WO2022172850A1 - 支持体及びリチウムイオン二次電池 - Google Patents

支持体及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022172850A1
WO2022172850A1 PCT/JP2022/004199 JP2022004199W WO2022172850A1 WO 2022172850 A1 WO2022172850 A1 WO 2022172850A1 JP 2022004199 W JP2022004199 W JP 2022004199W WO 2022172850 A1 WO2022172850 A1 WO 2022172850A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
solid electrolyte
electrolyte layer
solid
fibers
Prior art date
Application number
PCT/JP2022/004199
Other languages
English (en)
French (fr)
Inventor
健太 森本
健太郎 小川
正寛 黒岩
Original Assignee
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッポン高度紙工業株式会社 filed Critical ニッポン高度紙工業株式会社
Priority to US18/271,508 priority Critical patent/US20240063507A1/en
Priority to CN202280013155.1A priority patent/CN116806383A/zh
Priority to JP2022580593A priority patent/JPWO2022172850A1/ja
Priority to KR1020237022969A priority patent/KR20230144526A/ko
Priority to EP22752677.9A priority patent/EP4293775A1/en
Publication of WO2022172850A1 publication Critical patent/WO2022172850A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a support contained in a solid electrolyte layer interposed between a positive electrode and a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery including a solid electrolyte layer having this support.
  • a lithium-ion secondary battery using a liquid electrolyte (hereinafter referred to as "electrolytic solution”) is used.
  • electrolytic solution a lithium-ion secondary battery using a liquid electrolyte
  • a lithium-ion secondary battery using an electrolytic solution has a structure in which a separator is interposed between a positive electrode and a negative electrode and filled with an electrolytic solution.
  • Organic electrolyte solutions are mainly used as electrolyte solutions used in lithium-ion secondary batteries using electrolyte solutions. Since the organic electrolytic solution is a liquid, there is a possibility of liquid leakage, and since it is flammable, there is a possibility of ignition. Under such circumstances, in order to further improve the safety of lithium-ion secondary batteries, lithium-ion secondary batteries using a solid electrolyte (hereinafter referred to as all-solid-state battery) instead of electrolytic solution have been developed. All-solid-state batteries are of course attracting attention as lithium-ion secondary batteries with excellent safety because the electrolyte is solid, so there is no liquid leakage, and they are flame-retardant and heat-resistant compared to electrolyte solutions. ing.
  • all-solid-state batteries are of course attracting attention as lithium-ion secondary batteries with excellent safety because the electrolyte is solid, so there is no liquid leakage, and they are flame-retardant and heat-resistant compared to electrolyte solutions. ing
  • all-solid-state batteries do not require a cooling device because their characteristics deteriorate less at high temperatures. is also an advantageous secondary battery.
  • all-solid-state batteries are expected to be used as large-sized secondary batteries such as batteries for electric vehicles, because they are advantageous as secondary batteries with high energy density. In other words, there is a strong demand for larger size all-solid-state batteries.
  • the solid electrolyte layer interposed between the positive electrode and the negative electrode of an all-solid-state battery is required to have the function of conducting lithium ions between the positive electrode and the negative electrode, and the function of preventing short circuits between the positive electrode active material and the negative electrode active material.
  • the thickness of the solid electrolyte layer is required to be thin in order to obtain a battery with excellent energy density and low internal resistance.
  • a method of forming a solid electrolyte layer a method of mixing a solid electrolyte and a binder and rolling under heating to form a sheet, a method of coating a solid electrolyte slurry on an electrode, and drying, etc. are adopted. .
  • the solid electrolyte layer may be distorted and cracked during drying when the size of the all-solid-state battery is increased. . Therefore, it is difficult to stably form a thin and uniform solid electrolyte layer. If a thin and uniform solid electrolyte layer cannot be stably formed, ionic conduction deteriorates and a short circuit occurs.
  • Patent Literature 1 proposes a solid electrolyte sheet including a nonwoven fabric support made of electronically insulating inorganic fibers and having a porosity of 80 to 99%. Since this solid electrolyte sheet has a support, it is excellent in self-sustainability and can be expanded in area.
  • This support is said to contain 40% by weight or less of a binder for binding fibers together in the nonwoven fabric in order to form a self-supporting sheet. Since the binder is contained in an amount of 40% by weight or less, a strong support can be obtained, which is excellent in battery manufacturing process suitability. However, since the support contains 40% by weight or less of the binder, the binder tends to form a web-like layered substance inside the support.
  • the all-solid-state battery using the support of Patent Document 1 may become a battery with high resistance, and further reduction in resistance is desired.
  • the thickness of the support may be large, and after forming the solid electrolyte layer, the solid electrolyte layer may become thick. As a result, the battery may have a high internal resistance.
  • Patent Document 2 proposes a solid electrolyte sheet containing a solid electrolyte on the surface and inside of the nonwoven fabric, the nonwoven fabric having a weight per square meter of 8 g or less and a thickness of 10 to 25 ⁇ m.
  • the solid electrolyte layer formed by using the nonwoven fabric described in Patent Document 2 as a support can hold the solid electrolyte necessary for ionic conduction between the positive electrode and the negative electrode while maintaining self-supporting properties, thereby producing a battery that suppresses an increase in impedance. can do.
  • Patent Document 3 proposes a solid electrolyte sheet having a porosity of 60% or more and 95% or less and a thickness of 5 ⁇ m or more and less than 20 ⁇ m, in which a heat-resistant support is filled with a solid electrolyte. It is described that this solid electrolyte sheet is thin but has self-supporting properties and is excellent in heat resistance, so that it can prevent a short circuit even if it is pressed at a high temperature. In addition, since this solid electrolyte sheet can be pressed at a high temperature, it contributes to the reduction of the interfacial resistance between the solid electrolytes, and the output of the battery can be increased.
  • the filling of the solid electrolyte was sometimes insufficient.
  • the battery has a high internal resistance, and further reduction in resistance has been desired.
  • the strength of the support may be weak. If the strength is weak, the support may break during the solid electrolyte sheet formation process. was sought.
  • Patent Document 4 proposes a nonwoven fabric base material for a lithium secondary battery separator, characterized by containing unstretched polyester fibers and wet heat adhesive fibers as binder fibers. Undrawn polyester fibers are softened or melted by heat and pressure treatment such as calendering, and are strongly bonded to other fibers. Also, it is described that the wet heat adhesive fiber flows or easily deforms in a wet state to exhibit an adhesive function. It is described that by including these binders in the nonwoven fabric substrate, it is possible to provide a nonwoven fabric substrate for a lithium secondary battery separator having high tensile strength and high separator productivity.
  • the wet heat adhesive fibers contained in the nonwoven fabric substrate undergo flow or deformation when the adhesive function is exhibited, so the wet heat adhesive fibers in the nonwoven fabric substrate cannot maintain their fibrous state.
  • the interstices between the fibers are blocked.
  • the nonwoven substrate of US Pat As a result, the penetration of the solid electrolyte into the inside of the support becomes insufficient, and it is difficult to uniformly fill the inside of the support with the solid electrolyte, which may result in a battery with high internal resistance. There has been a demand for lower resistance of
  • Patent Document 5 proposes a solid electrolyte sheet having a plurality of through holes formed by etching a film that serves as a support. It is described that filling the through-holes formed by etching with a solid electrolyte can provide an all-solid-state battery with excellent energy density and output characteristics.
  • the solid electrolyte sheet of Patent Document 5 is produced, the through-holes are filled with the solid electrolyte, so the solid electrolyte is filled only inside the formed through-holes. Therefore, at the interface between the solid electrolyte sheet and the positive or negative electrode, an interface between the support, which is an insulating material, and the positive or negative electrode occurs. In other words, the resistance at the interface between the solid electrolyte sheet and the positive electrode or negative electrode tends to increase, and even an all-solid-state battery using this support has been required to further reduce the resistance of the all-solid-state battery.
  • the present invention has been made in view of the above problems, and the support has sufficient physical strength and the permeability of the solid electrolyte to the inside of the support is improved, so that the solid electrolyte layer contains lithium.
  • An object of the present invention is to sufficiently form ion path lines and obtain a solid electrolyte layer with low internal resistance.
  • Another object of the present invention is to provide a lithium ion secondary battery with low internal resistance by using this support.
  • a support according to the present invention has been made for the purpose of solving the above problems, and has, for example, the following configuration. That is, the support included in the solid electrolyte layer of the lithium ion secondary battery, and the air permeability of the support is 1 to 50 L/cm 2 /min. , a thickness of 5 to 30 ⁇ m, and a density of 0.15 to 0.45 g/cm 3 . Moreover, the lithium ion secondary battery of the present invention is characterized by comprising a solid electrolyte layer having the support of the above invention.
  • the internal resistance of the solid electrolyte layer is reduced by having the physical strength to withstand the force during formation of the solid electrolyte layer and by improving the permeability of the solid electrolyte into the inside of the support. It is possible to obtain a support that can contribute to Moreover, the use of the support of the present invention in a lithium ion secondary battery can contribute to the reduction of the internal resistance of the battery.
  • a support in a lithium-ion secondary battery configured as an all-solid-state battery, a support is configured which is used to form a solid electrolyte layer existing between a positive electrode and a negative electrode.
  • the support of the present invention is a support contained in a solid electrolyte layer of a lithium ion secondary battery, and has an air permeability of 1 to 50 L/cm 2 /min. , a thickness of 5 to 30 ⁇ m and a density of 0.15 to 0.45 g/cm 3 .
  • the solid electrolyte layer that exists between the positive and negative electrodes is required to conduct lithium ions between the positive and negative electrodes during charging and discharging. In other words, it is necessary to form a pass line by the solid electrolyte so that lithium ions can be conducted not only between the solid electrolyte layer and the positive electrode or negative electrode but also inside the support. In other words, a solid electrolyte layer with low internal resistance can be formed if the solid electrolyte is sufficiently adhered to the surface of the support, and if many path lines of lithium ions can be formed by the solid electrolyte inside the support.
  • the inventors of the present invention have found that it is important to form a solid electrolyte layer having a continuous connection inside the support in order to form a lithium ion pass-line between the positive electrode and the negative electrode. We have found that it is important to sufficiently fill the interior of the support with the electrolyte, as well as to adhere the electrolyte sufficiently to the surface of the support. Further, by increasing the permeability of the solid electrolyte of the support, the fillability of the solid electrolyte can be improved, and a solid electrolyte layer with low internal resistance can be formed.
  • air permeability is used as an index for measuring the permeability of the solid electrolyte into the inside of the support.
  • the air permeability indicates the amount of air flowing per unit area and unit time under a constant differential pressure, and the higher the air permeability, the more air is flowing. That is, the higher the permeability of the support, the higher the gas permeability of the support. It is considered that if the air permeability of the support is high, the permeability of the solid electrolyte into the inside of the support is also high. In other words, it is considered that a support with high air permeability can be filled with a sufficient amount of solid electrolyte inside the support.
  • the support of the present invention has an air permeability of 1 to 50 L/cm 2 /min. is in the range of A support having air permeability in the above range is excellent in fillability with a solid electrolyte.
  • a support having air permeability within the above range has an appropriate overlap of fibers laminated in the thickness direction, and when the support is filled with a solid electrolyte, the impediment to penetration into the interior is small. Therefore, not only can the solid electrolyte adhere sufficiently to the surface of the support, but the inside of the support can be filled with the solid electrolyte. As a result, an all-solid-state battery using this support can have a low internal resistance.
  • Air permeability is 1 L/cm 2 /min. If it is less than that, it may not be possible to uniformly fill the solid electrolyte. It is considered that it is based on the following reasons.
  • the air permeability is 1 L/cm 2 /min. If it is less than that, the number of fibers constituting the support will be large and the support will be dense, impeding permeation of the solid electrolyte into the support. As a result, the solid electrolyte remains on the surface of the support, making it difficult to uniformly fill the inside of the support with the solid electrolyte.
  • air permeability is 50 L/cm 2 /min.
  • the effect of using the support cannot be obtained.
  • Air permeability is 50 L/cm 2 /min.
  • the solid electrolyte does not stay on the support when filled with the solid electrolyte, making it difficult to hold and reinforce the solid electrolyte. For this reason, it is conceivable that the solid electrolyte layer cannot be formed, or the distortion of the solid electrolyte layer that occurs during drying cannot be suppressed, leading to the generation of cracks. That is, it is not preferable because a thin and uniform solid electrolyte layer cannot be obtained.
  • the air permeability of the support is 2 to 40 L/cm 2 /min. is more preferable.
  • the thickness of the support is preferably in the range of 5-30 ⁇ m. If the thickness is less than 5 ⁇ m, the thickness of the solid electrolyte layer becomes thin, making it difficult to prevent a short circuit between the positive electrode and the negative electrode. Further, in order to increase the distance between the electrodes for the purpose of preventing short circuits, a thick solid electrolyte layer can be formed on the support surface, but a solid electrolyte layer portion where the support does not exist is generated. In other words, it is conceivable that the solid electrolyte layer portion having no support may not be able to suppress the distortion of the solid electrolyte layer that occurs during drying, leading to the generation of cracks. On the other hand, if the thickness exceeds 30 ⁇ m, the thickness of the solid electrolyte layer becomes too thick, making it difficult to suppress the internal resistance of the all-solid-state battery.
  • the density of the support is preferably in the range of 0.15-0.45 g/cm 3 . If the density is less than 0.15 g/cm 3 , the number of fibers constituting the support is reduced and the voids in the support are increased. Therefore, the solid electrolyte does not stay on the support, and it becomes difficult to uniformly hold and reinforce the solid electrolyte. On the other hand, if the density is more than 0.45 g/cm 3 , the permeability of the solid electrolyte into the inside of the support deteriorates, and the inside of the support may not be sufficiently filled with the solid electrolyte. Therefore, it becomes difficult to suppress the internal resistance of the all-solid-state battery.
  • the density of the support is more preferably in the range of 0.18 to 0.42 g/cm 3 .
  • the support of the present invention is composed of a nonwoven fabric.
  • the reason is as follows. Since the nonwoven fabric has a structure in which fibers are randomly arranged, a support made of the nonwoven fabric has voids of various sizes and through-holes of various sizes inside. Therefore, the solid electrolyte may remain on the surface of the support, may permeate into the support and fill the internal voids and remain, or may permeate from the surface side to be filled to the back side through the through holes. There are things, and they are in close contact with each other. In other words, a support made of nonwoven fabric allows a solid electrolyte to adhere to the surface of the support and fills the inside of the support with the solid electrolyte.
  • the solid electrolyte in the solid electrolyte layer prepared using a nonwoven fabric as a support, the solid electrolyte can be sufficiently present inside and on the surface of the solid electrolyte layer, and the internal resistance of the solid electrolyte layer can be reduced. interface resistance can be reduced. As a result, it is thought that the internal resistance of the all-solid-state battery can be reduced.
  • the support of the present invention preferably contains binder fibers.
  • the binder fibers used in the support of the present invention refer to fibers that constitute the support in a fibrous state and point-bond the fibers together. From the viewpoint of heat resistance and tensile strength, the support of the present invention preferably contains 20 to 80% by mass of binder fibers.
  • the binder fiber has a role as a constituent fiber of the support and a role as a binder.
  • the binder component forms a large number of film layers inside the support and closes inter-fiber gaps when the binder function is exhibited. As a result, the permeation of the solid electrolyte into the inside of the support may be inhibited.
  • the binder fiber content is less than 20% by mass, the desired tensile strength cannot be obtained because the number of bonding points between fibers is too small. As a result, tearing may occur during the manufacturing process, leading to a decrease in manufacturing yield. If the binder fiber content exceeds 80% by mass, the heat resistance may deteriorate, and a uniform solid electrolyte layer may not be formed in the manufacturing process, which is not preferable. In addition, the support may become too dense, and it may be difficult to uniformly fill the inside of the support with the solid electrolyte.
  • the amount of binder fibers contained in the support is 25 to 75% by mass. preferable.
  • the material that can be used as the binder fiber is not particularly limited as long as it does not repel the solid electrolyte slurry, does not adversely affect the solid electrolyte, and has insulating properties.
  • polyester binder fiber examples include polyamide binder fibers.
  • the support according to the present invention preferably has a tensile strength of 1.0 N/15 mm or more. If the tensile strength is less than 1.0 N/15 mm, breakage is likely to occur during filling of the solid electrolyte.
  • Materials that can be used as other constituent fibers are not particularly limited as long as they do not repel the solid electrolyte slurry, do not adversely affect the solid electrolyte, and have insulating properties.
  • polyester fiber polyamide fibers and cellulose fibers, and inorganic fibers such as glass fibers and alumina fibers.
  • one or more types of fibers selected from these fibers can be used. By using these fibers, it is possible to obtain a support excellent in solid electrolyte filling properties and heat resistance. Beatable fibers, such as polyamide fibers and cellulose fibers, may be beaten to improve the fracture resistance of the support.
  • binder fibers and other constituent fibers with an average fiber diameter of 1 to 15 ⁇ m. If fibers having a fiber diameter of less than 1 ⁇ m are contained, the formed support becomes dense, making it difficult to fill the inside of the support with the solid electrolyte. On the other hand, if the fiber diameter is more than 15 ⁇ m, it becomes difficult to form a support with a uniform thickness, the formed solid electrolyte layer becomes uneven, and the resistance between the positive electrode and the negative electrode may increase. .
  • the method for manufacturing the support is not particularly limited, and it can be manufactured by a dry method or a wet method.
  • a wet method is used in which fibers dispersed in water are deposited on a wire, dehydrated, and dried to form a paper. , from the viewpoint of homogeneity of the formation of the support.
  • a wet-laid nonwoven fabric formed using a papermaking method was used as the support.
  • the paper-making form of the support is not particularly limited as long as it satisfies the air permeability, thickness and density. A combination of a plurality of formed layers may also be used. Additives such as dispersants, antifoaming agents, and paper strength enhancers may be added during papermaking. may be subjected to post-processing.
  • Method for producing support and all-solid-state battery and method for measuring characteristics The method for producing the support and the all-solid-state battery of the present embodiment and the method for measuring characteristics were performed under the following conditions and methods.
  • ⁇ thickness ⁇ The thickness of one support is measured at even intervals using a dial thickness gauge G type (measurement reaction force 2 N, probe: ⁇ 10 mm), and the average value of the measured points is the thickness of the support ( ⁇ m ).
  • Basis weight The basis weight of the absolute dry support was measured by the method specified in "JIS C 2300-2 'Cellulose paper for electrical use-Part 2: Test method' 6 Basis weight".
  • Density (g/cm 3 ) W/T W: basis weight (g/m 2 ), T: thickness ( ⁇ m)
  • LiNiCoAlO 2 ternary powder as a positive electrode active material, Li 2 SP 2 S 5 amorphous powder as a sulfide solid electrolyte, and carbon fiber as a conductive aid were mixed.
  • This mixed powder was mixed with a dehydrated xylene solution in which SBR (styrene-butadiene rubber) was dissolved as a binder to prepare a positive electrode coating liquid.
  • a positive electrode structure was obtained by applying a positive electrode coating liquid to an aluminum foil current collector, which is a positive electrode current collector, drying, and further rolling.
  • a negative electrode structure Graphite as a negative electrode active material, Li 2 SP 2 S 5 amorphous powder as a sulfide-based solid electrolyte, PVdF as a binder, and NMP as a solvent were mixed together to form a negative electrode coating solution. made.
  • a negative electrode structure was obtained by applying a negative electrode coating liquid to a copper foil current collector, which is a negative electrode current collector, drying, and further rolling.
  • Solid electrolyte layer Li 2 SP 2 S 5 amorphous powder as a sulfide-based solid electrolyte, SBR as a binder, and xylene as a solvent were mixed together to prepare a solid electrolyte layer coating solution.
  • a solid electrolyte layer coating liquid was applied to the supports of Examples, Comparative Examples, and Conventional Examples shown below and dried to obtain solid electrolyte layers.
  • a negative electrode structure with a size of 88 mm ⁇ 58 mm, a solid electrolyte layer with a size of 92 mm ⁇ 62 mm, and a positive electrode structure with a size of 87 mm ⁇ 57 mm are laminated, dry laminated, and laminated to form a single cell of an all-solid-state battery. got The obtained single cell was placed in an aluminum laminate film to which a terminal was attached, degassed, heat-sealed, and packed.
  • the all-solid-state battery was charged to 4.0 V at a current density of 0.1 C in an environment of 25 ° C., then discharged to 2.5 V at a current density of 0.1 C, and the discharge capacity at that time was measured. .
  • Example 1 A raw material obtained by mixing 50% by mass of polyester binder fiber and 50% by mass of polyester fiber was used to make cylinder paper, and a support of Example 1 was obtained.
  • the support of Example 1 had a thickness of 15 ⁇ m, a basis weight of 2.6 g/m 2 , a density of 0.17 g/cm 3 , a porosity of 87.4%, and an air permeability of 48.7 L/cm 2 /min. , and a tensile strength of 1.1 N/15 mm.
  • Example 2 A raw material obtained by mixing 50% by mass of polyester binder fiber and 50% by mass of polyester fiber was used to make short mesh paper. The resulting nonwoven fabric was subjected to hot calendering to obtain the support of Example 2.
  • the support of Example 2 had a thickness of 20 ⁇ m, a basis weight of 8.0 g/m 2 , a density of 0.40 g/cm 3 , a porosity of 71.0%, and an air permeability of 1.2 L/cm 2 /min. , and a tensile strength of 8.9 N/15 mm.
  • Example 3 A raw material obtained by mixing 20% by mass of polyamide binder fiber and 80% by mass of cellulose fiber was used to make short mesh paper to obtain a support of Example 3.
  • the support of Example 3 had a thickness of 29 ⁇ m, a basis weight of 11.9 g/m 2 , a density of 0.41 g/cm 3 , a porosity of 71.3%, and an air permeability of 2.9 L/cm 2 /min. , the tensile strength was 7.3 N/15 mm.
  • Example 4 A raw material obtained by mixing 80% by mass of polyester binder fiber and 20% by mass of cellulose fiber was used to make cylinder paper, and a support of Example 4 was obtained.
  • the support of Example 4 had a thickness of 5 ⁇ m, a basis weight of 2.2 g/m 2 , a density of 0.43 g/cm 3 , a porosity of 68.7%, and an air permeability of 25.1 L/cm 2 /min. , and a tensile strength of 4.3 N/15 mm.
  • Example 5 A raw material obtained by mixing 25% by mass of polyester binder fiber and 75% by mass of polyester fiber was used to make cylinder paper, and a support of Example 5 was obtained.
  • the support of Example 5 had a thickness of 15 ⁇ m, a basis weight of 5.3 g/m 2 , a density of 0.35 g/cm 3 , a porosity of 74.6%, and an air permeability of 32.2 L/cm 2 /min. , and a tensile strength of 2.5 N/15 mm.
  • Example 6 A raw material obtained by mixing 75% by mass of polyamide binder fiber and 25% by mass of polyamide fiber was used to make a short mesh paper, and a support of Example 6 was obtained.
  • the support of Example 6 had a thickness of 25 ⁇ m, a basis weight of 4.8 g/m 2 , a density of 0.19 g/cm 3 , a porosity of 83.2%, and an air permeability of 38.9 L/cm 2 /min. , and a tensile strength of 6.1 N/15 mm.
  • Comparative Example 1 A raw material obtained by mixing 50% by mass of polyester binder fiber and 50% by mass of polyester fiber was used to make cylinder paper, and a support of Comparative Example 1 was obtained.
  • the support of Comparative Example 1 had a thickness of 30 ⁇ m, a basis weight of 3.5 g/m 2 , a density of 0.12 g/cm 3 , a porosity of 91.5%, and an air permeability of 52.1 L/cm 2 /min. , and a tensile strength of 1.0 N/15 mm.
  • Comparative Example 2 A raw material obtained by mixing 85% by mass of polyamide binder fiber and 15% by mass of polyamide fiber was used to make cylinder paper, and a support of Comparative Example 2 was obtained.
  • the support of Comparative Example 2 had a thickness of 5 ⁇ m, a basis weight of 2.3 g/m 2 , a density of 0.45 g/cm 3 , a porosity of 62.5%, and an air permeability of 20.6 L/cm 2 /min. , and a tensile strength of 5.6 N/15 mm.
  • Comparative Example 3 A raw material obtained by mixing 70% by mass of polyamide binder fiber and 30% by mass of polyamide fiber was used to make cylinder paper, and a support of Comparative Example 3 was obtained.
  • the support of Comparative Example 3 had a thickness of 4 ⁇ m, a basis weight of 1.8 g/m 2 , a density of 0.45 g/cm 3 , a porosity of 63.4%, and an air permeability of 27.1 L/cm 2 /min. , and a tensile strength of 4.1 N/15 mm.
  • Comparative Example 4 A raw material in which 50% by mass of polyamide binder fiber and 50% by mass of cellulose fiber were mixed was used to make short mesh paper, and a support of Comparative Example 4 was obtained.
  • the support of Comparative Example 4 had a thickness of 43 ⁇ m, a basis weight of 8.6 g/m 2 , a density of 0.20 g/cm 3 , a porosity of 84.8%, and an air permeability of 10.6 L/cm 2 /min. , and a tensile strength of 7.8 N/15 mm.
  • a support was produced by the same method as described in Example 1 of Patent Document 4, and a support of Conventional Example 2 was obtained.
  • Conventional Example 2 10% by mass of polyester binder fiber, 10% by mass of ethylene vinyl alcohol fiber, and 80% by mass of polyester fiber are mixed.
  • the support of Conventional Example 2 has a thickness of 12 ⁇ m, a basis weight of 7.0 g/m 2 , a density of 0.58 g/cm 3 , a porosity of 57.7%, and an air permeability of 0.7 L/cm 2 /min. , the tensile strength was 11.2 N/15 mm.
  • a support was produced by the same method as described in Example 1 of Patent Document 5, and a support of Conventional Example 3 was obtained.
  • a polyimide film is etched to form a hole of 800 ⁇ m square to produce a support.
  • the support of Conventional Example 3 has a thickness of 30 ⁇ m, a basis weight of 5.2 g/m 2 , a density of 0.17 g/cm 3 , a porosity of 88.0%, and an air permeability of 28.8 L/cm 2 /min. , and a tensile strength of 4.0 N/15 mm.
  • Reference example A raw material in which 30% by mass of polyester binder fiber, 50% by mass of polyester fiber and 20% by mass of polyvinyl alcohol fiber were mixed was used to make short mesh paper to obtain a support of Reference Example.
  • the support of Reference Example had a thickness of 20 ⁇ m, a basis weight of 8.0 g/m 2 , a density of 0.40 g/cm 3 , a porosity of 70.8%, and an air permeability of 0.8 L/cm 2 /min. , and a tensile strength of 9.7 N/15 mm.
  • Table 2 shows the characteristics of each support, the independence of the solid electrolyte layer, and the battery characteristics of Examples 1 to 6, Comparative Examples 1 to 4, Conventional Examples 1 to 3, and Reference Example described above. Evaluation results are shown.
  • the support of Example 1 has lower air permeability and higher density than the support of Comparative Example 1.
  • the support of Comparative Example 1 could not form a uniform solid electrolyte layer. This is because the air permeability of the support of Comparative Example 1 is 52.1 L/cm 2 /min. , and the density is as low as 0.12 g/cm 3 .
  • the air permeability of the support of Comparative Example 1 was 50 L/cm 2 /min. Below, it is understood that a density of 0.15 g/cm 3 or more is preferable.
  • the all-solid-state battery using the support of each example has lower impedance and higher discharge capacity than the all-solid-state battery using the support of Comparative Example 2. Moreover, unlike the support of Comparative Example 2, the support of each example had self-supporting properties.
  • the support of Comparative Example 2 has a high binder fiber content of 85% by mass. Therefore, when the solid electrolyte layer coating solution was applied to the support of Comparative Example 2 and the solvent was dried, a solid electrolyte layer with cracks was obtained. This is probably because the binder fiber content was as high as 85% by mass, so that the heat resistance of the support was poor and the shape of the support was changed by heat. Therefore, when the solid electrolyte layer was lifted, it cracked and was not self-sustaining. Although cracks were generated in the solid electrolyte layer using the support of Comparative Example 2, an all-solid battery could be produced by laminating the positive electrode and the negative electrode.
  • the all-solid-state battery using the support of Comparative Example 2 had high impedance and could not be discharged. This is considered to be due to the fact that the solid electrolyte layer is non-uniform due to the occurrence of cracks, and there are few lithium ion pass lines that can conduct electricity between the positive electrode and the negative electrode. From a comparison between each example and Comparative Example 2, it can be seen that the amount of binder fibers contained in the support is preferably 80% by mass or less so that the support has heat resistance that can withstand the formation of the solid electrolyte layer.
  • the support of Comparative Example 3 is thinner than the support of each example. Therefore, a short circuit occurred in the all-solid-state battery using the support of Comparative Example 3. This is probably because the support of Comparative Example 3 had a thin thickness of 4 ⁇ m and could not prevent a short circuit between the positive electrode and the negative electrode. Since a short circuit occurred, various battery evaluations of the all-solid-state battery using the support of Comparative Example 3 could not be performed. From the comparison between each example and comparative example 3, it can be seen that the thickness of the support is preferably 5 ⁇ m or more.
  • the support of Comparative Example 4 is thicker than the support of each example.
  • the all-solid-state battery using the support of Comparative Example 4 has lower impedance, higher discharge capacity, and improved battery characteristics than the all-solid-state battery using the support of each conventional example.
  • the thickness of the support is as thick as 43 ⁇ m, the resulting battery is large. From the viewpoint of miniaturization of the obtained all-solid-state battery, the thickness of the support is considered to be preferably 30 ⁇ m or less.
  • the support of each example has a higher tensile strength than the support of Conventional Example 1.
  • the support of Conventional Example 1 was torn when the solid electrolyte layer coating solution was applied and excess coating solution was removed. This is probably because the support of Conventional Example 1 has a weak tensile strength of 0.7 N/15 mm. In Conventional Example 1, since the solid electrolyte layer could not be formed, the fabrication and evaluation of the all-solid-state battery were not performed. The reason why the tensile strength of the support of Conventional Example 1 was weak was that the binder fiber content was as low as 15% by mass, so that the number of bonding points between fibers was too small, and the desired tensile strength could not be obtained. Conceivable. From a comparison between each example and Conventional Example 1, it can be seen that a support containing 20% by mass or more of binder fibers is preferable in order to suppress breakage of the support during production of the solid electrolyte layer.
  • the all-solid-state battery using the support of each example has lower impedance and higher discharge capacity than the all-solid-state battery using the support of Conventional Example 2 and Conventional Example 3. Moreover, unlike the support of Conventional Example 2, the support of each example had self-supporting properties.
  • the support of Conventional Example 2 has an air permeability of 0.7 L/cm 2 /min. and low. Therefore, when the solid electrolyte layer coating solution was applied to the support of Conventional Example 2, the solid electrolyte layer coating solution did not permeate into the support and remained on the surface of the support. As a result, the solid electrolyte layer coating solution remained on the surface of the support and was dried, forming a solid electrolyte layer on the surface of the support. Since the solid electrolyte layer formed on the surface of the support was dried in the absence of the support, the solid electrolyte was not reinforced, resulting in cracks. Therefore, when the solid electrolyte layer was lifted, it cracked and was not self-sustaining.
  • the support of Conventional Example 2 has a tensile strength of 11.2 N/15 mm, which is equal to or higher than each example, despite the low binder fiber content of 10% by mass. is. This is probably because the density is as high as 0.58 g/cm 3 and there are many contact points between the fibers.
  • the battery using the support of Conventional Example 2 had a very high impedance and could not be discharged. It has a high density of 0.58 g/cm 3 and an air permeability of 0.7 L/cm 2 /min.
  • Example 2 In order to further strengthen the strength, it has 10% by mass of ethylene-vinyl alcohol fiber that cannot maintain the fiber state in the non-woven fabric state, so it is thought that the filling of the solid electrolyte was insufficient. be done. From the comparison between Example 2 and Conventional Example 2, it was found that the air permeability of the support was 1 L/cm in order to achieve both the physical strength to withstand the force during the production of the solid electrolyte layer and the fillability of the solid electrolyte. 2 /min. From the above, it can be seen that the density is preferably 0.45 g/cm 3 or less, and the binder fiber content is preferably 20% by mass or more.
  • the support of Conventional Example 3 is a support in which through holes are formed in a film, unlike the nonwoven fabric support of each example.
  • the through-holes of the support of Conventional Example 3 can be filled with a solid electrolyte, the solid electrolyte can be filled only inside the formed through-holes.
  • the solid electrolyte layer made of the support of Conventional Example 3 has an interface between the film, which is an insulator, and the positive electrode or negative electrode at the interface between the solid electrolyte layer and the positive electrode or negative electrode. .
  • the impedance of the all-solid-state battery of the support of Conventional Example 3 is considered to be higher than that of the support of each example. From the comparison between each example and conventional example 3, it can be seen that a nonwoven fabric is suitable as a support for reducing the impedance of an all-solid-state battery.
  • the support of Reference Example had lower air permeability than each Example.
  • the all-solid-state battery using the support of the reference example has a higher impedance and a lower discharge capacity than the all-solid-state battery using the support of each example.
  • the support of Reference Example is a support containing 20% by mass of polyvinyl alcohol fiber in addition to polyester binder fiber and polyester fiber.
  • Polyvinyl alcohol fibers are effective fibers for improving tensile strength. Polyvinyl alcohol fibers can reinforce the fiber contact points and improve the tensile strength of the support by changing shape due to wet heat.
  • the polyvinyl alcohol fibers are not in a fibrous state when forming the support, but instead form a large number of film layers inside the support, closing the interstices between the fibers.
  • the air permeability is lowered and the permeation of the coating liquid for the solid electrolyte layer into the inside of the support is inhibited.
  • the air permeability of the support is set to 1 to 50 L/cm 2 /min. , a thickness of 5 to 30 ⁇ m, and a density of 0.15 to 0.45 g/cm 3 .
  • a support can be obtained which has good permeability to the By using this support, an all-solid-state battery with low resistance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

リチウムイオン二次電池の固体電解質層に含まれる支持体において、支持体が十分な物理的強度を有し、かつ支持体内部への固体電解質の浸透性を向上させることで、固体電解質層の内部にリチウムイオンのパスラインを十分に形成させることができ、内部抵抗の低い固体電解質層を得る。リチウムイオン二次電池の固体電解質層に含まれる支持体であって、通気度が1~50L/cm2/min.、厚さが5~30μm、密度が0.15~0.45g/cm3の範囲の不織布である支持体を構成する。

Description

支持体及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池の正極、負極間に介在する固体電解質層に含まれる支持体、及びこの支持体を有した固体電解質層を備えたリチウムイオン二次電池に関するものである。
 エネルギー密度の高い二次電池として、液体の電解質(以下、電解液)を用いたリチウムイオン二次電池が用いられている。電解液を用いたリチウムイオン二次電池は、正極と負極との間にセパレータを介在させ、電解液を充填した構成を有している。
 電解液を用いたリチウムイオン二次電池に用いられる電解液は、主に有機系電解液が使用されている。有機系電解液は、液体であるため液漏れの可能性や、可燃性であるため発火の可能性等が懸念される場合がある。そういった中、よりリチウムイオン二次電池の安全性を高めるために、電解液ではなく、固体電解質を用いたリチウムイオン二次電池(以下、全固体電池)が開発されている。全固体電池は当然ながら、電解質が固体であるため、液漏れもなく、かつ電解液と比較して難燃性で耐熱性も高いことから、安全性に優れたリチウムイオン二次電池として注目されている。
 また、全固体電池は、電解液を用いるリチウムイオン二次電池と異なり、高温での特性劣化が小さい電池であることから冷却装置が不要となり、電池パックの体積当たりのエネルギー密度の向上に対しても有利な二次電池である。また、全固体電池は、エネルギー密度の高い二次電池として有利な点から、電気自動車用電池等大型の二次電池として期待が寄せられている。つまり、全固体電池には大型化の要求が根強い。
 全固体電池の正極と負極との間に介在する固体電解質層は、リチウムイオンが正極-負極間をイオン伝導する機能と、正極活物質と負極活物質との短絡を防止する機能が求められる。加えて、エネルギー密度に優れ、かつ内部抵抗の低い電池とするために、固体電解質層の厚さは薄いことが求められる。
 固体電解質層を形成する方法としては、固体電解質とバインダーとを混合し、加熱下で圧延してシート形成する方法や、固体電解質スラリーを電極上に塗工、乾燥する方法等が採用されている。
 しかしながら、例えば、固体電解質を含むスラリーを電極上に塗工、乾燥する方法を用いると、全固体電池を大型化する場合、乾燥時に固体電解質層にひずみが生じ、クラックが生じてしまう場合がある。そのため、安定して薄く、均一な固体電解質層を形成することが困難である。安定して薄く均一な固体電解質層を形成できなければ、イオン伝導の悪化に加え短絡が生じてしまう。
 一方、短絡を防止するために、固体電解質層の厚さを厚くすることもできるが、厚さが厚い場合、電池の大きさが大きくなり、エネルギー密度が低下し、また内部抵抗の増大に繋がる。
 以上の問題を解決するために、薄膜状シート(以下、支持体)に固体電解質を含ませ、固体電解質と支持体とが一体化した固体電解質層を全固体電池に用いることが知られており、全固体電池用支持体において、種々の構成が提案されている(例えば、特許文献1~特許文献5を参照。)。
特開2014-96311号公報 特開2016-31789号公報 特開2020-77488号公報 特開2020-161243号公報 特開2017-103146号公報
 特許文献1には、電子絶縁性の無機繊維からなり、空隙率が80~99%の不織布である支持体を含む、固体電解質シートが提案されている。この固体電解質シートは、支持体を有していることで自立性に優れており、大面積化が可能である。
 この支持体は、自立化したシートにするために、繊維同士を接着する結着剤を不織布中に40重量%以下含むとされている。結着剤を40重量%以下含むため、強度の強い支持体が得られ、電池製造工程適性に優れる。
 しかしながら、この支持体には結着剤が40重量%以下含まれるため、結着剤によって支持体内部に水かきのような層状物質が形成されやすい。そのため、支持体の内部に固体電解質が入り込むことが困難な場合があり、内部抵抗や界面抵抗が高い固体電解質層となる。結果として、特許文献1の支持体を用いた全固体電池は、抵抗の高い電池となってしまう場合があり、更なる低抵抗化が望まれている。
 また、支持体の厚さが厚い場合があり、固体電解質層形成後、厚さの厚い固体電解質層となってしまう場合があった。その結果、内部抵抗の高い電池となってしまう場合があった。
 特許文献2には、固体電解質を不織布の表面及び内部に含む固体電解質シートであって、使用する不織布の平方メートルあたりの重量が8g以下、厚さが10~25μmである不織布が提案されている。
 特許文献2に記載の不織布を支持体として形成した固体電解質層は、自立性を有しながら、正極-負極間のイオン伝導に必要な固体電解質を保持でき、インピーダンスの上昇を抑えた電池を作製することができる。
 特許文献3には、空隙率が60%以上95%以下、かつ厚みが5μm以上20μm未満であって、耐熱性を有する支持体に固体電解質を充填した固体電解質シートが提案されている。この固体電解質シートは、厚さが薄いながらも自立性を有し、耐熱性にも優れるため、高温でのプレスを実施しても短絡を防止できると記載されている。加えて、この固体電解質シートは、高温プレスを実施できるため、固体電解質間の界面抵抗の低下に寄与し、電池の高出力化ができる。
 しかしながら、特許文献2や特許文献3に記載の支持体を用いた固体電解質層は、固体電解質の充填が不十分な場合があった。そのため、内部抵抗が高い電池となってしまい、更なる低抵抗化が望まれていた。
 また、固体電解質シートは、自立性を有するが支持体の強度は弱い場合があり、強度が弱い場合には固体電解質シート形成工程で支持体の破断につながるため、支持体の物理的強度の向上が求められていた。
 特許文献4には、バインダー繊維として、未延伸ポリエステル繊維と湿熱接着性繊維とを含有することを特徴とする、リチウム二次電池セパレータ用不織布基材が提案されている。未延伸ポリエステル繊維は、カレンダ等の熱圧処理により、軟化又は溶融し、その他繊維と強固に接着する。また、湿熱接着性繊維は、湿潤状態において、流動又は容易に変形して、接着機能を発現する、と記載されている。不織布基材に、これらバインダーを含有することで、引張強度が高く、セパレータの生産性の高いリチウム二次電池セパレータ用不織布基材を提供できると記載されている。
 しかしながら、この不織布基材に含まれる湿熱接着性繊維は、上述の通り、接着機能発現に際し、流動又は変形を経るため、この不織布基材の中の湿熱接着性繊維は繊維状態を保持できておらず、繊維間隙を封鎖してしまう場合があった。更に、特許文献4の不織布基材は、密度が高い場合があった。その結果、固体電解質の支持体内部への浸透が不十分となり、固体電解質を支持体内部に均一に充填することが困難なため、内部抵抗が高い電池となってしまう場合があり、更なる電池の低抵抗化が求められていた。
 特許文献5には、支持体となるフィルムをエッチング処理することによって形成した、複数の貫通孔を有する固体電解質シートが提案されている。固体電解質を、エッチング処理によって形成された貫通孔に充填することで、エネルギー密度、出力特性に優れた全固体電池を提供できると記載されている。
 しかしながら、特許文献5の固体電解質シートを作製する場合、固体電解質を貫通孔に充填するため、固体電解質は、形成された貫通孔の内部にのみ充填される。そのため、固体電解質シートと、正極もしくは負極との界面において、絶縁物である支持体と、正極もしくは負極との界面が生じてしまう。つまり、固体電解質シートと、正極もしくは負極との界面の抵抗は高くなりやすく、この支持体を用いた全固体電池であっても、更なる全固体電池の低抵抗化が求められていた。
 本発明は上記課題に鑑みてなされたものであり、支持体が十分な物理的強度を有し、かつ支持体内部への固体電解質の浸透性を向上させることで、固体電解質層の内部にリチウムイオンのパスラインを十分に形成させ、内部抵抗の低い固体電解質層を得ることを目的とする。また、この支持体を用いることで、内部抵抗の低いリチウムイオン二次電池を提供することを目的とする。
 本発明に係る支持体は、上記課題を解決することを目的としてなされたものであり、例えば、以下の構成を備える。
 即ち、リチウムイオン二次電池の固体電解質層に含まれる支持体であって、支持体の通気度が1~50L/cm/min.、厚さが5~30μm、密度が0.15~0.45g/cmの範囲の不織布であることを特徴とする。
 また、本発明のリチウムイオン二次電池は、上記発明の支持体を有した固体電解質層を備えていることを特徴とする。
 本発明によれば、固体電解質層形成時の力に耐えうる物理的強度を有しており、かつ支持体内部への固体電解質の浸透性を向上させることで、固体電解質層の内部抵抗の低減に寄与できる支持体を得ることができる。
 また、本発明の支持体をリチウムイオン二次電池に用いることで、電池の内部抵抗低減に寄与することができる。
 以下、本発明を実施するための形態について、詳細に説明する。
 本発明では、全固体電池として構成された、リチウムイオン二次電池において、正極-負極間に存在する固体電解質層を形成するために用いられる、支持体を構成する。
 本発明の支持体は、リチウムイオン二次電池の固体電解質層に含まれる支持体であって、支持体の通気度が1~50L/cm/min.、厚さが5~30μm、密度が0.15~0.45g/cmの範囲の不織布である。
 正極-負極間に存在する固体電解質層は、充放電時にリチウムイオンが正極-負極間を伝導することが要求される。つまり、固体電解質層と、正極もしくは負極との間はもちろん、支持体内部にリチウムイオンが伝導できるように、固体電解質によるパスラインを形成する必要がある。つまり、支持体表面に固体電解質が十分付着していることはもちろんのこと、支持体内部に固体電解質によるリチウムイオンのパスラインを多く形成できれば内部抵抗の低い固体電解質層を形成できる。
 従来の支持体を用いた場合に、内部抵抗の更なる低下が阻害されていた要因として、下記の理由が考えられる。
 従来の支持体は、支持体内部に空隙は存在するものの、支持体表面の開口部が小さい等の場合があり、固体電解質を支持体表面から支持体の内部に十分に充填できなかったと考えられる。その結果、支持体の内部に固体電解質のつながりを形成できず、つまり正極-負極間のリチウムイオンのパスラインが十分に形成されないため、内部抵抗が高い固体電解質層になってしまっていたと考えられる。
 本発明の発明者は、正極-負極間のリチウムイオンのパスラインを形成するためには、支持体の内部に連続したつながりを有する固体電解質層を形成することが重要であること、つまり、固体電解質を、支持体の表面に十分付着させることはもちろん、支持体の内部に十分満たすことが重要であることを、見出した。そして、支持体の固体電解質の浸透性を高めることで、固体電解質の充填性を向上させ、内部抵抗の低い固体電解質層を形成できる。
 本発明の実施の形態では、支持体内部への固体電解質の浸透性を測る指標として、通気度を採用した。通気度は、一定差圧の下、単位面積、単位時間当たりに流れる空気量を示しており、通気度が高いほど、多くの空気が流れていることを表す。つまり、支持体の通気度が高ければ高いほど、支持体の気体通過性が高いことを表す。支持体の通気度が高ければ、固体電解質の支持体内部への浸透性も高いと考えられる。つまり、通気度が高い支持体は、十分な固体電解質を支持体内部に充填できると考えられる。
 本発明の支持体は、通気度が1~50L/cm/min.の範囲である。
 上記範囲の通気度を有する支持体は、固体電解質の充填性に優れる。上記範囲の通気度を有する支持体は、厚さ方向に積層した繊維の重なりが適度にあって、固体電解質を支持体に充填させた場合、内部への浸透の阻害性が小さい。そのため、固体電解質を支持体の表面に十分に付着させることはもちろん、固体電解質を支持体の内部に充填させることができる。その結果、この支持体を用いた全固体電池は、内部抵抗を低くすることができる。
 通気度が1L/cm/min.未満であると、固体電解質を均一に充填できない場合がある。それは以下の理由によると考えられる。
 固体電解質を支持体に充填する場合、通気度が1L/cm/min.未満であると、支持体を構成する繊維本数が多く、緻密になり、支持体の内部への固体電解質の浸透を阻害してしまう。その結果、支持体表面に固体電解質が留まり、固体電解質の支持体の内部への均一な充填が困難になると考えられる。
 一方、通気度が50L/cm/min.を超える場合、支持体を用いる効果が得られなくなってしまう。通気度が50L/cm/min.を超える支持体は、固体電解質を充填する際に、固体電解質が支持体に留まらず、固体電解質を保持、補強することが困難となる。そのため、固体電解質層の形成ができなかったり、乾燥時に生じる固体電解質層のひずみを抑制できなかったりして、クラックの発生につながる場合が考えられる。つまり、薄く均一な固体電解質層が得られなくなるため、好ましくない。
 固体電解質の支持体への浸透性、均一な固体電解質層形成の観点から、支持体の通気度は、2~40L/cm/min.の範囲とすると、より好ましい。
 支持体の厚さは、5~30μmの範囲が好ましい。厚さが5μm未満の場合、固体電解質層の厚さが薄い固体電解質層となってしまうため、正極-負極間の短絡を防止することが困難となる。また、短絡防止を目的に極間距離を広げるため、支持体表面に厚く固体電解質層を形成することもできるが、支持体が存在しない固体電解質層部が生じる。つまり、支持体のない固体電解質層部は、乾燥時に生じる固体電解質層のひずみを抑制できなかったりして、クラックの発生につながる場合が考えられる。一方、厚さが30μm超の場合、固体電解質層の厚さが厚くなってしまい、全固体電池の内部抵抗の抑制が困難となってしまう。
 支持体の密度は、0.15~0.45g/cmの範囲であることが好ましい。密度が0.15g/cm未満の場合、支持体を構成する繊維の本数が少なくなり、支持体中の空隙が多くなる。そのため、固体電解質が支持体に留まらず、固体電解質を均一に保持、補強することが困難となる。一方、密度が0.45g/cm超の場合、固体電解質の支持体内部への浸透性が悪化し、固体電解質を支持体の内部に十分充填できない場合がある。そのため、全固体電池の内部抵抗の抑制が困難となってしまう。
 固体電解質の支持体への浸透性、均一な固体電解質層形成の観点から、支持体の密度は、0.18~0.42g/cmの範囲とすると、より好ましい。
 本発明の支持体は、不織布で構成する。それは、以下の理由による。
 不織布は、繊維がランダムに配置された構成であるので、不織布で構成された支持体は、その内部に、様々な大きさの空隙や、様々な大きさの貫通孔を有している。そのため、固体電解質は、支持体表面に留まるもの、固体電解質が支持体内部に浸透し内部の空隙に充填されて留まるもの、充填する表面側から貫通孔を通り、裏面側まで固体電解質が浸透するもの、が存在し、それぞれが密に接触している。つまり、不織布で構成された支持体は、支持体の表面に固体電解質を付着させることができ、かつ支持体の内部を固体電解質で満たすことができる。
 そのため、不織布を支持体として作製した固体電解質層は、固体電解質が固体電解質層の内部及び表面に十分に存在できており、固体電解質層の内部抵抗の低減とともに、固体電解質層と、正極もしくは負極との界面抵抗を低くできる。結果として、全固体電池の内部抵抗の低減につなげることができると考えられる。
 また、従来の支持体では、固体電解質層の製造工程で固体電解質を支持体に充填する際の、支持体への面方向や厚さ方向に対する力によって、支持体が破断してしまう等の物理的強度が不十分である課題があった。支持体の強度を強くするために、従来技術のような結着剤やバインダー繊維を使用することもできるが、固体電解質の支持体内部への充填性が悪化する場合があり、固体電解質の優れた充填性と高い物理的強度を両立することは困難であった。
 本発明の支持体は、バインダー繊維を含有していることが好ましい。
 本発明の支持体において使用するバインダー繊維は、繊維状態で支持体を構成し、かつ繊維同士を点接着する繊維を指す。
 本発明の支持体は、耐熱性及び引張強さの観点から、バインダー繊維を20~80質量%含有することが好ましい。バインダー繊維は、支持体の構成繊維としての役割と、バインダーとしての役割とを有している。支持体の構成材料としてバインダー繊維を使用することで、固体電解質層を形成する際の破断を低減でき、かつ繊維接点のみを接着するため、固体電解質の支持体の内部への浸透を阻害しにくい。
 一方、支持体を構成する状態において繊維状態ではないバインダーを用いた場合、バインダー機能発現にあたり、バインダー成分が支持体内部にフィルム層を多数形成する等、繊維間隙を封鎖してしまう。その結果、固体電解質の支持体の内部への浸透を阻害してしまう場合がある。
 バインダー繊維が20質量%未満の場合、繊維間の接着点数が少なすぎるため、所望の引張強さが得られない。そのため、製造工程で破れが生じ、製造歩留まりの低下を招いてしまうことがある。
 バインダー繊維が80質量%超の場合、耐熱性が悪化し、製造工程で均一な固体電解質層が形成できない場合があり好ましくない。また、支持体が緻密になりすぎてしまう場合があり、固体電解質を支持体の内部に均一に充填することが困難となる場合がある。
 支持体の耐熱性、引張強さ、固体電解質の支持体への浸透性、均一な固体電解質層の形成の観点から、支持体に含有するバインダー繊維量は、25~75質量%とすると、より好ましい。
 バインダー繊維として用いることができる材料は、固体電解質スラリーをはじかないものであって、固体電解質に悪影響を与えず、絶縁性を備えた繊維であれば、特に限定はなく、例えば、ポリエステルバインダー繊維、ポリアミドバインダー繊維等が挙げられる。
 本発明に係る支持体において、支持体の引張強さは、1.0N/15mm以上であることが好ましい。引張強さが1.0N/15mm未満の場合、固体電解質の充填時の破断が発生しやすくなる。
 その他の構成繊維として用いることができる材料は、固体電解質スラリーをはじかないものであって、固体電解質に悪影響を与えず、絶縁性を備えた繊維であれば、特に限定はなく、例えば、ポリエステル繊維、ポリアミド繊維、セルロース繊維といった有機繊維や、ガラス繊維、アルミナ繊維といった無機繊維等が挙げられる。また、これら繊維から選択される、一種以上の繊維を使用することができる。これらの繊維を用いることで、固体電解質の充填性及び耐熱性に優れた支持体を得ることができる。ポリアミド繊維やセルロース繊維といった、叩解可能な繊維は、支持体の破断耐性を向上させるために、叩解してもかまわない。
 バインダー繊維、その他構成繊維は、平均繊維径が1~15μmのものを使用することが好ましい。繊維径が1μm未満の繊維を含有させると、形成される支持体が緻密になり、固体電解質を支持体の内部に充填させることが困難になる。一方、繊維径が15μm超の場合、均一な厚さの支持体を形成することが困難となり、形成される固体電解質層の不均一化が生じ、正極-負極間の抵抗が大きくなる場合がある。
 支持体の製造方法に特に限定はなく、乾式法、湿式法で製造可能であるが、好ましくは、水中に分散させた繊維をワイヤー上に堆積させ、脱水、乾燥して抄き上げる湿式法が、支持体の地合等の均質性の観点から好ましい。
 本発明を実施するための形態では、支持体は抄紙法を用いて形成した湿式不織布を採用した。支持体の抄紙形式は、通気度や厚さ、密度を満足することができれば、特に限定はなく、長網抄紙や短網抄紙、円網抄紙といった抄紙形式が採用でき、またこれらの抄紙法によって形成された層を複数合わせたものであってもよい。また、抄紙に際しては、分散剤や消泡剤、紙力増強剤等の添加剤を加えてもよく、紙層形成後に紙力増強加工、親液加工、カレンダ加工、熱カレンダ加工、エンボス加工等の後加工を施してもよい。
(支持体及び全固体電池の作製方法及び特性の測定方法)
 本実施の形態の支持体及び全固体電池の作製方法及び特性の測定方法は、以下の条件及び方法で行った。
〔厚さ〕
 支持体1枚の厚さを、ダイヤルシックネスゲージGタイプ(測定反力2N、測定子:φ10mm)を用いて均等な間隔で測定し、さらに測定箇所の平均値を、支持体の厚さ(μm)とした。
〔坪量〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 6 坪量」に規定された方法で、絶乾状態の支持体の坪量を測定した。
〔密度〕
 以下の式を用いて、支持体の密度を計算した。
  密度(g/cm)=W/T
 W:坪量(g/m)、T:厚さ(μm)
〔空隙率〕    
 以下の式を用いて、支持体の空隙率を計算した。なお、支持体を構成する材料を複数混用している場合には、混用率に比例した計算を行って構成繊維の平均比重を求めてから、算出した。
  空隙率(%)=(1-(D/S))×100
 D:支持体密度(g/cm)、S:構成繊維の比重(g/cm
〔通気度〕
 「JIS L 1096 『織物及び編物の生地試験方法』通気性 A法(フラジール形式)」に規定された方法で、支持体の通気度を測定した。
〔引張強さ〕
 「JIS P 8113 『紙及び板紙-引張特性の試験方法-第2部:定速伸張法』」(ISO1924-2『Paper and board-Determination of tensile properties-Part2:Constant rate of elongati on method』)に規定された方法で、試験幅15mmで、支持体の縦方向(製造方向)の最大引張荷重を測定し、支持体の引張強さとした。
〔全固体電池の作製工程〕
 以下に示す各実施例、比較例、従来例、参考例の支持体を用いて、全固体電池を作製した。
 具体的な作製方法は、以下の通りである。
(正極構造体)
 正極活物質としてLiNiCoAlO三元系粉末を、硫化物系固体電解質としてLiS-P非晶質粉末を、導電助剤として炭素繊維を、それぞれ用いて混合した。この混合粉末に、結着剤としてSBR(スチレンブタジエンゴム)が溶解した脱水キシレン溶液を混合し、正極塗工液を作製した。正極集電体であるアルミ箔集電体に、正極塗工液を塗工、乾燥し、更に圧延することで、正極構造体を得た。
(負極構造体)
 負極活物質として黒鉛を、硫化物系固体電解質としてLiS-P非晶質粉末を、結着剤としてPVdFを、溶媒としてNMPを、それぞれ用いて混合し、負極塗工液を作製した。負極集電体である銅箔集電体に、負極塗工液を塗工、乾燥し、更に圧延することで、負極構造体を得た。
(固体電解質層)
 硫化物系固体電解質としてLiS-P非晶質粉末を、結着剤としてSBRを、溶媒としてキシレンを、それぞれ用いて混合し、固体電解質層塗工液を作製した。
 以下に示す、実施例、比較例、各従来例の支持体に、固体電解質層塗工液を塗工して、乾燥し、固体電解質層を得た。
〔固体電解質層の自立性の評価〕
 作製したそれぞれの固体電解質層について、自立性の評価を行った。
 作製した大きさ92mm×62mmの固体電解質層を、水平に持ち上げることができるか評価した。固体電解質層を、形状を保持したまま水平に持ち上げることができた場合を〇として、水平に持ち上げた際に形状が保持されていなかった場合を×とした。
〔全固体電池の製造〕
 大きさ88mm×58mmの負極構造体、大きさ92mm×62mmの固体電解質層、大きさ87mm×57mmの正極構造体を積層し、ドライラミネート加工を行い、貼り合わせることにより、全固体電池の単セルを得た。
 得られた単セルを、端子を取り付けたアルミニウムラミネートフィルムに入れ、脱気、ヒートシールを行いパックした。
〔全固体電池の評価方法〕
 作製した全固体電池の具体的な性能評価は、以下の条件及び方法で行った。
〔インピーダンス〕
 全固体電池に対して、25℃の環境下で0.1Cの電流密度で4.0Vまで充電を行い、LCZメーターを用いて、周波数0.1Hz~1MHzの範囲測定しコールコールプロットからインピーダンス値を得た。
 コールコールプロットから得られるインピーダンス値は、各周波数で測定したインピーダンスから得られる円弧を、x軸を底辺とした半円の形にフィッティングし、半円の右端とx軸とが交わる部分の数値とした。
〔放電容量〕
 全固体電池に対して、25℃の環境下で0.1Cの電流密度で4.0Vまで充電を行い、その後0.1Cの電流密度で2.5Vまで放電し、その時の放電容量を測定した。
〔実施例〕
 以下、本発明の実施の形態に係る支持体の具体的な実施例等について説明する。
〔実施例1〕
 ポリエステルバインダー繊維50質量%とポリエステル繊維50質量%とを混合した原料を用いて、円網抄紙し、実施例1の支持体を得た。
 実施例1の支持体の厚さは15μm、坪量2.6g/m、密度0.17g/cm、空隙率87.4%、通気度48.7L/cm/min.、引張強さ1.1N/15mmであった。
〔実施例2〕
 ポリエステルバインダー繊維50質量%とポリエステル繊維50質量%とを混合した原料を用いて、短網抄紙した。得られた不織布に熱カレンダ加工を行い、実施例2の支持体を得た。
 実施例2の支持体の厚さは20μm、坪量8.0g/m、密度0.40g/cm、空隙率71.0%、通気度1.2L/cm/min.、引張強さ8.9N/15mmであった。
〔実施例3〕
 ポリアミドバインダー繊維20質量%とセルロース繊維80質量%とを混合した原料を用いて、短網抄紙し、実施例3の支持体を得た。
 実施例3の支持体の厚さは29μm、坪量11.9g/m、密度0.41g/cm、空隙率71.3%、通気度2.9L/cm/min.、引張強さ7.3N/15mmであった。
〔実施例4〕
 ポリエステルバインダー繊維80質量%とセルロース繊維20質量%とを混合した原料を用いて、円網抄紙し、実施例4の支持体を得た。
 実施例4の支持体の厚さは5μm、坪量2.2g/m、密度0.43g/cm、空隙率68.7%、通気度25.1L/cm/min.、引張強さ4.3N/15mmであった。
〔実施例5〕
 ポリエステルバインダー繊維25質量%とポリエステル繊維75質量%とを混合した原料を用いて、円網抄紙し、実施例5の支持体を得た。
 実施例5の支持体の厚さは15μm、坪量5.3g/m、密度0.35g/cm、空隙率74.6%、通気度32.2L/cm/min.、引張強さ2.5N/15mmであった。
〔実施例6〕
 ポリアミドバインダー繊維75質量%とポリアミド繊維25質量%とを混合した原料を用いて、短網抄紙し、実施例6の支持体を得た。
 実施例6の支持体の厚さは25μm、坪量4.8g/m、密度0.19g/cm、空隙率83.2%、通気度38.9L/cm/min.、引張強さ6.1N/15mmであった。
〔比較例1〕
 ポリエステルバインダー繊維50質量%とポリエステル繊維50質量%とを混合した原料を用いて、円網抄紙し、比較例1の支持体を得た。
 比較例1の支持体の厚さは30μm、坪量3.5g/m、密度0.12g/cm、空隙率91.5%、通気度52.1L/cm/min.、引張強さ1.0N/15mmであった。
〔比較例2〕
 ポリアミドバインダー繊維85質量%とポリアミド繊維15質量%とを混合した原料を用いて、円網抄紙し、比較例2の支持体を得た。
 比較例2の支持体の厚さは5μm、坪量2.3g/m、密度0.45g/cm、空隙率62.5%、通気度20.6L/cm/min.、引張強さ5.6N/15mmであった。
〔比較例3〕
 ポリアミドバインダー繊維70質量%とポリアミド繊維30質量%とを混合した原料を用いて、円網抄紙し、比較例3の支持体を得た。
 比較例3の支持体の厚さは4μm、坪量1.8g/m、密度0.45g/cm、空隙率63.4%、通気度27.1L/cm/min.、引張強さ4.1N/15mmであった。
〔比較例4〕
 ポリアミドバインダー繊維50質量%とセルロース繊維50質量%とを混合した原料を用いて、短網抄紙し、比較例4の支持体を得た。
 比較例4の支持体の厚さは43μm、坪量8.6g/m、密度0.20g/cm、空隙率84.8%、通気度10.6L/cm/min.、引張強さ7.8N/15mmであった。
〔従来例1〕
 ポリエステルバインダー繊維15質量%とポリエステル繊維85質量%とを混合した原料を用いて、特許文献2の実施例1に記載の支持体の作製方法を参考に、円網抄紙し、従来例1の支持体を得た。
 従来例1の支持体の厚さは10μm、坪量3.0g/m、密度0.30g/cm、空隙率78.3%、通気度31.9L/cm/min.、引張強さ0.7N/15mmであった。
〔従来例2〕
 特許文献4の実施例1に記載の方法と同様の方法で製造した支持体を作製し、従来例2の支持体を得た。従来例2では、ポリエステルバインダー繊維10質量%と、エチレンビニルアルコール繊維10質量%と、ポリエステル繊維80質量%とを混合している。
 従来例2の支持体の厚さは12μm、坪量7.0g/m、密度0.58g/cm、空隙率57.7%、通気度0.7L/cm/min.、引張強さ11.2N/15mmであった。
〔従来例3〕
 特許文献5の実施例1に記載の方法と同様の方法で製造した支持体を作製し、従来例3の支持体を得た。従来例3では、ポリイミドフィルムをエッチング処理して、800μm角の穴を形成して、支持体を作製している。
 従来例3の支持体の厚さは30μm、坪量5.2g/m、密度0.17g/cm、空隙率88.0%、通気度28.8L/cm/min.、引張強さ4.0N/15mmであった。
〔参考例〕
 ポリエステルバインダー繊維30質量%、ポリエステル繊維50質量%及びポリビニルアルコール繊維20質量%を混合した原料を用いて短網抄紙し、参考例の支持体を得た。
 参考例の支持体の厚さは20μm、坪量8.0g/m、密度0.40g/cm、空隙率70.8%、通気度0.8L/cm/min.、引張強さ9.7N/15mmであった。
 以上に記載した実施例1~実施例6、比較例1~比較例4、従来例1~従来例3、参考例の各支持体のバインダー繊維とその他の繊維の繊維名と配合率について、表1に示す。
[規則91に基づく訂正 04.04.2022] 
Figure WO-DOC-TABLE-1
 表2は、以上に説明した実施例1~実施例6、比較例1~比較例4、従来例1~従来例3、参考例の各支持体特性、固体電解質層の自立性、電池特性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 以下、各実施例、比較例、各従来例、参考例の支持体を用いた、全固体電池の評価結果を詳細に説明する。
 実施例1の支持体は、比較例1の支持体と比較して通気度が低く、密度が高い。
 比較例1の支持体は、固体電解質層を均一に形成することができなかった。これは、比較例1の支持体の通気度が52.1L/cm/min.と高く、密度が0.12g/cmと低いためであると考えられる。比較例1の支持体に固体電解質層塗工液を塗工、乾燥した際に、固体電解質を比較例1の支持体が保持できず、均一な固体電解質層を形成することができなかった。そのため、比較例1の支持体を用いて全固体電池を作製することができなかった。
 実施例1と比較例1との比較から、支持体の通気度は50L/cm/min.以下、密度は0.15g/cm以上であれば好ましいと分かる。
 各実施例の支持体を用いた全固体電池は、比較例2の支持体を用いた全固体電池と比較して、インピーダンスは低く、放電容量は高い。また、各実施例の支持体は、比較例2の支持体と異なり、自立性を有していた。
 比較例2の支持体は、バインダー繊維含有量が85質量%と多い。そのため、固体電解質層塗工液を比較例2の支持体に塗工し、溶媒を乾燥すると、クラックが発生した固体電解質層が得られた。これは、バインダー繊維含有量が85質量%と多いため、支持体の耐熱性が乏しく、支持体が熱によって形態変化が生じてしまったためであると考えられる。そのため、固体電解質層を持ち上げた際に、割れが生じてしまい、自立性が無かった。
 比較例2の支持体を用いた固体電解質層は、クラックが生じてしまったものの、正極、負極と重ね合わせることで全固体電池を作製することができた。
 比較例2の支持体を用いた全固体電池はインピーダンスが高く、電池の放電ができなかった。これは、クラック発生によって、固体電解質層が不均一なため、正極、負極間を伝導できるリチウムイオンパスラインが少なかった影響と考えられる。
 各実施例と比較例2との比較から、支持体が固体電解質層形成時に耐えうる耐熱性を有するために、支持体が含有するバインダー繊維量は80質量%以下であれば好ましいと分かる。
 比較例3の支持体は、各実施例の支持体と比較して厚さが薄い。そのため、比較例3の支持体を用いた全固体電池は短絡が生じた。比較例3の支持体は厚さが4μmと薄く、正極、負極間の短絡を防止できなかったためと考えられる。なお、短絡が生じたため、比較例3の支持体を用いた全固体電池の各種電池評価は行うことができなかった。各実施例と比較例3との比較から、支持体の厚さは5μm以上であれば好ましいと分かる。
 比較例4の支持体は、各実施例の支持体と比較して厚さが厚い。
 比較例4の支持体を用いた全固体電池は、各従来例の支持体を用いた全固体電池と比較して、インピーダンスが低く、放電容量が高く、電池特性の改善が見られる。しかしながら、支持体の厚さが43μmと厚いため、得られた電池が大きくなってしまった。得られる全固体電池の小型化の観点から、支持体の厚さは30μm以下が好ましいと考えられる。
 各実施例の支持体は、従来例1の支持体と比較して引張強さが強い。
 従来例1の支持体は、固体電解質層塗工液を塗工し、余分な塗工液を除去する際に、破れが生じてしまった。これは、従来例1の支持体の引張強さが0.7N/15mmと弱いことが原因と考えられる。従来例1は、固体電解質層の形成ができなかったため、全固体電池の作製、評価は行っていない。
 従来例1の支持体の引張強さが弱かった原因として、バインダー繊維含有量が15質量%と低いため、繊維間の接着点数が少なすぎ、所望の引張強さが得られなかったためであると考えられる。
 各実施例と、従来例1との比較から、固体電解質層製造時の支持体の破断を抑制するためには、バインダー繊維を20質量%以上含有している支持体が好ましいと分かる。
 各実施例の支持体を用いた全固体電池は、従来例2及び従来例3の支持体を用いた全固体電池と比較して、インピーダンスは低く、放電容量は高い。また、各実施例の支持体は、従来例2の支持体と異なり、自立性を有していた。
 従来例2の支持体は、通気度が0.7L/cm/min.と低い。そのため、固体電解質層塗工液を従来例2の支持体に塗工した際に、固体電解質層塗工液が支持体の内部に浸透せず、支持体の表面に留まっていた。そのため、固体電解質層塗工液が支持体の表面上に留まった状態で乾燥され、支持体表面上に固体電解質層が形成されてしまった。そして、支持体の表面に形成された固体電解質層は支持体がない状態で乾燥されてしまったことから、固体電解質が補強されなかったため、クラックが生じてしまった。そのため、固体電解質層を持ち上げた際に、割れが生じてしまい、自立性が無かった。
 従来例2の支持体を用いた固体電解質層は、クラックが生じてしまったものの、正極、負極と重ね合わせることで全固体電池を作製することができた。
 また、従来例2の支持体は、バインダー繊維含有量が10質量%と低いにも関わらず、引張強さが11.2N/15mmと各実施例と同等以上で、物理的強度が高い支持体である。これは、密度が0.58g/cmと高いため、繊維同士の接点が多いためと考えられる。
 従来例2の支持体を使用した電池は、インピーダンスが非常に高く、電池の放電ができなかった。これは、密度が0.58g/cmと高く、通気度が0.7L/cm/min.と低く、更に強度を強くするために、不織布状態において、繊維状態を保持できないエチレン―ビニルアルコール繊維を10質量%有しているため、固体電解質の充填が不十分であったことが原因と考えられる。
 実施例2と従来例2との比較から、固体電解質層製造時の力に耐えうる物理的強度を有すること、及び固体電解質の充填性を両立するために、支持体の通気度は1L/cm/min.以上、密度は0.45g/cm以下であれば好ましく、かつバインダー繊維の含有量は20質量%以上が好ましいと分かる。
 従来例3の支持体は、各実施例の不織布である支持体と異なり、フィルムに貫通孔を形成した支持体である。従来例3の支持体の貫通孔には固体電解質を充填できるが、形成された貫通孔の内部にしか固体電解質は充填できない。また、従来例3の支持体からなる固体電解質層は、固体電解質層と、正極もしくは負極との界面において、絶縁物であるフィルムと、正極もしくは負極との界面が生じてしまっていると考えられる。その影響で、従来例3の支持体は、各実施例の支持体と比較して全固体電池のインピーダンスが高くなってしまったと考えられる。
 各実施例と従来例3との比較から、全固体電池のインピーダンスを低減するためには支持体として不織布が適していることが分かる。
 参考例の支持体は、各実施例と比較して、通気度が低かった。その結果、参考例の支持体を用いた全固体電池は、各実施例の支持体を用いた全固体電池と比較して、インピーダンスは高く、放電容量は低い。
 参考例の支持体は、ポリエステルバインダー繊維、ポリエステル繊維に加えて、ポリビニルアルコール繊維を20質量%配合した支持体である。ポリビニルアルコール繊維は、引張強さを向上させるには効果的な繊維である。ポリビニルアルコール繊維は、湿熱による形状変化によって、繊維接点を補強し、支持体の引張強さを向上させることができる。しかしながら、ポリビニルアルコール繊維は、支持体を構成する状態において、繊維状態ではなく、支持体内部にフィルム層を多数形成してしまい、繊維間隙を封鎖してしまっていると考えられる。その結果、通気度が低くなり、固体電解質層塗工液の支持体の内部への浸透を阻害してしまっていると考えられる。
 つまり、各実施例と参考例との比較から、繊維状態を保持できないバインダーは、配合しない方が好ましいと分かる。
 上述した実施の形態例は、あくまで一例であって、例えば、固体電解質、正極、負極の組成等は、当業者が適宜変更することができる。
 以上説明したように、支持体の通気度を1~50L/cm/min.、厚さ5~30μm、密度0.15~0.45g/cmとした不織布とすることで、固体電解質層製造時の力に耐えうる物理的強度を有し、かつ固体電解質の支持体内部への良好な浸透性を有する、支持体を得ることができる。この支持体を使用することで、抵抗の低い全固体電池を得ることができる。

Claims (3)

  1.  リチウムイオン二次電池の固体電解質層に含まれる支持体であって、
     通気度が1~50L/cm/min.、厚さが5~30μm、密度が0.15~0.45g/cmの範囲の不織布である
     ことを特徴とする支持体。
  2.  前記支持体はバインダー繊維を20~80質量%の範囲で含有している
     ことを特徴とする請求項1に記載の支持体。
  3.  請求項1または請求項2に記載の支持体を有した固体電解質層を備えたリチウムイオン二次電池。
PCT/JP2022/004199 2021-02-10 2022-02-03 支持体及びリチウムイオン二次電池 WO2022172850A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/271,508 US20240063507A1 (en) 2021-02-10 2022-02-03 Support body and lithium ion secondary battery
CN202280013155.1A CN116806383A (zh) 2021-02-10 2022-02-03 支撑体和锂离子二次电池
JP2022580593A JPWO2022172850A1 (ja) 2021-02-10 2022-02-03
KR1020237022969A KR20230144526A (ko) 2021-02-10 2022-02-03 지지체 및 리튬 이온 2차 전지
EP22752677.9A EP4293775A1 (en) 2021-02-10 2022-02-03 Support body and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-020075 2021-02-10
JP2021020075 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172850A1 true WO2022172850A1 (ja) 2022-08-18

Family

ID=82837828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004199 WO2022172850A1 (ja) 2021-02-10 2022-02-03 支持体及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20240063507A1 (ja)
EP (1) EP4293775A1 (ja)
JP (1) JPWO2022172850A1 (ja)
KR (1) KR20230144526A (ja)
CN (1) CN116806383A (ja)
WO (1) WO2022172850A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096311A (ja) 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology 固体電解質シート、電極シート、及び全固体二次電池
JP2016031789A (ja) 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
JP2017103146A (ja) 2015-12-03 2017-06-08 地方独立行政法人大阪府立産業技術総合研究所 固体電解質シート及びその製造方法、全固体電池、並びに全固体電池の製造方法
JP2018129307A (ja) * 2018-03-19 2018-08-16 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
JP2019054012A (ja) * 2019-01-09 2019-04-04 古河機械金属株式会社 電極シート、全固体型リチウムイオン電池、および電極シートの製造方法
JP2020024860A (ja) * 2018-08-08 2020-02-13 三菱製紙株式会社 固体電解質担持用不織布及び固体電解質シート
JP2020077488A (ja) 2018-11-06 2020-05-21 本田技研工業株式会社 固体電解質シート、および固体電池
JP2020161243A (ja) 2019-03-25 2020-10-01 三菱製紙株式会社 リチウム二次電池セパレータ用不織布基材及びリチウム二次電池セパレータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096311A (ja) 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology 固体電解質シート、電極シート、及び全固体二次電池
JP2016031789A (ja) 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
JP2017103146A (ja) 2015-12-03 2017-06-08 地方独立行政法人大阪府立産業技術総合研究所 固体電解質シート及びその製造方法、全固体電池、並びに全固体電池の製造方法
JP2018129307A (ja) * 2018-03-19 2018-08-16 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
JP2020024860A (ja) * 2018-08-08 2020-02-13 三菱製紙株式会社 固体電解質担持用不織布及び固体電解質シート
JP2020077488A (ja) 2018-11-06 2020-05-21 本田技研工業株式会社 固体電解質シート、および固体電池
JP2019054012A (ja) * 2019-01-09 2019-04-04 古河機械金属株式会社 電極シート、全固体型リチウムイオン電池、および電極シートの製造方法
JP2020161243A (ja) 2019-03-25 2020-10-01 三菱製紙株式会社 リチウム二次電池セパレータ用不織布基材及びリチウム二次電池セパレータ

Also Published As

Publication number Publication date
CN116806383A (zh) 2023-09-26
JPWO2022172850A1 (ja) 2022-08-18
KR20230144526A (ko) 2023-10-16
US20240063507A1 (en) 2024-02-22
EP4293775A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
US10347892B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
US10497916B2 (en) Separator for electrochemical cell and method for its manufacture
RU2562970C2 (ru) Сепаратор, имеющий теплоустойчивые изоляционные слои
WO2013168755A1 (ja) 電気化学素子用セパレータ及びその製造方法
KR101282067B1 (ko) 비대칭 코팅된 분리막을 포함하는 전극조립체 및 상기 전극조립체를 포함하는 전기화학소자
JP2011035373A (ja) 蓄電デバイス用セパレータ
JP2014013693A (ja) リチウムイオン二次電池およびその製造方法
US20130157109A1 (en) Separator
JP2007287390A (ja) リチウム2次電池
WO2017150143A1 (ja) 非水電解液二次電池用セパレータおよび非水電解液二次電池
KR101586536B1 (ko) 전고상 리튬이차전지용 탄소섬유 시트 집전체의 제조방법 및 탄소섬유 시트 집전체를 포함하는 전고상 리튬이차전지
Wu et al. Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries
JP2010287697A (ja) 蓄電デバイス用セパレータ
WO2022172850A1 (ja) 支持体及びリチウムイオン二次電池
JP7367202B2 (ja) 穴あけされた集電体を含むリチウム二次電池用電極、その製造方法及び前記電極を含むリチウム二次電池
CN114464770A (zh) 一种电极片及包含该电极片的电池
WO2023189598A1 (ja) 二次電池用支持体、および二次電池
US20150221918A1 (en) Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2023030824A (ja) 固体電解質を用いたリチウムイオン二次電池用支持体、およびそれを用いたリチウムイオン二次電池
CN116826312B (zh) 一种高粘接性耐热隔膜及其制备方法及应用
JP2013134858A (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP6186548B1 (ja) 非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2016100181A (ja) 電気化学素子用セパレータ及びリチウムイオン二次電池
CN115312974A (zh) 带有隔离层的负极片及其电池
CN117293265A (zh) 一种负极片和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580593

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18271508

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280013155.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022752677

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752677

Country of ref document: EP

Effective date: 20230911