WO2021044845A1 - 結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法 - Google Patents

結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法 Download PDF

Info

Publication number
WO2021044845A1
WO2021044845A1 PCT/JP2020/031254 JP2020031254W WO2021044845A1 WO 2021044845 A1 WO2021044845 A1 WO 2021044845A1 JP 2020031254 W JP2020031254 W JP 2020031254W WO 2021044845 A1 WO2021044845 A1 WO 2021044845A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lateral
crystal growth
crystal
mask
Prior art date
Application number
PCT/JP2020/031254
Other languages
English (en)
French (fr)
Inventor
克明 河原
大島 祐一
沖川 満
Original Assignee
株式会社Flosfia
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Flosfia, 国立研究開発法人物質・材料研究機構 filed Critical 株式会社Flosfia
Priority to KR1020227010949A priority Critical patent/KR20220054668A/ko
Priority to CN202080059351.3A priority patent/CN114270531A/zh
Priority to JP2021543685A priority patent/JPWO2021044845A1/ja
Publication of WO2021044845A1 publication Critical patent/WO2021044845A1/ja
Priority to US17/684,792 priority patent/US20220189769A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Definitions

  • the present invention relates to a crystal film useful for a semiconductor device.
  • the present invention also relates to a semiconductor device.
  • the present invention relates to a method for producing a crystal film useful for a semiconductor device.
  • gallium oxide Ga 2 O 3
  • semiconductor devices using gallium oxide (Ga 2 O 3 ) having a large bandgap are attracting attention, and are used for power semiconductor devices such as inverters.
  • Ga 2 O 3 gallium oxide
  • gallium oxide, ⁇ -Ga 2 O 3 and the like having a corundum structure can be bandgap controlled by mixing indium and aluminum, respectively, or in combination, according to Non-Patent Document 1. It constitutes an extremely attractive material system as an InAlGaO-based semiconductor.
  • the most stable phase of gallium oxide has a ⁇ -gaul structure, it is difficult to form a crystal film having a corundum structure, which is a metastable phase, unless a special film forming method is used. Further, ⁇ -Ga 2 O 3 having a corundum structure is a metastable phase, and a bulk substrate due to melt growth cannot be used. Therefore, at present, sapphire having the same crystal structure as ⁇ -Ga 2 O 3 is used as the substrate. However, since ⁇ -Ga 2 O 3 and sapphire have a large lattice mismatch , the crystal film of ⁇ -Ga 2 O 3 heteroepitaxially grown on the sapphire substrate tends to have a high dislocation density.
  • Patent Document 1 describes a method for producing an oxide crystal thin film by a mist CVD method using a bromide or iodide of gallium or indium.
  • Patent Documents 2 to 4 describe a multilayer structure in which a semiconductor layer having a corundum-type crystal structure and an insulating film having a corundum-type crystal structure are laminated on a base substrate having a corundum-type crystal structure. .. Further, as in Patent Documents 5 to 7, film formation by mist CVD using an ELO substrate or void formation is also being studied. However, none of these methods is still satisfactory in terms of film formation rate, and a film formation method having an excellent film formation rate has been desired.
  • Patent Document 8 describes that at least a gallium oxide having a corundum structure is formed by a halide vapor deposition method (HVPE method) using a gallium raw material and an oxygen raw material.
  • HVPE method halide vapor deposition method
  • ⁇ -Ga 2 O 3 is a metastable phase, it is difficult to form a film like ⁇ -Ga 2 O 3 , and there are still many problems in the industry.
  • Patent Documents 10 and 11 describe that ELO crystal growth is carried out using a PSS substrate to obtain a crystal film having a surface area of 9 ⁇ m 2 or more and a transition density of 5 ⁇ 10 6 cm- 2. There is.
  • One of the objects of the first aspect of the present invention is to provide a large-area, high-quality crystal film useful for semiconductor devices and the like.
  • Another object of the second aspect of the present invention is to provide a method capable of industrially advantageously producing a large-area and high-quality crystal film useful for a semiconductor device or the like.
  • the present inventors obtained a crystal film containing a crystalline metal oxide as a main component and having a corundum structure when two-step ELO was carried out under specific conditions. It has been found that a crystal film having a dislocation density of 1 ⁇ 10 7 cm- 2 or less and a surface area of 10 mm 2 or more can be easily obtained, and such a crystal film can solve the above-mentioned conventional problems at once. I found that.
  • a first lateral crystal growth layer is formed on the substrate by the first lateral crystal growth, a mask is placed on the first lateral crystal growth layer, and a second lateral direction is further formed.
  • a method for producing a crystal film which comprises forming a second lateral crystal growth layer by crystal growth.
  • the distance between the mask and / or the opening on the substrate is 10 ⁇ m to 100 ⁇ m, and the distance between the mask and / or the opening on the first lateral growth layer is 1 ⁇ m to 50 ⁇ m. 21] The manufacturing method according to the above.
  • the crystal film in the embodiment of the present invention is a large-area, high-quality crystal film, which is useful for semiconductor devices and the like.
  • the method for producing a crystal film according to the embodiment of the present invention can produce a large-area, high-quality crystal film useful for a semiconductor device or the like in an industrially advantageous manner.
  • HVPE halide vapor deposition
  • FIG. 1 It is a schematic diagram which shows one aspect of the concavo-convex portion formed on the surface of the substrate which is preferably used in embodiment of this invention.
  • (A) is a schematic perspective view of the uneven portion, and (b) is a schematic surface view of the uneven portion.
  • FIG. 1 It is a schematic diagram which shows one aspect of the concavo-convex portion formed on the surface of the substrate which is preferably used in embodiment of this invention.
  • FIG. 1 is a schematic perspective view of the uneven portion
  • (b) is a schematic surface view of the uneven portion. It is a figure explaining the mist CVD apparatus used in an Example. It is a figure which represented typically the relationship between the mask used in Example 1 and the 1st lateral crystal layer.
  • FIG. 14 shows a bird's-eye view SEM image, a cross-section SEM image, and a cross-section SEM image (with inclination) when the crystal film is grown by changing the growth time using the mask pattern of Example 2.
  • the crystal film is a crystal film containing a crystalline metal oxide as a main component and having a corundum structure
  • the dislocation density is 1 ⁇ 10 7 cm- 2 or less
  • the surface area is large. It is characterized by being 10 mm 2 or more.
  • the "dislocation density" refers to the dislocation density obtained from the number of dislocations per unit area observed from a plane or cross-sectional TEM image.
  • the dislocation density is more preferably 8.1 ⁇ 10 6 cm -2 or less, and more preferably 5.5 ⁇ 10 6 cm -2 or less.
  • the crystalline metal oxide is not particularly limited, and for example, one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like can be used.
  • a suitable example is a metal oxide containing the mixture.
  • the crystal structure of the crystalline metal oxide is also not particularly limited, but in the present invention, a corundum structure or a ⁇ -gaul structure is preferable, and a corundum structure is more preferable.
  • the metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium. Most preferably it contains gallium.
  • the "main component” means that the crystalline metal oxide is contained in an atomic ratio of preferably 50% or more, more preferably 70% or more, still more preferably 90% or more with respect to all the components of the crystal film. Means that it may be 100%.
  • the crystal film may be conductive or insulating, but in the present invention, the crystal film may contain a dopant or the like, and is preferably a semiconductor film. Further, the crystal film preferably contains two or more lateral crystal growth layers.
  • a first lateral crystal growth layer is formed on a substrate by a first lateral crystal growth, a mask is arranged on the first lateral crystal growth layer, and further, a first. It can be easily obtained by forming a second lateral crystal growth layer by the lateral crystal growth of 2.
  • a first lateral crystal growth layer is formed on a substrate by a first lateral crystal growth, and the crystal film is formed on the first lateral crystal growth layer. It is characterized in that a mask is placed on the surface and a second lateral crystal growth layer is formed by the second lateral crystal growth.
  • the "lateral crystal growth layer” usually refers to a crystal layer in which crystals have grown in a direction other than the direction that becomes the crystal growth axis of the crystal growth plane (that is, the crystal growth direction) with respect to the crystal growth substrate.
  • the crystal layer in which the crystal grows in a direction having an angle of 0.1 ° to less than 90 ° with respect to the crystal growth direction is preferable, and the crystal layer in which the crystal grows in a direction having an angle of 1 ° to 88 ° is more preferable.
  • a crystal layer in which crystals are grown in a direction having an angle of 5 ° to 85 ° is most preferable.
  • a CVD method such as HVPE or mist CVD using a substrate having concave or convex portions formed on the surface thereof.
  • a groove may be provided on the substrate, or a mask that exposes at least a part of the surface of the substrate may be arranged, and a first lateral crystal growth layer can be formed on the mask.
  • the "dislocation density” refers to the dislocation density obtained from the number of dislocations per unit area observed from a plane or cross-sectional TEM image. In the present invention, the dislocation density is more preferably 8.1 ⁇ 10 6 cm -2 or less, and more preferably 5.5 ⁇ 10 6 cm -2 or less.
  • the crystalline metal oxide is not particularly limited, and for example, one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like can be used. A suitable example is a metal oxide containing the mixture.
  • the crystal structure of the crystalline metal oxide is also not particularly limited, but in the present invention, a corundum structure or a ⁇ -gaul structure is preferable, and a corundum structure is more preferable.
  • the metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium. Most preferably it contains gallium.
  • the "main component" means that the crystalline metal oxide is contained in an atomic ratio of preferably 50% or more, more preferably 70% or more, still more preferably 90% or more with respect to all the components of the crystal film. Means that it may be 100%.
  • the crystal film may be conductive or insulating, but in the present invention, the crystal film may contain a dopant or the like, and is preferably a semiconductor film. Further, in the present invention, it is preferable that the first lateral crystal growth layer has a corundum structure, and it is also preferable that the first lateral crystal growth layer contains gallium. Further, in the present invention, it is preferable that the second lateral crystal growth layer has a corundum structure, and it is also preferable that the second lateral crystal growth layer contains gallium. In the present invention, since a crystal film useful for a semiconductor device can be obtained, the crystal film is preferably a semiconductor film, and more preferably a wide bandgap semiconductor film.
  • a metal source containing a metal is gasified to obtain a metal-containing raw material gas, and then the metal-containing raw material gas and the oxygen-containing raw material gas are supplied onto a substrate in a reaction chamber.
  • a reactive gas is supplied onto the substrate using a substrate having concave or convex portions formed on the surface thereof, and the film is formed under the flow of the reactive gas. To do.
  • the metal source is not particularly limited as long as it contains a metal and can be gasified, and may be a simple substance of a metal or a metal compound.
  • the metal include one or more metals selected from gallium, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like.
  • the metal is preferably one or more metals selected from gallium, aluminum and indium, more preferably gallium, and the metal source is gallium alone. Most preferably.
  • the metal source may be a gas, a liquid, or a solid, but in the embodiment of the present invention, for example, when gallium is used as the metal, the metal source may be a gas, a liquid, or a solid.
  • the metal source is preferably a liquid.
  • the gasification method is not particularly limited and may be a known method as long as the object of the present invention is not impaired.
  • the gasification method is preferably carried out by halogenating the metal source.
  • the halogenating agent used for the halogenation is not particularly limited as long as the metal source can be halogenated, and may be a known halogenating agent.
  • the halogenating agent include halogens and hydrogen halides.
  • the halogen include fluorine, chlorine, bromine, iodine and the like.
  • the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide and the like.
  • the gasification is carried out by supplying a halogen or hydrogen halide as a halogenating agent to the metal source, and the metal source and the halogen or hydrogen halide are vaporized at the vaporization temperature of the metal halide. It is preferable to carry out the reaction by reacting as described above to obtain a metal halide.
  • the halogenation reaction temperature is not particularly limited, but in the embodiment of the present invention, for example, when the metal source is gallium and the halogenating agent is HCl, 900 ° C.
  • the metal-containing raw material gas is not particularly limited as long as it is a gas containing the metal of the metal source.
  • the metal-containing raw material gas include halides (fluoride, chloride, bromide, iodide, etc.) of the metal.
  • the metal source containing a metal is gasified to obtain a metal-containing raw material gas, and then the metal-containing raw material gas and the oxygen-containing raw material gas are supplied onto the substrate in the reaction chamber. Further, in the embodiment of the present invention, the reactive gas is supplied onto the substrate.
  • the oxygen-containing raw material gas include O 2 gas, CO 2 gas, NO gas, NO 2 gas, N 2 O gas, H 2 O gas, O 3 gas and the like.
  • the oxygen-containing raw material gas is preferably one kind or two or more kinds of gases selected from the group consisting of O 2 , H 2 O and N 2 O, and contains O 2. Is more preferable.
  • the oxygen-containing raw material gas may contain CO 2.
  • the reactive gas is usually a reactive gas different from the metal-containing raw material gas and the oxygen-containing raw material gas, and does not contain an inert gas.
  • the reactive gas is not particularly limited, and examples thereof include an etching gas and the like.
  • the etching gas is not particularly limited and may be a known etching gas as long as the object of the present invention is not impaired.
  • the reactive gas is a halogen gas (for example, fluorine gas, chlorine gas, bromine gas, iodine gas, etc.), hydrogen halide gas (for example, phosphoric acid gas, hydrochloric acid gas, hydrogen bromide, etc.).
  • the metal-containing raw material gas, the oxygen-containing raw material gas, and the reactive gas may contain a carrier gas.
  • the carrier gas include an inert gas such as nitrogen and argon.
  • the partial pressure of the metal-containing raw material gas is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 Pa to 1 kPa, and more preferably 5 Pa to 0.5 kPa.
  • the partial pressure of the oxygen-containing raw material gas is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 to 100 times the partial pressure of the metal-containing raw material gas, and 1 to 20 times. Is more preferable.
  • the partial pressure of the reactive gas is also not particularly limited, but in the embodiment of the present invention, it is preferably 0.1 to 5 times the partial pressure of the metal-containing raw material gas, and 0.2 to 3 times. It is more preferable to double.
  • the dopant-containing raw material gas is not particularly limited as long as it contains a dopant.
  • the dopant is also not particularly limited, but in the embodiment of the present invention, it is preferable that the dopant contains one or more elements selected from germanium, silicon, titanium, zirconium, vanadium, niobium and tin. , Germanium, silicon, or tin is more preferred, and germanium is most preferred.
  • the dopant-containing raw material gas preferably has the dopant in the form of a compound (for example, a halide, an oxide, etc.), and more preferably in the form of a halide.
  • the partial pressure of the dopant-containing raw material gas is not particularly limited, but in the embodiment of the present invention, it is preferably 1 ⁇ 10 -7 to 0.1 times the partial pressure of the metal-containing raw material gas. More preferably, it is 5.5 ⁇ 10-6 times to 7.5 ⁇ 10 ⁇ 2 times. In the embodiment of the present invention, it is preferable to supply the dopant-containing raw material gas together with the reactive gas onto the substrate.
  • the substrate is a known substrate, as long as it is plate-shaped and has concave-convex portions or convex portions formed on the surface thereof and can support the crystal film. You can. It may be an insulator substrate, a conductive substrate, or a semiconductor substrate. In the embodiment of the present invention, it is preferable that the substrate is a crystal substrate.
  • the crystal substrate is not particularly limited as long as it is a substrate containing a crystal as a main component, and may be a known substrate. It may be an insulator substrate, a conductive substrate, or a semiconductor substrate. It may be a single crystal substrate or a polycrystalline substrate. Examples of the crystal substrate include a substrate containing a crystal having a corundum structure as a main component, a substrate containing a crystal having a ⁇ -gaul structure as a main component, and a substrate having a hexagonal structure.
  • the "main component” refers to a composition ratio in the substrate containing 50% or more of the crystals, preferably 70% or more, and more preferably 90% or more.
  • Examples of the substrate containing the crystal having a corundum structure as a main component include a sapphire substrate and an ⁇ -type gallium oxide substrate.
  • Examples of the substrate containing the crystal having a ⁇ -gaul structure as a main component include a ⁇ -Ga 2 O 3 substrate or a mixed crystal substrate containing ⁇ -Ga 2 O 3 and Al 2 O 3. ..
  • As the mixed crystal substrate containing ⁇ -Ga 2 O 3 and Al 2 O 3 for example, a mixed crystal substrate containing Al 2 O 3 in an atomic ratio of more than 0% and 60% or less is preferable. Is listed as.
  • Examples of the substrate having the hexagonal structure include a SiC substrate, a ZnO substrate, and a GaN substrate. Examples of other crystal substrates include Si substrates.
  • the crystal substrate is a sapphire substrate.
  • the sapphire substrate include a c-plane sapphire substrate, an m-plane sapphire substrate, and an a-plane sapphire substrate.
  • the sapphire substrate may have an off angle. The off angle is not particularly limited, but is preferably 0 ° to 15 °.
  • the thickness of the crystal substrate is not particularly limited, but is preferably 50 to 2000 ⁇ m, and more preferably 200 to 800 ⁇ m.
  • the substrate since the substrate has concave-convex portions formed of concave portions or convex portions on the surface thereof, the first lateral crystal is more efficient and of higher quality.
  • a growth layer can be obtained.
  • the uneven portion is not particularly limited as long as it is composed of a convex portion or a concave portion, and may be an uneven portion composed of a convex portion, an uneven portion composed of a concave portion, or from the convex portion and the concave portion. It may be an uneven portion. Further, the uneven portion may be formed from a regular convex portion or a concave portion, or may be formed from an irregular convex portion or a concave portion.
  • the uneven portion is formed periodically, more preferably the uneven portion is periodically and regularly patterned, and the mask is such that the uneven portion is composed of the convex portion.
  • the mask is patterned periodically and regularly.
  • the pattern of the uneven portion is not particularly limited, and examples thereof include a striped shape, a dot shape, a mesh shape, and a random shape.
  • the dot shape or the striped shape is preferable, and the dot shape is more preferable. preferable.
  • the dot shape or the stripe shape may be the shape of the opening of the convex portion.
  • the pattern shape of the uneven portion is a polygonal shape such as a triangle, a quadrangle (for example, a square, a rectangle or a trapezoid), a pentagon or a hexagon.
  • the shape is preferably circular or elliptical.
  • the lattice shape of the dots is preferably a lattice shape such as a square lattice, an oblique lattice, a triangular lattice, or a hexagonal lattice, and the lattice shape of the triangular lattice is used. Is more preferable.
  • the cross-sectional shape of the concave or convex portion of the uneven portion is not particularly limited, and is, for example, U-shaped, U-shaped, inverted U-shaped, corrugated, or triangular, quadrangular (for example, square, rectangular, trapezoidal, etc.). ), Polygons such as pentagons and hexagons, etc.
  • the constituent material of the convex portion is not particularly limited, and may be a known mask material. It may be an insulator material, a conductor material, or a semiconductor material. Further, the constituent material may be amorphous, single crystal, or polycrystalline. Examples of the constituent material of the convex portion include oxides such as Si, Ge, Ti, Zr, Hf, Ta, Sn, nitrides or carbides, carbon, diamond, metal, and mixtures thereof. More specifically, a Si-containing compound containing SiO 2 , SiN or polycrystalline silicon as a main component, and a metal having a melting point higher than the crystal growth temperature of the crystalline oxide semiconductor (for example, platinum, gold, silver, palladium). , Rhodium, iridium, precious metals such as ruthenium, etc.). The content of the constituent material is preferably 50% or more, more preferably 70% or more, and most preferably 90% or more in the convex portion in terms of composition ratio.
  • the method for forming the convex portion may be a known method, for example, a known patterning processing method such as photolithography, electron beam lithography, laser patterning, and subsequent etching (for example, dry etching or wet etching). Can be mentioned.
  • the convex portion is preferably striped or dot-shaped, and more preferably dot-shaped.
  • the dot shape or the stripe shape may be the shape of the opening of the convex portion.
  • the crystal substrate is a PSS (Patterned Sapphire Substrate) substrate.
  • the pattern shape of the PSS substrate is not particularly limited and may be a known pattern shape.
  • the pattern shape examples include a cone shape, a bell shape, a dome shape, a hemispherical shape, a square or triangular pyramid shape, and the like.
  • the pattern shape is a cone shape. Is preferable.
  • the pitch interval of the pattern shape is also not particularly limited, but in the embodiment of the present invention, it is preferably 100 ⁇ m or less, and more preferably 1 ⁇ m to 50 ⁇ m.
  • the concave portion is not particularly limited, but may be the same as the constituent material of the convex portion, or may be a substrate. In the embodiment of the present invention, it is preferable that the recess is a void layer provided on the surface of the substrate.
  • the method for forming the concave portion the same method as the method for forming the convex portion can be used.
  • the void layer can be formed on the surface of the substrate by providing a groove on the substrate by a known grooving method.
  • the groove width, groove depth, terrace width, etc. of the void layer are not particularly limited and can be appropriately set as long as the object of the present invention is not impaired. Further, the void layer may contain air, or may contain an inert gas or the like.
  • FIG. 2 shows an aspect of a dot-shaped uneven portion provided on the surface of the substrate according to the embodiment of the present invention.
  • the uneven portion of FIG. 2 is formed of a substrate main body 1 and a plurality of convex portions 2a provided on the surface 1a of the substrate.
  • FIG. 3 shows the surface of the uneven portion shown in FIG. 2 as viewed from the zenith direction.
  • the uneven portion has a configuration in which a conical convex portion 2a is formed on a triangular lattice on the surface 1a of the substrate.
  • the convex portion 2a can be formed by a known processing method such as photolithography.
  • the grid points of the triangular lattice are provided at intervals of a constant period a.
  • the period a is not particularly limited, but in the embodiment of the present invention, it is preferably 100 ⁇ m or less, and more preferably 1 ⁇ m to 50 ⁇ m.
  • the period a refers to the distance between the peak positions (that is, the grid points) of the heights in the adjacent convex portions 2a.
  • FIG. 4 shows one aspect of the dot-shaped uneven portion provided on the surface of the substrate in the embodiment of the present invention, and shows another aspect from FIG.
  • the uneven portion of FIG. 4 is formed of a substrate main body 1 and a convex portion 2a provided on the surface 1a of the substrate.
  • FIG. 5 shows the surface of the uneven portion shown in FIG. 4 as viewed from the zenith direction.
  • the uneven portion has a configuration in which a triangular pyramid-shaped convex portion 2a is formed on a triangular lattice on the surface 1a of the substrate.
  • the convex portion 2a can be formed by a known processing method such as photolithography.
  • the grid points of the triangular lattice are provided at intervals of a constant period a.
  • the period a is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and most preferably 1 ⁇ m to 3 ⁇ m.
  • FIG. 6A shows an aspect of the uneven portion provided on the surface of the substrate according to the embodiment of the present invention
  • FIG. 6B schematically shows the surface of the uneven portion shown in FIG. 6A. It is shown in.
  • the uneven portion of FIG. 6 is formed of a substrate main body 1 and a convex portion 2a having a triangular pattern shape provided on the surface 1a of the substrate.
  • the convex portion 2a is made of the material of the substrate or a silicon-containing compound such as SiO 2, and can be formed by using a known method such as photolithography.
  • the period a between the intersections of the triangular pattern shapes is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • FIG. 7 (a) shows an aspect of the uneven portion provided on the surface of the substrate in the embodiment of the present invention, as in FIG. 6 (a), and FIG. 7 (b) shows FIG. 7 (a).
  • the surface of the uneven portion shown is schematically shown.
  • the uneven portion of FIG. 7A is formed of the substrate main body 1 and the void layer having a triangular pattern shape.
  • the recess 2b can be formed by a known grooving method such as laser dicing.
  • the period a between the intersections of the triangular pattern shapes is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the width and height of the convex portion of the concave-convex portion, the width and depth of the concave portion, the interval, and the like are not particularly limited, but in the embodiment of the present invention, each is in the range of, for example, about 10 nm to about 1 mm, and is preferable. It is about 10 nm to about 300 ⁇ m, more preferably about 10 nm to about 1 ⁇ m, and most preferably about 100 nm to about 1 ⁇ m.
  • the uneven portion may be formed directly on the substrate or may be provided via another layer.
  • a buffer layer including a stress relaxation layer or the like may be provided on the substrate, and when the buffer layer is provided, the uneven portion may be formed on the buffer layer as well. Further, in the embodiment of the present invention, it is preferable that the substrate has a buffer layer on a part or all of the surface.
  • the method for forming the buffer layer is not particularly limited, and may be a known method. Examples of the forming method include a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method, a sputtering method and the like.
  • the buffer layer formed by the mist CVD method has more excellent crystallinity of the first lateral crystal growth layer formed on the buffer layer. This is particularly preferable because it can suppress crystal defects such as tilt.
  • the buffer layer is formed by the mist CVD method will be described in more detail.
  • the buffer layer preferably, for example, atomizes the raw material solution (atomization step), transports the obtained atomized droplets (including mist) to the substrate by a carrier gas (transport step), and then transports the atomized droplets (including mist) to the substrate. It can be formed by thermally reacting the atomized droplets on at least a part of the surface of the substrate (buffer layer forming step). It is also possible to form a buffer layer by thermally reacting the atomized droplets on the entire surface of the substrate.
  • the atomization step atomizes the raw material solution to generate atomized droplets.
  • the method for atomizing the raw material solution is not particularly limited as long as the raw material solution can be atomized, and may be a known method. However, in the embodiment of the present invention, the atomizing method using ultrasonic waves is used. preferable. Atomized droplets obtained using ultrasonic waves have a zero initial velocity and are preferable because they float in the air. For example, instead of spraying them like a spray, they float in space and are transported as a gas. It is very suitable because it is a possible atomized droplet and is not damaged by collision energy.
  • the droplet size is not particularly limited and may be a droplet of about several mm, but is preferably 50 ⁇ m or less, and more preferably 0.1 to 10 ⁇ m.
  • the raw material solution is not particularly limited as long as it is a solution in which the buffer layer can be obtained by mist CVD.
  • the raw material solution include an aqueous solution of an organic metal complex of an atomizing metal (for example, an acetylacetonate complex) and a halide (for example, fluoride, chloride, bromide, iodide, etc.).
  • the atomizing metal is not particularly limited, and such atomizing metal is selected from, for example, aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like1 Species or two or more kinds of metals and the like can be mentioned.
  • the atomizing metal preferably contains at least gallium, indium or aluminum, and more preferably at least gallium.
  • the content of the atomizing metal in the raw material solution is not particularly limited as long as the object of the present invention is not impaired, but is preferably 0.001 mol% to 50 mol%, and more preferably 0.01 mol% to. It is 50 mol%.
  • the raw material solution contains a dopant.
  • the dopant is preferably tin, germanium, or silicon, more preferably tin, or germanium, and most preferably tin.
  • the concentration of the dopant may be usually about 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 22 / cm 3 , and the concentration of the dopant is, for example, a low concentration of about 1 ⁇ 10 17 / cm 3 or less.
  • the dopant may be contained in a high concentration of about 1 ⁇ 10 20 / cm 3 or more.
  • the concentration of the dopant is preferably 1 ⁇ 10 20 / cm 3 or less, and more preferably 5 ⁇ 10 19 / cm 3 or less.
  • the solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent.
  • the solvent preferably contains water, more preferably water or a mixed solvent of water and alcohol, and most preferably water. More specific examples of the water include pure water, ultrapure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, fresh water, seawater, and the like. In the above, ultrapure water is preferable.
  • the mist or the droplets are conveyed into the film forming chamber by the carrier gas.
  • the carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include an inert gas such as oxygen, ozone, nitrogen and argon, and a reducing gas such as hydrogen gas and forming gas. ..
  • the type of the carrier gas may be one type, but may be two or more types, and a diluted gas having a reduced flow rate (for example, a 10-fold diluted gas) or the like is further used as the second carrier gas. May be good.
  • the carrier gas may be supplied not only at one location but also at two or more locations.
  • the flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min.
  • the flow rate of the diluting gas is preferably 0.001 to 2 L / min, more preferably 0.1 to 1 L / min.
  • the buffer layer is formed on the substrate by thermally reacting the mist or droplets in the film forming chamber.
  • the thermal reaction may be such that the mist or droplets react with heat, and the reaction conditions and the like are not particularly limited as long as the object of the present invention is not impaired.
  • the thermal reaction is usually carried out at a temperature equal to or higher than the evaporation temperature of the solvent, but is preferably not too high (for example, 1000 ° C.) or lower, more preferably 650 ° C. or lower, and most preferably 400 ° C. to 650 ° C. preferable.
  • the thermal reaction may be carried out under any atmosphere of vacuum, non-oxygen atmosphere, reducing gas atmosphere and oxygen atmosphere as long as the object of the present invention is not impaired, and the thermal reaction may be carried out under atmospheric pressure or atmospheric pressure. It may be carried out under either reduced pressure or reduced pressure, but in the embodiment of the present invention, it is preferably carried out under atmospheric pressure.
  • the thickness of the buffer layer can be set by adjusting the formation time.
  • the first transverse crystal growth layer is formed on the buffer layer in the above-described embodiment of the present invention.
  • the buffer layer is not particularly limited, but in the embodiment of the present invention, it is preferable that the buffer layer contains a metal oxide as a main component.
  • the metal oxide include metal oxides containing one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. Be done.
  • the metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium, and at least gallium. Is most preferable to contain.
  • the buffer layer may contain a metal oxide as a main component, and the metal oxide contained in the buffer layer may contain gallium and a smaller amount of aluminum than gallium. ..
  • the buffer layer may include a superlattice structure. By using the buffer layer including the superlattice structure, not only good crystal growth can be realized, but also warpage during crystal growth can be suppressed more easily.
  • the "main component” means that the metal oxide is preferably 50% or more, more preferably 70% or more, still more preferably 90%, based on the atomic ratio of all the components of the buffer layer. It means that the above is included, and it means that it may be 100%.
  • the crystal structure of the crystalline oxide semiconductor is not particularly limited, but in the embodiment of the present invention, it is preferably a corundum structure or a ⁇ -gaul structure, and more preferably a corundum structure.
  • the first lateral crystal growth layer and the buffer layer may have the same main components or different main components from each other as long as the object of the present invention is not impaired. In embodiments, they are preferably the same.
  • a metal-containing raw material gas, an oxygen-containing raw material gas, a reactive gas and, if desired, a dopant-containing raw material gas are supplied onto the substrate on which the buffer layer may be provided, and the reactive gas is supplied.
  • the film is formed under the distribution of.
  • it is preferable that the film formation is performed on a heated substrate.
  • the film formation temperature is not particularly limited as long as the object of the present invention is not impaired, but is preferably 900 ° C. or lower, more preferably 700 ° C. or lower, and most preferably 400 ° C. to 700 ° C.
  • the film formation may be carried out under any atmosphere of vacuum, non-vacuum, reducing gas atmosphere, inert gas atmosphere and oxidizing gas atmosphere as long as the object of the present invention is not impaired. Further, it may be carried out under normal pressure, atmospheric pressure, pressurization or reduced pressure, but in the above-described embodiment of the present invention, it is preferably carried out under normal pressure or atmospheric pressure.
  • the film thickness can be set by adjusting the film formation time.
  • the first lateral crystal growth layer usually contains a crystalline metal oxide as a main component.
  • the crystalline metal oxide include metal oxides containing one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. Can be mentioned.
  • the crystalline metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, preferably at least indium and / and gallium. Is more preferable, and crystalline gallium oxide or a mixed crystal thereof is most preferable.
  • the "main component” means that the crystalline metal oxide is preferably 50% or more in atomic ratio with respect to all the components of the first lateral crystal growth layer. It means that it is preferably contained in an amount of 70% or more, more preferably 90% or more, and may be 100% or more.
  • the crystal structure of the crystalline metal oxide is not particularly limited, but in the embodiment of the present invention, a corundum structure or a ⁇ -gallia structure is preferable, a corundum structure is more preferable, and the first lateral structure is preferable.
  • the directional crystal growth layer is a crystal growth film having a corundum structure.
  • a crystal growth film having a corundum structure can be obtained by performing the film formation using a substrate containing a corundum structure as the substrate.
  • the crystalline metal oxide may be a single crystal or a polycrystal, but in the embodiment of the present invention, it is preferably a single crystal.
  • the upper limit of the thickness of the first lateral crystal growth layer is not particularly limited, but is, for example, 100 ⁇ m, and the lower limit of the thickness of the first lateral crystal growth layer is also not particularly limited, but is 3 ⁇ m. Is preferable, 10 ⁇ m is more preferable, and 20 ⁇ m is most preferable.
  • the thickness of the first lateral crystal growth layer is preferably 3 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and most preferably 20 ⁇ m to 100 ⁇ m.
  • the convex portion is formed as a mask on the first lateral crystal growth layer.
  • the mask may be the same as the convex portion.
  • the first lateral crystal growth layer contains two or more lateral crystal portions, and the masks are respectively arranged on the two or more lateral crystal portions. .. In the two or more lateral crystal growth portions, two or more first lateral crystal growth portions are formed in the first lateral crystal growth, and each of the first lateral crystal growth portions is formed. It may be two or more lateral crystal portions before they meet each other.
  • the mask on the transverse crystal growth layer is preferably patterned periodically and regularly, and the spacing between the mask and / or openings on the transverse crystal growth layer is on the substrate. It is preferably narrower than the mask and / or opening spacing of. With such an interval, thermal stress and the like can be further relaxed, and a large-area and excellent crystalline crystal film can be obtained more easily.
  • the distance between the mask and / or the opening on the first lateral growth layer is not particularly limited, but is preferably 1 ⁇ m to 50 ⁇ m.
  • a mask may be provided on the second lateral growth layer to further carry out lateral crystal growth. By doing so, it becomes easier to obtain a crystal film having a large area of 2 inches or more and a low dislocation density.
  • the first lateral crystal growth layer or the second lateral crystal growth layer may be used as the exfoliation sacrificial layer.
  • the crystal film obtained by the embodiment of the manufacturing method according to the embodiment of the present invention can be particularly preferably used for a semiconductor device, and is particularly useful for a power device.
  • Semiconductor devices formed using the crystal film include transistors and TFTs such as MIS and HEMT, Schottky barrier diodes using semiconductor-metal junctions, PN or PIN diodes combined with other P layers, and light emitting and receiving elements. Can be mentioned.
  • the crystal film may be used as it is in a semiconductor device or the like, or may be applied to a semiconductor device or the like after using a known method such as peeling from the substrate or the like.
  • the mist CVD device 19 used in this embodiment will be described with reference to FIG.
  • the mist CVD apparatus 19 is for adjusting the flow rate of the sample table 21 on which the film-deposited sample 20 such as a substrate is placed, the carrier gas source 22a for supplying the carrier gas, and the carrier gas sent out from the carrier gas source 22a.
  • a film forming chamber 27 composed of a mist generation source 24 containing the raw material solution 24a, a container 25 containing water 25a, an ultrasonic vibrator 26 attached to the bottom surface of the container 25, and a quartz tube having an inner diameter of 40 mm. And a heater 28 installed in the peripheral portion of the film forming chamber 27.
  • the sample table 21 is made of quartz, and the surface on which the sample to be filmed 20 is placed is inclined from the horizontal plane.
  • Gallium bromide and tin bromide are mixed with ultrapure water, and the aqueous solution is adjusted so that the atomic ratio of tin to gallium is 1: 0.08 and gallium 0.1 mol / L. Further, hydrobromic acid was added so as to be 20% by volume, and this was used as a raw material solution.
  • Preparation for film formation 1-2 The raw material solution 24a obtained in 1) was housed in the mist generation source 24. Next, as the sample to be filmed 20, a c-plane sapphire substrate was placed on the sample table 21, and the heater 28 was operated to raise the temperature in the film forming chamber 27 to 460 ° C. Next, the flow control valves 23a and 23b are opened to supply the carrier gas into the film forming chamber 27 from the carrier gas source 22a and the carrier gas (dilution) source 22b, and the atmosphere of the film forming chamber 27 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas was adjusted to 2.0 L / min, and the flow rate of the carrier gas (dilution) was adjusted to 0.1 L / min. Nitrogen was used as the carrier gas.
  • the ultrasonic transducer 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through water 25a, whereby the raw material solution 24a was made into fine particles to generate raw material fine particles.
  • the raw material fine particles were introduced into the film forming chamber 27 by the carrier gas and reacted in the film forming chamber 27 at 460 ° C. to form a buffer layer on the sample to be filmed 20.
  • the film formation time was 5 minutes. 1-5.
  • Mask formation 1-4 A mask having dot-shaped (diameter 5 ⁇ m) openings at intervals of 50 ⁇ m was formed on the buffer layer obtained in the above.
  • the halide vapor deposition (HVPE) device 50 used in this embodiment will be described with reference to FIG.
  • the HVPE apparatus 50 includes a reaction chamber 51, a heater 52a for heating the metal source 57, and a heater 52b for heating the substrate fixed to the substrate holder 56, and further supplies an oxygen-containing raw material gas into the reaction chamber 51. It includes a pipe 55b, a reactive gas supply pipe 54b, and a board holder 56 on which a board is installed.
  • a metal-containing raw material gas supply pipe 53b is provided in the reactive gas supply pipe 54b to form a double pipe structure.
  • the oxygen-containing raw material gas supply pipe 55b is connected to the oxygen-containing raw material gas supply source 55a, and the oxygen-containing raw material gas is transferred from the oxygen-containing raw material gas supply source 55a via the oxygen-containing raw material gas supply pipe 55b to the substrate holder.
  • the flow path of the oxygen-containing raw material gas is configured so that it can be supplied to the substrate fixed to 56.
  • the reactive gas supply pipe 54b is connected to the reactive gas supply source 54a, and the reactive gas is fixed to the substrate holder 56 from the reactive gas supply source 54a via the reactive gas supply pipe 54b.
  • the flow path of the reactive gas is configured so that it can be supplied to the substrate.
  • the metal-containing raw material gas supply pipe 53b is connected to the halogen-containing raw material gas supply source 53a, and the halogen-containing raw material gas is supplied to the metal source to become the metal-containing raw material gas, and the metal-containing raw material gas is fixed to the substrate holder 56. It is supplied to the substrate.
  • the reaction chamber 51 is provided with a gas discharge unit 59 for exhausting the used gas, and further, a protective sheet 58 for preventing the reactants from depositing is provided on the inner wall of the reaction chamber 51.
  • a gallium (Ga) metal source 57 (purity 99.99999% or more) is arranged inside the metal-containing raw material gas supply pipe 53b, and the buffer layer obtained in 1 above is used as a substrate on the substrate holder 56 in the reaction chamber 51. And a sapphire substrate with a dot-shaped mask was installed. After that, the heaters 52a and 52b were operated to raise the temperature in the reaction chamber 51 to 510 ° C.
  • Hydrogen chloride (HCl) gas (purity 99.999% or more) is applied to the gallium (Ga) metal 57 arranged inside the first lateral crystal growth metal-containing raw material gas supply pipe 53b from the halogen-containing raw material gas supply source 53a.
  • Gallium chloride (GaCl / GaCl 3 ) was produced by a chemical reaction between a Ga metal and hydrogen chloride (HCl) gas.
  • the obtained gallium chloride (GaCl / GaCl 3 ) and the O 2 gas (purity 99.99995% or more) supplied from the oxygen-containing raw material gas supply source 55a are used in the metal-containing raw material supply pipe 53b and the oxygen-containing raw material gas, respectively.
  • the flow rate of the HCl gas supplied from the halogen-containing raw material gas supply source 53a is 10 sccm
  • the flow rate of the HCl gas supplied from the reactive gas supply source 54a is 5.0 sccm
  • the flow rate of the HCl gas is supplied from the oxygen-containing raw material gas supply source 55a.
  • the flow rate of the O 2 gas was maintained at 20 sccm. In the obtained film, many columnar crystals due to crystal association could be confirmed.
  • FIG. 9 shows the relationship between the mask and the first lateral crystal layer.
  • the mask 5 is formed on the c-plane sapphire substrate. Crystal growth proceeds from the opening 6 to form columnar crystals 8, but the first lateral crystal growth is completed before the association. Then, the mask 7 is formed on the first lateral crystal growth layer which is not directly above the opening 6 in the columnar crystal 8.
  • Second lateral crystal growth Using the film obtained in 2. above. Crystal growth was carried out in the same manner as in the above to obtain a crystal film. The obtained crystal film was a clean film without cracks or abnormal growth. The obtained film was identified by performing a 2 ⁇ / ⁇ scan at an angle of 15 to 95 degrees using an XRD diffractometer for thin films. The measurement was performed using CuK ⁇ ray. As a result, the obtained film was ⁇ -Ga 2 O 3 . The film thickness of the obtained crystal film was 100 ⁇ m. When the obtained film was observed by TEM, a very clean film was obtained as shown in FIG. In addition, in FIG.
  • Example 2 (Example 2) 1-4.
  • a line-shaped mask having a width of 4 ⁇ m parallel to the m-axis was formed in a striped pattern at intervals of 2 ⁇ m (the interval is also referred to as an opening of the mask) and a period of 6 ⁇ m. 3. 3.
  • the line-shaped mask in which the striped pattern is formed is used as the mask. From 4.
  • a crystal film was obtained in the same manner as above.
  • FIG. 14 shows a bird's-eye view SEM image, a cross-section SEM image, and a cross-section SEM image (with inclination) when the crystal film is grown by changing the growth time using the mask pattern of Example 2.
  • the growth time was set longer in the order of the crystal films (1), (2), and (3).
  • the first lateral growth is shown as the first-stage ELO
  • the second lateral growth is shown as the second-stage ELO. It was confirmed that the obtained crystal film was an ⁇ -Ga 2 O 3 film even in the SAED pattern. From the SEM image of FIG. 14, it can be seen that by setting the growth time longer , the crystal association of linear ⁇ -Ga 2 O 3 progressed and a flattened film was obtained.
  • the crystal film in the embodiment of the present invention can be used in all fields such as semiconductors (for example, compound semiconductor electronic devices, etc.), electronic parts / electrical equipment parts, optical / electrophotographic related devices, industrial members, etc., but in particular, semiconductor devices. It is useful for manufacturing and the like.
  • semiconductors for example, compound semiconductor electronic devices, etc.
  • electronic parts / electrical equipment parts for example, electronic parts / electrical equipment parts
  • optical / electrophotographic related devices for industrial members, etc., but in particular, semiconductor devices. It is useful for manufacturing and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

第1の横方向結晶成長により、基板上に第1の横方向結晶成長層を形成し、前記第1の横方向結晶成長層上にマスクを配置し、さらに、第2の横方向結晶成長により、第2の横方向結晶成長層を形成することで、結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、転位密度が1×10cm-2以下であり、表面積が10mm以上である結晶膜を得る。

Description

結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法
 本発明は、半導体装置に有用な結晶膜に関する。また、本発明は、半導体装置に関する。さらに、本発明は、半導体装置に有用な結晶膜の製造方法に関する。
 高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。また、広いバンドギャップからLEDやセンサー等の受発光装置としての幅広い応用も期待されている。特に、酸化ガリウムの中でもコランダム構造を有するα―Ga等は、非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し(特許文献9等)、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
 しかしながら、酸化ガリウムは、最安定相がβガリア構造であるので、特殊な成膜法を用いなければ、準安定相であるコランダム構造の結晶膜を成膜することが困難である。また、コランダム構造を有するα―Gaは準安定相であり、融液成長によるバルク基板が利用できない。そのため、現状はα―Gaと同じ結晶構造を有するサファイアを基板として用いている。しかし、α―Gaとサファイアとは格子不整合度が大きいため、サファイア基板上にヘテロエピタキシャル成長されるα―Gaの結晶膜は、転位密度が高くなる傾向がある。また、コランダム構造の結晶膜に限らず、成膜レートや結晶品質の向上、クラックや異常成長の抑制、ツイン抑制、反りによる基板の割れ等においてもまだまだ課題が数多く存在している。このような状況下、現在、コランダム構造を有する結晶性半導体の成膜について、いくつか検討がなされている。
 特許文献1には、ガリウム又はインジウムの臭化物又はヨウ化物を用いて、ミストCVD法により、酸化物結晶薄膜を製造する方法が記載されている。特許文献2~4には、コランダム型結晶構造を有する下地基板上に、コランダム型結晶構造を有する半導体層と、コランダム型結晶構造を有する絶縁膜とが積層された多層構造体が記載されている。また、特許文献5~7のように、ELO基板やボイド形成を用いて、ミストCVDによる成膜も検討されている。しかしながら、いずれの方法も成膜レートにおいてまだまだ満足のいくものではなく、成膜レートに優れた成膜方法が待ち望まれていた。
 特許文献8には、少なくとも、ガリウム原料と酸素原料とを用いて、ハライド気相成長法(HVPE法)により、コランダム構造を有する酸化ガリウムを成膜することが記載されている。しかしながら、α―Gaは準安定相であるので、β―Gaのように成膜することが困難であり、工業的にはまだまだ多くの課題があった。また、特許文献10および11には、PSS基板を用いて、ELO結晶成長を行い、表面積は9μm以上であり、転移密度が5×10cm-2の結晶膜を得ることが記載されている。しかしながら、パワーデバイスとして酸化ガリウムの性能を存分に発揮するには、さらに大面積の低転位密度の結晶膜を得ることが望ましく、このような結晶膜およびこのような結晶膜の製造方法が待ち望まれていた。
 なお、特許文献1~11はいずれも本出願人らによる特許または特許出願に関する公報であり、現在も検討が進められている。
特許第5397794号 特許第5343224号 特許第5397795号 特開2014-72533号公報 特開2016-100592号公報 特開2016-98166号公報 特開2016-100593号公報 特開2016-155714号公報 国際公開第2014/050793号公報 米国公開第2019/0057865号公報 特開2019-034883号公報
金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月
 本発明の第1の態様として、半導体装置等に有用な大面積でかつ高品質な結晶膜を提供することを目的の一つとする。また、本発明の第2の態様として、半導体装置等に有用な大面積でかつ高品質な結晶膜を工業的有利に製造できる方法を提供することを目的の一つとする。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、特定の条件下で二段階ELOを実施すると、結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、転位密度が1×10cm-2以下であり、表面積が10mm以上である結晶膜が容易に得られることを知見し、このような結晶膜が上記した従来の問題を一挙に解決し得ることを見出した。
 また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
 すなわち、本発明は、以下の発明に関する。
[1] 結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、転位密度が1×10cm-2以下であり、表面積が10mm以上であることを特徴とする結晶膜。
[2] 結晶性金属酸化物が少なくともガリウムを含む、前記[1]記載の結晶膜。
[3] さらに、二層以上の横方向結晶成長層を含む、前記[1]または[2]に記載の結晶膜。
[4] 結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、少なくとも一層以上の横方向結晶成長層を含み、表面積が10mm以上の結晶膜であることを特徴とする結晶膜。
[5] さらに、ドーパントを含む、前記[1]~[4]のいずれかに記載の結晶膜。
[6] 結晶膜を含む半導体装置であって、前記結晶膜が前記[1]~[5]のいずれかに記載の結晶膜であることを特徴とする半導体装置。
[7] パワーデバイスである、前記[6]記載の半導体装置。
[8] 第1の横方向結晶成長により、基板上に第1の横方向結晶成長層を形成し、前記第1の横方向結晶成長層上にマスクを配置し、さらに、第2の横方向結晶成長により、第2の横方向結晶成長層を形成することを特徴とする結晶膜の製造方法。
[9] 前記第1の横方向結晶成長を、HVPE法またはミストCVD法により行う、前記[8]記載の製造方法。
[10] 前記第2の横方向結晶成長を、HVPE法またはミストCVD法により行う、前記[8]または[9]に記載の製造方法。
[11] 前記マスクが前記第1の横方向成長層上にドット状に配置される、前記[8]~[10]のいずれかに記載の製造方法。
[12] 前記マスクがドット状の開口部を有しており、前記第1の横方向成長層上に配置される、前記[8]~[10]のいずれかに記載の製造方法。
[13] 前記マスクがライン形状を有する、前記[8]~[10]のいずれかに記載の製造方法。 
[14] 第1の横方向結晶成長層がコランダム構造を有する、前記[8]~[13]のいずれかに記載の製造方法。
[15] 第1の横方向結晶成長層がガリウムを含む、前記[8]~[14]のいずれかに記載の製造方法。
[16] 第2の横方向結晶成長層がコランダム構造を有する、前記[8]~[15]のいずれかに記載の製造方法。
[17] 第2の横方向結晶成長層がガリウムを含む、前記[8]~[16]のいずれかに記載の製造方法。
[18] 第1の横方向結晶成長層が2以上の横方向結晶部を含んでおり、前記2以上の横方向結晶部上に前記マスクがそれぞれ配置されている、前記[8]~[17]のいずれかに記載の製造方法。
[19] 前記マスクおよび/または開口部が周期的かつ規則的にパターン化されている、前記[8]~[18]のいずれかに記載の製造方法。
[20] 基板上にマスクを配置し、次いで、第1の横方向結晶成長により、第1の横方向結晶成長層を形成する、前記[8]~[19]のいずれかに記載の製造方法。
[21] 前記の基板上のマスクおよび/または開口部が周期的かつ規則的にパターン化されており、前記の基板上のマスクおよび/または開口部の間隔が、前記の第1の横方向成長層上のマスクおよび/または開口部の間隔よりも広い前記[20]記載の製造方法。
[22] 前記の基板上のマスクおよび/または開口部の間隔が10μm~100μmであり、前記の第1の横方向成長層上のマスクおよび/または開口部の間隔が1μm~50μmである前記[21]記載の製造方法。
 本発明の実施態様における結晶膜は、大面積かつ高品質な結晶膜であり、半導体装置等に有用である。また、本発明の実施態様における結晶膜の製造方法は、半導体装置等に有用な大面積かつ高品質な結晶膜を工業的有利に製造することができる。
本発明の実施態様において好適に用いられるハライド気相成長(HVPE)装置を説明する図である。 本発明の実施態様において好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。 本発明の実施態様において好適に用いられる基板の表面上に形成された凹凸部の表面を模式的に示す図である。 本発明の実施態様において好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。 本発明の実施態様において好適に用いられる基板の表面上に形成された凹凸部の表面を模式的に示す図である。 本発明の実施態様において好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。(a)は凹凸部の模式的斜視図であり、(b)は凹凸部の模式的表面図である。 本発明の実施態様において好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。(a)は凹凸部の模式的斜視図であり、(b)は凹凸部の模式的表面図である。 実施例で用いたミストCVD装置を説明する図である。 実施例1で用いたマスクと第1の横方向結晶層との関係を模式的に表した図である。 実施例1における平面TEM像を示す図である。 実施例1におけるSAED(Selected Area Electron Diffraction)パターンを示す図である。 実施例1におけるSEM画像を示す図である。 実施例1における膜の外観写真を示す図である。 図14に、実施例2のマスクパターンを用いて、成長時間を変えて結晶膜を成長させた時の鳥瞰SEM画像、断面SEM画像、断面SEM画像(傾斜あり)を示す。
 本発明の第1の態様として、結晶膜が、結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、転位密度が1×10cm-2以下であり、表面積が10mm以上であることを特長とする。なお、「転位密度」とは、平面または断面TEM像より観察される単位面積あたりの転位の数から求められる転位密度をいう。本発明においては、転位密度が、8.1×10cm-2以下であるのがより好ましく、5.5×10cm-2以下であるのがより好ましい。前記結晶性金属酸化物としては、特に限定されないが、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属を含む金属酸化物などが好適な例として挙げられる。前記結晶性金属酸化物の結晶構造も特に限定されないが、本発明においては、コランダム構造またはβガリア構造であるのが好ましく、コランダム構造であるのがより好ましい。本発明においては、前記金属酸化物が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を含有するのが好ましく、少なくともインジウムまたは/およびガリウムを含んでいるのがより好ましく、少なくともガリウムを含んでいるのが最も好ましい。「主成分」とは、前記結晶性金属酸化物が、原子比で、前記結晶膜の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。前記結晶膜は、導電性であっても絶縁性であってもよいが、本発明においては、前記結晶膜がドーパント等を含んでいてもよく、半導体膜であるのが好ましい。また、前記結晶膜は、二層以上の横方向結晶成長層を含むのが好ましい。
 前記結晶膜は、例えば、第1の横方向結晶成長により、基板上に第1の横方向結晶成長層を形成し、前記第1の横方向結晶成長層上にマスクを配置し、さらに、第2の横方向結晶成長により、第2の横方向結晶成長層を形成することにより容易に得ることができる。本発明の第2の態様として、結晶膜の製造方法は、第1の横方向結晶成長により、基板上に第1の横方向結晶成長層を形成し、前記第1の横方向結晶成長層上にマスクを配置し、さらに、第2の横方向結晶成長により、第2の横方向結晶成長層を形成することを特長とする。「横方向結晶成長層」は、通常、結晶成長基板に対して結晶成長面の結晶成長軸となる方向(すなわち結晶成長方向)ではない方向に結晶成長した結晶層のことをいうが、本発明においては、結晶成長方向に対して、0.1°~90°未満の角度となる方向に結晶成長した結晶層が好ましく、1°~88°の角度となる方向に結晶成長した結晶層がより好ましく、5°~85°の角度となる方向に結晶成長した結晶層が最も好ましい。なお、各横方向結晶成長には、表面に凹部または凸部からなる凹凸部が形成されている基板を用いて、HVPEまたはミストCVD等のCVD法を適用することが好ましい。なお、基板上には溝を設けてもよいし、少なくとも基板の表面の一部を露出するマスクを配置してもよく、その上に第1の横方向結晶成長層を形成することができる。前記製造方法により、特に、結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、転位密度が1×10cm-2以下であり、表面積が10mm以上である結晶膜を容易に得ることができる。なお、「転位密度」とは、平面または断面TEM像より観察される単位面積あたりの転位の数から求められる転位密度をいう。本発明においては、転位密度が、8.1×10cm-2以下であるのがより好ましく、5.5×10cm-2以下であるのがより好ましい。前記結晶性金属酸化物としては、特に限定されないが、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属を含む金属酸化物などが好適な例として挙げられる。前記結晶性金属酸化物の結晶構造も特に限定されないが、本発明においては、コランダム構造またはβガリア構造であるのが好ましく、コランダム構造であるのがより好ましい。本発明においては、前記金属酸化物が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を含有するのが好ましく、少なくともインジウムまたは/およびガリウムを含んでいるのがより好ましく、少なくともガリウムを含んでいるのが最も好ましい。「主成分」とは、前記結晶性金属酸化物が、原子比で、前記結晶膜の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。前記結晶膜は、導電性であっても絶縁性であってもよいが、本発明においては、前記結晶膜がドーパント等を含んでいてもよく、半導体膜であるのが好ましい。また、本発明においては、第1の横方向結晶成長層がコランダム構造を有するのが好ましく、また、第1の横方向結晶成長層がガリウムを含むのも好ましい。また、本発明においては、第2の横方向結晶成長層がコランダム構造を有するのが好ましく、また、第2の横方向結晶成長層がガリウムを含むのも好ましい。本発明においては、半導体装置に有用な結晶膜が得られるので、前記結晶膜が半導体膜であるのが好ましく、ワイドバンドギャップ半導体膜であるのがより好ましい。
 以下、前記HVPE法を用いて、前記第1の横方向結晶成長層を形成する方法の一例を説明する。
 前記HVPE法の実施形態の一つとして、金属を含む金属源をガス化して金属含有原料ガスとし、ついで、前記金属含有原料ガスと、酸素含有原料ガスとを反応室内の基板上に供給して成膜する際に、表面に凹部または凸部からなる凹凸部が形成されている基板を用いて、反応性ガスを前記基板上に供給し、前記成膜を、前記反応性ガスの流通下で行うことが挙げられる。
(金属源)
 前記金属源は、金属を含んでおり、ガス化が可能なものであれば、特に限定されず、金属単体であってもよいし、金属化合物であってもよい。前記金属としては、例えば、ガリウム、アルミニウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属等が挙げられる。本発明の実施態様においては、前記金属が、ガリウム、アルミニウムおよびインジウムから選ばれる1種または2種以上の金属であるのが好ましく、ガリウムであるのがより好ましく、前記金属源が、ガリウム単体であるのが最も好ましい。また、前記金属源は、気体であってもよいし、液体であってもよいし、固体であってもよいが、本発明の実施態様においては、例えば、前記金属としてガリウムを用いる場合には、前記金属源が液体であるのが好ましい。
 前記ガス化の方法は、本発明の目的を阻害しない限り、特に限定されず、公知の方法であってよい。本発明の実施態様においては、前記ガス化の方法が、前記金属源をハロゲン化することにより行われるのが好ましい。前記ハロゲン化に用いるハロゲン化剤は、前記金属源をハロゲン化できさえすれば、特に限定されず、公知のハロゲン化剤であってよい。前記ハロゲン化剤としては、例えば、ハロゲンまたはハロゲン化水素等が挙げられる。前記ハロゲンとしては、例えば、フッ素、塩素、臭素、またはヨウ素等が挙げられる。また、前記ハロゲン化水素としては、例えば、フッ化水素、塩化水素、臭化水素、ヨウ化水素等が挙げられる。本発明の実施態様においては、前記ハロゲン化に、ハロゲン化水素を用いるのが好ましく、塩化水素を用いるのがより好ましい。本発明の実施態様においては、前記ガス化を、前記金属源に、ハロゲン化剤として、ハロゲンまたはハロゲン化水素を供給して、前記金属源とハロゲンまたはハロゲン化水素とをハロゲン化金属の気化温度以上で反応させてハロゲン化金属とすることにより行うのが好ましい。前記ハロゲン化反応温度は、特に限定されないが、本発明の実施態様においては、例えば、前記金属源がガリウムであり、前記ハロゲン化剤が、HClである場合には、900℃以下が好ましく、700℃以下がより好ましく、400℃~700℃であるのが最も好ましい。前記金属含有原料ガスは、前記金属源の金属を含むガスであれば、特に限定されない。前記金属含有原料ガスとしては、例えば、前記金属のハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物など)等が挙げられる。
 本発明の実施形態においては、金属を含む金属源をガス化して金属含有原料ガスとした後、前記金属含有原料ガスと、前記酸素含有原料ガスとを、前記反応室内の基板上に供給する。また、本発明の実施態様においては、反応性ガスを前記基板上に供給する。前記酸素含有原料ガスとしては、例えば、Oガス、COガス、NOガス、NOガス、NOガス、HOガスまたはOガス等が挙げられる。本発明の実施態様においては、前記酸素含有原料ガスが、O、HOおよびNOからなる群から選ばれる1種または2種以上のガスであるのが好ましく、Oを含むのがより好ましい。なお、実施形態の一つとして、前記酸素含有原料ガスはCOを含んでいてもよい。前記反応性ガスは、通常、金属含有原料ガスおよび酸素含有原料ガスとは異なる反応性のガスであり、不活性ガスは含まれない。前記反応性ガスとしては、特に限定されないが、例えば、エッチングガス等が挙げられる。前記エッチングガスは、本発明の目的を阻害しない限り、特に限定されず、公知のエッチングガスであってよい。本発明の実施態様においては、前記反応性ガスが、ハロゲンガス(例えば、フッ素ガス、塩素ガス、臭素ガスまたはヨウ素ガス等)、ハロゲン化水素ガス(例えば、フッ酸ガス、塩酸ガス、臭化水素ガス、ヨウ化水素ガス等)、水素ガスまたはこれら2種以上の混合ガス等であるのが好ましく、ハロゲン化水素ガスを含むのが好ましく、塩化水素を含むのが最も好ましい。なお、前記金属含有原料ガス、前記酸素含有原料ガス、前記反応性ガスは、キャリアガスを含んでいてもよい。前記キャリアガスとしては、例えば、窒素やアルゴン等の不活性ガス等が挙げられる。また、前記金属含有原料ガスの分圧は特に限定されないが、本発明の実施態様においては、0.5Pa~1kPaであるのが好ましく、5Pa~0.5kPaであるのがより好ましい。前記酸素含有原料ガスの分圧は、特に限定されないが、本発明の実施態様においては、前記金属含有原料ガスの分圧の0.5倍~100倍であるのが好ましく、1倍~20倍であるのがより好ましい。前記反応性ガスの分圧も、特に限定されないが、本発明の実施形態においては、前記金属含有原料ガスの分圧の0.1倍~5倍であるのが好ましく、0.2倍~3倍であるのがより好ましい。
 本発明の実施形態においては、さらに、ドーパント含有原料ガスを前記基板に供給するのも好ましい。前記ドーパント含有原料ガスは、ドーパントを含んでいれば、特に限定されない。前記ドーパントも、特に限定されないが、本発明の実施態様においては、前記ドーパントが、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム、ニオブおよびスズから選ばれる1種または2種以上の元素を含むのが好ましく、ゲルマニウム、ケイ素、またはスズを含むのがより好ましく、ゲルマニウムを含むのが最も好ましい。このようにドーパント含有原料ガスを用いることにより、得られる膜の導電率を容易に制御することができる。前記ドーパント含有原料ガスは、前記ドーパントを化合物(例えば、ハロゲン化物、酸化物等)の形態で有するのが好ましく、ハロゲン化物の形態で有するのがより好ましい。前記ドーパント含有原料ガスの分圧は、特に限定されないが、本発明の実施態様においては、前記金属含有原料ガスの分圧の1×10-7倍~0.1倍であるのが好ましく、2.5×10-6倍~7.5×10-2倍であるのがより好ましい。なお、本発明の実施態様においては、前記ドーパント含有原料ガスを、前記反応性ガスとともに前記基板上に供給するのが好ましい。
(基板)
 前記基板は、板状であって、表面に凹部または凸部からなる凹凸部が形成されており、前記結晶膜を支持することができるものであれば、特に限定されず、公知の基板であってよい。絶縁体基板であってもよいし、導電性基板であってもよいし、半導体基板であってもよい。本発明の実施形態においては、前記基板が、結晶基板であるのが好ましい。
(結晶基板)
 前記結晶基板は、結晶物を主成分として含む基板であれば特に限定されず、公知の基板であってよい。絶縁体基板であってもよいし、導電性基板であってもよいし、半導体基板であってもよい。単結晶基板であってもよいし、多結晶基板であってもよい。前記結晶基板としては、例えば、コランダム構造を有する結晶物を主成分として含む基板、またはβ-ガリア構造を有する結晶物を主成分として含む基板、六方晶構造を有する基板などが挙げられる。なお、前記「主成分」とは、基板中の組成比で、前記結晶物を50%以上含むものをいい、好ましくは70%以上含むものであり、より好ましくは90%以上含むものである。
 前記コランダム構造を有する結晶物を主成分として含む基板としては、例えば、サファイア基板、α型酸化ガリウム基板などが挙げられる。前記β-ガリア構造を有する結晶物を主成分として含む基板としては、例えば、β-Ga基板、またはβ-GaとAlとを含む混晶体基板などが挙げられる。なお、β-GaとAlとを含む混晶体基板としては、例えば、Alが原子比で0%より多くかつ60%以下含まれる混晶体基板などが好適な例として挙げられる。また、前記六方晶構造を有する基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。その他の結晶基板の例示としては、例えば、Si基板などが挙げられる。
 本発明の実施形態においては、前記結晶基板が、サファイア基板であるのが好ましい。前記サファイア基板としては、例えば、c面サファイア基板、m面サファイア基板、a面サファイア基板などが挙げられる。また、前記サファイア基板はオフ角を有していてもよい。前記オフ角は、特に限定されないが、好ましくは0°~15°である。なお、前記結晶基板の厚さは、特に限定されないが、好ましくは、50~2000μmであり、より好ましくは200~800μmである。
 また、本発明の実施形態の一つにおいては、前記基板が、表面に凹部または凸部からなる凹凸部が形成されているので、より効率的に、より高品質な前記第1の横方向結晶成長層を得ることができる。前記凹凸部は、凸部または凹部からなるものであれば特に限定されず、凸部からなる凹凸部であってもよいし、凹部からなる凹凸部であってもよいし、凸部および凹部からなる凹凸部であってもよい。また、前記凹凸部は、規則的な凸部または凹部から形成されていてもよいし、不規則な凸部または凹部から形成されていてもよい。本発明の実施態様においては、前記凹凸部が周期的に形成されているのが好ましく、周期的かつ規則的にパターン化されているのがより好ましく、前記凹凸部が凸部からなるマスクであって、前記マスクが周期的かつ規則的にパターン化されているのが最も好ましい。前記凹凸部のパターンは特に限定されず、例えば、ストライプ状、ドット状、メッシュ状またはランダム状などが挙げられるが、本発明の実施態様においては、ドット状またはストライプ状が好ましく、ドット状がより好ましい。なお、前記ドット状またはストライプ状は前記凸部の開口部の形状であってよい。また、凹凸部が周期的かつ規則的にパターン化されている場合には、前記凹凸部のパターン形状が、三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形状、円状、楕円状などの形状であるのが好ましい。なお、ドット状に凹凸部を形成する場合には、ドットの格子形状を、例えば正方格子、斜方格子、三角格子、六角格子などの格子形状にするのが好ましく、三角格子の格子形状にするのがより好ましい。前記凹凸部の凹部または凸部の断面形状としては、特に限定されないが、例えば、コの字型、U字型、逆U字型、波型、または三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形等が挙げられる。
 前記凸部の構成材料は、特に限定されず、公知のマスク材料であってよい。絶縁体材料であってもよいし、導電体材料であってもよいし、半導体材料であってもよい。また、前記構成材料は、非晶であってもよいし、単結晶であってもよいし、多結晶であってもよい。前記凸部の構成材料としては、例えば、Si、Ge、Ti、Zr、Hf、Ta、Sn等の酸化物、窒化物または炭化物、カーボン、ダイヤモンド、金属、これらの混合物などが挙げられる。より具体的には、SiO、SiNまたは多結晶シリコンを主成分として含むSi含有化合物、前記結晶性酸化物半導体の結晶成長温度よりも高い融点を有する金属(例えば、白金、金、銀、パラジウム、ロジウム、イリジウム、ルテニウムなどの貴金属等)などが挙げられる。なお、前記構成材料の含有量は、凸部中、組成比で、50%以上が好ましく、70%以上がより好ましく、90%以上が最も好ましい。
 前記凸部の形成方法としては、公知の方法であってよく、例えば、フォトリソグラフィー、電子ビームリソグラフィー、レーザーパターニング、その後のエッチング(例えばドライエッチングまたはウェットエッチング等)などの公知のパターニング加工方法などが挙げられる。本発明の実施態様においては、前記凸部がストライプ状またはドット状であるのが好ましく、ドット状であるのがより好ましい。なお、前記ドット状またはストライプ状は前記凸部の開口部の形状であってよい。また、本発明の実施態様においては、前記結晶基板が、PSS(Patterned  Sapphire  Substrate)基板であるのも好ましい。前記PSS基板のパターン形状は、特に限定されず、公知のパターン形状であってよい。前記パターン形状としては、例えば、円錐形、釣鐘形、ドーム形、半球形、正方形または三角形のピラミッド形等が挙げられるが、本発明の実施態様においては、前記パターン形状が、円錐形であるのが好ましい。また、前記パターン形状のピッチ間隔も、特に限定されないが、本発明の実施態様においては、100μm以下であるのが好ましく、1μm~50μmであるのがより好ましい。
 前記凹部は、特に限定されないが、上記凸部の構成材料と同様のものであってよいし、基板であってもよい。本発明の実施態様においては、前記凹部が基板の表面上に設けられた空隙層であるのが好ましい。前記凹部の形成方法としては、前記の凸部の形成方法と同様の方法を用いることができる。前記空隙層は、公知の溝加工方法により、基板に溝を設けることで、前記基板の表面上に形成することができる。空隙層の溝幅、溝深さ、テラス幅等は、本発明の目的を阻害しない限り、特に限定されず、適宜に設定することができる。また、空隙層には、空気が含まれていてもよいし、不活性ガス等が含まれていてもよい。
 以下、本発明の実施態様において好適に用いられる基板の実施態様の一例を、図面を用いて説明する。
 図2は、本発明の実施形態における基板の表面上に設けられたドット状の凹凸部の一態様を示す。図2の凹凸部は、基板本体1と、基板の表面1aに設けられた複数の凸部2aとから形成されている。図3は、天頂方向から見た図2に示す凹凸部の表面を示している。図2および図3からわかるように、前記凹凸部は、基板の表面1aの三角格子上に、円錐状の凸部2aが形成された構成となっている。前記凸部2aは、フォトリソグラフィー等の公知の加工方法により形成することができる。なお、前記三角格子の格子点は、それぞれ一定の周期aの間隔ごとに設けられている。周期aは、特に限定されないが、本発明の実施態様においては、100μm以下であるのが好ましく、1μm~50μmであるのがより好ましい。ここで、周期aは、隣接する凸部2aにおける高さのピーク位置(すなわち格子点)間の距離をいう。
 図4は、本発明の実施形態における基板の表面上に設けられたドット状の凹凸部の一態様を示し、図2とは別の態様を示している。図4の凹凸部は、基板本体1と、基板の表面1a上に設けられた凸部2aとから形成されている。図5は、天頂方向から見た図4に示す凹凸部の表面を示している。図4および図5からわかるように、前記凹凸部は、基板の表面1aの三角格子上に、三角錐状の凸部2aが形成された構成となっている。前記凸部2aは、フォトリソグラフィー等の公知の加工方法により形成することができる。なお、前記三角格子の格子点は、それぞれ一定の周期aの間隔ごとに設けられている。周期aは、特に限定されないが、本発明の実施態様においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましく、1μm~3μmであるのが最も好ましい。
 図6(a)は、本発明の実施形態における基板の表面上に設けられた凹凸部の一態様を示し、図6(b)は、図6(a)に示す凹凸部の表面を模式的に示している。図6の凹凸部は、基板本体1と、基板の表面1a上に設けられた三角形のパターン形状を有する凸部2aとから形成されている。なお、凸部2aは、前記基板の材料またはSiO等のシリコン含有化合物からなり、フォトリソグラフィー等の公知の方法を用いて形成することができる。なお、前記三角形のパターン形状の交点間の周期aは、特に限定されないが、本発明の実施形態においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましい。
 図7(a)は、図6(a)と同様、本発明の実施形態における基板の表面上に設けられた凹凸部の一態様を示し、図7(b)は、図7(a)に示す凹凸部の表面を模式的に示している。図7(a)の凹凸部は、基板本体1と三角形のパターン形状を有する空隙層とから形成されている。なお、凹部2bは、例えばレーザーダイシング等の公知の溝加工方法により形成することができる。なお、前記三角形のパターン形状の交点間の周期aは、特に限定されないが、本発明の実施形態においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましい。
 凹凸部の凸部の幅および高さ、凹部の幅および深さ、間隔などが特に限定されないが、本発明の実施形態においては、それぞれが例えば約10nm~約1mmの範囲内であり、好ましくは約10nm~約300μmであり、より好ましくは約10nm~約1μmであり、最も好ましくは約100nm~約1μmである。なお、前記凹凸部は、前記基板上に直接形成されていてもよいし、他の層を介して設けられていてもよい。
 本発明の実施形態においては、前記基板上に応力緩和層等を含むバッファ層を設けてもよく、バッファ層を設ける場合には、バッファ層上でも前記凹凸部を形成してもよい。また、本発明の実施形態においては、前記基板が、表面の一部または全部に、バッファ層を有しているのが好ましい。前記バッファ層の形成方法は、特に限定されず、公知の方法であってよい。前記形成方法としては、例えば、スプレー法、ミストCVD法、HVPE法、MBE法、MOCVD法、スパッタリング法等が挙げられる。本発明の実施態様においては、前記バッファ層が、ミストCVD法により形成されているのが、前記バッファ層上に形成される前記第1の横方向結晶成長層の結晶性をより優れたものとでき、特に、チルト等の結晶欠陥を抑制できるため、好ましい。以下、前記バッファ層をミストCVD法により形成する好適な態様を、より詳細に説明する。
 前記バッファ層は、好適には、例えば、原料溶液を霧化し(霧化工程)、得られた霧化液滴(ミストを含む)をキャリアガスにより前記基板まで搬送し(搬送工程)、ついで、前記基板の表面の少なくとも一部で、前記霧化液滴を熱反応させる(バッファ層形成工程)ことにより形成することができる。なお、前記基板の表面の全体で、前記霧化液滴を熱反応させてバッファ層を形成することもできる。
(霧化工程)
 前記霧化工程は、前記原料溶液を霧化し、霧化した液滴を発生させる。前記原料溶液の霧化方法は、前記原料溶液を霧化できさえすれば特に限定されず、公知の方法であってよいが、本発明の前記実施形態においては、超音波を用いる霧化方法が好ましい。超音波を用いて得られた霧化液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能な霧化液滴であるので衝突エネルギーによる損傷がないため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは0.1~10μmである。
(原料溶液)
 前記原料溶液は、ミストCVDにより、前記バッファ層が得られる溶液であれば特に限定されない。前記原料溶液としては、例えば、霧化用金属の有機金属錯体(例えばアセチルアセトナート錯体等)やハロゲン化物(例えばフッ化物、塩化物、臭化物またはヨウ化物等)の水溶液などが挙げられる。前記霧化用金属は、特に限定されず、このような霧化用金属としては、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属等が挙げられる。本発明の実施態様においては、前記霧化用金属が、ガリウム、インジウムまたはアルミニウムを少なくとも含むのが好ましく、ガリウムを少なくとも含むのがより好ましい。原料溶液中の霧化用金属の含有量は、本発明の目的を阻害しない限り特に限定されないが、好ましくは、0.001モル%~50モル%であり、より好ましくは0.01モル%~50モル%である。
 また、原料溶液には、ドーパントが含まれているのも好ましい。原料溶液にドーパントを含ませることにより、イオン注入等を行わずに、結晶構造を壊すことなく、バッファ層の導電性を容易に制御することができる。本発明の実施態様においては、前記ドーパントがスズ、ゲルマニウム、またはケイ素であるのが好ましく、スズ、またはゲルマニウムであるのがより好ましく、スズであるのが最も好ましい。前記ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよいし、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。本発明の実施態様においては、ドーパントの濃度が1×1020/cm以下であるのが好ましく、5×1019/cm以下であるのがより好ましい。
 原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明の実施態様においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのがより好ましく、水であるのが最も好ましい。前記水としては、より具体的には、例えば、純水、超純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水、海水などが挙げられるが、本発明の実施態様においては、超純水が好ましい。
(搬送工程)
 搬送工程では、キャリアガスでもって前記ミストまたは前記液滴を成膜室内に搬送する。前記キャリアガスは、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01~20L/分であるのが好ましく、1~10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001~2L/分であるのが好ましく、0.1~1L/分であるのがより好ましい。
(バッファ層形成工程)
 バッファ層形成工程では、成膜室内で前記ミストまたは液滴を熱反応させることによって、基板上に、前記バッファ層を形成する。熱反応は、熱でもって前記ミストまたは液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、650℃以下がより好ましく、400℃~650℃が最も好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明の実施態様においては、大気圧下で行われるのが好ましい。なお、バッファ層の厚みは、形成時間を調整することにより、設定することができる。
 上記のようにして、前記基板上の表面の一部または全部に、バッファ層を形成した後、該バッファ層上に、上記した本発明の実施態様において、第1の横方向結晶成長層の形成方法により、前記第1の横方向結晶成長層を形成することにより、前記第1の横方向結晶成長層におけるチルト等の欠陥をより低減することができ、膜質をより優れたものとすることができる。
 また、前記バッファ層は、特に限定されないが、本発明の実施態様においては、金属酸化物を主成分として含んでいるのが好ましい。前記金属酸化物としては、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属を含む金属酸化物などが挙げられる。発明においては、前記金属酸化物が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を含有するのが好ましく、少なくともインジウムまたは/およびガリウムを含んでいるのがより好ましく、少なくともガリウムを含んでいるのが最も好ましい。本発明の成膜方法の実施形態の一つとして、バッファ層が金属酸化物を主成分として含み、バッファ層が含む金属酸化物がガリウムと、ガリウムよりも少ない量のアルミニウムを含んでいてもよい。ガリウムよりも少ない量のアルミニウムを含むバッファ層を用いることで、結晶成長を良好なものにするだけでなく、さらに、良好な高温成長も実現することができる。また、本発明の成膜方法の実施形態の一つとして、バッファ層が超格子構造を含んでいてもよい。超格子構造を含むバッファ層を用いることで、良好な結晶成長を実現するだけでなく、結晶成長時の反り等を抑制することもより容易になる。なお、本発明において、「主成分」とは、前記金属酸化物が、原子比で、前記バッファ層の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。前記結晶性酸化物半導体の結晶構造は、特に限定されないが、本発明の実施態様においては、コランダム構造またはβガリア構造であるのが好ましく、コランダム構造であるのがより好ましい。また、前記第1の横方向結晶成長層と前記バッファ層とは、本発明の目的を阻害しない限り、それぞれ互いに主成分が同一であってもよいし、異なっていてもよいが、本発明の実施態様においては、同一であるのが好ましい。
 本発明の前記実施形態においては、前記バッファ層が設けられていてもよい前記基板上に金属含有原料ガス、酸素含有原料ガス、反応性ガスおよび所望によりドーパント含有原料ガスを供給し、反応性ガスの流通下で成膜する。本発明の実施態様においては、前記成膜が、加熱されている基板上で行われるのが好ましい。前記成膜温度は、本発明の目的を阻害しない限り、特に限定されないが、900℃以下が好ましく、700℃以下がより好ましく、400℃~700℃であるのが最も好ましい。また、前記成膜は、本発明の目的を阻害しない限り、真空下、非真空下、還元ガス雰囲気下、不活性ガス雰囲気下および酸化ガス雰囲気下のいずれの雰囲気下で行われてもよく、また、常圧下、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明の前記実施形態においては、常圧下または大気圧下で行われるのが好ましい。なお、膜厚は成膜時間を調整することにより、設定することができる。
 前記第1の横方向結晶成長層は、通常、結晶性金属酸化物を主成分として含む。前記結晶性金属酸化物としては、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属を含む金属酸化物などが挙げられる。本発明の実施態様においては、前記結晶性金属酸化物が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を含有するのが好ましく、少なくともインジウムまたは/およびガリウムを含んでいるのがより好ましく、結晶性酸化ガリウムまたはその混晶であるのが最も好ましい。なお、本発明の実施形態において、「主成分」とは、前記結晶性金属酸化物が、原子比で、前記第1の横方向結晶成長層の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。前記結晶性金属酸化物の結晶構造は、特に限定されないが、本発明の実施態様においては、コランダム構造またはβガリア構造であるのが好ましく、コランダム構造であるのがより好ましく、前記第1の横方向結晶成長層が、コランダム構造を有する結晶成長膜であるのが最も好ましい。本発明の実施形態においては、前記基板として、コランダム構造を含む基板を用いて、前記成膜を行うことにより、コランダム構造を有する結晶成長膜を得ることができる。前記結晶性金属酸化物は、単結晶であってもよいし、多結晶であってもよいが、本発明の実施形態においては、単結晶であるのが好ましい。また、前記第1の横方向結晶成長層の厚さの上限は特に限定されないが、例えば100μmであり、前記第1の横方向結晶成長層の厚さの下限も特に限定されないが、3μmであるのが好ましく、10μmであるのがより好ましく、20μmであるのが最も好ましい。本発明の実施態様においては、前記第1の横方向結晶成長層の厚さが3μm~100μmであるのが好ましく、10μm~100μmであるのがより好ましく、20μm~100μmであるのが最も好ましい。 
 本発明の実施態様においては、前記第1の横方向結晶成長層上にマスクとして前記凸部を形成する。このようにして、前記第1の横方向結晶成長層上に前記マスクを形成することにより、結晶性を単に向上させるだけでなく、結晶膜の大面積化を実現することができる。なお、前記マスクは前記凸部と同様であってよい。本発明の実施態様においては、第1の横方向結晶成長層が2以上の横方向結晶部を含んでおり、前記2以上の横方向結晶部上に前記マスクがそれぞれ配置されているのが好ましい。なお、前記の2以上の横方向結晶部は、前記第1の横方向結晶成長において、2以上の第1の横方向結晶成長部が形成されていき、それぞれの第1の横方向結晶成長部同士が会合する前の2以上の横方向結晶部であってもよい。このようにして横方向結晶部上に前記マスクを設けることにより、第1の横方向結晶での会合によって発生する熱応力による反りやクラック等を抑制することができる。前記の横方向結晶成長層上のマスクは、周期的かつ規則的にパターン化されているのが好ましく、前記の横方向結晶成長層上のマスクおよび/または開口部の間隔が、前記の基板上のマスクおよび/または開口部の間隔よりも狭いのが好ましい。このような間隔とすることにより、熱応力等をより緩和させることができ、大面積でかつ優れた結晶性の結晶膜をより容易に得ることができる。なお、前記の第1の横方向成長層上のマスクおよび/または開口部の間隔は、特に限定されないが、1μm~50μmであるのが好ましい。
 また、本発明の実施態様においては、前記第2の横方向成長層上にマスクを設けて、さらに横方向結晶成長を行ってもよい。このようにすることで、2インチ以上の大面積の低転位密度の結晶膜を得ることがより容易となる。
 なお、本発明の実施態様においては、前記第1の横方向結晶成長層または前記第2の横方向結晶成長層を剥離犠牲層としてもよい。
 本発明の実施態様における前記製造方法の実施形態によって得られた結晶膜は、特に、半導体装置に好適に用いることができ、とりわけ、パワーデバイスに有用である。前記結晶膜を用いて形成される半導体装置としては、MISやHEMT等のトランジスタやTFT、半導体‐金属接合を利用したショットキーバリアダイオード、他のP層と組み合わせたPN又はPINダイオード、受発光素子が挙げられる。本発明の実施態様においては、前記結晶膜をそのまま半導体装置等に用いてもよいし、前記基板等から剥離する等の公知の方法を用いた後に、半導体装置等に適用してもよい。
 以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
(実施例1)
1.バッファ層およびマスクの形成
1-1.ミストCVD装置
 図8を用いて、本実施例で用いたミストCVD装置19を説明する。ミストCVD装置19は、基板等の被成膜試料20を載置する試料台21と、キャリアガスを供給するキャリアガス源22aと、キャリアガス源22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給源22bと、キャリアガス源(希釈)22bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる成膜室27と、成膜室27の周辺部に設置されたヒータ28を備えている。試料台21は、石英からなり、被成膜試料20を載置する面が水平面から傾斜している。成膜室27と試料台21をどちらも石英で作製することにより、被成膜試料20上に形成される薄膜内に装置由来の不純物が混入することを抑制している。
1-2.原料溶液の作製
 臭化ガリウムと臭化スズとを超純水に混合し、ガリウムに対するスズの原子比が1:0.08およびガリウム0.1mol/Lとなるように水溶液を調整し、この際、さらに臭化水素酸を体積比で20%となるように含有させ、これを原料溶液とした。
1-3.成膜準備
 上記1-2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、被成膜試料20として、c面サファイア基板を試料台21上に設置させ、ヒータ28を作動させて成膜室27内の温度を460℃にまで昇温させた。次に、流量調節弁23aおよび23bを開いてキャリアガス源22aおよびキャリアガス(希釈)源22bからキャリアガスを成膜室27内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2.0L/min、キャリアガス(希釈)の流量を0.1L/minにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
1-4.成膜
 次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて原料微粒子を生成した。この原料微粒子が、キャリアガスによって成膜室27内に導入され、460℃にて、成膜室27内で反応して、被成膜試料20上にバッファ層を形成した。なお、成膜時間は5分であった。
1-5.マスク形成
 上記1-4.で得られたバッファ層上に、間隔50μmでドット状(直径5μm)の開口部を有するマスクをパターン形成した。
2.第1の横方向結晶成長
2-1.HVPE装置
 図1を用いて、本実施例で用いたハライド気相成長(HVPE)装置50を説明する。HVPE装置50は、反応室51と、金属源57を加熱するヒータ52aおよび基板ホルダ56に固定されている基板を加熱するヒータ52bとを備え、さらに、反応室51内に、酸素含有原料ガス供給管55bと、反応性ガス供給管54bと、基板を設置する基板ホルダ56とを備えている。そして、反応性ガス供給管54b内には、金属含有原料ガス供給管53bが備えられており、二重管構造を形成している。なお、酸素含有原料ガス供給管55bは、酸素含有原料ガス供給源55aと接続されており、酸素含有原料ガス供給源55aから酸素含有原料ガス供給管55bを介して、酸素含有原料ガスが基板ホルダ56に固定されている基板に供給可能なように、酸素含有原料ガスの流路を構成している。また、反応性ガス供給管54bは、反応性ガス供給源54aと接続されており、反応性ガス供給源54aから反応性ガス供給管54bを介して、反応性ガスが基板ホルダ56に固定されている基板に供給可能なように、反応性ガスの流路を構成している。金属含有原料ガス供給管53bは、ハロゲン含有原料ガス供給源53aと接続されており、ハロゲン含有原料ガスが金属源に供給されて金属含有原料ガスとなり金属含有原料ガスが基板ホルダ56に固定されている基板に供給される。反応室51には、使用済みのガスを排気するガス排出部59が設けられており、さらに、反応室51の内壁には、反応物が析出するのを防ぐ保護シート58が備え付けられている。
2-2.成膜準備                            
 金属含有原料ガス供給管53b内部にガリウム(Ga)金属源57(純度99.99999%以上)を配置し、反応室51内の基板ホルダ56上に、基板として、上記1で得られたバッファ層およびドット状マスク付きのサファイア基板を設置した。その後、ヒータ52aおよび52bを作動させて反応室51内の温度を510℃にまで昇温させた。
2-3.第1の横方向結晶成長
 金属含有原料ガス供給管53b内部に配置したガリウム(Ga)金属57に、ハロゲン含有原料ガス供給源53aから、塩化水素(HCl)ガス(純度99.999%以上)を供給した。Ga金属と塩化水素(HCl)ガスとの化学反応によって、塩化ガリウム(GaCl/GaCl)を生成した。得られた塩化ガリウム(GaCl/GaCl)と、酸素含有原料ガス供給源55aから供給されるOガス(純度99.99995%以上)とを、それぞれ金属含有原料供給管53bおよび酸素含有原料ガス供給管55bを通して前記基板上まで供給した。その際、反応性ガス供給源54aから、塩化水素(HCl)ガス(純度99.999%以上)を、反応性ガス供給管54bを通して、前記基板上に供給した。そして、HClガスの流通下で、塩化ガリウム(GaCl/GaCl)およびOガスを基板上で大気圧下、510℃にて反応させて、基板上に成膜した。なお、成膜時間は25分であった。ここで、ハロゲン含有原料ガス供給源53aから供給されるHClガスの流量を10sccm、反応性ガス供給源54aから供給されるHClガスの流量を5.0sccm、酸素含有原料ガス供給源55aから供給されるOガスの流量を20sccmに、それぞれ維持した。得られた膜は、結晶会合による柱状結晶が多数確認できた。
3.マスク形成
 上記2.にて得られた結晶膜の柱状結晶内の横方向成長部上にあたる位置に、間隔5μmのドット状(直径5μm)の開口部を有するマスクをパターン形成した。図9は、マスクと第1の横方向結晶層との関係を示す。c面サファイア基板上にマスク5が形成されている。開口部6から結晶成長が進んで柱状結晶8が形成されているが、会合前に第1の横方向結晶成長が終了している。そして、柱状結晶8内の開口部6の直上ではない第1の横方向結晶成長層上に、マスク7が形成されている。
4.第2の横方向結晶成長
 上記3.にて得られた膜を用いて、上記2.と同様にして結晶成長を行い、結晶膜を得た。得られた結晶膜は、クラックや異常成長もなく、きれいな膜であった。得られた膜につき、薄膜用XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことによって、膜の同定を行った。測定は、CuKα線を用いて行った。その結果、得られた膜は、α―Gaであった。なお、得られた結晶膜の膜厚は、100μmであった。得られた膜をTEM観察したところ、図10に示すとおり、非常にきれいな膜が得られた。なお、図10において、カーテン状に白く見えているのはTEM観察用サンプル作製時の研磨むらによるものであり、貫通転位等ではない(カーテン効果)。また、得られた結晶膜は、転位密度が1×10cm-2よりも低く、5.23×10cm-2であった。また、図11に示す通り、SAEDパターンでもα-Ga膜であることを確認した。また、SEMを用いて、結晶の会合状態を観察したところ、図12に示すとおり、α-Gaのアイランドが会合した状態であることがわかり、α-Ga膜の大面積化が結晶会合によってなされていることを確認した。なお、図13に示すとおり、得られた結晶膜の表面積は15mmであった。
(実施例2)
 上記1-4.で得られたバッファ層上に、m軸に平行な幅4μmのライン状のマスクを、2μm間隔(間隔をマスクの開口部ともいう)、周期6μmでストライプ状にパターン形成したこと、また、上記3.で、マスクとして前記ストライプ状にパターン形成されたライン状のマスクを用いたこと以外は、上記2.から4.と同様にして、結晶膜を得た。図14に、実施例2のマスクパターンを用いて、成長時間を変えて結晶膜を成長させた時の鳥瞰SEM画像、断面SEM画像、断面SEM画像(傾斜あり)を示す。結晶膜(1)(2)(3)の順番で成長時間を長く設定した。結晶膜(3)で、第1の横方向成長を一段目ELOとして示し、第2の横方向成長を二段目ELOとして示している。得られた結晶膜は、SAEDパターンでもα-Ga膜であることを確認した。図14のSEM画像から、成長時間をより長く設定することで、ライン状のα-Gaの結晶会合が進み平坦化した膜が得られたことがわかる。
 本発明の実施態様における結晶膜は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、特に、半導体装置の製造等に有用である。
 a  周期
 1  基板本体
 1a 基板の表面
 2a 凸部
 2b 凹部
 5  マスク(基板上)
 6  マスクの開口部
 7  マスク(第1の横方向成長層上)
 8  第1の横方向結晶成長層
19  ミストCVD装置
20  被成膜試料
21  試料台
22a キャリアガス源
22b キャリアガス(希釈)源
23a 流量調節弁
23b 流量調節弁
24  ミスト発生源
24a 原料溶液
25  容器
25a 水
26  超音波振動子
27  成膜室
28  ヒータ
50  ハライド気相成長(HVPE)装置
51  反応室
52a ヒータ
52b ヒータ
53a ハロゲン含有原料ガス供給源
53b 金属含有原料ガス供給管
54a 反応性ガス供給源
54b 反応性ガス供給管
55a 酸素含有原料ガス供給源
55b 酸素含有原料ガス供給管
56  基板ホルダ
57  金属源
58  保護シート
59  ガス排出部

Claims (22)

  1.  結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、転位密度が1×10cm-2以下であり、表面積が10mm以上であることを特徴とする結晶膜。
  2.  結晶性金属酸化物が少なくともガリウムを含む、請求項1に記載の結晶膜。
  3.  さらに、二層以上の横方向結晶成長層を含む、請求項1または2に記載の結晶膜。
  4.  結晶性金属酸化物を主成分として含み、コランダム構造を有する結晶膜であって、少なくとも一層以上の横方向結晶成長層を含み、表面積が10mm以上の結晶膜であることを特徴とする結晶膜。
  5.  さらに、ドーパントを含む、請求項1~4のいずれかに記載の結晶膜。
  6.  結晶膜を含む半導体装置であって、前記結晶膜が請求項1~5のいずれかに記載の結晶膜であることを特徴とする半導体装置。
  7.  パワーデバイスである、請求項6記載の半導体装置。
  8.  第1の横方向結晶成長により、基板上に第1の横方向結晶成長層を形成し、前記第1の横方向結晶成長層上にマスクを配置し、さらに、第2の横方向結晶成長により、第2の横方向結晶成長層を形成することを特徴とする結晶膜の製造方法。
  9.  前記第1の横方向結晶成長を、HVPE法またはミストCVD法により行う、請求項8記載の製造方法。
  10.  前記第2の横方向結晶成長を、HVPE法またはミストCVD法により行う、請求項8または9に記載の製造方法。
  11.  前記マスクが前記第1の横方向成長層上にドット状に配置される、請求項8~10のいずれかに記載の製造方法。
  12.  前記マスクがドット状の開口部を有しており、前記第1の横方向成長層上に配置される、請求項8~10のいずれかに記載の製造方法。
  13.  前記マスクがライン形状を有する、請求項8~10のいずれかに記載の製造方法。
  14.  第1の横方向結晶成長層がコランダム構造を有する、請求項8~13のいずれかに記載の製造方法。
  15.  第1の横方向結晶成長層がガリウムを含む、請求項8~14のいずれかに記載の製造方法。
  16.  第2の横方向結晶成長層がコランダム構造を有する、請求項8~15のいずれかに記載の製造方法。
  17.  第2の横方向結晶成長層がガリウムを含む、請求項8~16のいずれかに記載の製造方法。
  18.  第1の横方向結晶成長層が2以上の横方向結晶部を含んでおり、前記2以上の横方向結晶部上に前記マスクがそれぞれ配置されている、請求項8~17のいずれかに記載の製造方法。
  19.  前記マスクおよび/または開口部が周期的かつ規則的にパターン化されている、請求項8~18のいずれかに記載の製造方法。
  20.  基板上にマスクを配置し、次いで、第1の横方向結晶成長により、第1の横方向結晶成長層を形成する、請求項8~19のいずれかに記載の製造方法。
  21.  前記の基板上のマスクおよび/または開口部が周期的かつ規則的にパターン化されており、前記の基板上のマスクおよび/または開口部の間隔が、前記の第1の横方向成長層上のマスクの間隔よりも広い請求項20記載の製造方法。
  22.  前記の基板上のマスクおよび/または開口部の間隔が10μm~100μmであり、前記の第1の横方向成長層上のマスクおよび/または開口部の間隔が1μm~50μmである請求項21記載の製造方法。
     
PCT/JP2020/031254 2019-09-03 2020-08-19 結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法 WO2021044845A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227010949A KR20220054668A (ko) 2019-09-03 2020-08-19 결정막, 결정막을 포함하는 반도체 장치, 및 결정막의 제조 방법
CN202080059351.3A CN114270531A (zh) 2019-09-03 2020-08-19 结晶膜、包含结晶膜的半导体装置以及结晶膜的制造方法
JP2021543685A JPWO2021044845A1 (ja) 2019-09-03 2020-08-19
US17/684,792 US20220189769A1 (en) 2019-09-03 2022-03-02 Crystal film, semiconductor device including crystal film, and method of producing crystal film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019160769 2019-09-03
JP2019-160769 2019-09-03
JP2019160770 2019-09-03
JP2019-160770 2019-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/684,792 Continuation-In-Part US20220189769A1 (en) 2019-09-03 2022-03-02 Crystal film, semiconductor device including crystal film, and method of producing crystal film

Publications (1)

Publication Number Publication Date
WO2021044845A1 true WO2021044845A1 (ja) 2021-03-11

Family

ID=74852448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031254 WO2021044845A1 (ja) 2019-09-03 2020-08-19 結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法

Country Status (6)

Country Link
US (1) US20220189769A1 (ja)
JP (1) JPWO2021044845A1 (ja)
KR (1) KR20220054668A (ja)
CN (1) CN114270531A (ja)
TW (1) TW202129050A (ja)
WO (1) WO2021044845A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100593A (ja) * 2014-11-26 2016-05-30 株式会社Flosfia 結晶性積層構造体
JP2019034883A (ja) * 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法
JP2019034882A (ja) * 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343224B1 (ja) 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP5397795B1 (ja) 2013-06-21 2014-01-22 Roca株式会社 半導体装置及びその製造方法、結晶及びその製造方法
JP6067532B2 (ja) 2013-10-10 2017-01-25 株式会社Flosfia 半導体装置
JP6478020B2 (ja) 2014-11-26 2019-03-06 株式会社Flosfia 結晶成長用基板、結晶性積層構造体およびそれらの製造方法ならびにエピタキシャル成長方法
JP6945119B2 (ja) 2014-11-26 2021-10-06 株式会社Flosfia 結晶性積層構造体およびその製造方法
JP6422159B2 (ja) 2015-02-25 2018-11-14 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
KR102406518B1 (ko) 2017-11-21 2022-06-10 현대자동차주식회사 수신 정보 자동 필터링 장치, 그를 포함한 시스템 및 그 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100593A (ja) * 2014-11-26 2016-05-30 株式会社Flosfia 結晶性積層構造体
JP2019034883A (ja) * 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法
JP2019034882A (ja) * 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法

Also Published As

Publication number Publication date
JPWO2021044845A1 (ja) 2021-03-11
CN114270531A (zh) 2022-04-01
KR20220054668A (ko) 2022-05-03
TW202129050A (zh) 2021-08-01
US20220189769A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7480937B2 (ja) 結晶膜、半導体装置および結晶膜の製造方法
JP7460975B2 (ja) 結晶膜の製造方法
JP7166522B2 (ja) 結晶膜の製造方法
JP7163540B2 (ja) 結晶膜の製造方法
JP7404593B2 (ja) 成膜方法および結晶性積層構造体
WO2021065940A1 (ja) 積層構造体および半導体装置
WO2020004250A1 (ja) 結晶性酸化物膜
WO2021044845A1 (ja) 結晶膜、結晶膜を含む半導体装置、及び結晶膜の製造方法
JP2021172555A (ja) 結晶膜の製造方法
JP7453609B2 (ja) 剥離方法および結晶性酸化物膜の製造方法
WO2021066156A1 (ja) 結晶性積層構造体および半導体装置
WO2021246527A1 (ja) 半導体装置の製造方法
WO2023048150A1 (ja) 結晶膜の製造方法および結晶膜
US11804519B2 (en) Crystalline multilayer structure, semiconductor device, and method of manufacturing crystalline structure
US11694894B2 (en) Crystalline film containing a crystalline metal oxide and method for manufacturing the same under partial pressure
JP2021172554A (ja) 結晶性積層構造体の製造方法
JP2021172552A (ja) 結晶膜
JP2021172553A (ja) 結晶性積層構造体および半導体装置
JP2022060939A (ja) 積層構造体および積層構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227010949

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20861717

Country of ref document: EP

Kind code of ref document: A1