WO2014181768A1 - 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法 - Google Patents

絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法 Download PDF

Info

Publication number
WO2014181768A1
WO2014181768A1 PCT/JP2014/062152 JP2014062152W WO2014181768A1 WO 2014181768 A1 WO2014181768 A1 WO 2014181768A1 JP 2014062152 W JP2014062152 W JP 2014062152W WO 2014181768 A1 WO2014181768 A1 WO 2014181768A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
oxide film
thermal expansion
expansion coefficient
Prior art date
Application number
PCT/JP2014/062152
Other languages
English (en)
French (fr)
Inventor
秦野 正治
石丸 詠一朗
服部 憲治
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201480025682.XA priority Critical patent/CN105209651B/zh
Priority to US14/888,860 priority patent/US9837567B2/en
Priority to KR1020157032186A priority patent/KR101773277B1/ko
Priority to EP14794499.5A priority patent/EP2995697B1/en
Publication of WO2014181768A1 publication Critical patent/WO2014181768A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • C21D8/0484Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stainless steel solar cell substrate having a small thermal expansion coefficient and having an insulating oxide film formed on the surface without coating, and a method for producing the same.
  • Patent Documents 1 and 2 disclose an insulating material in which a smooth stainless steel plate surface is coated with alumina, silicon oxide, or a silicon nitride film.
  • As the material general-purpose ferritic stainless steel SUS430 (17Cr steel) is used.
  • Patent Document 3 discloses a material that defines both the surface roughness parameters Rz and Rsk as a stainless steel surface having good film forming properties.
  • materials SUS430J1L (18Cr-0.4Cu-0.4Nb) to which Nb and Cu are added and general-purpose austenitic stainless steel SUS304 (18Cr-8Ni) are used.
  • CIS chalcopyrite
  • the CIS solar cell is formed by forming an electrode layer made of a Mo layer on a substrate and forming a chalcopyrite type compound layer as a light absorption layer thereon.
  • the chalcopyrite type compound is a ternary alloy represented by Cu (InGa) (SeS) 2 .
  • Patent Document 4 an insulating film made of an alumina film is formed on a stainless steel foil of 0.2 mm or less, an electrode made of a Mo layer is formed thereon, and Cu (In) is formed thereon as a light absorption layer.
  • a method of manufacturing a solar cell substrate material that forms a film of 1-x Ga x ) Se 2 is disclosed.
  • SUS430, SUS444 (18Cr-2Mo), and SUS447J1 (30Cr-2Mo) are used as the material for the stainless steel foil.
  • Patent Documents 5 and 6 in a Cu-coated steel sheet having a Cu coating layer, a CIS solar cell in which a Mo coating is formed on the Cu coating layer and a Cu (InGa) (SeS) 2 type compound layer is formed thereon.
  • a battery electrode substrate is disclosed.
  • Patent Documents 5 and 6 as a base material for a Cu-coated steel sheet, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P : 0.001 to 0.04%, S: 0.0005 to 0.03%, Ni: 0 to 0.6%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025%, B: 0 to 0 0.01%, V: 0 to 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and unavoidable impurities
  • ferritic stainless steel is disclosed. However, the ferritic stainless steel used in the examples is limited to SUS430.
  • Patent Document 7 discloses a stainless steel material on which an insulating film with good heat resistance is formed and a method for producing the same.
  • C 0.0001 to 0.15%
  • Si 0.001 to 1.2%
  • Mn 0.001 to 2.0%
  • P 0.00. 001 to 0.05%
  • S 0.0005 to 0.03%
  • Cu 0 to 1.0%
  • Cr 11.0 to 32.0%
  • Mo 0 -3.0%
  • Al 1.0-6.0%
  • Nb 0-1.0%
  • B 0-0.
  • a mixed layer of NiO and NiFe 2 O 4 having a thickness of 1.0 ⁇ m or more is formed on the surface of the base material via an Al oxide layer.
  • the steel used in the examples is Al: ferritic stainless steel containing less than 0.4% Si.
  • Patent Document 7 describes that the Si content of steel may be controlled to 0.5% or less.
  • the mixed layer of NiO or the like and the Al oxide layer are formed by forming an Ni plating layer by electroplating, and then forming an Al oxide layer at the interface between the steel and the Ni plating layer by heat treatment in the atmosphere. It is generated by changing the quality into an oxide layer.
  • Patent Documents 8 and 9 disclose a method for producing stainless steel in which an insulating property is imparted to the surface of the stainless steel without depending on coating of a paint.
  • Patent Document 8 describes a method of forming an aluminum oxide layer by heating 2% or more of an Al-containing ferritic stainless steel sheet to 850 ° C. or more.
  • the heat treatment time of steel added with Al to SUS430 containing impurities of C and N is limited to 60 minutes.
  • Patent Document 9 discloses stainless steel that is oxidized at 1000 ° C. for 1 hour or longer and is coated with ⁇ -Al 2 O 3 whose entire surface is made of equiaxed crystals and / or columnar crystals. .
  • the stainless steel used in the examples is limited to 20Cr-5Al.
  • the insulating properties of stainless steel used for the substrate are involved. That is, it is desired to achieve an insulating surface that does not impair the conversion efficiency of the solar cell regardless of coating or plating.
  • the application technology of stainless steel by coating or plating has been mainstream so far.
  • the heat treatment of stainless steel added with Al to SUS430 disclosed in Patent Document 8 is performed at 850 ° C. or more for 60 minutes, or disclosed in Patent Document 9.
  • the 20Cr-5Al stainless steel is heat-treated at 1000 ° C. for 1 hour or longer.
  • an object of the present invention is to provide a stainless steel substrate for a solar cell on which an oxide film having an excellent insulating property capable of maintaining high conversion efficiency of the solar cell is formed on the surface, and an excellent insulating property on the surface regardless of the coating.
  • Another object of the present invention is to provide a method for producing a solar cell substrate capable of forming an oxide film.
  • the present inventors have focused on the effects of alloying elements (Cr, Si, Al, etc.) on the insulating properties of oxide films formed on the surface of ferritic stainless steel by heat treatment.
  • the present invention was completed through extensive experiments and studies. The knowledge obtained by the present invention will be described below.
  • Al is an effective element that provides an insulating property by forming an alumina (Al 2 O 3 ) film on the surface of stainless steel by heat treatment.
  • alumina Al 2 O 3
  • the thermal expansion coefficient of these high Al content ferritic stainless steels is not necessarily small at the time of temperature rise when forming the electrode layer and the light absorption layer of the CIS solar cell, and the film formability and the durability of the battery There is a problem with sex.
  • a stainless steel having an Al content of 2.0% or more has a significantly large thermal expansion coefficient.
  • the addition of Al to SUS430 with a large amount of impurities has restrictions on the heat treatment conditions (850 ° C., 1 hour or more) for forming the alumina film in addition to the problem of the material surface including the thermal expansion coefficient.
  • the present inventors do not depend on excessive Al addition, but by adding stainless steel and adjusting the Cr content, the stainless steel has a low thermal expansion coefficient and is suitable for improving the durability of solar cells. It has been found that a remarkable effect can be obtained that an oxide film having the above can be formed by heat treatment. Although there are still many unclear points regarding the insulating effect of the oxide film formed by heat treatment on the surface of Si-added Al-containing ferritic stainless steel with a small coefficient of thermal expansion, the following discussion Based on the results, the mechanism of action is inferred.
  • Si is an element effective for lowering the thermal expansion coefficient of ferritic stainless steel.
  • Si is an element effective for lowering the thermal expansion coefficient of ferritic stainless steel.
  • an increase in the thermal expansion coefficient due to the inclusion of Al can be effectively suppressed.
  • Si effectively acts on the formation of an insulating oxide film in addition to the reduction of the thermal expansion coefficient.
  • a SiO 2 continuous film is formed on the surface by heat-treating the Si-added stainless steel. This SiO 2 continuous film has the effect of significantly increasing the electrical resistance of Cr 2 O 3 which is a semiconductor and promoting the formation of an insulating Al 2 O 3 film, even if it does not provide insulation. Have. It has been found that such an effect of modifying the oxide film by Si is manifested by containing 0.4% or more of Si.
  • the insulation suitable for the substrate of the solar cell is (i) Al 2 O 3 Has been found that it can be imparted by an oxide film containing 50% or more of (i) Al 2 O 3 and (ii) SiO 2 in total.
  • the oxide film further includes (iii) Al-containing spinel oxide (MgAl 2 O 4 ). In this case, the inventors have found a new finding that better insulating properties can be obtained.
  • (D) facilitate the formation of the oxide film containing the above-mentioned (i) an oxide film containing Al 2 O 3 or (i) Al 2 O 3 and (ii) SiO 2 and / or (iii) MgAl 2 O 4,
  • the content of each element of Cr, Si, Mn, and Al is limited, and Cr + 10Si + Mn + Al> 24.5 (however, the element symbol in the formula is the mass% of the element in steel). It has been found that it is effective to adjust the alloy composition to satisfy.
  • Mn suppresses the oxidation of Fe during the heat treatment of stainless steel and promotes the formation of an insulating oxide film containing an oxide containing Al and an oxide containing Si.
  • a small amount of Mg has an action of promoting the formation of Al-based spinel oxide and enhancing the insulating properties. Further, when Sn and Zr are added in combination, the formation of (i) to (iii) is promoted. Further, it has been found that the adjustment of the alloy composition is effective in suppressing the increase in the thermal expansion coefficient of the Al-containing ferritic stainless steel in addition to the formation of the oxide film.
  • the stainless steel material having excellent thermal insulation and low thermal expansion coefficient according to (1) wherein the stainless steel material contains Al: 2.0% or more and Si: 0.3% or more. Battery substrate.
  • the stainless steel material is, in mass%, further Sn: 1% or less, Zr: 0.5% or less, Mg: 0.005% or less, Ni: 1% or less, Cu: 1% or less, Co: 0.5% or less, Mo: 2% or less, V: 0.5% or less, B: 0.005% or less, Ca: 0.005% or less, La: 0.1% or less, Y: 0.1% Or less, Hf: 0.1% or less, REM: 0.1% or less, Nb: 1% or less, Ti: 1% or less (1) or A substrate for a solar cell made of stainless steel having a small thermal expansion coefficient and having excellent insulation properties according to (2).
  • the stainless steel solar cell substrate having a small thermal expansion coefficient and excellent insulation properties according to (3), wherein the oxide film contains (iii) MgAl 2 O 4 .
  • the content of (iii) MgAl 2 O 4 in the oxide film is 5% or more, and for stainless steel solar cells with excellent thermal insulation and low thermal expansion coefficient according to (4) substrate.
  • the surface of the stainless steel material is formed.
  • substrate for stainless steel solar cells with a small thermal expansion coefficient excellent in the insulation characterized by having the formation film process which forms an oxide film.
  • the heat treatment is performed in an atmosphere containing water vapor having a dew point of 40 ° C. or higher.
  • the stainless steel solar cell with excellent insulation and small thermal expansion coefficient according to (6) A method for manufacturing a substrate.
  • the stainless steel solar cell substrate of the present invention includes Al: 0.5% or more and / or Si: 0.4% or more on the surface of a stainless steel material having a composition satisfying the above formula (1). i) are those oxide film containing a total of more than 50% of the Al containing 2 O 3 50% or more, or (i) Al 2 O 3 and (ii) SiO 2 is formed on the surface, coating or plating Regardless of this, an insulating surface that maintains the conversion efficiency of the solar cell at a high level is formed. Therefore, the stainless steel solar cell substrate of the present invention is suitable as a solar cell substrate.
  • the stainless steel material of the substrate for a stainless steel solar cell of the present invention contains Al: 2.0% or more and Si: 0.3% or more, formation of an insulating oxide film by Al and Si is promoted during heat treatment. The synergistic effect is obtained, and the increase in the thermal expansion coefficient due to the inclusion of Al is effectively suppressed by Si. As a result, it becomes a stainless steel solar cell substrate suitable for a solar cell substrate having an oxide film with further excellent insulating properties and a low thermal expansion coefficient.
  • the stainless steel solar cell substrate of the present embodiment is formed on the surface of a stainless steel material by (i) an oxide film containing Al 2 O 3 , or (i) Al 2 O 3 and (ii) SiO 2 and / or (iii). ) An oxide film containing MgAl 2 O 4 is formed.
  • the stainless steel material included in the stainless steel solar cell substrate of the present embodiment has the following composition, by performing heat treatment, (i) an oxide film containing Al 2 O 3 or (i An oxide film containing (1) Al 2 O 3 and (ii) SiO 2 and / or (iii) MgAl 2 O 4 is formed on the surface.
  • the stainless steel material included in the stainless steel solar cell substrate of this embodiment is ferritic stainless steel.
  • Cr is a main constituent element of the ferritic stainless steel used in the present embodiment.
  • an oxide film containing Al 2 O 3 or (i) Al 2 O 3 and (ii) SiO 2 and / or (iii) MgAl 2 O 4 are added.
  • the lower limit of the Cr content is 9%, preferably 10%, and more preferably 11%.
  • the upper limit of the Cr content is 25%, preferably 20%, more preferably 18%, from the viewpoint of suppressing deterioration of the toughness and workability of the steel due to the addition of Si and Al.
  • C inhibits improvement of corrosion resistance and inhibits formation of the insulating oxide film. For this reason, the lower the content of C, the better.
  • the upper limit is 0.03%, and preferably 0.02%.
  • the lower limit of the C content is preferably 0.001%, more preferably 0.002%.
  • Mn suppresses the oxidation of Fe during the heat treatment of stainless steel and promotes the formation of the insulating oxide film.
  • the Mn content is preferably 0.06% or more, more preferably 0.3% or more, and 0.4% or more. More preferably.
  • the upper limit is made 2%, preferably 1.5%, more preferably 1.0%.
  • the upper limit of the P content is set to 0.05%, preferably 0.04%.
  • the lower limit of the P content is preferably 0.005%, more preferably 0.01%.
  • the upper limit of the S content is 0.01%, and preferably 0.002%.
  • the lower limit of the S content is preferably 0.0001%, more preferably 0.0002%.
  • the upper limit of the N content is preferably 0.03% and is preferably 0.015%.
  • the lower limit of the N content is preferably 0.001%, more preferably 0.005%.
  • Si is contained in an amount of 0.05% or more, and preferably 0.10% or more.
  • the upper limit of the Si content is 4.0%, preferably 3.5%, and more preferably 2.0%.
  • Al is contained in an amount of 0.005% or more and preferably 0.010% or more in order to obtain an action as a deoxidizing element as in the case of Si.
  • excessive Al addition increases the thermal expansion coefficient of the steel and impairs the durability of the oxide film obtained by heat treatment.
  • the upper limit of the Al content is 5.0%, preferably 3.5%, and more preferably 2.5%. If the Al content exceeds 5.0%, the coefficient of thermal expansion is large, which is not preferable as a solar cell substrate.
  • the stainless steel material used in this embodiment contains 0.4% or more of Si and / or 0.5% or more of Al.
  • the stainless steel material used in this embodiment contains 0.4% or more of Si and / or 0.5% or more of Al.
  • a stainless steel material that satisfies one of the conditions of Si: 0.4% or more and Al: 0.5% or more an insulating oxide film that can be used as a solar cell substrate can be obtained by heat treatment. .
  • a stainless steel material containing 0.4% or more of Si and 0.5% or more of Al the generation of Al 2 O 3 or Al-containing spinel oxide can be promoted very effectively during heat treatment.
  • the effect of promoting the formation of the insulating oxide film can be obtained, and the effect of reducing the thermal expansion coefficient of the stainless steel material can be obtained.
  • the Si content is preferably 0.5% or more, and more preferably 1.0% or more, in order to obtain the effect of promoting the formation of the insulating oxide film.
  • Al in an amount of 0.5% or more, the effect of promoting the formation of the insulating oxide film can be obtained.
  • the Al content is preferably 1.0% or more, and more preferably 1.5% or more, in order to obtain the effect of promoting the formation of the insulating oxide film.
  • Cr + 10Si + Al + Mn > 24.5 (however, the element symbol in the formula means the mass% of the element in steel).
  • Si effectively functions to form an insulating oxide film and lower the thermal expansion coefficient, and a combined addition of Si and Al is suitable.
  • Mn also promotes the formation of these oxide films without increasing the thermal expansion coefficient.
  • Cr + 10Si + Al + Mn is preferably 27 or more. The upper limit is not particularly specified, but it is preferably 40 and more preferably 35 in consideration of the influence on the productivity of steel due to the addition of Si and Al.
  • the stainless steel material used in this embodiment may contain Al: 2.0% or more and Si: 0.3% or more.
  • the insulating property of the oxide film obtained by the heat treatment is further improved.
  • the thermal expansion coefficient increases as the Al content increases.
  • the Si content when Al is contained at 2.0% or more is more preferably 0.4% or more.
  • the stainless steel material used in the present embodiment is further Sn: 1% or less, Zr: 0.5% or less, Mg: 0.005% or less, Ni: 1% or less, Cu: 1%, if necessary.
  • Sn is added as necessary in the ferritic stainless steel used in this embodiment to suppress the oxidation of Fe and promote the formation of an insulating oxide film enriched in Si and / or Al.
  • Sn it is preferable to set it as 0.01% or more which the effect expresses, 0.05% or more is preferable, and it is more preferable to set it as 0.1% or more.
  • the upper limit of the Sn content is 1%, preferably 0.5%, and more preferably 0.3%.
  • Zr is added as necessary in order to promote the formation of an insulating oxide film by a synergistic effect with Si and Al.
  • the upper limit of the Zr content is 0.5%, preferably 0.3%, and more preferably 0.15%. .
  • Mg has an action of promoting the formation of Al-based spinel oxide (MgAl 2 O 4 ) by performing heat treatment.
  • MgAl 2 O 4 Al-based spinel oxide
  • the upper limit of the Mg content is 0.005%, preferably 0.0015%.
  • Ni, Cu, Co, Mo, and V are effective elements for promoting the formation of the insulating oxide film and enhancing the corrosion resistance by a synergistic effect with Si and Al, and are added as necessary.
  • V and Co are added, the content is preferably 0.01% or more at which the effect is exhibited.
  • the upper limit of Ni and Cu is 1%, and the upper limit of V and Co is 0.5%.
  • Mo is an element effective for lowering the thermal expansion coefficient, the upper limit is made 2%.
  • the lower limit of the more preferable content of any element is 0.1%, and the upper limit is 0.5%.
  • B and Ca are elements that improve hot workability and secondary workability, and addition to ferritic stainless steel is effective.
  • the lower limit of the content of each of B and Ca is preferably 0.0003%, more preferably 0.0005%, at which they exhibit an effect.
  • the upper limit of the content of each of B and Ca is set to 0.005%, preferably 0.0015%.
  • La, Y, Hf, and REM are effective elements for improving the hot workability and the cleanliness of the steel, and improving the adhesion of the oxide film obtained by the heat treatment, and may be added as necessary.
  • La, Y, Hf, and REM it is preferable to make these content 0.001% or more which the effect expresses, respectively.
  • the upper limit of the contents of La, Y, Hf, and REM is 0.1%, and more preferably 0.05%.
  • REM is an element belonging to atomic numbers 57 to 71, such as Ce, Pr, and Nd.
  • Nb is added as necessary in order to promote the formation of the insulating oxide film through the purification of steel by the action of the stabilizing element that fixes C and N.
  • the Nb content is preferably 0.03% or more, at which the effect is manifested, preferably 0.05% or more, and more preferably 0.1% or more.
  • the upper limit of the Nb content is 1%, preferably 0.5%, more preferably 0.3%.
  • Ti is added as necessary in order to promote the formation of the insulating oxide film in addition to the high purity of the steel by the action of the stabilizing element that fixes C and N.
  • the Ti content is preferably 0.01% or more, at which the effect is manifested, preferably 0.02% or more, and more preferably 0.05% or more.
  • the upper limit of Ti content is 1%, more preferably 0.35%, Preferably it is 0.2%.
  • the surface of the stainless steel solar cell substrate of this embodiment includes (i) 50% or more of Al 2 O 3 , or (i) includes 50% or more of the total of Al 2 O 3 and (ii) SiO 2.
  • An oxide film is formed. Since the stainless steel solar cell substrate of this embodiment has such an oxide film formed on the surface of a stainless steel material, it has an insulating surface suitable for the solar cell substrate.
  • the oxide film may include (i) Al 2 O 3 and (iii) MgAl 2 O 4 (Al-containing spinel oxide), or (i) Al 2 O 3 and ( ii) In addition to SiO 2 , it may further contain (iii) MgAl 2 O 4 (Al-containing spinel oxide). When the oxide film contains (iii) MgAl 2 O 4 , it is preferable because (i) the insulating properties can be improved regardless of the properties of Al 2 O 3 .
  • the content of (i) Al 2 O 3 may be 55% or more in order to obtain better insulation. Preferably, it is 60% or more.
  • the upper limit of the content of (i) Al 2 O 3 in the oxide film is not particularly limited. In the case where the oxide film contains (iii) MgAl 2 O 4 together with (i) Al 2 O 3 , (iii) the oxide film contains an MgAl 2 O 4 so that better insulation can be obtained.
  • the upper limit of the content of Al 2 O 3 is preferably 95%, more preferably 80%.
  • the oxide film is intended to include (ii) SiO 2
  • (ii ) the content of SiO 2 in the oxide film is preferably 5% or more, and more preferably 15% or more.
  • the content of (ii) SiO 2 in the oxide film is 5% or more, the formation of (ii) Al 2 O 3 is sufficiently promoted by forming (ii) SiO 2 .
  • the oxide film is intended to include (ii) SiO 2, to ensure the content of in the oxide film (i) Al 2 O 3, in order to ensure insulation, in the oxide film (ii) SiO 2
  • the content of is preferably 30% or less, and more preferably 25% or less.
  • oxide film to (iii) MgAl 2 O 4 (iii) as an effect of improving the insulating property by MgAl 2 O 4 can be sufficiently obtained, in the oxide film (iii) of MgAl 2 O 4
  • the content is preferably 5% or more, and more preferably 10% or more.
  • the upper limit of the content of (iii) MgAl 2 O 4 in the oxide film is not particularly specified, but in order to obtain excellent insulation by securing the content of (i) Al 2 O 3 in the oxide film.
  • the content of MgAl 2 O 4 is preferably 50% or less, and more preferably 30% or less.
  • the thickness of the oxide film is preferably 0.01 ⁇ m or more in order to maintain an insulating surface.
  • the upper limit of the film thickness is not particularly specified, but is preferably 5 ⁇ m in consideration of the efficiency of heat treatment described later.
  • (iii) by forming the oxide film containing MgAl 2 O 4 it is possible to ensure surface insulation even when the film thickness is as thin as 1 ⁇ m or less.
  • the temperature is 300 to 1000 ° C. in an atmosphere containing water vapor. It is preferable to perform a heat treatment in the temperature range (formation film process).
  • the heat-treated stainless steel material has the components described in the item (I) and is obtained by a conventionally known production method.
  • the stainless steel material to be heat-treated may have any shape as long as it can be used as a stainless steel solar cell substrate.
  • the surface property of the stainless steel material to be heat treated is not particularly specified, and BA, 2B, 2D, No, conforming to JIS G 4304: 2012 and JIS G 4305: 2012 (corresponding to ISO 16143-1: 2004). . 4. It can be polishing or the like.
  • heat treatment is preferably performed at 300 ° C. or higher, and more preferably at 400 ° C. or higher.
  • the heat treatment temperature is excessively high, the Al concentration and the Si concentration in the oxide film are decreased, the Fe concentration is increased, and the insulating property and adhesion of the oxide film are inhibited. Therefore, the upper limit of the heat treatment temperature is preferably 1000 ° C., more preferably 900 ° C.
  • the heat treatment time is not particularly defined and can be, for example, 1 minute to 72 hours.
  • the heat treatment is preferably a continuous annealing for 10 minutes or less or a batch type heat treatment for 24 to 72 hours.
  • the heat treatment for forming the oxide film is preferably performed in an atmosphere containing water vapor.
  • an atmosphere containing water vapor By performing the heat treatment in an atmosphere containing water vapor, the oxidation of Al and Si on the surface of the stainless steel material is promoted.
  • the atmosphere containing water vapor include an atmosphere containing water vapor by humidifying dry air (20% oxygen-80% nitrogen).
  • the heat treatment for forming the oxide film is more preferably performed in an atmosphere containing 5% or more of water vapor in pure oxygen gas. By performing heat treatment in such an atmosphere, the target oxide film of this embodiment can be easily formed.
  • the heat treatment for forming the oxide film is more preferably performed in an atmosphere containing water vapor having a dew point of 40 ° C. or higher. By performing the heat treatment in such an atmosphere, (iii) MgAl 2 O 4 is efficiently formed.
  • the upper limit of the dew point is not particularly specified, but is 90 ° C. in consideration of the workability of heat treatment.
  • the contents of (i) to (iii) contained in the oxide film can be controlled by changing the composition within the above range and changing the heat treatment conditions within the above heat treatment atmosphere and heat treatment temperature.
  • the height (cps) of each of the diffraction peaks (i) to (iii) measured by X-ray diffraction was counted. Then, it is assumed that the oxide film is composed of the above (i) to (iv), and each oxidation of (i) to (iii) is performed in accordance with the following (i) calculation method of the abundance ratio of Al 2 O 3 The abundance ratio was calculated. For example, in the case of (i) Al 2 O 3 , the abundance ratio of the oxide was calculated by (i) / ⁇ (i) + (ii) + (iii) + (iv) ⁇ ⁇ 100.
  • (I) to (iv) in the above formula are (i) the (104) plane of Al 2 O 3 , (ii) the (101) plane of SiO 2 , and (iii) MgAl measured by the above X-ray diffraction. It means the diffraction peak height (cps) obtained from the (311) plane of 2 O 4 and (iv) the (110) plane of Cr 2 O 3 , respectively.
  • the value of (iv) in the above formula employs the diffraction peak height of the (110) plane as the main diffraction peak.
  • (Iv) In order to distinguish the presence of Cr 2 O 3 from the diffraction peak of (i) Al 2 O 3 , it was confirmed that a diffraction peak of (104) plane was present.
  • “ratio%” indicates the total of the existing ratios of (i) to (iii).
  • the insulation property of the steel plate surface was evaluated by depositing an aluminum film (10 mm square ⁇ 0.2 ⁇ m thickness) on the surface as an electrode, and then placing a tester on the electrode to measure the electrical resistance. The measurement was made 10 times in the measurement area, and the average value was taken as the measurement value.
  • the target insulation in this embodiment is an electrical resistance value of 1 k ⁇ or more suitable as a CIS solar cell substrate, and the obtained steel plate is designated as “B”, and a higher resistance value (10 k ⁇ or more) is stable.
  • the steel plate indicated as “A” was designated as “A”. Further, “C” was defined as less than 1 k ⁇ .
  • the thermal expansion coefficient was obtained by preparing a test piece of 1 mm thickness ⁇ 10 mm width ⁇ 50 mm length and measuring the thermal expansion with a push rod. In an Ar atmosphere, the spring compression load was measured at 50 g or less. The thermal expansion coefficient was calculated by measuring the thermal expansion when the temperature was raised from 50 ° C. to 600 ° C. assuming film formation of a CIS solar cell. The target thermal expansion coefficient of the present embodiment is based on 50 ° C., and the average linear expansion coefficient when the temperature is raised to 600 ° C. maintains the durability of the film formed on the CIS solar cell substrate.
  • the steel sheet obtained by the above-mentioned process was 12.5 ⁇ 10 ⁇ 6 / ° C. or less, and “B” was obtained as the steel sheet from which it was obtained, and “C” was defined as exceeding 12.5 ⁇ 10 ⁇ 6 / ° C.
  • Table 2 summarizes the heat treatment conditions and the evaluation results.
  • Test No. 1-10 the surface of a stainless steel material having a composition defined in the present embodiment, by heat treatment (i) Al containing 2 O 3 more than 50%, or (i) Al 2 O 3 and (ii) SiO 2 And an oxide film containing a total of 50% or more.
  • the target surface insulation and thermal expansion coefficient were obtained in this embodiment.
  • No. 1 was subjected to heat treatment using steels C, D, F, G, H, and I under heat treatment conditions having a dew point of 40 ° C. or higher.
  • Nos. 3, 4, and 6 to 9 were (iii) formed with an oxide film containing MgAl 2 O 4 and had a surface insulation property of “A”.
  • Test No. Nos. 11 to 13, 15, and 16 are made of steel that deviates from the composition defined in this embodiment and either or both of the formulas (1).
  • Test No. The steel sheets of 12, 15, and 16 had an oxide film formed by heat treatment under the heat treatment conditions shown in Table 2, but this oxide film contains (i) 50% or more of Al 2 O 3 or (i It was not an oxide film containing 50% or more of the total of () Al 2 O 3 and (ii) SiO 2, and the target surface insulation in this embodiment was not obtained.
  • the test number No. 11 and 13 had good insulating properties, but were not preferable as solar cell substrates because of their very large thermal expansion coefficients.
  • Test No. 14 is a low Cr steel that deviates from the components defined in the present embodiment, and uses a steel that satisfies the formula (1) defined in the present embodiment.
  • Test No. No. 14 the target thermal expansion coefficient in this embodiment was not obtained.
  • oxide film by annealing in heat treatment conditions shown in Table 2 were formed, the oxide film includes (i) Al 2 O 3 50% or more, or (i) Al 2 O 3 ( ii) It was not an oxide film containing 50% or more of SiO 2 in total, and the target surface insulating property in this embodiment was not obtained.
  • the surface contains (i) 50% or more of (i) Al 2 O 3 defined in this embodiment, or (i) Al 2 O 3. And (ii) it is necessary that an oxide film containing 50% or more of the total of SiO 2 is formed.
  • (ii) MgAl 2 O 4 is further added. It is effective to form an oxide film containing.
  • the component defined in the present embodiment and the component adjustment of the formula (1) are effective.
  • the present invention it is possible to obtain a stainless steel solar cell substrate suitable for a solar cell substrate having an insulating surface that maintains a high conversion efficiency of a solar cell regardless of coating or plating and having a low thermal expansion coefficient. it can.
  • the present invention is suitable for a CIS solar cell substrate in which an electrode and a light absorption layer are formed on an insulating substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Photovoltaic Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 本発明のステンレス製太陽電池用基板では、質量%にて、Cr:9~25%、C:0.03%以下、Mn:2%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Al:0.005~5.0%、Si:0.05~4.0%を含み、残部がFeおよび不可避的不純物からなり、Al:0.5%以上、及び/又は、Si:0.4%以上を含み、下記(1)式を満たす組成を有するステンレス鋼材の表面に、(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が形成されている。 Cr+10Si+Mn+Al>24.5 ・・・(1)

Description

絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
 本発明は、コーティングによらずに表面に形成された絶縁性酸化皮膜を有する熱膨張係数の小さいステンレス製太陽電池基板およびその製造方法に関する。
 本願は、2013年5月10日に、日本に出願された特願2013-100592号に基づき優先権を主張し、その内容をここに援用する。
 従来、絶縁性基板には、熱膨張係数の小さいセラミックスやガラスに加えて、安価で耐熱性に優れるステンレス鋼の適用が検討されている。
 たとえば特許文献1,2には、平滑なステンレス鋼板の表面にアルミナや酸化シリコンあるいは窒化シリコン膜をコーティングした絶縁性材料が開示されている。素材には、汎用のフェライト系ステンレス鋼SUS430(17Cr鋼)が使用されている。
 さらに、特許文献3には、成膜性が良好なステンレス表面として、表面粗さパラメータのRzとRskの両者を規定した材料が開示されている。素材には、NbとCuを添加したSUS430J1L(18Cr-0.4Cu-0.4Nb)と汎用のオーステナイト系ステンレス鋼SUS304(18Cr-8Ni)が使用されている。
 近年、太陽光発電は、化石燃料に替わる主要なエネルギーの一つに発展しつつあり、太陽電池の技術開発が加速している。中でも、CIS系(カルコパイライト系)太陽電池は、低コストと高効率を両立した太陽電池として、将来の普及が期待されている。CIS系太陽電池は、基板上にMo層からなる電極層を形成し、その上に光吸収層としてカルコパイライト型化合物層を形成してなるものである。カルコパイライト型化合物とは、Cu(InGa)(SeS)に代表される5元系合金である。
 古くから、太陽電池基板には、絶縁体で熱膨張係数の小さいガラスが広く使用されてきた。しかしながら、ガラスは脆くて重いため、ガラス表面に光吸収層を形成した太陽電池基板を大量生産することは容易でない。そこで、近年、軽量化と大量生産を指向するうえで、耐熱性と強度・延性バランスに優れるステンレス鋼を用いた太陽電池基板の開発も進められている。
 たとえば特許文献4には、0.2mm以下のステンレス箔に対して、アルミナ被膜からなる絶縁被膜を形成し、その上にMo層からなる電極を形成し、その上に光吸収層としてCu(In1-xGa)Seの被膜を形成する太陽電池基板材の製造方法が開示されている。ステンレス箔の素材には、SUS430、SUS444(18Cr-2Mo)、SUS447J1(30Cr-2Mo)が用いられている。
 また、特許文献5及び6には、Cu被覆層を有するCu被覆鋼板において、Cu被覆層上にMo被膜を形成し、その上にCu(InGa)(SeS)型化合物層を形成したCIS太陽電池用電極基板が開示されている。特許文献5及び6には、Cu被覆鋼板の基材として、C:0.0001~0.15%、Si:0.001~1.2%、Mn:0.001~1.2%、P:0.001~0.04%、S:0.0005~0.03%、Ni:0~0.6%、Cr:11.5~32.0%、Mo:0~2.5%、Cu:0~1.0%、Nb:0~1.0%、Ti:0~1.0%、Al:0~0.2%、N:0~0.025%、B:0~0.01%、V:0~0.5%、W:0~0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0~0.1%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼を使用することが開示されている。但し、実施例で使用されるフェライト系ステンレス鋼はSUS430に限定されている。
 特許文献7には、耐熱性の良い絶縁皮膜を形成したステンレス鋼材およびその製造方法について開示されている。特許文献7では、基材となるステンレス鋼として、C:0.0001~0.15%、Si:0.001~1.2%、Mn:0.001~2.0%、P:0.001~0.05%、S:0.0005~0.03%、Ni:0~2.0%,Cu:0~1.0%、Cr:11.0~32.0%、Mo:0~3.0%、Al:1.0~6.0%、Nb:0~1.0%、Ti:0~1.0%、N:0~0.025%、B:0~0.01%,V:0~0.5%、W:0~0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0~0.1%、残部Feおよび不可避的不純物からなるものを用い、その基材表面上に、Al酸化物層を介して、厚さ1.0μm以上のNiOとNiFeの混合層を形成している。実施例で使用されている鋼は、Si:0.4%未満のAl含有フェライト系ステンレス鋼である。また、特許文献7には、鋼のSi含有量は0.5%以下に管理しても良いことが記述されている。また、NiO等の混合層とAl酸化物層は、電気メッキによりNiめっき層を形成した後、大気中の熱処理により鋼とNiめっき層との界面にAl酸化物層を形成させかつNiめっき層を酸化物層へ変質させることにより生成している。
 一方、特許文献8及び9には、塗料のコーティングによらずにステンレス鋼表面に絶縁性を付与したステンレス鋼の製造方法が開示されている。特許文献8には、2%以上のAl含有フェライト系ステンレス鋼板を850℃以上に加熱して酸化アルミニウム層を形成する方法が記載されている。但し、実施例ではCやNの不純物を含むSUS430にAl添加した鋼の熱処理時間が60分に限定されている。また、特許文献9には、1000℃で1時間以上の酸化処理を施し、全表面が等軸晶および/または柱状晶からなるα-Alで被覆されたステンレス鋼が示されている。但し、実施例で使用されるステンレス鋼は20Cr-5Alに限定されている。
特開平6-299347号公報 特開平6-306611号公報 特開2011-204723号公報 特開2012-169479号公報 特開2012-59854号公報 特開2012-59855号公報 特開2012-214886号公報 特開昭63-155681号公報 特開2002-60924号公報
 上述した通り、軽量化と大量生産を指向して太陽電池を普及するうえで、ステンレス鋼の基板への適用は有効である。将来、主要な太陽光発電としてCIS系太陽電池の普及を拡大していくには、コーティング等の煩雑な表面処理を省略したコストダウンが重要な課題である。
 前記した課題の解決には、基板に使用されるステンレス鋼の絶縁性が関与する。
 すなわち、上記課題に対しては、コーティングやメッキによらず太陽電池の変換効率を損なわない絶縁性表面を達成することが望まれる。この点に関しては、特許文献1~7で開示されている通り、これまで、コーティングやメッキによるステンレス鋼の適用技術が主流である。さらに、コーティングによらない絶縁性を付与する技術については、現状、特許文献8に開示されているSUS430にAl添加したステンレス鋼への850℃以上60分の熱処理または、特許文献9に開示されている20Cr-5Alのステンレス鋼に対して、1000℃以上,1時間以上の熱処理を施す方法に限定されている。
 そこで本発明の目的は、太陽電池の変換効率を高位に持続できる絶縁性に優れた酸化皮膜が表面に形成されているステンレス製太陽電池用基板および、コーティングによらずに表面に絶縁性に優れた酸化皮膜を形成できる太陽電池用基板の製造方法を提供することにある。
 本発明者らは、前記した課題を解決するために、熱処理によってフェライト系ステンレス鋼の表面に形成される酸化皮膜の絶縁性に対する合金元素(Cr、Si、Al等)の作用効果に着眼して鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。
(a)Alは、熱処理により、ステンレス鋼表面にアルミナ(Al)皮膜を形成して絶縁性を付与する有効な元素である。アルミナ皮膜からなる絶縁性表面を形成するには、素材として、SUH21(18Cr-3Al)や20Cr-5Alに代表される3~6%Al含有フェライト系ステンレス鋼の適用が考えられる。しかしながら、これら高Al含有フェライト系ステンレス鋼の熱膨張係数は、CIS系太陽電池の電極層及び光吸収層を成膜する際の温度上昇時において必ずしも小さいものでなく、成膜性と電池の耐久性には課題がある。特に、Al含有量が2.0%以上であるステンレス鋼では、熱膨張係数が顕著に大きいものとなる。また、不純物の多いSUS430へのAl添加は、熱膨張係数を含む材質面の課題に加えて、アルミナ皮膜を形成する熱処理条件(850℃、1時間以上)にも制約がある。
 本発明者らは、過度なAl添加によらず、Siを添加し、かつCr量を調整したステンレス鋼とすることにより、熱膨張係数が小さく、太陽電池の耐久性向上に好適な表面絶縁性を有する酸化皮膜を熱処理により形成できるという顕著な効果が得られることを見出した。このような熱膨張係数の小さいSi添加Al含有フェライト系ステンレス鋼の表面に、熱処理により形成される酸化皮膜の絶縁性の向上作用については、未だ不明なところも多いものの、以下に述べるような検討結果に基づいて、その作用機構が推察される。
(b)Crに加えてSiは、フェライト系ステンレス鋼の熱膨張係数低下に効果的な元素である。特に、Alを2.0%以上含有するステンレス鋼に、Siを0.3%以上含有させることで、Alを含有させることによる熱膨張係数の上昇を効果的に抑制できる。また、Siは、熱膨張係数の低下に加えて、絶縁性酸化皮膜の形成に対しても有効に作用する。Si添加したステンレス鋼を熱処理することにより、SiO連続皮膜が表面に形成される。このSiO連続皮膜は、絶縁性を付与するに至らないまでも、半導体であるCrの電気抵抗を著しく上昇させるとともに、絶縁性のあるAl皮膜の形成を促進する作用を持つ。このようなSiによる酸化皮膜の改質効果は、Siを0.4%以上含有させることにより発現することを見出した。
(c)上記のSi添加Al含有フェライト系ステンレス鋼を熱処理することにより表面に形成された酸化皮膜の詳細な表面分析から、太陽電池の基板に好適な絶縁性は、(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜により、付与できるという新たな知見を見出した。また、上記の酸化皮膜が(i)Al、または(i)Alと(ii)SiOに加えて、さらに(iii)Al含有スピネル酸化物(MgAl)を含む場合、より優れた絶縁性が得られるという新たな知見を見出した。なお、従来は、(i)Alの厚みや健全性(γ、θ→α化)の性状を最適化するためにメッキや長時間の熱処理が施されている。これに対して上記の酸化皮膜において(iii)MgAlが皮膜中に内在する場合、(i)Alの性状によらず表面の絶縁性が高まる顕著な効果が発現する。
(d)上述した(i)Alを含む酸化皮膜、または(i)Alと(ii)SiOおよび/または(iii)MgAlとを含む酸化皮膜の形成を促進する効果を得るには、Cr、Si、Mn、Alの各元素の含有量を限定するとともに、Cr+10Si+Mn+Al>24.5(但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。)を満たす合金組成に調整することが有効であることを見出した。Mnは、ステンレス鋼の熱処理時におけるFeの酸化を抑制してAlを含む酸化物およびSiを含む酸化物を含有する絶縁性酸化皮膜の形成を促進する。
 Cr、Si、Mn、Alの主構成元素に加えて、微量のMgはAl系スピネル酸化物の生成を促進して絶縁性を高める作用を持つ。更に、SnならびにZrを複合添加した場合に(i)~(iii)の形成は促進される。また、上記合金組成の調整は、酸化皮膜の形成に加えて、Al含有フェライト系ステンレス鋼の熱膨張係数の上昇抑制にも効果的であることを知見した。
(e)前記した酸化皮膜による表面絶縁性の向上効果を高めるには、C、N、P、Sの低減により鋼の高純度化を図り、更に、安定化元素としてNbやTiを添加することが効果的である。
(f)(c)で述べた酸化皮膜を形成するには、公知の焼鈍と酸洗や研磨で得られた上記合金組成を有するステンレス鋼材を、さらに水蒸気及び酸素を含む雰囲気中において300~1000℃で熱処理することが好ましい。特に、(i)Alに加えて、(iii)MgAlの生成を促進するには、雰囲気の露点を40℃以上に高めて熱処理を行うことが有効である。
 上記(a)~(f)の知見に基づいて成された本発明の要旨は、以下の通りである。
(1) 質量%にて、Cr:9~25%、C:0.03%以下、Mn:2%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Al:0.005~5.0%、Si:0.05~4.0%を含み、残部がFeおよび不可避的不純物からなり、Al:0.5%以上、及び/又は、Si:0.4%以上を含み、下記(1)式を満たす組成を有するステンレス鋼材の表面に、(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が形成されていることを特徴とする絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
 Cr+10Si+Mn+Al>24.5 ・・・(1)
 但し、(1)式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
(2) 前記ステンレス鋼材が、Al:2.0%以上及びSi:0.3%以上を含むものであることを特徴とする(1)に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
(3) 前記ステンレス鋼材が、質量%にて、更にSn:1%以下、Zr:0.5%以下、Mg:0.005%以下、Ni:1%以下、Cu:1%以下、Co:0.5%以下、Mo:2%以下、V:0.5%以下、B:0.005%以下、Ca:0.005%以下、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下、Nb:1%以下、Ti:1%以下の1種または2種以上を含有していることを特徴とする(1)または(2)に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
(4) 前記酸化皮膜が(iii)MgAlを含むことを特徴とする(3)に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
(5) 前記酸化皮膜中の(iii)MgAlの含有量が5%以上であることを特徴とする(4)に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
(6) (1)~(3)のいずれか一項に記載の組成を有するステンレス鋼材を、水蒸気を含む雰囲気中で300~1000℃の温度範囲で熱処理することにより、前記ステンレス鋼材の表面に酸化皮膜を形成する形成皮膜工程を有することを特徴とする絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板の製造方法。
(7) 前記形成皮膜工程において、露点40℃以上の水蒸気を含む雰囲気中で前記熱処理を行うことを特徴とする(6)に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板の製造方法。
 本発明のステンレス製太陽電池用基板は、Al:0.5%以上、及び/又は、Si:0.4%以上を含み、上記(1)式を満たす組成を有するステンレス鋼材の表面に、(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が表面に形成されているものであり、コーティングやメッキによらず太陽電池の変換効率を高位に持続する絶縁性表面が形成されているものである。したがって、本発明のステンレス製太陽電池用基板は、太陽電池基板として好適である。
 また、本発明のステンレス製太陽電池用基板のステンレス鋼材が、Al:2.0%以上及びSi:0.3%以上を含む場合、熱処理時にAlとSiとによる絶縁性酸化皮膜の形成を促進させる相乗効果が得られるとともに、Alを含有させることによる熱膨張係数の上昇が、Siによって効果的に抑制される。その結果、より一層絶縁性に優れた酸化皮膜を有し、しかも熱膨張係数が小さい太陽電池基板に好適なステンレス製太陽電池用基板となる。
 以下、本発明の実施形態に係る各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
 本実施形態のステンレス製太陽電池用基板は、ステンレス鋼材の表面に、上記(i)Alを含む酸化皮膜、または(i)Alと(ii)SiOおよび/または(iii)MgAlとを含む酸化皮膜が形成されている。
 本実施形態のステンレス製太陽電池用基板に含まれるステンレス鋼材は、以下に示す組成を有しているため、熱処理を行うことにより、上記(i)Alを含む酸化皮膜、または(i)Alと(ii)SiOおよび/または(iii)MgAlとを含む酸化皮膜が表面に形成されるものとなっている。
(I)ステンレス鋼材の成分の限定理由を以下に説明する。
 本実施形態のステンレス製太陽電池用基板に含まれるステンレス鋼材は、フェライト系ステンレス鋼である。Crは、本実施形態において用いられるフェライト系ステンレス鋼の主構成元素である。Crは、SiおよびAlとともに添加することにより、(i)Alを含む酸化皮膜、または(i)Alと(ii)SiOおよび/または(iii)MgAlとを含む上記絶縁性酸化皮膜の形成を促進し、熱膨張係数を低下させる必須の元素である。上記効果を得るために、Cr含有量の下限は9%とし、10%とすることが好ましく、11%とすることがより好ましい。Cr含有量の上限は、SiおよびAlの添加による鋼の靭性や加工性の低下を抑制する観点から25%とし、好ましくは20%、より好ましくは18%とする。
 Cは、耐食性の向上を阻害すると共に上記絶縁性酸化皮膜の形成を阻害する。このため、Cの含有量は少ないほど良く、上限を0.03%とし、0.02%とすることが好ましい。但し、過度の低減は精錬コストの増加に繋がるため、C含有量の下限は0.001%とすることが好ましく、0.002%とすることが好ましい。
 Mnは、ステンレス鋼の熱処理時にFeの酸化を抑制して、上記絶縁性酸化皮膜の形成を促進する。上記絶縁性酸化皮膜の形成を促進する効果を得るために、Mn含有量を0.06%以上とすることが好ましく、0.3%以上とすることがより好ましく、0.4%以上とすることがさらに好ましい。一方、過度なMnの添加は耐食性や耐酸化性の低下ならびに熱膨張係数の上昇を招くことから、上限を2%とし、好ましくは1.5%、より好ましくは1.0%とする。
 Pは、製造性や溶接性を阻害する元素であるため、その含有量は少ないほど良い。製造性や溶接性の低下を抑制するためP含有量の上限を0.05%とし、0.04%とすることが好ましい。但し、過度の低減は精錬コストの増加に繋がるため、P含有量の下限を0.005%とすることが好ましく、より好ましくは、0.01%とする。
 Sは、上記絶縁性酸化皮膜の生成を阻害するため、その含有量は少ないほど良い。そのため、S含有量の上限は0.01%とし、0.002%とすることが好ましい。但し、過度の低減は精錬コストの増加に繋がるため、S含有量の下限を0.0001%とすることが好ましく、より好ましくは、0.0002%とする。
 Nは、Cと同様に上記絶縁性酸化皮膜の形成を阻害するため、その含有量は少ないほど良い。このため、N含有量の上限を0.03%とし、0.015%とすることが好ましい。但し、過度の低減は精錬コストの増加に繋がるため、N含有量の下限を0.001%とすることが好ましく、より好ましくは、0.005%とする。
 Siは、脱酸元素としての作用を得るために、0.05%以上含有され、0.10%以上含有させることが好ましい。
 一方、過度なSi添加は鋼の靭性と加工性の低下を招く。このため、Si含有量の上限は4.0%とし、3.5%とすることが好ましく、2.0%とすることがより好ましい。
 Alは、Siと同様に脱酸元素としての作用を得るために、0.005%以上含有され、0.010%以上含有させることが好ましい。
 一方、過度なAl添加は、鋼の熱膨張係数を上昇させて熱処理により得られる酸化皮膜の耐久性を阻害する。このため、Al含有量の上限は5.0%であり、3.5%とすることが好ましく、2.5%とすることがより好ましい。Al含有量が5.0%を超えると、熱膨張係数が大きいために太陽電池基板として好ましくない。
 SiおよびAlは、上記絶縁性酸化皮膜の形成を促進し、熱処理によって得られる酸化皮膜の絶縁性を向上させる元素である。このため、本実施形態において用いられるステンレス鋼材は、0.4%以上のSi及び/または0.5%以上のAlを含有している。Si:0.4%以上と、Al:0.5%以上のいずれか一方の条件を満たすステンレス鋼材とすることで、熱処理により、太陽電池基板として使用可能な絶縁性を有する酸化皮膜が得られる。
 また、0.4%以上のSi及び0.5%以上のAlを含有するステンレス鋼材とすることで、熱処理時に、AlやAl含有スピネル酸化物の生成を極めて効果的に促進できる。
 Siを0.4%以上含有させることで、上記の絶縁性酸化皮膜の形成を促進する作用が得られるとともに、ステンレス鋼材の熱膨張係数を低下させる作用が得られる。Si含有量は、上記絶縁性酸化皮膜の形成を促進する作用を得るためには、0.5%以上とすることが好ましく、1.0%以上とすることがより好ましい。
 Alを0.5%以上含有させることで、上記の絶縁性酸化皮膜の形成を促進する作用が得られる。Al含有量は、絶縁性酸化皮膜の形成を促進する作用を得るためには、1.0%以上とすることが好ましく、1.5%以上とすることがより好ましい。
 上記、Cr、Mn、Si、Alの含有量に加えて、本実施形態では目的とする低熱膨張係数を維持しつつ、熱処理を行うことによる上記絶縁性酸化皮膜の形成を促進するために、Cr+10Si+Al+Mn>24.5(但し、式中の元素記号は、当該元素の鋼中における含有質量%を意味する。)とする。Crを主構成元素とするフェライト系ステンレス鋼において、絶縁性酸化皮膜の形成と熱膨張係数の低下にはSi添加が有効に機能し、SiとAlの複合添加が好適である。更に、Mn添加も熱膨張係数を上昇させずに、これら酸化皮膜の形成を助長する。絶縁性酸化皮膜の形成を促進する点から、Cr+10Si+Al+Mnは27以上であることが好ましい。上限は、特に規定するものではないが、SiおよびAl添加による鋼の製造性への影響を考慮して40とすることが好ましく、35であることがより好ましい。
 また、本実施形態において用いられるステンレス鋼材は、Al:2.0%以上及びSi:0.3%以上を含むものであってもよい。
 Alを2.0%以上含有する場合、熱処理によって得られる酸化皮膜の絶縁性が、より一層向上する。しかし、Alの含有量を増加させるほど、熱膨張係数が大きくなる。このため、Alを2.0%以上含有させる場合、Si含有量を0.3%以上とすることが好ましい。Siを0.3%以上含有させることで、Alを2.0%以上含有させることによる熱膨張係数の上昇を抑制できる。Alを2.0%以上含有させる場合のSi含有量は、熱膨張係数の上昇を効果的に抑制するために、0.4%以上とすることがより好ましい。熱膨張係数が十分に小さいステンレス鋼材は、太陽電池基板として用いられた場合に、基板とMo電極およびCIS光吸収層との密着性が高いものとなり、優れた耐久性が得られる。
 また、Alを2.0%以上含有させるとともに、Siを0.3%以上含有させることにより、AlとSiとによる絶縁性酸化皮膜の形成を促進させる相乗効果が得られる。その結果、熱処理によって、より一層絶縁性に優れた酸化皮膜が得られるステンレス鋼材となる。
 なお、Alの含有量が2.0%未満である場合には、Si含有量が0.3%未満であっても、熱膨張係数の十分に小さいステンレス鋼材となる。また、Alの含有量が5.0%を超える場合、Siを含有させることにより熱膨張係数の上昇を抑制しても、熱膨張係数が十分に低いステンレス鋼材は得られない。
 また、本実施形態において用いられるステンレス鋼材は、必要に応じて、更にSn:1%以下、Zr:0.5%以下、Mg:0.005%以下、Ni:1%以下、Cu:1%以下、Co:0.5%以下、Mo:2%以下、V:0.5%以下、B:0.005%以下、Ca:0.005%以下、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下、Nb:1%以下、Ti:1%以下の1種または2種以上を含有しているものであってもよい。
 Snは、本実施形態において用いられるフェライト系ステンレス鋼において、Feの酸化を抑制してSiおよび/またはAlが濃化した絶縁性酸化皮膜の形成を促進するため、必要に応じて添加される。Snを添加する場合は、その効果が発現する0.01%以上とすることが好ましく、0.05%以上とすることが好ましく、0.1%以上とすることがより好ましい。但し、過度な添加は、鋼の製造性低下や合金コストの上昇を招くため、Sn含有量の上限を1%とし、好ましくは0.5%とし、さらに好ましくは0.3%とする。
 Zrは、SiおよびAlとの相乗効果により絶縁性酸化皮膜の形成を促進するため、必要に応じて添加される。Zrを添加する場合は、その効果が発現する0.005%以上とすることが好ましく、0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。但し、過度な添加は、鋼の製造性低下や合金コストの上昇を招くため、Zr含有量の上限を0.5%とし、好ましくは0.3%とし、さらに好ましくは0.15%とする。
 Mgは、熱間加工性や凝固組織微細化に有効な元素であることに加えて、熱処理を行うことによりAl系スピネル酸化物(MgAl)の形成を促進する作用を持つ。Mgを添加する場合は、Mgの含有量をこれらの効果を発現する0.0001%以上とすることが好ましく、0.0003%以上とすることがより好ましい。しかし、過度の添加は、製造性を阻害するため、Mg含有量の上限を0.005%とし、好ましくは0.0015%とする。
 Ni、Cu、Co、Mo、Vは、SiやAlとの相乗効果により、上記絶縁性酸化皮膜の形成を促進したり耐食性を高めたりするのに有効な元素であり、必要に応じて添加される。Ni、Cu、Moを添加する場合、含有量をそれぞれその効果が発現する0.1%以上とすることが好ましい。V、Coを添加する場合、含有量をそれぞれその効果が発現する0.01%以上とすることが好ましい。但し、過度な添加は合金コストの上昇や熱膨張係数の上昇に繋がるため、Ni、Cuの上限は1%とし、V、Coの上限は0.5%とする。Moは熱膨張係数の低下に有効な元素でもあることから、上限は2%とする。いずれの元素もより好ましい含有量の下限は0.1%であり、上限は0.5%である。
 B、Caは、熱間加工性や2次加工性を向上させる元素であり、フェライト系ステンレス鋼への添加は有効である。Bおよび/またはCaを添加する場合は、B、Caそれぞれの含有量の下限をこれらが効果を発現する0.0003%とすることが好ましく、0.0005%とすることがより好ましい。しかし、Bおよび/またはCaの過度の添加は、伸びの低下をもたらすため、B、Caそれぞれの含有量の上限を0.005%とし、好ましくは0.0015%とする。
 La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上させ、熱処理により得られる酸化皮膜の密着性向上に有効な元素であり、必要に応じて添加されても良い。La、Y、Hf、REMを添加する場合は、これらの含有量をそれぞれその効果が発現する0.001%以上とすることが好ましい。しかし、過度の添加は合金コストの上昇と製造性の低下に繋がるため、La、Y、Hf、REMの含有量の上限をそれぞれ0.1%とし、より好ましくは、0.05%とする。ここで、REMは原子番号57~71に帰属する元素であり、例えば、Ce、Pr、Nd等である。
 Nbは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じて、上記絶縁性酸化皮膜の生成を促進するため、必要に応じて添加される。Nbを添加する場合は、Nbの含有量をその効果が発現する0.03%以上とすることが好ましく、0.05%以上とすることが好ましく、0.1%以上とすることがより好ましい。但し、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下に繋がるため、Nb含有量の上限を1%とし、好ましくは0.5%とし、さらに好ましくは0.3%とする。
 Tiは、C,Nを固定する安定化元素の作用による鋼の高純度化に加えて、上記絶縁性酸化皮膜の生成も促進するため、必要に応じて添加される。Tiを添加する場合は、Tiの含有量をその効果が発現する0.01%以上とすることが好ましく、0.02%以上とすることが好ましく、0.05%以上とすることがより好ましい。但し、過度な添加は合金コストを上昇させたり、Al系酸化物およびSiOの生成を阻害したりするため、Ti含有量の上限を1%とし、より好ましくは0.35%であり、さらに好ましくは0.2%である。
(II)ステンレス鋼材の表面に形成されている酸化皮膜について以下に説明する。
 本実施形態のステンレス製太陽電池用基板では、前記(I)項に記載する成分を有するステンレス鋼材の表面に、本実施形態の目的とする太陽電池用基板に好適な絶縁性表面を付与するため、以下に示す酸化皮膜が形成されている。
 本実施形態のステンレス製太陽電池用基板の表面には、(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が形成されている。本実施形態のステンレス製太陽電池用基板は、このような酸化皮膜がステンレス鋼材の表面に形成されているものであるので、太陽電池用基板に好適な絶縁性表面を有するものとなっている。
 また、前記酸化皮膜は、(i)Alと(iii)MgAl(Al含有スピネル系酸化物)とを含むものであってもよいし、(i)Alと(ii)SiOに加えて、さらに(iii)MgAl(Al含有スピネル系酸化物)を含むものであってもよい。酸化皮膜が(iii)MgAlを含む場合、(i)Alの性状によらず絶縁性を向上させることができ好ましい。
 酸化皮膜が(ii)SiOまたは(iii)MgAlを含まない場合、(i)Alの含有量は、より優れた絶縁性を得るために、55%以上であることが好ましく、60%以上であることがより好ましい。酸化皮膜中の(i)Alの含有量の上限は、特に限定されるものではない。なお、酸化皮膜が(i)Alとともに(iii)MgAlを含む場合、(iii)MgAlを含有することにより一層優れた絶縁性が得られるように、酸化皮膜中の(i)Alの含有量の上限は、95%であることが好ましく、80%であることがより好ましい。
 また、酸化皮膜が(ii)SiOを含むものである場合、酸化皮膜中の(ii)SiOの含有量は5%以上であることが好ましく、15%以上であることがより好ましい。
 酸化皮膜中の(ii)SiOの含有量が5%以上である場合、(ii)SiOを形成することによって(i)Alの形成が十分に促進されたものとなる。また、酸化皮膜が(ii)SiOを含むものである場合、酸化皮膜中の(i)Alの含有量を確保して、絶縁性を確保するため、酸化皮膜中の(ii)SiOの含有量は30%以下であることが好ましく、25%以下であることがより好ましい。
 また、酸化皮膜が(iii)MgAlを含む場合、(iii)MgAlによる絶縁性を向上させる効果が十分に得られるように、酸化皮膜中の(iii)MgAlの含有量は5%以上であることが好ましく、10%以上であることがより好ましい。酸化皮膜中の(iii)MgAlの含有量の上限は、特に規定するものでないが、酸化皮膜中の(i)Alの含有量を確保して優れた絶縁性を得るために、(iii)MgAlの含有量は50%以下であることが好ましく、30%以下であることがより好ましい。
 酸化皮膜の厚さは、絶縁性表面を維持するために、0.01μm以上とすることが好ましい。皮膜厚さの上限は、特に規定するものでないが、後述する熱処理の効率を考慮して5μmとすることが好ましい。また、本実施形態では、前記(iii)MgAlを含む酸化皮膜を形成することにより、膜厚が1μm以下と薄い場合においても表面の絶縁性を確保することができる。
(III)ステンレス製太陽電池用基板の製造方法について以下に説明する。
 本実施形態の製造方法においては、(I)項に記載される成分のステンレス鋼材の表面に(II)項に記載した酸化皮膜を形成するために、水蒸気を含む雰囲気中で300~1000℃の温度範囲で熱処理を行う(形成皮膜工程)ことが好ましい。
 なお、熱処理されるステンレス鋼材は、(I)項に記載する成分を有するものであり、従来公知の製造方法で得られたものである。熱処理されるステンレス鋼材は、ステンレス製太陽電池用基板として使用可能な形状であれば、如何なる形状を有するものであってもよい。また、熱処理されるステンレス鋼材の表面性状については特に規定するものでなく、JIS G 4304:2012及びJIS G 4305:2012(ISO 16143-1:2004に対応)に準拠したBA、2B、2D、No.4、研磨等とすることができる。
 (II)項に記載した絶縁性に有効な酸化皮膜を形成するには、300℃以上で熱処理することが好ましく、400℃以上で熱処理することがより好ましい。熱処理温度が過度に高い場合、酸化皮膜中のAl濃度やSi濃度が低下し、Fe濃度が上昇して、酸化皮膜の絶縁性や密着性が阻害される。このため、熱処理温度の上限は1000℃とすることが好ましく、900℃とすることがより好ましい。
 熱処理時間は特に規定されるものでなく、例えば、1分~72時間とすることができる。
 熱処理は、10分以下の連続焼鈍もしくは24~72時間のバッチ式タイプの熱処理とすることが好ましい。
 酸化皮膜を形成する熱処理は、水蒸気を含む雰囲気中で行われることが好ましい。水蒸気を含む雰囲気中で熱処理を行うことにより、ステンレス鋼材の表面におけるAlおよびSiの酸化が促進される。水蒸気を含む雰囲気としては、例えば、乾燥空気(20%酸素-80%窒素)を加湿して水蒸気を含ませた雰囲気が挙げられる。また、酸化皮膜を形成する熱処理は、純酸素ガス中に5%以上の水蒸気を含有させた雰囲気中で行われることがより好ましい。このような雰囲気中で熱処理を行うことにより、本実施形態の目的とする酸化皮膜を容易に形成できる。
 酸化皮膜を形成する熱処理は、露点40℃以上の水蒸気を含む雰囲気中で行われることが更に好ましい。このような雰囲気中で熱処理を行うことにより、(iii)MgAlが効率よく形成される。露点の上限は、特に規定されるものでないが、熱処理の作業性を考慮して90℃とする。
 酸化皮膜に含まれる(i)~(iii)それぞれの含有量は、上記範囲内で組成を変更するとともに、上記の熱処理雰囲気および熱処理温度の範囲内で、熱処理条件を変更することにより制御できる。
 以下、本実施形態の実施例について説明する。
 表1に示す成分を有するフェライト系ステンレス鋼を溶製し、熱間圧延と焼鈍を実施した後、冷間圧延を経て板厚0.5mmの冷延鋼板とした。ここで、鋼の成分は、本実施形態で規定される範囲とそれ以外とした。冷延鋼板は、いずれも再結晶が完了する800~1000℃の範囲で仕上げ焼鈍・酸洗を行った。
 これら鋼板を、適時、乾燥空気を表2に示す露点に加湿して水蒸気を含ませた雰囲気中で表2に示す熱処理条件(温度・保持時間・露点)で熱処理を行った。得られた鋼板を、表面の絶縁性評価と熱膨張係数の測定に供した。また、得られた鋼板の表面に形成された酸化皮膜中に含まれる下記(i)~(iii)の各成分の比率(%)を算出した。その結果を表2に示す。
 表面に形成された酸化皮膜を構成する酸化物は、X線回折(CuKα線使用)により下記に示す回折ピークを測定することにより、各酸化物の存在を確認し、その比率を求めた。
 (i)Al:(104)面、2θ=35.15°
 (ii)SiO:(101)面、2θ=26.64°
 (iii)MgAl:(311)面、2θ=36.85°
 (iv)Cr:(110)面、2θ=36.16°/(104)面、2θ=33.6°
 まず、X線回折により測定した上記(i)~(iii)それぞれの回折ピークの高さ(cps)をカウントした。そして、酸化皮膜が上記(i)~(iv)からなるものであるとみなし、下記の(i)Alの存在比率の算出方法に準じて、(i)~(iii)の各酸化物の存在比率を算出した。
 酸化物の存在比率は、例えば、(i)Alの場合、(i)/{(i)+(ii)+(iii)+(iv)}×100により算出した。なお、上式中の(i)~(iv)は、上記X線回折で測定した(i)Alの(104)面、(ii)SiOの(101)面、(iii)MgAlの(311)面、及び(iv)Crの(110)面から得られた回折ピーク高さ(cps)をそれぞれ意味する。
 上式の(iv)の値はメイン回折ピークとして(110)面の回折ピーク高さを採用した。(iv)Crの存在は、(i)Alの回折ピークと識別するために、(104)面の回折ピークが存在することを確認した。
 表2において「比率%」は(i)~(iii)の存在比率の合計を示す。
 鋼板表面の絶縁性は、表面にアルミ膜(10mm角×0.2μm厚さ)を電極として蒸着した後、電極上にテスターの測定子を置いて電気抵抗を測定することにより評価した。測定面積において10回測定し、その平均値を測定値とした。本実施形態で目標とされる絶縁性は、CIS系太陽電池基板として好適な電気抵抗値1kΩ以上であり、それが得られた鋼板を「B」とし、より高い抵抗値(10kΩ以上)を安定して示す鋼鈑を「A」とした。また、1kΩ未満を「C」とした。
 熱膨張係数は、1mm厚×10mm幅×50mm長さの試験片を作成し、押棒式熱膨張測定により求めた。Ar雰囲気中で、スプリング圧縮荷重は50g以下で測定を行った。熱膨張係数はCIS系太陽電池の成膜を想定して、50℃から600℃まで温度を上げたときの熱膨張を測定することにより算出した。本実施形態の目標とする熱膨張係数は、50℃を基点とし、600℃まで温度を上げたときの平均線膨張係数が、CIS系太陽電池基板に形成された成膜の耐久性を持続するうえで好適な12.5×10-6/℃以下であり、それが得られた鋼板を「B」とし、12.5×10-6/℃を超えたものを「C」とした。
 表2に熱処理条件と各評価結果をまとめて示す。
 試験番号No.1~10は、本実施形態で規定される組成を有するステンレス鋼材の表面に、熱処理により(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が形成されているものである。
 試験番号1~10の鋼板は、本実施形態で目標とする表面絶縁性と熱膨張係数が得られた。
 中でも、鋼C、D、F、G、H、Iを用いて露点40℃以上の熱処理条件で熱処理したNo.3、4、6~9は、(iii)MgAlを含む酸化皮膜が形成されているものであり、表面絶縁性が「A」であった。
 試験番号No.11~13、15、16は、本実施形態で規定される組成と(1)式のいずれか一方もしくは両者とから外れる鋼を用いたものである。
 試験番号No.12、15、16の鋼板は、表2に示す熱処理条件で熱処理を行うことにより酸化皮膜が形成されていたものの、この酸化皮膜は(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜ではなく、本実施形態で目標とする表面絶縁性が得られなかった。
 また、試験番号No.11、13は、絶縁性は良好であったが、熱膨張係数が非常に大きいため太陽電池基板として好ましくないものであった。
 試験番号No.14は、本実施形態で規定される成分から外れる低Cr鋼で、本実施形態で規定される(1)式を満足する鋼を用いたものである。試験番号No.14は、本実施形態で目標とする熱膨張係数が得られなかった。また、表2に示す熱処理条件で熱処理を行うことにより酸化皮膜が形成されていたものの、この酸化皮膜は(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜ではなく、本実施形態で目標とする表面絶縁性が得られなかった。
 以上の結果から、フェライト系ステンレス鋼板において、表面絶縁性を付与するには、表面に本実施形態で規定される(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が形成されていることが必要である。ここで、表面絶縁性を高めるには、ステンレス鋼材の表面に(i)Al、または(i)Alと(ii)SiOに加えて、さらに(iii)MgAlを含む酸化皮膜を形成させることが効果的である。さらに、本実施形態で目標とする熱膨張係数と表面絶縁性との両立を図るには、本実施形態で規定する成分と(1)式の成分調整が有効である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、コーティングやメッキによらず太陽電池の変換効率を高位に持続する絶縁性表面を有し、熱膨張係数の小さい太陽電池基板に好適なステンレス製太陽電池用基板を得ることができる。特に、本発明は、絶縁性基板上に電極および光吸収層を形成したCIS系太陽電池基板に好適である。

Claims (7)

  1.  質量%にて、Cr:9~25%、C:0.03%以下、Mn:2%以下、P:0.05%以下、S:0.01%以下、N:0.03%以下、Al:0.005~5.0%、Si:0.05~4.0%を含み、残部がFeおよび不可避的不純物からなり、Al:0.5%以上、及び/又は、Si:0.4%以上を含み、下記(1)式を満たす組成を有するステンレス鋼材の表面に、(i)Alを50%以上含む、または(i)Alと(ii)SiOとの合計を50%以上含む酸化皮膜が形成されていることを特徴とする絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
     Cr+10Si+Mn+Al>24.5 ・・・(1)
     但し、(1)式中の元素記号は、当該元素の鋼中における含有質量%を意味する。
  2.  前記ステンレス鋼材が、Al:2.0%以上及びSi:0.3%以上を含むものであることを特徴とする請求項1に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
  3.  前記ステンレス鋼材が、質量%にて、更にSn:1%以下、Zr:0.5%以下、Mg:0.005%以下、Ni:1%以下、Cu:1%以下、Co:0.5%以下、Mo:2%以下、V:0.5%以下、B:0.005%以下、Ca:0.005%以下、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下、Nb:1%以下、Ti:1%以下の1種または2種以上を含有していることを特徴とする請求項1または請求項2に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
  4.  前記酸化皮膜が(iii)MgAlを含むことを特徴とする請求項3に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
  5.  前記酸化皮膜中の(iii)MgAlの含有量が5%以上であることを特徴とする請求項4に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板。
  6.  請求項1~請求項3のいずれか一項に記載の組成を有するステンレス鋼材を、水蒸気を含む雰囲気中で300~1000℃の温度範囲で熱処理することにより、前記ステンレス鋼材の表面に酸化皮膜を形成する形成皮膜工程を有することを特徴とする絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板の製造方法。
  7.  前記形成皮膜工程において、露点40℃以上の水蒸気を含む雰囲気中で前記熱処理を行うことを特徴とする請求項6に記載の絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板の製造方法。
PCT/JP2014/062152 2013-05-10 2014-05-02 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法 WO2014181768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480025682.XA CN105209651B (zh) 2013-05-10 2014-05-02 绝缘性优异且热膨胀系数小的不锈钢制太阳能电池用基板及其制造方法
US14/888,860 US9837567B2 (en) 2013-05-10 2014-05-02 Stainless steel substrate for solar cell having superior insulating properties and low thermal expansion coefficient and method of producing the same
KR1020157032186A KR101773277B1 (ko) 2013-05-10 2014-05-02 절연성이 우수한 열팽창 계수가 작은 스테인리스제 태양 전지용 기판 및 그 제조 방법
EP14794499.5A EP2995697B1 (en) 2013-05-10 2014-05-02 Stainless steel substrate for solar cell having superior insulating properties and low thermal expansion coefficient, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013100592A JP6392501B2 (ja) 2013-05-10 2013-05-10 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
JP2013-100592 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014181768A1 true WO2014181768A1 (ja) 2014-11-13

Family

ID=51867248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062152 WO2014181768A1 (ja) 2013-05-10 2014-05-02 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法

Country Status (7)

Country Link
US (1) US9837567B2 (ja)
EP (1) EP2995697B1 (ja)
JP (1) JP6392501B2 (ja)
KR (1) KR101773277B1 (ja)
CN (1) CN105209651B (ja)
TW (1) TWI518189B (ja)
WO (1) WO2014181768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451433A (zh) * 2014-11-17 2015-03-25 江苏环亚电热仪表有限公司 一种高温精密合金宽板带材及其生产工艺
JP2018076589A (ja) * 2016-10-28 2018-05-17 新日鐵住金ステンレス株式会社 表面性状と耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼板およびその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130688B1 (en) * 2014-04-08 2021-02-17 JFE Steel Corporation Ferritic stainless-steel foil and process for producing same
WO2016017692A1 (ja) * 2014-07-29 2016-02-04 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼材およびその製造方法
ES2839079T3 (es) * 2015-03-26 2021-07-05 Nippon Steel & Sumikin Sst Acero inoxidable que tiene una excelente soldabilidad
JP6016987B1 (ja) * 2015-05-29 2016-10-26 日新製鋼株式会社 電池外装用ステンレス箔、およびその製造方法
JP6504973B6 (ja) * 2015-08-28 2019-05-29 日鉄ステンレス株式会社 耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼およびその製造方法
JP2017054874A (ja) * 2015-09-08 2017-03-16 新日鐵住金ステンレス株式会社 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池
JP6390594B2 (ja) * 2015-11-13 2018-09-19 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6653606B2 (ja) * 2016-03-25 2020-02-26 日鉄ステンレス株式会社 Al含有フェライト系ステンレス鋼およびその製造方法
CN109072384A (zh) * 2016-04-22 2018-12-21 山特维克知识产权股份有限公司 铁素体合金
JP6824004B2 (ja) * 2016-11-09 2021-02-03 株式会社クボタ 表面にアルミナバリア層を有する鋳造品及びその製造方法
TWI761482B (zh) * 2017-03-31 2022-04-21 日商大阪瓦斯股份有限公司 合金構件之製造方法、合金構件、電化學元件、電化學模組、電化學裝置、能源系統及固態氧化物型燃料電池
RU2651074C1 (ru) * 2017-09-18 2018-04-18 Юлия Алексеевна Щепочкина Сталь
KR102602916B1 (ko) * 2018-12-12 2023-11-15 현대자동차주식회사 내식성과 내충격성이 우수한 페라이트계 스테인리스강
JP7260304B2 (ja) 2019-01-11 2023-04-18 トヨタ自動車株式会社 軟磁性部材の製造方法
EP3783119A1 (de) 2019-08-20 2021-02-24 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit ausgezeichneter oxidations- und heissgas-korrosionsbeständigkeit sowie verfahren zur herstellung eines solchen stahlflachprodukts
CN111733363A (zh) * 2020-01-17 2020-10-02 天津雨昌环保工程有限公司 一种不锈钢加热片及其制备方法
JP7450423B2 (ja) 2020-03-23 2024-03-15 日鉄ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法ならびに基板
CN112375989A (zh) * 2020-10-29 2021-02-19 温州欧迪家居用品有限公司 一种耐腐蚀浴室挂件及其表面处理方法
CN118186312A (zh) * 2024-05-16 2024-06-14 山东瑞泰新材料科技有限公司 一种合金锭、表面具有绝缘性能的合金及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155681A (ja) 1986-12-18 1988-06-28 Kawasaki Steel Corp 太陽電池基板用母板の製造方法
JPH06299347A (ja) 1993-04-08 1994-10-25 Nippon Steel Corp 電気絶縁性板状材料の製造方法
JPH06306611A (ja) 1993-04-16 1994-11-01 Nippon Steel Corp 表面性状の優れた絶縁材料の製造方法
JPH07316746A (ja) * 1994-05-27 1995-12-05 Nippon Steel Corp 触媒メタル担体
JP2002060924A (ja) 2000-08-23 2002-02-28 Nippon Yakin Kogyo Co Ltd 絶縁層を有するステンレス鋼
JP2005254688A (ja) * 2004-03-12 2005-09-22 Nippon Steel Corp 耐剥離性に優れた絶縁体被覆基材
JP2011162863A (ja) * 2010-02-12 2011-08-25 Nippon Steel & Sumikin Stainless Steel Corp 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
JP2011204723A (ja) 2010-03-24 2011-10-13 Nisshin Steel Co Ltd 太陽電池基板材用ステンレス鋼板およびその製造方法
JP2012059854A (ja) 2010-09-08 2012-03-22 Nisshin Steel Co Ltd Cigs太陽電池用電極基板および電池
JP2012059855A (ja) 2010-09-08 2012-03-22 Nisshin Steel Co Ltd Cigs太陽電池用基板および電池
JP2012097341A (ja) * 2010-11-05 2012-05-24 Jfe Steel Corp 太陽電池基板用クロム含有フェライト系鋼板
JP2012169479A (ja) 2011-02-15 2012-09-06 Jfe Steel Corp ステンレス箔製太陽電池基板材およびその製造方法
JP2012214886A (ja) 2011-03-25 2012-11-08 Nisshin Steel Co Ltd 絶縁性に優れたステンレス鋼材およびその製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525467B1 (en) 1991-07-10 1997-03-26 Nippon Steel Corporation Grain oriented silicon steel sheet having excellent primary glass film properties
DE69732386T2 (de) * 1996-05-29 2005-12-22 Sumitomo Metal Industries, Ltd. Rostfreier Stahl für Wasser mit zugesetztem Ozon und sein Herstellungsverfahrene
JP5544106B2 (ja) 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 燃料電池用Al含有耐熱フェライト系ステンレス鋼およびその製造方法
JP5487783B2 (ja) 2009-07-31 2014-05-07 Jfeスチール株式会社 ステンレス箔およびその製造方法
JP2011176266A (ja) * 2010-01-29 2011-09-08 Fujifilm Corp Se化合物半導体用基板、Se化合物半導体用基板の製造方法および薄膜太陽電池
JP5683118B2 (ja) * 2010-02-05 2015-03-11 株式会社ゴールドウイン 連結具を有する、上衣及び下衣を含む衣服
JP5970796B2 (ja) 2010-12-10 2016-08-17 Jfeスチール株式会社 太陽電池基板用鋼箔およびその製造方法、並びに太陽電池基板、太陽電池およびその製造方法
JP2012182287A (ja) * 2011-03-01 2012-09-20 Sharp Corp 光電変換素子および光電変換素子の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155681A (ja) 1986-12-18 1988-06-28 Kawasaki Steel Corp 太陽電池基板用母板の製造方法
JPH06299347A (ja) 1993-04-08 1994-10-25 Nippon Steel Corp 電気絶縁性板状材料の製造方法
JPH06306611A (ja) 1993-04-16 1994-11-01 Nippon Steel Corp 表面性状の優れた絶縁材料の製造方法
JPH07316746A (ja) * 1994-05-27 1995-12-05 Nippon Steel Corp 触媒メタル担体
JP2002060924A (ja) 2000-08-23 2002-02-28 Nippon Yakin Kogyo Co Ltd 絶縁層を有するステンレス鋼
JP2005254688A (ja) * 2004-03-12 2005-09-22 Nippon Steel Corp 耐剥離性に優れた絶縁体被覆基材
JP2011162863A (ja) * 2010-02-12 2011-08-25 Nippon Steel & Sumikin Stainless Steel Corp 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
JP2011204723A (ja) 2010-03-24 2011-10-13 Nisshin Steel Co Ltd 太陽電池基板材用ステンレス鋼板およびその製造方法
JP2012059854A (ja) 2010-09-08 2012-03-22 Nisshin Steel Co Ltd Cigs太陽電池用電極基板および電池
JP2012059855A (ja) 2010-09-08 2012-03-22 Nisshin Steel Co Ltd Cigs太陽電池用基板および電池
JP2012097341A (ja) * 2010-11-05 2012-05-24 Jfe Steel Corp 太陽電池基板用クロム含有フェライト系鋼板
JP2012169479A (ja) 2011-02-15 2012-09-06 Jfe Steel Corp ステンレス箔製太陽電池基板材およびその製造方法
JP2012214886A (ja) 2011-03-25 2012-11-08 Nisshin Steel Co Ltd 絶縁性に優れたステンレス鋼材およびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2995697A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451433A (zh) * 2014-11-17 2015-03-25 江苏环亚电热仪表有限公司 一种高温精密合金宽板带材及其生产工艺
CN108179260A (zh) * 2014-11-17 2018-06-19 李海涛 一种高温精密合金宽板带材及其生产工艺
CN108179260B (zh) * 2014-11-17 2019-08-13 郭啸晨 一种高温精密合金宽板带材及其生产工艺
JP2018076589A (ja) * 2016-10-28 2018-05-17 新日鐵住金ステンレス株式会社 表面性状と耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼板およびその製造方法
JP7133917B2 (ja) 2016-10-28 2022-09-09 日鉄ステンレス株式会社 表面性状と耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼板およびその製造方法

Also Published As

Publication number Publication date
KR20150140809A (ko) 2015-12-16
US9837567B2 (en) 2017-12-05
CN105209651B (zh) 2018-10-16
CN105209651A (zh) 2015-12-30
TWI518189B (zh) 2016-01-21
JP6392501B2 (ja) 2018-09-19
EP2995697A1 (en) 2016-03-16
EP2995697A4 (en) 2017-01-18
EP2995697B1 (en) 2019-12-18
TW201504456A (zh) 2015-02-01
US20160079455A1 (en) 2016-03-17
JP2014218728A (ja) 2014-11-20
KR101773277B1 (ko) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6392501B2 (ja) 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
JP6832999B2 (ja) フェライト系ステンレス鋼と、その鋼板及びそれらの製造方法
JP6653606B2 (ja) Al含有フェライト系ステンレス鋼およびその製造方法
EP2871251B1 (en) Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet with oxide coating film having excellent conductivity and adhesion
JP5970796B2 (ja) 太陽電池基板用鋼箔およびその製造方法、並びに太陽電池基板、太陽電池およびその製造方法
JP6444320B2 (ja) 酸化皮膜の電気伝導性と密着性に優れたフェライト系ステンレス鋼板
JP6159571B2 (ja) 絶縁性に優れた熱膨張係数の小さい太陽電池基板用ステンレス鋼材
TWI526546B (zh) Solar cell substrate with fat iron stainless steel foil
JP2020164934A (ja) フェライト系ステンレス鋼板およびその製造方法
TWI531664B (zh) 太陽能電池基板用肥粒鐵系不鏽鋼箔
KR101929138B1 (ko) 고체 산화물형 연료 전지용 강 및 그 제조방법
JP7133917B2 (ja) 表面性状と耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼板およびその製造方法
JP6504973B6 (ja) 耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼およびその製造方法
JP5652567B1 (ja) 太陽電池基板用フェライト系ステンレス箔の製造方法
KR101756761B1 (ko) 스테인리스박제 태양전지 기판재의 제조 방법
JP2017054874A (ja) 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888860

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032186

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014794499

Country of ref document: EP