WO2014196095A1 - 酸化物結晶薄膜の製造方法 - Google Patents

酸化物結晶薄膜の製造方法 Download PDF

Info

Publication number
WO2014196095A1
WO2014196095A1 PCT/JP2013/080451 JP2013080451W WO2014196095A1 WO 2014196095 A1 WO2014196095 A1 WO 2014196095A1 JP 2013080451 W JP2013080451 W JP 2013080451W WO 2014196095 A1 WO2014196095 A1 WO 2014196095A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
thin film
film formation
gallium
film
Prior art date
Application number
PCT/JP2013/080451
Other languages
English (en)
French (fr)
Inventor
真也 織田
俊実 人羅
Original Assignee
Roca株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roca株式会社 filed Critical Roca株式会社
Priority to CN201380002359.6A priority Critical patent/CN104736747B/zh
Priority to US14/233,568 priority patent/US10202685B2/en
Priority to EP13817842.1A priority patent/EP2865789B1/en
Priority to KR1020147002068A priority patent/KR101564929B1/ko
Publication of WO2014196095A1 publication Critical patent/WO2014196095A1/ja
Priority to US16/231,042 priority patent/US20190112703A1/en
Priority to US17/515,259 priority patent/US20220049348A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/729Growing single crystal, e.g. epitaxy, bulk

Definitions

  • the present invention relates to a method for producing an oxide crystal thin film.
  • Patent Document 1 As a method for forming a highly crystalline gallium oxide thin film on a film formation sample, a film formation method using water fine particles such as a mist CVD method is known (Patent Document 1).
  • a raw material aqueous solution is prepared by dissolving a gallium compound such as gallium acetylacetonate in an acid such as hydrochloric acid, and the raw material aqueous solution is formed into fine particles.
  • a gallium oxide thin film with high crystallinity is formed on the film formation sample by supplying the film formation surface of the film formation sample and reacting the raw material mist to form a thin film on the film formation surface.
  • the gallium oxide thin film having high crystallinity can be obtained also by the method described in Patent Document 1, when the present inventors created a gallium oxide thin film by the method of Patent Document 1, unintentional carbon impurities are present in the thin film. It was found that it was contained. Since carbon impurities can also contribute as a dopant, the presence of unintended carbon impurities makes it difficult to control the doping concentration. In addition, the acetylacetonate complex is poorly soluble in water, and even if the solution is acidified, it is difficult to increase the concentration of the raw material solution, so the approach of increasing the concentration of the raw material cannot be taken in high-speed film formation. . Furthermore, water-based CVD such as the mist CVD method is said to be inferior to other CVD methods in raw material efficiency, and improvement of raw material efficiency is said to be a problem for practical use.
  • Non-Patent Document 1 a film formation using gallium chloride was attempted. Since gallium chloride has excellent solubility in water in addition to containing no carbon, the use of gallium chloride is expected to solve the above problems. It was concluded that acetylacetonate and water are essential for film formation.
  • the most stable phase of indium oxide is a bixbite type, and it is also difficult to obtain a corundum type single phase, and it is difficult to grow ⁇ -type In 2 O 3 crystals with good reproducibility.
  • the present invention has been made in view of such circumstances, and provides a thin film manufacturing method capable of achieving both a reduction in carbon impurity concentration and a high film formation rate, and enabling the creation of a stable crystal structure. It is to provide.
  • the raw material fine particles generated by atomizing a raw material solution containing at least one of a gallium compound and an indium compound and water are supplied to the film forming chamber by the carrier gas, and are disposed in the film forming chamber.
  • a method for producing an oxide crystal thin film comprising a step of forming an oxide crystal thin film on a film sample, wherein at least one of the gallium compound and the indium compound is bromide or iodide.
  • the present inventors have performed film formation using various gallium compounds, and in the case of film formation using gallium bromide and gallium iodide. In addition to the extremely low carbon impurity concentration, it was found that the film formation rate was significantly higher than that when gallium acetylacetonate was used.
  • the raw material solution contains bromide or gallium iodide.
  • the raw material solution contains bromide or indium iodide.
  • the thin film has a crystal oriented in a certain crystal axis.
  • the thin film has a corundum structure.
  • the film formation sample and the thin film have a corundum structure.
  • the raw material solution contains an organometallic complex of aluminum.
  • the raw material fine particles are generated by separately micronizing a first raw material solution containing at least one of a gallium compound and an indium compound and water, and a second raw material solution containing an organometallic complex of aluminum and water.
  • the first raw material fine particles and the second raw material fine particles are included, and the first and second raw material fine particles are mixed before the film formation chamber or in the film formation chamber.
  • the raw material solution contains a gallium compound, and the thin film is a crystal having a ⁇ -gallia structure.
  • the structural example of the semiconductor device or crystal body which can be manufactured with the manufacturing method of the oxide crystal thin film of one Embodiment of this invention is shown. It is a block diagram of the mist CVD apparatus used in the Example of this invention.
  • a method for producing an oxide crystal thin film in which raw material fine particles generated by atomizing a raw material solution containing at least one of a gallium compound and an indium compound and water are supplied to a film forming chamber by a carrier gas.
  • the manufacturing method supplies raw material fine particles generated by atomizing a raw material solution containing at least one of a gallium compound and an indium compound and water to a film forming chamber by a carrier gas, and supplies the raw material fine particles to the film forming chamber.
  • the raw material solution can be prepared by dissolving at least one of a gallium compound and an indium compound in water.
  • gallium compounds and indium compounds there are a great many types of gallium compounds and indium compounds.
  • bromides or iodides of these compounds are used. This is because when bromide or iodide is used, the carbon impurity concentration in the thin film to be formed can be reduced while achieving a high film formation rate, as shown in the examples described later.
  • a thin film having better crystallinity than when gallium chloride is used can be formed.
  • the concentration of the gallium compound and the indium compound in the raw material solution is not particularly limited, but is, for example, 0.001 to 10 mol / L, preferably 0.005 to 2 mol / L. This concentration is 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.0. It is 1, 0.2, 0.5, 1, 2, 5, 10 mol / L, and may be within a range between any two of the numerical values exemplified here.
  • the raw material solution may contain only one of the gallium compound and the indium compound, or may contain both. Moreover, only one of the bromide and iodide of these compounds may be contained, and both may be contained. Furthermore, the raw material solution may contain a gallium compound or an indium compound other than bromide and iodide, and may contain a metal compound other than the gallium compound and the indium compound. However, from the viewpoint of reducing the carbon impurity concentration, the metal compound included in the raw material solution preferably has no carbon atom.
  • an aluminum atom is included in the thin film as in the case of, for example, an organometallic complex such as a beta diketonate complex (eg, acetylacetonate complex) is used for aluminum, and a compound other than a halide is used. May be used.
  • the solvent of the raw material solution is preferably water (preferably ultrapure water), and preferably does not contain an organic solvent.
  • a dopant compound can be added to the raw material solution, whereby conductivity can be imparted to the formed thin film, which can be used as a semiconductor layer.
  • the reaction solution may contain a compound other than the compounds described here, but preferably does not contain an organic compound.
  • carbon is used as a doping element, for example, a small amount of an organic acid (eg, acetic acid) can be added.
  • a first raw material solution containing at least one of a gallium compound and an indium compound and water, an organometallic complex of aluminum A second raw material solution containing water is prepared, and the raw material solution is separately finely divided to produce first raw material fine particles and second raw material fine particles.
  • These raw material fine particles are placed in front of the film forming chamber or in the film forming chamber.
  • anion exchange reaction proceeds, and gallium acetylacetonate, aluminum bromide, or aluminum iodide is present in the solution.
  • the film speed, the raw material efficiency, and the crystallinity are reduced.
  • the exchange reaction can be minimized by supplying them as separate liquids and mixing them after atomization.
  • the method for producing raw material fine particles by making the raw material solution fine particles is not particularly limited, but a general method is to apply ultrasonic vibration to the raw material solution to form fine particles. Also, in other methods, for example, the raw material fine particles can be generated by atomizing the raw material solution by spraying the raw material solution.
  • Carrier gas is, for example, nitrogen, but a gas such as argon, oxygen, ozone, or air may be used.
  • the flow rate of the carrier gas is not particularly limited, but is, for example, 0.1 to 50 L / min, preferably 0.5 to 10 L / min. Specifically, this flow rate is, for example, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 L / min, and may be in a range between any two of the numerical values exemplified here.
  • Film formation chamber, film formation sample, film formation Raw material fine particles are supplied to the film formation chamber by the carrier gas, and a reaction takes place in the film formation chamber to form a thin film on the film formation sample placed in the film formation chamber. Is done.
  • the thin film formed on the film formation sample is a thin film of an oxide crystal (preferably a crystal oriented in a certain crystal axis).
  • the film formation chamber is a space in which a thin film is formed, and its configuration and material are not particularly limited.
  • the film forming chamber is configured to supply a carrier gas containing raw material fine particles from one end of a quartz tube and to discharge exhaust gas from the other end of the quartz tube as in the embodiment.
  • the film formation sample may be arranged so that the film formation surface is horizontal, or may be arranged so as to be inclined at, for example, 45 degrees toward the carrier gas supply side.
  • a fine channel method using a channel of several mm or less as a reaction region, or a linear nozzle is provided on the substrate, from which raw material fine particles (and carrier gas) are sprayed in a direction perpendicular to the substrate, and the nozzle is linear
  • a linear source method of moving in the vertical direction or a film formation chamber by a method in which a plurality of methods are mixed or derived may be used.
  • the film forming chamber is configured such that the inner space can be heated to a desired temperature by, for example, surrounding the film forming chamber with a heater. Further, the film formation chamber may be pressurized or depressurized instead of atmospheric pressure.
  • the heating temperature of the film formation chamber during film formation is not particularly limited as long as it is a temperature at which a raw material solute (gallium compound, indium compound, etc.) contained in the raw material solution can be chemically reacted, and is, for example, 300 to 1500 ° C. 400 to 700 ° C. is preferable, and 450 to 550 ° C. is more preferable. If the heating temperature is too low, the reaction rate of the raw material solute will be slow and the film forming rate will be slow, and if the heating temperature is too high, the etching rate of the formed thin film will become large and the film forming rate will be slow. It is.
  • the heating temperature is, for example, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1500 ° C., and a range between any two of the numerical values exemplified here. It may be within.
  • the ⁇ phase tends to grow when the film formation temperature is high, conditions such as the concentration of the solution, composition, and flow rate during film formation can be optimized for each temperature when it is desired to obtain an ⁇ phase single phase. is necessary.
  • the sample to be deposited is not particularly limited as long as a thin film can be formed, and suitable examples include a substrate having a corundum structure, a ⁇ -type gallium oxide substrate, or a thin film having a corundum structure. It is not limited to.
  • a sapphire substrate is an example of a substrate having a corundum structure that can be easily procured. It is preferable because a thin film having a corundum structure (eg, an ⁇ -type gallium oxide thin film or an ⁇ -type indium oxide thin film) is easily formed on a substrate having a corundum structure.
  • the film formation sample may not have a corundum structure.
  • Preferable examples include a substrate having a hexagonal crystal structure typified by GaN and ZnO, a substrate having a cubic crystal structure typified by YSZ, and a ⁇ -type gallium oxide substrate.
  • a thin film of a crystal having a ⁇ -gallia structure eg, ⁇ -type gallium oxide
  • ⁇ -type gallium oxide e.g, ⁇ -type gallium oxide
  • FIG. 1 shows an example of a semiconductor device or crystal body that can be manufactured by the method of this embodiment.
  • the crystalline stress relaxation layer 2, the semiconductor layer 3, the cap layer 4, and the insulating film 5 are formed in this order on the base substrate 1. You may laminate on the base substrate 1 in order from an insulating film.
  • the crystalline stress relaxation layer 2 and the cap layer 4 may be omitted if not necessary.
  • the base substrate 1 and the semiconductor layer 3 or the semiconductor layer 3 and the insulating film 5 are formed of different materials having a corundum structure, the semiconductor layer 3 and the insulating film 5, the base substrate 1 and the semiconductor layer 3, and the crystallinity
  • a structural phase transition prevention layer having a corundum structure may be formed in at least one of the stress relaxation layer 2 and the semiconductor layer 3 and between the cap layer 4 and the insulating film 5.
  • the crystal growth temperature for forming the crystalline stress relaxation layer 2, the semiconductor layer 3, the cap layer 4, and the insulating film 5 is higher than the crystal structure transition temperature below the formation layer, a structural phase transition prevention layer is formed.
  • the corundum structure from changing to a different crystal structure.
  • the formation temperature of the crystalline stress relaxation layer 2 the semiconductor layer 3, the cap layer 4 and the insulating film 5 is lowered in order to prevent the phase transition of the crystal structure, the crystallinity is lowered. Therefore, it is difficult to suppress the change of the crystal structure by lowering the film formation temperature, and the formation of the structural phase transition prevention layer is effective.
  • Examples of the base substrate 1 include a sapphire substrate and an ⁇ -type gallium oxide substrate.
  • a membrane can be used.
  • Crystalline stress relaxation layer reduces sapphire substrate and semiconductor layer
  • cap layer reduces varieties of dislocations such as sword dislocations, screw dislocations, and basal plane dislocations due to differences in lattice constants between semiconductor layers and insulating films
  • X, Y, and Z are, for example, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0, respectively. .1, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 and the numerical values exemplified here It may be within the range between any two.
  • X + Y or X + Y + Z is, for example, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2 .5, and may be within a range between any two of the numerical values exemplified here.
  • a layer containing gallium or indium is formed using a gallium compound or a bromide or iodide of an indium compound as in this embodiment, thereby reducing the carbon impurity concentration.
  • a high deposition rate can be achieved.
  • a semiconductor device When film formation is completed, a semiconductor device can be manufactured by taking out a film formation sample on which a thin film has been formed from a film formation chamber and performing device processes such as ion implantation, etching, and photolithography.
  • device processes such as ion implantation, etching, and photolithography.
  • a larger amount of thermal energy is applied even when the base substrate is changed or when the film is formed on a substrate having a corundum structure than when the ⁇ -type crystal is formed. By doing so, other crystal structures can be obtained.
  • the mist CVD apparatus 19 adjusts the flow rate of a carrier gas sent from the carrier stage 22, a carrier gas source 22 for supplying a carrier gas, and a sample stage 21 on which a deposition target sample 20 such as a base substrate is placed.
  • a flow rate adjusting valve 23 a mist generating source 24 for storing a raw material solution 24a, a container 25 for containing water 25a, an ultrasonic transducer 26 attached to the bottom surface of the container 25, and a quartz tube having an inner diameter of 40 mm.
  • a film forming chamber 27, and a heater 28 installed around the film forming chamber 27.
  • the sample stage 21 is made of quartz, and the surface on which the deposition target sample 20 is placed is inclined 45 degrees from the horizontal plane. Both the film formation chamber 27 and the sample stage 21 are made of quartz, so that impurities derived from the apparatus are prevented from being mixed into the thin film formed on the film formation target sample 20.
  • the raw material solution 24a having the concentration shown in Table 1 was prepared by dissolving the raw material solute shown in Table 1 in ultrapure water. This raw material solution 24 a was accommodated in the mist generating source 24.
  • acetylacetonate is abbreviated as “acac”.
  • a c-plane sapphire substrate with a side of 10 mm and a thickness of 600 ⁇ m is placed on the sample stage 21, and the heater 28 is operated to set the temperature in the film formation chamber 27.
  • the flow rate adjusting valve 23 is opened to supply the carrier gas from the carrier gas source 22 into the film forming chamber 27, and the atmosphere in the film forming chamber 27 is sufficiently replaced with the carrier gas. It adjusted to the value shown in. Nitrogen gas was used as the carrier gas.
  • the ultrasonic vibrator 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through the water 25a, whereby the raw material solution 24a was atomized to generate raw material fine particles.
  • the raw material fine particles are introduced into the film forming chamber 27 by the carrier gas, react in the film forming chamber 27, and form a thin film on the film forming sample 20 by the CVD reaction on the film forming surface of the film forming sample 20. Formed.
  • Table 1 shows the results of measuring the film formation rate for 1 to 17 and the half-value width of the formed thin film.
  • the film formation rate was calculated by dividing the film thickness by the film formation time.
  • the FWHM of gallium oxide is the rocking curve FWHM for (0006) diffraction of ⁇ -type gallium oxide.
  • the carbon impurity concentration was measured by secondary ion mass spectrometry (SIMS), and the result is shown in the “impurity” column of Table 1.
  • the carbon impurity concentration of the evaluation results of “ ⁇ ” was about 1/100 of that of the “ ⁇ ”.
  • the method of the present invention (bromide / iodide) not only reduced the impurity concentration compared to the case of using acetylacetonate complex as a raw material, but also under all experimental conditions, the film formation rate, raw material efficiency, crystallinity ( Since the X-ray half width is improved, it is an extremely useful method even in a mass production process.
  • the method using chloride or acetylacetonate is affected by process variations such as raw material concentration and film formation temperature, and the ⁇ phase is easily mixed, so ⁇ -type crystals are stable. Difficult to manufacture.
  • a single phase of ⁇ -type crystal can be obtained over a wide temperature range and concentration range, so that the yield can be improved.
  • ⁇ -type crystals and ⁇ -type crystals can be made separately, and a reduction in carbon impurity concentration and a high film formation rate can be achieved at the same time.
  • Base substrate 2 Crystalline stress relaxation layer 3: Semiconductor layer 4: Cap layer 5: Insulating film 19: Mist CVD apparatus 20: Film formation sample 21: Sample stage 22: Carrier gas source 23: Flow control valve 24: Mist generation source 24a: raw material solution 25: mist generation source 25a: water 26: ultrasonic vibrator 27: film formation chamber 28: heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 炭素不純物濃度の低減と高い成膜速度を両立させることができ、かつ安定的な結晶構造の作り分けを可能にする薄膜製造方法を提供する 本発明によれば、ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む原料溶液を微粒子化して生成される原料微粒子をキャリアガスによって成膜室に供給して前記成膜室内配置された被成膜試料上に酸化物結晶薄膜を形成する工程を備え、前記ガリウム化合物とインジウム化合物の少なくとも一方は、臭化物又はヨウ化物である、酸化物結晶薄膜の製造方法が提供される。

Description

酸化物結晶薄膜の製造方法
 本発明は、酸化物結晶薄膜の製造方法に関する。
 被成膜試料上に結晶性の高い酸化ガリウム薄膜を形成する方法として、ミストCVD法等の水微粒子を用いた成膜手法が知られている(特許文献1)。この方法では、ガリウムアセチルアセトナートなどのガリウム化合物を塩酸などの酸に溶解して原料水溶液を作成し、この原料水溶液を微粒子化することによって原料微粒子を生成し、この原料微粒子をキャリアガスによって被成膜試料の成膜面に供給し、原料ミストを反応させて成膜面上に薄膜を形成することによって、被成膜試料上に結晶性の高い酸化ガリウム薄膜を形成している。
 特許文献1に記載の方法によっても結晶性の高い酸化ガリウム薄膜を得ることはできるが、本発明者らが特許文献1の方法によって酸化ガリウム薄膜を作成したところ、薄膜中に意図しない炭素不純物が含有されてしまうことが分かった。炭素不純物は、ドーパントとしても寄与し得るので、意図しない炭素不純物の存在は、ドーピング濃度の制御を困難にしてしまう。
 また、アセチルアセトナート錯体は水への溶解性に乏しく、溶液を酸性にしたとしても、原料液の高濃度化が困難であるため、高速成膜において、原料の高濃度化というアプローチがとれない。さらに、ミストCVD法に代表されるような水系CVDは原料効率が他のCVD法に比べて劣ると言われており、原料効率の向上が実用化の課題だと言われている。
 一方、非特許文献1では、塩化ガリウムを用いた成膜が試みられた。塩化ガリウムは炭素を含まないことを加えて水への溶解性が優れているので、塩化ガリウムを用いることによって上記課題の解決が期待されるものであったが、残念ながら全く成膜が進まず、アセチルアセトナートと水が成膜には必須であると結論付けられた。
特開2013-28480号公報
篠原大輔、「超音波噴霧CVD法を用いたサファイア基板上α型酸化ガリウム単結晶薄膜の作製とその深紫外光機能」、京都大学 修士論文、平成20年2月1日
 溶解性に優れる材料として塩化物以外に、臭化物、よう化物、硝酸塩、硫酸塩など種々の材料が知られており、これらの材料は固相法、溶液法など、様々な酸化物合成の原料として一般的に使用されている。しかしながら、塩化ガリウムを含むこれらの材料はミストCVDをはじめとする、水が反応に寄与するCVD反応を用いた薄膜成長においては、特に13族の酸化物の薄膜形成材料としては、薄膜形成できない、もしくは成膜速度が極めて遅いという問題があると考えられてきた。こうした理由により、炭素不純物濃度の低減と高い成膜速度を両立させることは従来技術では不可能であった。
 また、特許文献1に記載の方法によっても結晶性の高い酸化ガリウム薄膜を得ることはできるが、コランダム構造を有するα型の酸化ガリウム結晶を成長させる場合、特許文献1に記載のガリウムアセチルアセトナートおよび、塩化ガリウムを用いた場合は原料濃度および成膜温度に厳しい制約がある。
 また、酸化ガリウムをはじめとする結晶材料を電子デバイス、特にパワーデバイスとして利用する際には、単結晶を用いることが望まれ、完全な単結晶ではなくともある結晶軸に配向した結晶を用いることが多い。これは純粋な材料物性を利用できる、物性制御が容易である、結晶粒界の影響を考慮しなくてよい、などといった理由からである。しかし、酸化ガリウムはβ構造が最安定相であるため、限られた原料濃度と成膜温度範囲以外ではα-Ga結晶の中にβ-Ga結晶が混入して成長してしまうため、α型結晶とβ型結晶の作り分けを実現しなければならない。しかしながら、これまで、α-Ga結晶をプロセスばらつきの影響を受けずに再現性良く成長させることが難しかった。
 一方、酸化インジウムでは最安定相がビックスバイト型であり、こちらもコランダム型構造単相を得ることが難しく、α型In結晶を再現性よく成長させることが困難であった。
本発明はこのような事情に鑑みてなされたものであり、炭素不純物濃度の低減と高い成膜速度を両立させることができ、かつ安定的な結晶構造の作り分けを可能にする薄膜製造方法を提供するものである。
 本発明によれば、ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む原料溶液を微粒子化して生成される原料微粒子をキャリアガスによって成膜室に供給して前記成膜室内配置された被成膜試料上に酸化物結晶薄膜を形成する工程を備え、前記ガリウム化合物とインジウム化合物の少なくとも一方は、臭化物又はヨウ化物である、酸化物結晶薄膜の製造方法が提供される。
 本発明者らは、炭素不純物濃度の低減と高い成膜速度を両立させるべく、種々のガリウム化合物を用いて成膜を行ったところ、臭化ガリウムとヨウ化ガリウムを用いて成膜した場合には、炭素不純物濃度が非常に低くなることに加えて、成膜速度がガリウムアセチルアセトナートを用いた場合と比べて、成膜速度が大幅に高くなることが分かった。
 また、臭化アルミニウム又はヨウ化アルミニウムでは薄膜成長反応がほとんど進行しないにもかかわらず、臭化インジウムやヨウ化インジウムを用いた場合にも、炭素不純物濃度の低減と高い成膜速度を両立させることができることを見出した。また、Cr,Fe,Ti,Si,V,Mgについても臭化物又はヨウ化物を用いて成膜を試みたが、薄膜成長反応がほとんど又は全く進行しなかった。
 ガリウム又はインジウム以外の金属の臭化物又はヨウ化物を用いた場合に成膜速度が小さい理由は明らかになっていないが、この結果は、臭化物又はヨウ化物を用いた場合に、成膜速度が高まるという現象がガリウム化合物及びインジウム化合物に特有の現象であることを強く示唆している。
 本発明は、以下の形態でも実施可能である。
 好ましくは、前記原料溶液は、臭化又はヨウ化ガリウムを含む。
 好ましくは、前記原料溶液は、臭化又はヨウ化インジウムを含む。
 好ましくは、前記薄膜は、ある結晶軸に配向した結晶を有する。
 好ましくは、前記薄膜は、コランダム構造を有する。
 好ましくは、前記薄膜は、α型InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)である。
 好ましくは、前記被成膜試料及び前記薄膜は、コランダム構造を有する。
 好ましくは、前記原料溶液は、アルミニウムの有機金属錯体を含む。
 好ましくは、前記原料微粒子は、ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む第1原料溶液と、アルミニウムの有機金属錯体と水とを含む第2原料溶液を別々に微粒子化して生成される第1原料微粒子と第2原料微粒子を含み、第1及び第2原料微粒子は、前記成膜室の手前又は成膜室内において混合される。
 好ましくは、前記原料溶液にガリウム化合物を含み、前記薄膜はβガリア構造を有する結晶である、
本発明の一実施形態の酸化物結晶薄膜の製造方法で製造可能な半導体装置又は結晶体の構成例を示す。 本発明の実施例で用いたミストCVD装置の構成図である。
 本発明の一実施形態の酸化物結晶薄膜の製造方法は、ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む原料溶液を微粒子化して生成される原料微粒子をキャリアガスによって成膜室に供給して前記成膜室内配置された被成膜試料上に酸化物結晶薄膜を形成する工程を備え、前記ガリウム化合物とインジウム化合物の少なくとも一方は、臭化物又はヨウ化物である。
 この製造方法は、一例では、ガリウム化合物とインジウム化合物の少なくとも一方を含む原料と水とを含む原料溶液を微粒子化して生成される原料微粒子をキャリアガスによって成膜室に供給すると共に前記原料微粒子を前記成膜室内で反応させて前記成膜室内に載置された被成膜試料上に酸化物結晶の薄膜を形成する工程を備え、前記ガリウム化合物とインジウム化合物の少なくとも一方は、臭化物又はヨウ化物である。
 以下、各工程について詳細に説明する。
1.原料溶液
 原料溶液は、ガリウム化合物とインジウム化合物の少なくとも一方を水に溶解させることによって作製することができる。ガリウム化合物とインジウム化合物には、非常に多くの種類のものがあるが、本実施形態では、これらの化合物の臭化物又はヨウ化物を用いる。臭化物又はヨウ化物を用いた場合、後述する実施例で示すように、高い成膜速度を達成しつつ、形成される薄膜中の炭素不純物濃度を低減することが可能になるからである。また、臭化物又はヨウ化物を用いることによって、塩化ガリウムを用いた場合よりも結晶性に優れた薄膜を形成することができる。
 原料溶液中のガリウム化合物とインジウム化合物の濃度は、特に限定されないが、それぞれ、例えば、0.001~10mol/Lであり、好ましくは、0.005~2mol/Lである。この濃度は、0.001、0.005、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.5、1、2、5、10mol/Lであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 原料溶液には、ガリウム化合物とインジウム化合物の一方のみが含まれていてもよく、両方が含まれていてもよい。また、これらの化合物の臭化物とヨウ化物の一方のみが含まれていてもよく、両方が含まれていてもよい。さらに、原料溶液中には、臭化物とヨウ化物以外のガリウム化合物又はインジウム化合物が含まれていてもよく、ガリウム化合物とインジウム化合物以外の金属化合物が含まれていてもよい。但し、炭素不純物濃度を低減するという観点からは、原料溶液に含められる金属化合物は、炭素原子を有さないことが好ましい。なお、コランダム結晶構造を有するα型InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)でY>0にする場合のように、薄膜中にアルミニウム原子を含ませる場合には、アルミニウムについては、ベータジケトナート錯体(例:アセチルアセトナート錯体)などの有機金属錯体を用い、ハロゲン化物以外の化合物を利用してもよい。この場合、アルミニウムの有機金属錯体に起因する炭素が薄膜中に含まれてしまうが、アルミニウムのみを有機金属錯体にしてガリウム化合物とインジウム化合物の少なくとも一方を臭化物又はヨウ化物にした場合には、全てを有機金属錯体にした場合よりも原料微粒子中に含まれる炭素量が減少するので、本発明による炭素不純物濃度減少の効果が得られる。なお、明細書中のInAlGaという表記はあくまで金属イオンと酸素イオンの比率を表現するために用いるのであって、「X+Y+Z=2」と表記していないことからも明らかなように、ノンストイキオメトリー酸化物も含んでおり、これは、金属不足酸化物、金属過剰酸化物だけでなく、酸素不足酸化物、酸素過剰酸化物も含む。
 原料溶液の溶媒は、水(好ましくは超純水)であることが好ましく、有機溶媒を含まないことが好ましい。原料溶液中には、ドーパント化合物を添加することができ、これによって、形成される薄膜に導電性を付与することができ、半導体層として利用することができる。反応溶液は、ここで説明した化合物以外のものを含んでもよいが、有機化合物を含まないことが好ましい。また、ドーピング元素として炭素を用いる場合には、例えば、有機酸(例:酢酸)などを微量添加することができる。
 α型InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)でX,Y,Zのうち少なくとも2つが0よりも大きい場合のように、2種類以上の金属元素を含む薄膜(混晶膜)を形成する場合、1種類の原料溶液中に2種類以上の金属化合物を溶解させてもよく、金属化合物ごとに原料溶液を準備し、それぞれの原料溶液を別々に微粒子化してもよい。
 例えば、アルミニウムとガリウム、アルミニウムとインジウム、又はアルミ、ガリウム、インジウムの混晶膜を形成する場合、ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む第1原料溶液と、アルミニウムの有機金属錯体と水とを含む第2原料溶液を準備し、これらの原料溶液を別々に微粒子化して第1原料微粒子と第2原料微粒子を生成し、これらの原料微粒子を成膜室の手前又は成膜室内において混合することができる。1種類の原料溶液中に有機金属錯体と、臭化物又はヨウ化物を混在させると、アニオン交換反応が進んで、ガリウムアセチルアセトナートや臭化アルミニウム又はヨウ化アルミニウムが溶液中に存在することとなり、成膜速度の低下、原料効率の低下、結晶性の低下が引き起こされる。別々の液で供給し、微粒子化後に混合することで上記交換反応を最小限にすることができる。
2.微粒子化
 原料溶液を微粒子化して原料微粒子を生成する方法は、特に限定されないが、原料溶液に超音波振動を印加して微粒子化する方法が一般的である。また、これ以外の方法でも、例えば、原料溶液を噴霧することによって原料溶液を微粒子化することによっても原料微粒子を生成することができる。
3.キャリアガス
 キャリアガスは、例えば窒素であるが、アルゴン、酸素、オゾン、空気などのガスを用いてもよい。また、キャリアガスの流量は、特に限定されないが、例えば、0.1~50L/minであり、好ましくは0.5~10L/minである。この流量は、具体的には例えば、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10L/minであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
4.成膜室・被成膜試料・成膜
 原料微粒子は、キャリアガスによって成膜室に供給され、成膜室において反応が起こって成膜室内に載置された被成膜試料上に薄膜が形成される。被成膜試料上に形成される薄膜は、酸化物結晶(好ましくはある結晶軸に配向した結晶)の薄膜である。
 成膜室は、薄膜形成が行われる空間であり、その構成や材料は特に限定されない。成膜室は、一例では、実施例のように石英管の一端から原料微粒子を含むキャリアガスを供給し、石英管の他端から排ガスを排出する構成である。この構成の場合、被成膜試料は、成膜面が水平になるように配置してもよく、キャリアガスの供給側に向けて例えば45度に傾斜するように配置してもよい。また、数mm以下のチャネルを反応領域として利用するファインチャネル法や、基板上に直線状のノズルを設け、ここから基板に垂直方向に原料微粒子(およびキャリアガス)を吹き付け、さらにノズルを直線状の出口とは垂直方向に移動させるというリニアソース法や、複数の方式を混合した、あるいは派生させた方式による成膜室を利用してもよい。ファインチャネル法では、均質な薄膜作製と原料の利用効率の向上が可能であるし、リニアソース法では、将来の大面積基板およびロールツーロールでの連続成膜が可能である。成膜室は、例えば成膜室の周囲をヒータで取り囲む等によって内部空間を所望温度に加熱できる構成になっている。また、成膜室は、大気圧ではなく加圧や減圧をしてもよい。
 成膜時の成膜室の加熱温度は、原料溶液に含まれる原料溶質(ガリウム化合物、インジウム化合物等)を化学反応させることができる温度であれば特に限定されず、例えば300~1500℃であり、400~700℃が好ましく、450~550℃がさらに好ましい。加熱温度が低すぎると原料溶質の反応速度が遅くて成膜速度が遅くなり、加熱温度が高すぎると、形成された薄膜のエッチング速度が大きくなってしまって成膜速度が遅くなってしまうからである。加熱温度は、具体的には例えば、300、350、400、450、500、550、600、700、800、900、1000、1500℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ただし、成膜温度が高温の場合はβ相が成長しやすいため、α相単相を得たい場合は温度ごとに、溶液の濃度および、組成、成膜時の流量などの条件の最適化が必要である。
 被成膜試料は、薄膜が形成可能なものであれば特に限定されないが、好適な例としてはコランダム構造を有する基板、β型酸化ガリウム基板、またはコランダム構造を有する薄膜などが挙げられるが、これに限定されるものではない。現在、調達が容易なコランダム構造を有する基板としては、サファイア基板が挙げられる。コランダム構造を有する基板上にはコランダム構造を有する薄膜(例:α型酸化ガリウム薄膜、α型酸化インジウム薄膜)を形成しやすいので好ましい。被成膜試料は、コランダム構造を有さないものであってもよい。好適な例としてはGaNやZnOに代表される六方晶の結晶構造を有する基板、YSZに代表されるような立方晶の結晶構造を有する基板、またはβ型酸化ガリウム基板が挙げられる。この場合、ガリウム臭化物又はヨウ化物を用いると、成膜条件によってはコランダム構造相を含まない、βガリア構造を有する結晶(例:β型酸化ガリウム)の薄膜を形成することができるためα型とβ型を作りわけることができる。また、基板および成膜条件を適切に選択することによって、β型以外にγ型酸化ガリウム薄膜を形成することも可能である。
 本実施形態の方法によって製造可能な半導体装置又は結晶体の例を図1に示す。図1の例では、下地基板1上に、結晶性応力緩和層2、半導体層3、キャップ層4、及び絶縁膜5がこの順で形成される。下地基板1上に絶縁膜から順に積層してもよい。結晶性応力緩和層2及びキャップ層4は、必要ない場合には、省略してもよい。また、下地基板1と半導体層3、あるいは半導体層3と絶縁膜5とをコランダム構造をもつ異なる材料で形成する場合、半導体層3と絶縁膜5、下地基板1と半導体層3、および結晶性応力緩和層2と半導体層3、キャップ層4と絶縁膜5との間の少なくとも1つにコランダム構造を持つ構造相転移防止層を形成してもよい。結晶性応力緩和層2、半導体層3、キャップ層4、絶縁膜5を形成するそれぞれの結晶成長温度が当該形成層より下層の結晶構造転移温度より高いときには、構造相転移防止層を形成することで、コランダム構造から異なる結晶構造に変化することを防ぐことができる。結晶構造の相転移を防ぐために、結晶性応力緩和層2、半導体層3、キャップ層4、絶縁膜5の形成温度を低くした場合には、結晶性が低下してしまう。そのため、成膜温度を低下させることで結晶構造の変化をおさえることも困難であり、構造相転移防止層の形成は有効である。
 下地基板1としては、サファイア基板や、α型酸化ガリウム基板が挙げられる。結晶性応力緩和層2は、コランダム結晶構造を有する1層以上から形成され、サファイア基板のときはAl量を徐々に低減させ、α型Ga基板のときはAl量を徐々に増加させた、α型AlGa(0≦X≦2、0≦Y≦2、X+Y=1.5~2.5)膜を用いることができる。半導体層3としては、コランダム結晶構造を有するα型InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)膜を用いることができる。キャップ層あるいは構造相転移防止層として、1層以上から形成され、Al量を徐々に大きくしたα型AlGa(0≦X≦2、0≦Y≦2、X+Y=1.5~2.5)膜を用いることができる。結晶性応力緩和層はサファイア基板と半導体層、キャップ層は半導体層と絶縁膜、との間のそれぞれの格子定数差に由来する刀状転位、らせん転位、基底面転位等の各種転位の低減に効果が期待できる。X、Y、Zは、それぞれ、具体的には例えば、0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。X+Y又はX+Y+Zは、具体的には例えば、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 図1に示す各層のうち、ガリウム又はインジウムを含む層については、本実施形態のように、ガリウム化合物又はインジウム化合物の臭化物又はヨウ化物を用いて成膜することによって、炭素不純物濃度を低減しつつ高い成膜速度を達成することができる。
 成膜が完了すると、薄膜が形成された被成膜試料を成膜室から取り出し、イオン注入やエッチング、フォトリソグラフィー等のデバイスプロセスを行うことによって半導体装置を製造することができる。また、α型結晶以外を成膜する際には、下地基板を変更する、またはコランダム構造を有する基板上に成膜する場合でもα型結晶を成膜する場合よりも多くの熱エネルギーを加えるなどすることで、その他の結晶構造を得ることができる。
 以下、本発明の実施例を説明する。
1.実験1
1-1.ミストCVD装置
 まず、図2を用いて、本実施例で用いたミストCVD装置19を説明する。ミストCVD装置19は、下地基板等の被成膜試料20を載置する試料台21と、キャリアガスを供給するキャリアガス源22と、キャリアガス源22から送り出されるキャリアガスの流量を調節するための流量調節弁23と、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる成膜室27と、成膜室27の周辺部に設置されたヒータ28を備えている。試料台21は、石英からなり、被成膜試料20を載置する面が水平面から45度に傾斜している。成膜室27と試料台21をどちらも石英で作製することにより、被成膜試料20上に形成される薄膜内に装置由来の不純物が混入することを抑制している。
1-2.原料溶液の作製
 表1に示す原料溶質を超純水中に溶解させることによって表1に示す濃度の原料溶液24aを作製した。この原料溶液24aをミスト発生源24内に収容した。なお、表1中アセチルアセトナートは「acac」と省略表記した
1-3.成膜準備
 次に、被成膜試料20として、1辺が10mmの正方形で厚さ600μmのc面サファイア基板を試料台21上に設置させ、ヒータ28を作動させて成膜室27内の温度を表1に示す温度にまで昇温させた。次に、流量調節弁23を開いてキャリアガス源22からキャリアガスを成膜室27内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を表1に示す値に調節した。キャリアガスとしては、窒素ガスを用いた。
1-4.薄膜形成
 次に、超音波振動子26を2.4MHzで振動させ、その振動を水25aを通じて原料溶液24aに伝播させることによって原料溶液24aを微粒子化させて原料微粒子を生成した。
 この原料微粒子が、キャリアガスによって成膜室27内に導入され、成膜室27内で反応して、被成膜試料20の成膜面でのCVD反応によって被成膜試料20上に薄膜を形成した。
1-5.評価
 表1の実験No.1~17についての成膜速度と、形成された薄膜の半値幅を測定した結果を表1に示す。成膜速度は、膜厚を成膜時間で割って算出した。酸化ガリウムの半値幅は、α型酸化ガリウムの(0006)回折に対するロッキングカーブ半値幅である。また、二次イオン質量分析法(SIMS)によって炭素不純物濃度を測定し、表1の「不純物」の列に結果を示した。評価結果が○のものの炭素不純物濃度は、×のものに比べて1/100程度であった。
 各実験についての考察は、以下の通りである。
 アルミニウムアセチルアセトナートを塩酸中に溶解させて得られた原料溶液を用いた場合(No.1)、炭素不純物濃度が非常に大きかった。
 ハロゲン化アルミニウム(No.2~4)を用いた場合、成膜がうまくいかなかった。
 ガリウムアセチルアセトナートを塩酸中に溶解させて得られた原料溶液を用いた場合(No.5)、炭素不純物濃度が非常に大きかった。
 ガリウムアセチルアセトナートをギ酸中に溶解させて得られた原料溶液を用いた場合(No.6)、成膜速度が非常に小さかった。
 ガリウムの硫酸塩又は硝酸塩を用いた場合(No.7~8)、成膜ができなかった。
 塩化ガリウムを用いた場合(No.9~10)には、成膜速度がガリウムアセチルアセトナートを用いた場合よりも大幅に小さくなった。また、半値幅も大きかった。なお、非特許文献1では成膜できなかったにも関わらず、実施例9~10では低速ながら成膜が成功した理由としては、キャリアガスの流速や、原料溶液の濃度の違いが関係していると推測している。
 臭化ガリウムを用いた場合(No.11)には、成膜速度が極めて大きく、半値幅も非常に小さかった。
 濃度が比較的低いヨウ化ガリウムを用いた場合(No.12)には、成膜速度及び濃度は、ガリウムアセチルアセトナートを用いた場合と同程度であり、不純物濃度が低かった。
 濃度が比較的高いヨウ化ガリウムを用いた場合(No.13)には、成膜速度が非常に高かった。
 インジウムアセチルアセトナートを塩酸中に溶解させて得られた原料溶液を用いた場合(No.14)は、炭素不純物濃度が非常に大きかった。
 塩化インジウムを用いた場合(No.15)は、成膜がうまくいかなかった。
 臭化インジウム及びヨウ化インジウムを用いた場合(No.16~17)には、成膜速度が非常に大きく、臭化インジウムを用いた場合(No.16)に、成膜速度が特に大きかった。なお、インジウムアセチルアセトナートと同一濃度でも実験を行ったが、その場合、成膜速度が高すぎたため、異常成長を引き起こし結晶性が損なわれた。そのため原料濃度を下げて実験を行った。
 また、Cr,Fe,Ti,Si,V,Mgの臭化物又はヨウ化物を用いた場合(No.18~23)、薄膜成長反応がほとんど又は全く進行しなかった。
 以上のように、ガリウム又はインジウムの臭化物又はヨウ化物を用いて成膜を行うことによって、炭素不純物濃度の低減と、高い成膜速度を両立させることができることが分かった。また、Al,Cr,Fe,Ti,Si,V,Mgの臭化物又はヨウ化物を用いた場合にはうまくいかないことが分かるように、臭化物又はヨウ化物を用いて良好な結果が得られるのは、ガリウム及びインジウムに特有の現象であって、普遍的には適用が難しいことも分かった。
本発明の方法(臭化物・ヨウ化物)はアセチルアセトナート錯体を原料とした場合に比べて、不純物濃度が減少しただけでなく、すべての実験条件下で、成膜速度、原料効率、結晶性(X線半値幅)が向上しているため、量産プロセスにおいても極めて有用な方法である。
Figure JPOXMLDOC01-appb-T000001
2.実験2
 表2~表4中に明記されている条件で実験を行った。キャリアガスには窒素を用い、流量は3L/minとした。
 結晶相の同定は薄膜用XRD回折装置を用いた。表中の表記内容について、「α単」はα-Ga由来のピークのみが観測された条件、「β単」はβ-Gaピークのみが観測された条件、「β混」はα-Ga、β-Ga両者のピークが観測され、単相が得られていない条件を意味する。
 表3~4からもわかるように、塩化物又はアセチルアセトナートを用いた方法では、原料濃度、成膜温度などのプロセスのばらつきに影響を受け、β相が混じりやすいためα型の結晶を安定的に製造することが困難であった。しかし、本発明のように臭化物を用いた場合には広範囲にわたる温度域・濃度域にわたってα型結晶の単相が得られるため、歩留まりの向上が可能となる。
 このように、本発明を利用することでα型結晶とβ型結晶を作り分けることができるとともに、炭素不純物濃度の低減と、高い成膜速度を両立させることができる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
1:下地基板
2:結晶性応力緩和層
3:半導体層
4:キャップ層
5:絶縁膜
19:ミストCVD装置
20:被成膜試料
21:試料台
22:キャリアガス源
23:流量調節弁
24:ミスト発生源
24a:原料溶液
25:ミスト発生源
25a :水
26:超音波振動子
27:成膜室
28:ヒータ

Claims (10)

  1. ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む原料溶液を微粒子化して生成される原料微粒子をキャリアガスによって成膜室に供給して前記成膜室内配置された被成膜試料上に酸化物結晶薄膜を形成する工程を備え、前記ガリウム化合物とインジウム化合物の少なくとも一方は、臭化物又はヨウ化物である、酸化物結晶薄膜の製造方法。
  2. 前記原料溶液は、臭化又はヨウ化ガリウムを含む、請求項1に記載の方法。
  3. 前記原料溶液は、臭化又はヨウ化インジウムを含む、請求項1又は2に記載の方法。
  4. 前記薄膜は、ある結晶軸に配向した結晶を有する、請求項1~3の何れか1つに記載の方法。
  5. 前記薄膜は、コランダム構造を有する、請求項1~4の何れか1つに記載の方法。
  6. 前記薄膜は、α型InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)である請求項5に記載の方法。
  7. 前記被成膜試料及び前記薄膜は、コランダム構造を有する、請求項1~6の何れか1つに記載の方法。
  8. 前記原料溶液は、アルミニウムの有機金属錯体を含む、請求項1~7の何れか1つに記載の方法。
  9. 前記原料微粒子は、ガリウム化合物とインジウム化合物の少なくとも一方と水とを含む第1原料溶液と、アルミニウムの有機金属錯体と水とを含む第2原料溶液を別々に微粒子化して生成される第1原料微粒子と第2原料微粒子を含み、
    第1及び第2原料微粒子は、前記成膜室の手前又は成膜室内において混合される、請求項1~8の何れか1つに記載の方法。
  10. 前記原料溶液にガリウム化合物を含み、前記薄膜はβガリア構造を有する結晶である、請求項1~4の何れか1つに記載の方法。
PCT/JP2013/080451 2013-06-04 2013-11-11 酸化物結晶薄膜の製造方法 WO2014196095A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380002359.6A CN104736747B (zh) 2013-06-04 2013-11-11 氧化物结晶薄膜的制造方法
US14/233,568 US10202685B2 (en) 2013-06-04 2013-11-11 Method of manufacturing oxide crystal thin film
EP13817842.1A EP2865789B1 (en) 2013-06-04 2013-11-11 Method for producing oxide crystal thin film
KR1020147002068A KR101564929B1 (ko) 2013-06-04 2013-11-11 산화물 결정 박막의 제조 방법
US16/231,042 US20190112703A1 (en) 2013-06-04 2018-12-21 Method of manufacturing oxide crystal thin film
US17/515,259 US20220049348A1 (en) 2013-06-04 2021-10-29 Method of manufacturing oxide crystal thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013118358A JP5397794B1 (ja) 2013-06-04 2013-06-04 酸化物結晶薄膜の製造方法
JP2013-118358 2013-06-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/233,568 A-371-Of-International US10202685B2 (en) 2013-06-04 2013-11-11 Method of manufacturing oxide crystal thin film
US16/231,042 Continuation US20190112703A1 (en) 2013-06-04 2018-12-21 Method of manufacturing oxide crystal thin film

Publications (1)

Publication Number Publication Date
WO2014196095A1 true WO2014196095A1 (ja) 2014-12-11

Family

ID=50112355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080451 WO2014196095A1 (ja) 2013-06-04 2013-11-11 酸化物結晶薄膜の製造方法

Country Status (7)

Country Link
US (3) US10202685B2 (ja)
EP (1) EP2865789B1 (ja)
JP (1) JP5397794B1 (ja)
KR (1) KR101564929B1 (ja)
CN (1) CN104736747B (ja)
TW (1) TWI490368B (ja)
WO (1) WO2014196095A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027243A1 (ja) * 2018-08-01 2020-02-06 出光興産株式会社 結晶構造化合物、酸化物焼結体、スパッタリングターゲット、結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005202A1 (ja) * 2013-07-09 2015-01-15 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
EP2933825B1 (en) 2014-03-31 2017-07-05 Flosfia Inc. Crystalline multilayer structure and semiconductor device
US10109707B2 (en) 2014-03-31 2018-10-23 Flosfia Inc. Crystalline multilayer oxide thin films structure in semiconductor device
EP2942803B1 (en) * 2014-05-08 2019-08-21 Flosfia Inc. Crystalline multilayer structure and semiconductor device
JP6627132B2 (ja) * 2014-06-27 2020-01-08 株式会社Flosfia 成膜装置および成膜方法
JP6867637B2 (ja) * 2014-06-27 2021-04-28 株式会社Flosfia サセプタ
JP6349592B2 (ja) * 2014-07-22 2018-07-04 株式会社Flosfia 半導体装置
KR102232285B1 (ko) 2014-07-22 2021-03-24 가부시키가이샤 플로스피아 결정성 반도체막 및 판상체 및 반도체장치
WO2016035696A1 (ja) * 2014-09-02 2016-03-10 株式会社Flosfia 積層構造体およびその製造方法、半導体装置ならびに結晶膜
JP6539906B2 (ja) * 2014-09-25 2019-07-10 株式会社Flosfia 結晶性積層構造体の製造方法および半導体装置
JP7344426B2 (ja) * 2014-11-26 2023-09-14 株式会社Flosfia 結晶性積層構造体
JP6478103B2 (ja) 2015-01-29 2019-03-06 株式会社Flosfia 成膜装置および成膜方法
EP3051002A1 (en) 2015-01-29 2016-08-03 Flosfia Inc. Apparatus and method for forming film
JP6920630B2 (ja) * 2015-02-25 2021-08-18 株式会社Flosfia 紫外線発光材料およびその製造方法
JP6620921B2 (ja) * 2015-02-25 2019-12-18 株式会社Flosfia 紫外線発光材料およびその製造方法
JP6422159B2 (ja) * 2015-02-25 2018-11-14 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
JP6967213B2 (ja) * 2015-04-10 2021-11-17 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置
JP6436538B2 (ja) * 2015-06-16 2018-12-12 国立研究開発法人物質・材料研究機構 ε−Ga2O3単結晶、ε−Ga2O3の製造方法、および、それを用いた半導体素子
JP6774592B2 (ja) * 2015-09-08 2020-10-28 株式会社Flosfia 深紫外発光素子
JP6774593B2 (ja) * 2016-01-15 2020-10-28 株式会社Flosfia 結晶性酸化物膜
US20180097073A1 (en) * 2016-10-03 2018-04-05 Flosfia Inc. Semiconductor device and semiconductor system including semiconductor device
JP6906220B2 (ja) * 2017-02-28 2021-07-21 株式会社Flosfia 処理方法
JP7064723B2 (ja) * 2017-03-31 2022-05-11 株式会社Flosfia 成膜方法
JP2020001997A (ja) 2017-08-21 2020-01-09 株式会社Flosfia 結晶膜の製造方法
EP3446793B1 (en) * 2017-08-23 2023-10-04 Molecular Plasma Group SA Soft plasma polymerization process for a mechanically durable superhydrophobic nanostructured coating
JP2019151922A (ja) * 2018-02-28 2019-09-12 株式会社Flosfia 積層体および半導体装置
JP6627138B2 (ja) * 2018-05-17 2020-01-08 株式会社Flosfia 半導体装置
JP7404593B2 (ja) 2018-06-26 2023-12-26 株式会社Flosfia 成膜方法および結晶性積層構造体
EP3816330A4 (en) 2018-06-26 2022-10-05 Flosfia Inc. CRYSTALLINE OXIDE FILM
TWI770407B (zh) * 2018-08-01 2022-07-11 日本商出光興產股份有限公司 化合物
JP6875336B2 (ja) 2018-08-27 2021-05-26 信越化学工業株式会社 成膜方法
JP7274024B2 (ja) * 2018-08-27 2023-05-15 信越化学工業株式会社 成膜装置
JP6839694B2 (ja) * 2018-12-17 2021-03-10 株式会社デンソー 酸化ガリウム膜の成膜方法
JP6934852B2 (ja) * 2018-12-18 2021-09-15 信越化学工業株式会社 酸化ガリウム膜の製造方法
JP7315137B2 (ja) 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物膜
JP7315136B2 (ja) 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体
CN109888255A (zh) * 2019-04-02 2019-06-14 深圳清华大学研究院 氧化铟锌纤维复合材料及其制备方法和锂离子电池
JP7179294B2 (ja) 2019-04-12 2022-11-29 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法
JP7053539B2 (ja) * 2019-08-02 2022-04-12 信越化学工業株式会社 積層体、半導体膜、半導体装置、半導体システム及び積層体の製造方法
WO2021044845A1 (ja) 2019-09-03 2021-03-11 株式会社Flosfia 結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法
JP6842128B2 (ja) * 2019-09-26 2021-03-17 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶の製造装置
WO2021065940A1 (ja) 2019-09-30 2021-04-08 株式会社Flosfia 積層構造体および半導体装置
JPWO2021153609A1 (ja) 2020-01-27 2021-08-05
KR20220166283A (ko) 2020-04-13 2022-12-16 신에쓰 가가꾸 고교 가부시끼가이샤 성막장치 및 성막방법
US11804519B2 (en) 2020-04-24 2023-10-31 Flosfia Inc. Crystalline multilayer structure, semiconductor device, and method of manufacturing crystalline structure
US11694894B2 (en) 2020-04-24 2023-07-04 Flosfia Inc. Crystalline film containing a crystalline metal oxide and method for manufacturing the same under partial pressure
JP6925548B1 (ja) 2020-07-08 2021-08-25 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法及び成膜装置
EP4202077A1 (en) 2020-08-20 2023-06-28 Shin-Etsu Chemical Co., Ltd. Film formation method and raw material solution
TWM634737U (zh) 2021-03-12 2022-12-01 日商信越化學工業股份有限公司 鎵系氧化物半導體膜及其成膜系統、半導體裝置
TWM636275U (zh) 2021-03-12 2023-01-11 日商信越化學工業股份有限公司 成膜系統及成膜裝置
US20240124974A1 (en) 2021-05-04 2024-04-18 Shin-Etsu Chemical Co., Ltd. Method of producing raw material solution, method of film-forming and production lot
KR20240063901A (ko) 2021-09-22 2024-05-10 신에쓰 가가꾸 고교 가부시끼가이샤 성막방법, 성막장치 및 결정성 산화물막
WO2023062889A1 (ja) 2021-10-14 2023-04-20 信越化学工業株式会社 成膜装置及び製造方法
WO2023079787A1 (ja) 2021-11-02 2023-05-11 信越化学工業株式会社 成膜装置及び成膜方法並びに酸化物半導体膜及び積層体
WO2023176591A1 (ja) * 2022-03-16 2023-09-21 出光興産株式会社 焼結体、スパッタリングターゲット、酸化物薄膜、薄膜トランジスタ、電子機器、及び焼結体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189815A (ja) * 1988-01-22 1989-07-31 Toa Nenryo Kogyo Kk 透明導電膜の作製法
JP2011210422A (ja) * 2010-03-29 2011-10-20 Sumitomo Chemical Co Ltd 透明導電性非晶質膜の製造方法、及び透明導電性非晶質膜
JP2013028480A (ja) 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569881A (en) * 1983-05-17 1986-02-11 Minnesota Mining And Manufacturing Company Multi-layer amorphous magneto optical recording medium
US4876117A (en) * 1988-02-04 1989-10-24 Domain Technology Method and coating transition metal oxide on thin film magnetic disks
US5180686A (en) * 1988-10-31 1993-01-19 Energy Conversion Devices, Inc. Method for continuously deposting a transparent oxide material by chemical pyrolysis
US5882368A (en) * 1997-02-07 1999-03-16 Vidrio Piiano De Mexico, S.A. De C.V. Method for coating glass substrates by ultrasonic nebulization of solutions
KR100737657B1 (ko) 1998-09-06 2007-07-09 라이브니츠-인스티투트 퓌어 노이에 마테리알리엔 게마인누찌게 게엠베하 산화 인듐 주석을 기재로 하는 현탁액 및 분말의 제조방법및 그의 용도
US6633735B2 (en) 2000-11-29 2003-10-14 Samsung Electronics Co., Ltd. Reduction of seam mark from an endless seamed organophotoreceptor belt
JP2003064475A (ja) 2001-08-27 2003-03-05 Asahi Denka Kogyo Kk 化学気相成長用原料及びこれを用いた薄膜の製造方法
JP4587633B2 (ja) 2002-02-26 2010-11-24 株式会社野田スクリーン 薄膜形成方法及び成膜装置
JP4320564B2 (ja) * 2002-06-28 2009-08-26 日亜化学工業株式会社 透明導電膜形成用組成物、透明導電膜形成用溶液および透明導電膜の形成方法
US7064359B2 (en) * 2003-08-20 2006-06-20 Matsushita Electric Industrial Co., Ltd. Switching semiconductor device and switching circuit
JP4705340B2 (ja) 2004-06-14 2011-06-22 日本曹達株式会社 酸化インジウム膜の製造方法
US20060163563A1 (en) * 2005-01-24 2006-07-27 Kurt Ulmer Method to form a thin film resistor
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
TW200840880A (en) * 2007-04-13 2008-10-16 Hsin-Chih Lin Method of forming protection layer on contour of workpiece
JP5621764B2 (ja) 2009-03-13 2014-11-12 住友金属鉱山株式会社 透明導電膜と透明導電膜積層体及びその製造方法、並びにシリコン系薄膜太陽電池
JP2010215982A (ja) 2009-03-18 2010-09-30 Tosoh Corp ルテニウム錯体有機溶媒溶液を用いたルテニウム含有膜製造方法、及びルテニウム含有膜
JP5810445B2 (ja) 2010-09-03 2015-11-11 株式会社Flosfia 多孔質体および濾過フィルタの製造方法
JP2012142499A (ja) 2011-01-05 2012-07-26 Sumitomo Metal Mining Co Ltd 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
KR101301215B1 (ko) * 2011-12-27 2013-08-29 연세대학교 산학협력단 산화물 박막용 조성물, 산화물 박막용 조성물 제조 방법, 산화물 박막용 조성물을 이용한 산화물 박막 및 전자소자
JP5881475B2 (ja) 2012-03-05 2016-03-09 タテホ化学工業株式会社 酸化マグネシウム薄膜の製造方法
JP2014131020A (ja) 2012-11-29 2014-07-10 Kumamoto Univ CuO薄膜製造方法及びCuO薄膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189815A (ja) * 1988-01-22 1989-07-31 Toa Nenryo Kogyo Kk 透明導電膜の作製法
JP2011210422A (ja) * 2010-03-29 2011-10-20 Sumitomo Chemical Co Ltd 透明導電性非晶質膜の製造方法、及び透明導電性非晶質膜
JP2013028480A (ja) 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAISUKE SHINOHARA ET AL.: "Heteroepitaxy of Corundum-Structured alpha-Ga203 Thin Films on alpha- A1203 Substrates by Ultrasonic Mist Chemical Vapor Deposition", JPN. J. APPL. PHYS., vol. 47, pages 7311 - 7313, XP055137290, DOI: doi:10.1143/JJAP.47.7311 *
DAISUKE SHINOHARA: "Formation of a-phase Gallium Oxide Monocrystal Thin Film on Sapphire Substrate Using Ultrasonic Spray CVD Method and Deep Ultraviolet Optical Functions Thereof", MASTER'S THESIS TO KYOTO UNIVERSITY, 1 February 2008 (2008-02-01)
KAZUAKI AKAIWA ET AL.: "Electrical Conductive Corundum-Structured a-Ga203 Thin Films on Sapphire with Tin-Doping Grown by Spray- Assisted Mist Chemical Vapor Deposition", JPN. J. APPL. PHYS., vol. 51, 14 June 2012 (2012-06-14), pages 070203 *
KENTARO KANEKO ET AL.: "Evaluation of Misfit Relaxation in alpha-Ga203 Epitaxial Growth on alpha- A1203 Substrate", JPN. J. APPL. PHYS., vol. 51, 17 January 2012 (2012-01-17), pages 020201 *
See also references of EP2865789A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027243A1 (ja) * 2018-08-01 2020-02-06 出光興産株式会社 結晶構造化合物、酸化物焼結体、スパッタリングターゲット、結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器
JPWO2020027243A1 (ja) * 2018-08-01 2020-09-17 出光興産株式会社 結晶構造化合物、酸化物焼結体、スパッタリングターゲット、結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器
KR20210034601A (ko) * 2018-08-01 2021-03-30 이데미쓰 고산 가부시키가이샤 결정 구조 화합물, 산화물 소결체, 스퍼터링 타깃, 결정질 산화물 박막, 아모르퍼스 산화물 박막, 박막 트랜지스터, 및 전자 기기
KR102415439B1 (ko) 2018-08-01 2022-06-30 이데미쓰 고산 가부시키가이샤 결정 구조 화합물, 산화물 소결체, 스퍼터링 타깃, 결정질 산화물 박막, 아모르퍼스 산화물 박막, 박막 트랜지스터, 및 전자 기기
KR20220098041A (ko) * 2018-08-01 2022-07-08 이데미쓰 고산 가부시키가이샤 결정 구조 화합물, 산화물 소결체, 스퍼터링 타깃, 결정질 산화물 박막, 아모르퍼스 산화물 박막, 박막 트랜지스터, 및 전자 기기
KR102598375B1 (ko) 2018-08-01 2023-11-06 이데미쓰 고산 가부시키가이샤 결정 구조 화합물, 산화물 소결체, 스퍼터링 타깃, 결정질 산화물 박막, 아모르퍼스 산화물 박막, 박막 트랜지스터, 및 전자 기기

Also Published As

Publication number Publication date
US20220049348A1 (en) 2022-02-17
US10202685B2 (en) 2019-02-12
TWI490368B (zh) 2015-07-01
EP2865789A1 (en) 2015-04-29
JP2014234337A (ja) 2014-12-15
CN104736747A (zh) 2015-06-24
US20190112703A1 (en) 2019-04-18
EP2865789B1 (en) 2017-05-17
US20150225843A1 (en) 2015-08-13
JP5397794B1 (ja) 2014-01-22
KR101564929B1 (ko) 2015-11-02
CN104736747B (zh) 2018-04-20
EP2865789A4 (en) 2015-09-09
TW201447035A (zh) 2014-12-16
KR20150008037A (ko) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5397794B1 (ja) 酸化物結晶薄膜の製造方法
JP6233959B2 (ja) 酸化物結晶薄膜の製造方法
JP6152514B2 (ja) 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2015070248A (ja) 酸化物薄膜及びその製造方法
Liu et al. Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)
JP6459001B2 (ja) 半導体装置又は結晶構造体の製造方法
JP7289357B2 (ja) 半導体膜
JP2015134717A (ja) ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP6638152B2 (ja) 蛍光体組成物の製造方法および発光装置
JP3592218B2 (ja) 水晶薄膜の製造方法
JP5822259B2 (ja) ダイヤモンド結晶成長方法及びダイヤモンド結晶成長装置
JP2006027976A (ja) 窒化物単結晶の製造方法及びその製造装置
Shi et al. Morphology and growth mechanism of novel zinc oxide nanostructures synthesized by a carbon thermal evaporation process
WO2021079571A1 (ja) ガリウム前駆体の製造方法およびこれを用いた積層体の製造方法
JP6920630B2 (ja) 紫外線発光材料およびその製造方法
JP4859868B2 (ja) 水晶薄膜
JP4668600B2 (ja) 窒化物単結晶の製造方法
JP6774593B2 (ja) 結晶性酸化物膜
JP2012121749A (ja) SiC半導体自立基板及びSiC半導体電子デバイス
JP6946999B2 (ja) ガリウム酸窒化物結晶膜の形成方法
KR20120098527A (ko) 수열 합성법과 원자층 증착법을 이용한 박막 형성에 의한 나노 로드의 제조 방법, 이에 의하여 제조된 나노 로드 및 이를 포함하는 소자
TW202340507A (zh) 底層基板及單晶鑽石層積基板及該等之製造方法
Yu et al. Self-catalyst synthesis of aligned ZnO nanorods by pulsed laser deposition
Senveli et al. Synthesis of ZnO nanowires using lower temperature vapor based methods
Li et al. P‐71: Synthesis and Photoluminescence Properties of Vertically Well‐aligned Zinc Oxide Nanostructures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14233568

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013817842

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013817842

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147002068

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE