができた。
 比較例6の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が非常に高く、電池の放電ができなかった。これは、体積当たりの比表面積が1.2m/cmと大きく、固体電解質を固体電解質層内部に充填できていなかったことが原因と考えられる。
 各実施例と比較例6との比較から、支持体の体積当たりの比表面積は1.0m/cm以下が好ましいと分かる。
 比較例7の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が高く、放電容量が低い。また、比較例7の支持体は、各実施例の支持体と比較して、体積当たりの比表面積が小さい。
 比較例7の支持体は、体積当たりの比表面積が0.04m/cmと小さいため、支持体構成材料と固体電解質との接触面積が小さく、支持体を用いる効果が低減してしまい、均一な固体電解質層を得ることができていなかったと考えられる。各実施例と比較例7との比較から、支持体の体積当たりの比表面積は0.1m/cm以上が好ましいと分かる。
 従来例1の支持体は、各実施例の紙もしくは不織布である支持体と異なり、フィルムに貫通孔を形成した支持体である。従来例1の支持体の貫通孔には固体電解質を充填できるが、形成された貫通孔の内部にしか固体電解質を充填できない。また、従来例1の支持体からなる固体電解質層は、正極もしくは負極と固体電解質層との界面において、絶縁物であるフィルムと、正極もしくは負極との界面が存在していると考えられる。加えて、従来例1の支持体は、体積当たりの比表面積が0.02m/cmと小さい。これらの影響で、従来例1の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗が高く、放電容量が低かったと考えられる。
 各実施例と従来例1との比較から、全固体電池の抵抗を低減するためには、支持体として、紙もしくは不織布が適していることが分かる。
 従来例2の支持体は、比表面積が0.06m/cmと小さかったため、固体電解質スラリーを支持体に塗布した際、固体電解質を均一に保持できなかった。このため、従来例2の支持体を使用した全固体電池は、抵抗が高く、放電容量が小さくなった。
 参考例の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、抵抗は高く、放電容量は低い。
 参考例の支持体は、アクリル繊維に加えて、ポリビニルアルコール繊維を20質量%配合した支持体である。ポリビニルアルコール繊維は、引張強さを向上させるには効果的な繊維である。ポリビニルアルコール繊維は、湿熱による形状変化によって、繊維接点を補強し、支持体の引張強さを向上させることができる。しかしながら、ポリビニルアルコール繊維は、支持体を形成した状態において、繊維状態ではなく、支持体内部にフィルム層を形成してしまい、繊維間隙を埋めてしまっている。加えて、ポリビニルアルコール繊維を20質量%配合している影響で、多くの繊維間隙が埋められてしまっているため、固体電解質スラリーの支持体内部への浸透を阻害してしまっていると考えられる。
 つまり、実施例7と参考例との比較から、繊維状態を保持できない合成樹脂バインダー繊維の配合量は20質量%未満が好ましいと分かる。
 上述した実施の形態例は、あくまで一例であって、例えば、キャリアイオン、固体電解質、正極、負極の組成等は、当業者が適宜変更することができる。
 以上説明したように、支持体の空隙率を60~90%、体積当たりの比表面積を0.1~1.0m/cmとした、紙もしくは不織布とすることで、支持体中に必要量の固体電解質を充填できる空隙を有した支持体にでき、更に、支持体内部への固体電解質の良好な浸透性と、固体電解質の均一な保持性を両立させることで、クラック発生を抑制でき、加えて、厚さ方向および面方向に連続したキャリアイオンのパスラインの形成に寄与し、正極もしくは負極と、固体電解質層との界面抵抗低減に寄与できる、支持体を得ることができる。この支持体を使用することで、抵抗の低い全固体電池を得ることができる。

Claims (3)

  1.  二次電池の固体電解質層に含まれる支持体であって、
     空隙率が60~90%、
     体積あたりの比表面積が0.1~1.0m/cmの範囲の、
     紙もしくは不織布である
     ことを特徴とする二次電池用支持体。
  2.  前記支持体は、厚さが5~40μm、
     坪量が1.0~15.0g/mの範囲である
     ことを特徴とする請求項1に記載の二次電池用支持体。
  3.  請求項1または請求項2に記載の二次電池用支持体を有した固体電解質層を備えた
     二次電池。
PCT/JP2023/010066 2022-03-28 2023-03-15 二次電池用支持体、および二次電池 WO2023189598A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051605A JP2023144564A (ja) 2022-03-28 2022-03-28 二次電池用支持体、および二次電池
JP2022-051605 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189598A1 true WO2023189598A1 (ja) 2023-10-05

Family

ID=88201560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010066 WO2023189598A1 (ja) 2022-03-28 2023-03-15 二次電池用支持体、および二次電池

Country Status (2)

Country Link
JP (1) JP2023144564A (ja)
WO (1) WO2023189598A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151149A (ja) * 2000-11-13 2002-05-24 Japan Vilene Co Ltd 固体電解質用支持体
JP2016031789A (ja) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
JP2020077488A (ja) * 2018-11-06 2020-05-21 本田技研工業株式会社 固体電解質シート、および固体電池
WO2021229981A1 (ja) * 2020-05-11 2021-11-18 日本板硝子株式会社 不織布及び固体電解質担持シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151149A (ja) * 2000-11-13 2002-05-24 Japan Vilene Co Ltd 固体電解質用支持体
JP2016031789A (ja) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
JP2020077488A (ja) * 2018-11-06 2020-05-21 本田技研工業株式会社 固体電解質シート、および固体電池
WO2021229981A1 (ja) * 2020-05-11 2021-11-18 日本板硝子株式会社 不織布及び固体電解質担持シート

Also Published As

Publication number Publication date
JP2023144564A (ja) 2023-10-11

Similar Documents

Publication Publication Date Title
US9614249B2 (en) Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2013168755A1 (ja) 電気化学素子用セパレータ及びその製造方法
JP5225173B2 (ja) リチウムイオン二次電池用セパレータ
WO2013151134A1 (ja) セパレータ
WO2014208596A1 (ja) 電気化学素子用セパレータ及びリチウムイオン二次電池
JP2006351386A (ja) 電池及びその製造方法
US10230086B2 (en) Separator
CN106716680A (zh) 电化学元件用隔离物及使用其而成的电化学元件
JP2002266281A (ja) 湿式不織布およびそれを用いてなる電気化学素子用セパレーター、ならびに電気二重層キャパシター用セパレーター
US20150093625A1 (en) Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
Yu et al. Advances in Nonwoven-Based Separators for Lithium-Ion Batteries
CN112042006B (zh) 电化学元件用隔膜
WO2023189598A1 (ja) 二次電池用支持体、および二次電池
Wang et al. A polyimide/cellulose lithium battery separator paper
WO2022172850A1 (ja) 支持体及びリチウムイオン二次電池
JP2001126697A (ja) 非水電解液電池用セパレーターおよび非水電解液電池
KR20240048510A (ko) 고체전해질을 사용한 리튬이온 2차전지용 지지체, 및 이것을 사용한 리튬이온 2차전지
JP2001283821A (ja) 非水電解液電池用セパレーターおよびそれを用いてなる非水電解液電池
JP5840990B2 (ja) 電気化学素子用セパレータ及び電気化学素子
JP2024030996A (ja) 電気化学素子用セパレータ
WO2022220186A1 (ja) 固体電解質用支持体及びそれを含む固体電解質シート
JP2016100181A (ja) 電気化学素子用セパレータ及びリチウムイオン二次電池
JPH1186829A (ja) 鉛蓄電池用セパレータおよびその製造方法
JP2019207775A (ja) リチウムイオン電池セパレータ及びリチウムイオン電池
CN117117092A (zh) 电极片、电极片的制造方法、二次电池和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779616

Country of ref document: EP

Kind code of ref document: A1