WO2014174984A1 - 銀-ビスマス粉末、導電性ペースト及び導電膜 - Google Patents

銀-ビスマス粉末、導電性ペースト及び導電膜 Download PDF

Info

Publication number
WO2014174984A1
WO2014174984A1 PCT/JP2014/059016 JP2014059016W WO2014174984A1 WO 2014174984 A1 WO2014174984 A1 WO 2014174984A1 JP 2014059016 W JP2014059016 W JP 2014059016W WO 2014174984 A1 WO2014174984 A1 WO 2014174984A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
bismuth
particle size
powder
conductive paste
Prior art date
Application number
PCT/JP2014/059016
Other languages
English (en)
French (fr)
Inventor
孝造 尾木
井上 健一
江原 厚志
彰宏 浅野
英幸 藤本
山田 雄大
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201480023351.2A priority Critical patent/CN105142824B/zh
Priority to KR1020157033524A priority patent/KR102236907B1/ko
Priority to SG11201508728YA priority patent/SG11201508728YA/en
Publication of WO2014174984A1 publication Critical patent/WO2014174984A1/ja
Priority to US14/918,948 priority patent/US10458004B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents

Definitions

  • the present invention relates to a silver-bismuth powder, a conductive paste, and a conductive film.
  • Patent Document 2 a lead-free brazing material made of an alloy based on bismuth has been proposed (see Patent Document 2).
  • this proposal is not intended for use in applications where firing is performed at a relatively high temperature.
  • the bismuth content is as high as 80% by mass or more, firing is performed in a relatively high-temperature oxidizing atmosphere. In some applications, there is a problem that the conductivity is lowered.
  • silver-bismuth powder, conductive paste and conductive film having good solder wettability, low volume resistivity, and excellent conductivity even in applications where firing is performed in an oxidizing atmosphere at a relatively high temperature (500 ° C. or higher).
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention has a good solder wettability, a low volume resistivity, and a silver-bismuth powder having excellent conductivity even in applications where it is fired in an oxidizing atmosphere at a relatively high temperature (500 ° C. or higher).
  • An object is to provide a paste and a conductive film.
  • the silver-bismuth powder of the present invention as a means for solving the above problems contains silver and bismuth, and the mass ratio of silver to bismuth (silver: bismuth) is 95: 5 to 40:60.
  • the cumulative 50% particle size (D50) in the volume-based particle size distribution by the laser diffraction particle size distribution measurement method is 0.1 ⁇ m to 10 ⁇ m
  • the oxygen content is 5.5% by mass or less.
  • the conventional problems can be solved, the object can be achieved, solder wettability is good, volume resistivity is low, and firing is performed in an oxidizing atmosphere at a relatively high temperature (500 ° C. or higher).
  • the silver-bismuth powder, the conductive paste, and the conductive film having excellent conductivity can be provided even in the case where they are used.
  • FIG. 1 is a graph showing the relationship between the mass ratio of silver in powder and the volume resistivity in Examples.
  • FIG. 2 is a graph showing the relationship between the mass ratio of silver in the powder and the solder wettability in the examples.
  • the silver-bismuth powder of the present invention contains silver and bismuth.
  • the mass ratio of silver to bismuth is 95: 5 to 40:60, preferably 95: 5 to 70:30, and has low volume resistivity, solder wettability, and low cost. From the viewpoint, 90:10 to 80:20 is more preferable. In the numerical range, the solder wettability is good and the volume resistivity is low.
  • the silver-bismuth powder can be reduced in cost by replacing a part of silver, which is a noble metal, with bismuth of a base metal.
  • the silver-bismuth powder can be used in an oxidizing atmosphere. Even if it calcinates, it has electroconductivity. This is because (1) when silver and bismuth are melted, they are separated into two layers, bismuth is less likely to be unevenly distributed at the interface of the fired silver film, (2) it is difficult to produce an intermetallic compound with poor conductivity, (3)
  • silver-bismuth powder is used, it is fired in an oxidizing atmosphere at a relatively high temperature (500 ° C. or higher) because silver causes liquid-phase sintering in molten bismuth. It is presumed that conductivity will be developed even in certain applications.
  • the silver-bismuth powder has a cumulative 50% particle size (D50) in a volume-based particle size distribution measured by a laser diffraction particle size distribution measurement method of 0.1 ⁇ m to 10 ⁇ m, preferably 0.5 ⁇ m to 4 ⁇ m. In this numerical range, it can be suitably used as a filler for conductive paste that is advantageous in terms of cost.
  • D50 cumulative 50% particle diameter
  • the volume resistivity of the conductive film prepared using silver-bismuth powder may increase, and when it exceeds 10 ⁇ m, screen printing is performed. In some cases, clogging may occur and it may be difficult to reduce the size.
  • the cumulative 50% particle size (D50) of the silver-bismuth powder is calculated from the volume-based particle size distribution using, for example, a laser diffraction particle size distribution measuring device (manufactured by SYMPATEC, Heros particle size distribution measuring device). The value was measured.
  • the oxygen content of the silver-bismuth powder is 5.5% by mass or less, preferably 2% by mass or less. When the oxygen content exceeds 5.5% by mass, the volume resistivity of the conductive film prepared using the silver-bismuth powder may increase.
  • the oxygen content can be measured using, for example, an oxygen / nitrogen analyzer (manufactured by LECO, model TC-436).
  • the BET specific surface area of the silver-bismuth powder is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 m 2 / g to 5 m 2 / g.
  • the BET specific surface area can be measured using, for example, a BET specific surface area measuring device (manufactured by Yours IONICS Co., Ltd., 4 Sorb US).
  • the tap density of the silver-bismuth powder is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.0 g / cm 3 to 10.0 g / cm 3 .
  • the tap density can be measured by, for example, a method described in Japanese Patent Application Laid-Open No. 2007-263860.
  • the method for producing the silver-bismuth powder is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a wet reduction method, a gas phase reduction method, and an atomization method. Among these, the atomizing method is preferable from the viewpoint of mass production at low cost, and the water atomizing method is more preferable from the viewpoint of productivity, alloying, and easy atomization.
  • the atomizing method is a method for producing a silver-bismuth powder by spraying a high-pressure gas or water as a grinding medium into a silver-bismuth molten metal, pulverizing the molten silver-bismuth, cooling it, and solidifying it.
  • a high-pressure gas or water as a grinding medium into a silver-bismuth molten metal
  • pulverizing the molten silver-bismuth cooling it, and solidifying it.
  • water atomization method using water as the pulverizing medium even when shearing at the same flow rate as that of the gas, since the mass of water is heavier than that of the gas, a material having a large shear energy and a small particle size can be produced.
  • the powder obtained by the water atomization method is filtered, washed with water, dried, crushed, classified, and sieved to produce a silver-bismuth powder.
  • the drying is preferably performed in a nitrogen atmosphere. After drying at 60 ° C. to 150 ° C. for 5 hours to 50 hours, it is preferable to perform gradual oxidation by increasing the oxygen concentration in two stages. Since heat generation due to oxidation is large, stabilization can be achieved by slow oxidation. Examples of the gradual oxidation include a method of treating with an oxygen concentration of 2% for 30 minutes and then treating with an oxygen concentration of 15% for 12.5 hours.
  • the classification is not particularly limited and can be appropriately selected depending on the purpose, but air classification is preferable.
  • the conductive paste of the present invention contains silver-bismuth powder, glass frit, a resin, and a solvent, and further contains other components as necessary.
  • the silver-bismuth powder of the present invention is used.
  • the content of the silver-bismuth powder is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40% by mass to 90% by mass with respect to the total amount of the conductive paste.
  • the glass frit is a component for adhering the silver-bismuth powder to the substrate when fired.
  • the glass frit is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the softening point of the glass frit is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 400 ° C. to 600 ° C.
  • the softening point is less than 400 ° C.
  • the glass binder starts sintering before the resin component in the conductive paste evaporates, so that the debinding process does not proceed well.
  • the conductive film becomes residual carbon after firing.
  • the temperature exceeds 600 ° C., a dense conductive film having sufficient adhesive strength may not be obtained when baked at a temperature of about 600 ° C. or lower.
  • the softening point can be obtained, for example, from the temperature at the bottom of the second endothermic part of the DTA curve measured using a thermogravimetric measuring device.
  • the content of the glass frit is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1% by mass to 10% by mass with respect to the silver-bismuth powder.
  • ⁇ Resin> There is no restriction
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • toluene methyl ethyl ketone, methyl isobutyl ketone, tetradecane, tetralin, propyl alcohol, isopropyl alcohol, terpineol, ethyl carbitol, butyl carbitol Ethyl carbitol acetate, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the other component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a dispersant and a viscosity modifier.
  • the method for producing the conductive paste is not particularly limited and may be appropriately selected depending on the purpose.
  • the silver-bismuth powder, the glass frit, the resin, the solvent, and other as required can be produced by mixing using, for example, ultrasonic dispersion, disperser, three-roll mill, ball mill, bead mill, biaxial kneader, self-revolving stirrer and the like.
  • the viscosity of the conductive paste is preferably 10 Pa ⁇ s to 1,000 Pa ⁇ s at 25 ° C.
  • the viscosity of the conductive paste can be adjusted by the content of silver-bismuth powder, the addition of a viscosity modifier, and the type of solvent.
  • the conductive paste of the present invention is used as a fired conductive paste and is suitably used for forming the conductive film of the present invention described below.
  • the conductive film of the present invention is obtained by firing the conductive paste of the present invention.
  • the conductive film is obtained by applying the conductive paste of the present invention on a substrate and drying it, and then baking the dried coating film.
  • coating There is no restriction
  • the firing temperature of the coating film is not particularly limited and may be appropriately selected depending on the purpose.
  • the temperature is from 0 to 700 ° C.
  • the firing time of the coating film varies depending on the firing temperature and cannot be defined generally, but is preferably 1 minute to 120 minutes. There is no restriction
  • the conductive film of the present invention obtained by firing the conductive paste of the present invention is, for example, a solar cell, a chip component, a hybrid IC, a defogger, a thermistor, a varistor, a thermal head, a liquid crystal display (LCD), a plasma display (PDP).
  • Field emission display devices are suitably used for electrodes and circuits of various electronic components, electromagnetic wave shielding materials, and the like.
  • Example 1 Preparation of powder by water atomization method> A melt obtained by heating and melting silver and bismuth in the blending ratio shown in Table 1 was dropped from the lower part of the tundish, and high-pressure water was sprayed to solidify rapidly. The obtained powder was filtered, washed with water, dried (at 120 ° C. for 7 hours), crushed, and classified by wind classification, No. 1 to 12 powders were prepared. For example, No. The powder of No. 2 was mixed with 3.8 kg of silver and 0.2 kg of bismuth.
  • SYMPATEC Heros particle size distribution measuring device
  • the BET specific surface area of each produced powder was determined by the BET method using a BET specific surface area measuring device (manufactured by Your Sonics Co., Ltd., 4 Sorb US).
  • TAP tap density
  • the content of silver and bismuth in each produced powder was determined by placing the powder (about 2.5 g) in a vinyl chloride ring (inner diameter: 3.2 mm ⁇ thickness: 4 mm), and then using a tablet mold compressor (Maekawa Corporation).
  • a pellet of each powder was prepared by applying a load of 100 kN according to model number BRE-50 manufactured by Test Manufactory. Each prepared pellet is put into a sample holder (aperture diameter: 3.0 cm) and set at a measurement position in a fluorescent X-ray analyzer (RIX2000, manufactured by Rigaku Corporation), and the measurement atmosphere is set under reduced pressure (8.0 Pa). The X-ray output was measured at 50 kV and 50 mA. From the measurement results, the contents of silver and bismuth in each powder were determined by automatic calculation using software attached to the apparatus.
  • Example 2 ⁇ Preparation of conductive paste> A vehicle in which 4 g of acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., BR-105) is dissolved in 12 g of butyl carbitol acetate (manufactured by Wako Pure Chemical Industries, Ltd., reagent), 82 g of each of the prepared powders, and glass frit (Asahi Glass) 2 g of ASF-1100 manufactured by Co., Ltd., softening point 440 ° C.) were mixed with a kneading defoaming machine, and uniformly dispersed by passing five times with a three-roll. From the above, No. 1 to 12 conductive pastes were prepared.
  • ⁇ Preparation of conductive film> Each conductive paste obtained was applied to an alumina substrate by screen printing in a pattern having a line width of 500 ⁇ m and a line length of 37.5 mm, and using a dryer (Yamato Scientific Co., Ltd., DK-43), The film was dried at 150 ° C. for 10 minutes. Thereafter, using a baking furnace (manufactured by Koyo Thermo System Co., Ltd., small conveyor furnace 810A), baking was performed under atmospheric conditions at 600 ° C. for 3.3 minutes. 1 to 12 conductive films were produced. Next, the volume resistivity and solder wettability of each produced conductive film were evaluated as follows. The results are shown in Table 2, FIG. 1 and FIG.
  • solder wettability >> A flux (ESR-250T4, manufactured by Senju Metal Industry Co., Ltd.) was dipped in the pad portion (rectangular pattern portion (2 mm ⁇ 2 mm) of each conductive film), and then solder dipped in a solder bath set at 260 ° C. for 2 seconds.
  • the solder wettability (%) was determined by visually confirming the solder wettability area of the rectangular pattern part after solder dipping and dividing the area of the solder raised part by the pad part area and multiplying by 100.
  • the solder wettability is preferably 70% or more.
  • ⁇ 1> containing silver and bismuth, wherein the mass ratio of silver to bismuth (silver: bismuth) is 95: 5 to 40:60,
  • the cumulative 50% particle size (D50) in the volume-based particle size distribution by the laser diffraction particle size distribution measurement method is 0.1 ⁇ m to 10 ⁇ m,
  • ⁇ 2> The silver-bismuth powder according to ⁇ 1>, wherein a cumulative 50% particle size (D50) in a volume-based particle size distribution measured by a laser diffraction particle size distribution measurement method is 0.5 ⁇ m to 4 ⁇ m.
  • ⁇ 3> The silver-bismuth powder according to any one of ⁇ 1> to ⁇ 2>, wherein the mass ratio of silver to bismuth (silver: bismuth) is 95: 5 to 70:30.
  • ⁇ 4> The silver-bismuth powder according to any one of ⁇ 1> to ⁇ 3>, which is produced by a water atomization method.
  • ⁇ 5> A conductive paste comprising the silver-bismuth powder according to any one of ⁇ 1> to ⁇ 4>, a resin, glass frit, and a solvent.
  • ⁇ 6> The conductive paste according to ⁇ 5>, wherein the softening point of the glass frit is 400 ° C. to 600 ° C.
  • ⁇ 7> A conductive film obtained by firing the conductive paste according to any one of ⁇ 5> to ⁇ 6>.
  • ⁇ 8> The conductive film according to ⁇ 7>, which is fired at a temperature equal to or higher than a softening point of the glass frit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

銀とビスマスとを含み、前記銀と前記ビスマスとの質量比率(銀:ビスマス)が95:5~40:60であり、レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が0.1μm~10μmであり、酸素含有量が5.5質量%以下である銀-ビスマス粉末を提供する。

Description

銀-ビスマス粉末、導電性ペースト及び導電膜
 本発明は、銀-ビスマス粉末、導電性ペースト及び導電膜に関する。
 従来より、配線材料及び電極材料として銅の使用が検討されており、比較的低温(200℃以下)で硬化又は乾燥されるプリント配線板用途等の導電性ペーストに使用されている。しかし、比較的高温(500℃以上)で焼成される用途では、銅の酸化に起因して導電性の低下が生じるので、酸化雰囲気では使用できず、窒素雰囲気、還元雰囲気等の特殊な雰囲気下でしか適用できない。このため、比較的高温の酸化雰囲気での焼成用途には銀が使用されることが多いが、銀は銅と比較してコストが高いのでコストアップを招くという問題がある。また、銅と銀との間の特性とコストを狙って銀めっき銅粉を用いることも検討されており、銅より耐酸化性は改善されるが、依然として比較的高温の酸化雰囲気での焼成用途には使用できないという課題がある。
 前記課題を解決するため、例えば、銀及び少なくとも2種の非銀含有元素を含有する多元素合金粉末が提案されている(特許文献1参照)。しかし、この提案は、セラミック圧電装置用の合金粉末用途であるため、パラジウムや白金等の貴金属を含有し、高融点であることに加えて、製法がエアロゾル分解法であるため、生産性が悪く、低コスト化は困難である。
 また、ビスマスを基礎とする合金からなる無鉛ろう材が提案されている(特許文献2参照)。しかし、この提案では、比較的高温で焼成される用途での使用を意図したものではないのに加えて、ビスマス含有量が80質量%以上と多いため、比較的高温の酸化雰囲気での焼成される用途では、導電性が低下するという問題がある。
 また、Ag及び/又はCuを合計で20質量%以上80質量%以下含み、残部Bi及び不可避的不純物からなり、粒径が0.03mm以上0.5mm以下の球状に凝固されてなる配線基板用金属球であって、該金属球の真円度が粒径の5%以下である配線基板用金属球が提案されている(特許文献3参照)。しかし、この提案では、金属球の粒径が大きいため、導電性ペーストのフィラーとしては使用できないという問題がある。
 したがって、半田濡れ性が良好であり、体積抵抗率が低く、比較的高温(500℃以上)の酸化雰囲気で焼成される用途でも優れた導電性を有する銀-ビスマス粉末、導電性ペースト及び導電膜の提供が望まれている。
特表2011-514432号公報 特表2004-528992号公報 特開2010-123681号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、半田濡れ性が良好であり、体積抵抗率が低く、比較的高温(500℃以上)の酸化雰囲気で焼成される用途でも優れた導電性を有する銀-ビスマス粉末、導電性ペースト及び導電膜を提供することを目的とする。
 前記課題を解決するための手段としての本発明の銀-ビスマス粉末は、銀とビスマスとを含み、前記銀と前記ビスマスとの質量比率(銀:ビスマス)が95:5~40:60であり、
 レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が0.1μm~10μmであり、
 酸素含有量が5.5質量%以下である。
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、半田濡れ性が良好であり、体積抵抗率が低く、比較的高温(500℃以上)の酸化雰囲気で焼成される用途でも優れた導電性を有する銀-ビスマス粉末、導電性ペースト及び導電膜を提供することができる。
図1は、実施例における粉末中の銀の質量比率と体積抵抗率との関係を示すグラフである。 図2は、実施例における粉末中の銀の質量比率と半田濡れ性との関係を示すグラフである。
(銀-ビスマス粉末)
 本発明の銀-ビスマス粉末は、銀とビスマスとを含む。
 前記銀と前記ビスマスとの質量比率(銀:ビスマス)は、95:5~40:60であり、95:5~70:30が好ましく、低体積抵抗率、半田濡れ性、及び低コスト化の点から、90:10~80:20がより好ましい。前記数値範囲において、半田濡れ性が良好で、体積抵抗率が低くなる。
 前記銀-ビスマス粉末は、貴金属である銀の一部を卑金属のビスマスに置き換えることにより低コスト化が図れ、前記質量比率(銀:ビスマス)範囲とすることにより、銀-ビスマス粉末は酸化雰囲気での焼成でも導電性を有する。これは、(1)銀とビスマスは溶融すると2層に分離し、銀焼成膜の界面にビスマスが偏在しにくいこと、(2)導電性に劣る金属間化合物を生成しにくいこと、(3)溶融したビスマス中で銀が液相焼結を起こすため焼結が促進されること、などから、銀-ビスマス粉末を用いた場合には、比較的高温(500℃以上)の酸化雰囲気で焼成される用途でも導電性が発現すると推測される。
 前記銀-ビスマス粉末は、レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が、0.1μm~10μmであり、0.5μm~4μmが好ましい。この数値範囲において、コスト的に有利な導電性ペースト用のフィラーとして好適に用いることができる。
 前記累積50%粒子径(D50)が、0.1μm未満であると、銀-ビスマス粉末を用いて作製した導電膜の体積抵抗率が高くなってしまうことがあり、10μmを超えると、スクリーン印刷で目詰まりが生じ、微細化が困難となることがある。
 前記銀-ビスマス粉末の累積50%粒子径(D50)は、例えば、レーザー回折式粒度分布測定装置(SYMPATEC社製、ヘロス粒度分布測定装置)を用いて、体積基準の粒子径分布より算出される値を用いて測定した。
 前記銀-ビスマス粉末の酸素含有量は、5.5質量%以下であり、2質量%以下が好ましい。前記酸素含有量が、5.5質量%を超えると、銀-ビスマス粉末を用いて作製した導電膜の体積抵抗率が高くなってしまうことがある。
 前記酸素含有量は、例えば、酸素・窒素分析装置(LECO社製、TC-436型)などを用いて測定することができる。
 前記銀-ビスマス粉末のBET比表面積は、特に制限はなく、目的に応じて適宜選択することができるが、0.1m/g~5m/gが好ましい。
 前記BET比表面積は、例えば、BET比表面積測定装置(ユアサイオニクス株式会社製、4ソーブUS)などを用いて測定することができる。
 前記銀-ビスマス粉末のタップ密度は、特に制限はなく、目的に応じて適宜選択することができるが、1.0g/cm~10.0g/cmが好ましい。
 前記タップ密度は、例えば、特開2007-263860号公報に記載された方法などにより測定することができる。
<銀-ビスマス粉末の製造方法>
 前記銀-ビスマス粉末の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、湿式還元法、気相還元法、アトマイズ法、などが挙げられる。これらの中でも、低コストで大量に生産できる点から、アトマイズ法が好ましく、生産性、合金化、微粒子化が容易である点から、水アトマイズ法がより好ましい。
 前記アトマイズ法とは、銀-ビスマスの溶湯に高圧のガス又は水を粉砕媒体として噴射して銀-ビスマスの溶湯を粉砕し、冷却し、凝固させて銀-ビスマス粉末を製造する方法である。
 前記粉砕媒体に水を用いる水アトマイズ法は、ガスと同じ流速でせん断しても、水の質量がガスよりも重いことより、せん断エネルギーが大きく、粒径の小さなものが製造できる。
 水アトマイズ法により得られた粉末をろ過し、水洗した後、乾燥し、解砕、分級し、篩分することにより、銀-ビスマス粉末を製造することができる。
 前記乾燥は、窒素雰囲気下で行うことが好ましく、60℃~150℃で5時間~50時間乾燥した後、酸素濃度を2段階に上げて、徐酸化を行うことが好ましい。酸化による発熱が大きいため、徐酸化により安定化を図ることができる。前記徐酸化は、例えば、酸素濃度2%で30分間処理した後、酸素濃度15%で12.5時間処理する方法、などが挙げられる。
 前記分級は、特に制限はなく、目的に応じて適宜選択することができるが、風力分級が好ましい。
(導電性ペースト)
 本発明の導電性ペーストは、銀-ビスマス粉末と、ガラスフリットと、樹脂と、溶剤とを含有し、更に必要に応じてその他の成分を含有してなる。
<銀-ビスマス粉末>
 前記銀-ビスマス粉末としては、本発明の前記銀-ビスマス粉末が用いられる。
 前記銀-ビスマス粉末の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、導電性ペースト全量に対して、40質量%~90質量%が好ましい。
<ガラスフリット>
 前記ガラスフリットは、焼成した際に前記銀-ビスマス粉末を基板に接着させるための成分である。
 前記ガラスフリットとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホウケイ酸ビスマス系、ホウケイ酸アルカリ金属系、ホウケイ酸アルカリ土類金属系、ホウケイ酸亜鉛系、ホウケイ酸鉛系、ホウ酸鉛系、ケイ酸鉛系、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。なお、環境に与える影響から、鉛を含まないものが好ましい。
 前記ガラスフリットの軟化点は、特に制限はなく、目的に応じて適宜選択することができるが、400℃~600℃が好ましい。前記軟化点が、400℃未満では、導電ペースト中の樹脂成分が蒸発する前にガラスの焼結が始まるため脱バインダー処理が良好に進行せず、その結果、焼成後に残留炭素となって導電膜剥がれの原因になる場合があり、600℃を超えると、600℃程度以下の温度で焼成したときに、十分な接着強度を有する緻密な導電膜が得られないことがある。
 前記軟化点は、例えば、熱重量測定装置を用いて測定したDTA曲線の第2吸熱部の裾の温度から求めることができる。
 前記ガラスフリットの含有量は、特に制限はなく、目的に応じて適宜選択することができるが、前記銀-ビスマス粉末に対して、0.1質量%~10質量%が好ましい。
<樹脂>
 前記樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル樹脂、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロース、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、テルピネオール、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ブチルカルビトールアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、分散剤、粘度調整剤、などが挙げられる。
 前記導電性ペーストの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記銀-ビスマス粉末、前記ガラスフリット、前記樹脂、前記溶剤、及び必要に応じてその他の成分を、例えば、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などを用い、混合することにより作製することができる。
 前記導電性ペーストの粘度は、25℃で、10Pa・s~1,000Pa・sが好ましい。
 前記導電性ペーストの粘度が、10Pa・s未満であると、低粘度の領域では「にじみ」が発生することがあり、1,000Pa・sを超えると、高粘度の領域では「かすれ」、と言った印刷の不具合が発生することがある。
 前記導電性ペーストの粘度は、銀-ビスマス粉末の含有量、粘度調整剤の添加や溶剤の種類により調整することができる。
 本発明の導電性ペーストは、焼成型導電性ペーストとして用いられ、以下に説明する本発明の導電膜の形成に好適に用いられる。
(導電膜)
 本発明の導電膜は、本発明の前記導電性ペーストを焼成して得られる。
 前記導電膜は、本発明の前記導電性ペーストを基板上に塗布し、乾燥させた後、乾燥した塗膜を焼成して得られる。
 前記塗布は、特に制限はなく、目的に応じて適宜選択することができ、例えば、スクリーン印刷法、グラビア印刷法、ワイヤーバーコーティング法、ドクターブレードコーティング法、ロールコーティング法、などが挙げられる。これらの中でも、スクリーン印刷法が好ましい。
 前記塗膜の焼成温度は、特に制限はなく、目的に応じて適宜選択することができるが、前記導電性ペーストに含まれるガラスフリットの軟化点以上であることが好ましく、具体的には、500℃~700℃がより好ましい。前記焼成温度がガラスフリットの軟化点未満であると、ガラスフリットの流動が不十分となり十分な強度を有する導電膜が得られないことがある。
 前記塗膜の焼成時間は、前記焼成温度により異なり、一概には規定できないが、1分間~120分間が好ましい。
 前記塗膜の焼成は、特に制限はなく、目的に応じて適宜選択することができるが、大気中で行うことが好ましい。
 本発明の導電性ペーストを焼成して得られる本発明の導電膜は、例えば、太陽電池、チップ部品、ハイブリッドIC、デフォッガー、サーミスタ、バリスタ、サーマルヘッド、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、電界放出表示装置(FED)種々の電子部品の電極や回路、電磁波シールド材、などに好適に用いられる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<水アトマイズ法による粉末の作製>
 表1に示す配合割合の銀とビスマスとを加熱溶融した溶湯を、タンディッシュ下部から落下させ、高圧水を吹付けて急冷凝固させた。得られた粉末をろ過し、水洗した後、乾燥(120℃で7時間)し、解砕、風力分級処理により、No.1~12の粉末を作製した。
 なお、例えば、No.2の粉末は、銀3.8kgとビスマス0.2kgとを配合した。
 次に、作製した各粉末について、以下のようにして、諸特性を評価した。結果を表1に示した。
<粒度分布>
 作製した各粉末の粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製、ヘロス粒度分布測定装置)を用い、測定条件はfocal length=20mm、分散圧が5.0barで、累積10%粒子径(D10)、累積25%粒子径(D25)、累積50%粒子径(D50)、累積75%粒子径(D75)、累積90%粒子径(D90)、及び累積99%粒子径(D99)を測定した。
<BET比表面積>
 作製した各粉末のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製、4ソーブUS)を用いてBET法により求めた。
<タップ密度>
 作製した各粉末のタップ密度(TAP)は、特開2007-263860号公報に記載された方法により求めた。
<酸素含有量>
 作製した各粉末の酸素含有量は、酸素・窒素分析装置(LECO社製、TC-436型)により測定した。
<組成分析>
 作製した各粉末中の銀及びビスマスの含有量は、粉末(約2.5g)を塩化ビニル製リング(内径3.2mm×厚み4mm)内に敷き詰めた後、錠剤型成型圧縮機(株式会社前川試験製作所製、型番BRE-50)により100kNの荷重をかけて、各粉末のペレットを作製した。
 作製した各ペレットをサンプルホルダー(開口径3.0cm)に入れて、蛍光X線分析装置(株式会社リガク製、RIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した。測定結果から、装置に付属のソフトウェアで自動計算することによって、各粉末中の銀及びビスマスの含有量を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例2)
<導電性ペーストの作製>
 アクリル樹脂4g(三菱レイヨン株式会社製、BR-105)をブチルカルビトールアセテート(和光純薬工業株式会社製、試薬)12gに溶解させたビヒクルと、前記作製した各粉末82gと、ガラスフリット(旭硝子株式会社製、ASF-1100、軟化点440℃)2gとを混練脱泡機で混合し、三本ロールで5回パスすることで均一に分散させた。以上により、No.1~12の導電性ペーストを作製した。
<導電膜の作製>
 得られた各導電性ペーストをスクリーン印刷にてアルミナ基板上に線幅500μm、線長37.5mmのパターンで塗布し、乾燥機(ヤマト科学株式会社製、DK-43)を用い、大気下、150℃で10分間の条件で乾燥させた。その後、焼成炉(光洋サーモシステム株式会社製、小型コンベア炉810A)を用い、大気下、600℃で3.3分間の条件で焼成し、No.1~12の導電膜を作製した。
 次に、作製した各導電膜について、以下のようにして、体積抵抗率及び半田濡れ性を評価した。結果を表2、図1、及び図2に示した。
<<体積抵抗率>>
 得られた各導電膜のライン抵抗を二端子型抵抗率計(日置電機株式会社製、3540 ミリオームハイテスタ)で測定し、膜厚を表面粗さ形状測定機(株式会社東京精密製、サーフコム1500DX)にて測定し、下記式より体積抵抗率を算出した。
  体積抵抗率(μΩ・cm)
         =ライン抵抗(μΩ)×膜厚(cm)×線幅(cm)÷線長(cm)
<<半田濡れ性>>
 パッド部(各導電膜の矩形パターン部(2mm×2mm))にフラックス(千住金属工業株式会社製、ESR-250T4)を漬けた後、260℃に設定した半田槽に2秒間半田ディップした。半田ディップ後の矩形パターン部の半田濡れ面積を目視で確認し、半田が盛り上がった部分の面積をパッド部の面積で除して100倍することにより、半田濡れ性(%)を求めた。なお、半田濡れ性は70%以上が好ましい。
Figure JPOXMLDOC01-appb-T000003
 表2、図1、及び図2の結果から、粉末中における銀の質量比率が70%以上であると、体積抵抗率が低く、半田濡れ性が良好であることがわかった。
 本発明の態様としては、例えば、以下のとおりである。
 <1> 銀とビスマスとを含み、前記銀と前記ビスマスとの質量比率(銀:ビスマス)が95:5~40:60であり、
 レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が0.1μm~10μmであり、
 酸素含有量が5.5質量%以下であることを特徴とする銀-ビスマス粉末である。
 <2> レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が、0.5μm~4μmである前記<1>に記載の銀-ビスマス粉末である。
 <3> 銀とビスマスとの質量比率(銀:ビスマス)が95:5~70:30である前記<1>から<2>のいずれかに記載の銀-ビスマス粉末である。
 <4> 水アトマイズ法により製造される前記<1>から<3>のいずれかに記載の銀-ビスマス粉末である。
 <5> 前記<1>から<4>のいずれかに記載の銀-ビスマス粉末と、樹脂と、ガラスフリットと、溶剤とを含有することを特徴とする導電性ペーストである。
 <6> ガラスフリットの軟化点が400℃~600℃である前記<5>に記載の導電性ペーストである。
 <7> 前記<5>から<6>のいずれかに記載の導電性ペーストを焼成して得られることを特徴とする導電膜である。
 <8> ガラスフリットの軟化点以上の温度で焼成する前記<7>に記載の導電膜である。

Claims (8)

  1.  銀とビスマスとを含み、前記銀と前記ビスマスとの質量比率(銀:ビスマス)が95:5~40:60であり、
     レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が0.1μm~10μmであり、
     酸素含有量が5.5質量%以下であることを特徴とする銀-ビスマス粉末。
  2.  レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)が、0.5μm~4μmである請求項1に記載の銀-ビスマス粉末。
  3.  銀とビスマスとの質量比率(銀:ビスマス)が95:5~70:30である請求項1から2のいずれかに記載の銀-ビスマス粉末。
  4.  水アトマイズ法により製造される請求項1から3のいずれかに記載の銀-ビスマス粉末。
  5.  請求項1から4のいずれかに記載の銀-ビスマス粉末と、樹脂と、ガラスフリットと、溶剤とを含有することを特徴とする導電性ペースト。
  6.  ガラスフリットの軟化点が400℃~600℃である請求項5に記載の導電性ペースト。
  7.  請求項5から6のいずれかに記載の導電性ペーストを焼成して得られることを特徴とする導電膜。
  8.  ガラスフリットの軟化点以上の温度で焼成する請求項7に記載の導電膜。
PCT/JP2014/059016 2013-04-25 2014-03-27 銀-ビスマス粉末、導電性ペースト及び導電膜 WO2014174984A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480023351.2A CN105142824B (zh) 2013-04-25 2014-03-27 银-铋粉末、导电性糊剂及导电膜
KR1020157033524A KR102236907B1 (ko) 2013-04-25 2014-03-27 은-비스무트 분말, 도전성 페이스트 및 도전막
SG11201508728YA SG11201508728YA (en) 2013-04-25 2014-03-27 Silver-bismuth powder, conductive paste and conductive film
US14/918,948 US10458004B2 (en) 2013-04-25 2015-10-21 Silver-bismuth powder, conductive paste and conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092094A JP6184731B2 (ja) 2013-04-25 2013-04-25 銀−ビスマス粉末、導電性ペースト及び導電膜
JP2013-092094 2013-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/918,948 Continuation US10458004B2 (en) 2013-04-25 2015-10-21 Silver-bismuth powder, conductive paste and conductive film

Publications (1)

Publication Number Publication Date
WO2014174984A1 true WO2014174984A1 (ja) 2014-10-30

Family

ID=51791566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059016 WO2014174984A1 (ja) 2013-04-25 2014-03-27 銀-ビスマス粉末、導電性ペースト及び導電膜

Country Status (7)

Country Link
US (1) US10458004B2 (ja)
JP (1) JP6184731B2 (ja)
KR (1) KR102236907B1 (ja)
CN (1) CN105142824B (ja)
SG (1) SG11201508728YA (ja)
TW (1) TWI635051B (ja)
WO (1) WO2014174984A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150060742A1 (en) * 2013-09-03 2015-03-05 E I Du Pont De Nemours And Company Conductive paste used for a solar cell electrode
US9698283B2 (en) 2013-06-20 2017-07-04 PLANT PV, Inc. Core-shell nickel alloy composite particle metallization layers for silicon solar cells
CN107039539A (zh) * 2015-11-24 2017-08-11 普兰特光伏有限公司 形成具有烧结多层薄膜堆叠的太阳能电池的方法
US9741878B2 (en) 2015-11-24 2017-08-22 PLANT PV, Inc. Solar cells and modules with fired multilayer stacks
US10418497B2 (en) 2015-08-26 2019-09-17 Hitachi Chemical Co., Ltd. Silver-bismuth non-contact metallization pastes for silicon solar cells
US10550291B2 (en) 2015-08-25 2020-02-04 Hitachi Chemical Co., Ltd. Core-shell, oxidation-resistant, electrically conducting particles for low temperature conductive applications

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355949B2 (ja) * 2014-03-31 2018-07-11 株式会社タムラ製作所 金属接合材料
CN104525940A (zh) * 2014-12-31 2015-04-22 中国地质大学(武汉) 一种铋微米颗粒及其制备方法
JP6368288B2 (ja) * 2015-08-07 2018-08-01 福田金属箔粉工業株式会社 フレーク状銀粒子の集合体及び該銀粒子の集合体を含有するペースト
JP6811080B2 (ja) * 2016-02-03 2021-01-13 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法
JP6899275B2 (ja) * 2016-08-10 2021-07-07 Dowaエレクトロニクス株式会社 銀合金粉末およびその製造方法
JP6796448B2 (ja) * 2016-10-20 2020-12-09 Dowaエレクトロニクス株式会社 導電性ペーストおよびその製造方法、ならびに太陽電池セル
KR20200026189A (ko) * 2017-05-10 2020-03-10 히타치가세이가부시끼가이샤 슁글형 실리콘 태양 전지 어레이를 위한 다층 금속 필름 스택
JP7090511B2 (ja) * 2017-09-29 2022-06-24 Dowaエレクトロニクス株式会社 銀粉およびその製造方法
KR102284981B1 (ko) * 2018-10-17 2021-08-03 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. 나노텍스쳐링 기판 함유 태양 전지의 전극 형성용 조성물, 이로부터 제조된 전극 및 이로부터 제조된 전극을 포함하는 태양 전지
CN110385442A (zh) * 2019-09-05 2019-10-29 宁波广新纳米材料有限公司 一种太阳能电池银浆用超细银铋合金粉的生产方法
CN110899714A (zh) * 2019-11-14 2020-03-24 江苏博迁新材料股份有限公司 一种电子浆料用超细银锡二元合金粉的生产方法
CN114171237A (zh) * 2021-12-23 2022-03-11 上海宝银电子材料有限公司 一种真空玻璃用导电浆料及其制备方法
CN115367796B (zh) * 2022-08-19 2023-11-17 陕西国际商贸学院 一种银铋氧系纳米粉末的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227204A (ja) * 2007-03-14 2008-09-25 Sumitomo Electric Ind Ltd ビア充填用導電性ペースト
JP2010123681A (ja) * 2008-11-18 2010-06-03 Hitachi Metals Ltd 配線基板用金属球
JP2011036901A (ja) * 2009-08-17 2011-02-24 Tamura Seisakusho Co Ltd はんだ接合剤組成物
JP2012125791A (ja) * 2010-12-15 2012-07-05 Asahi Kasei E-Materials Corp 金属フィラー及びこれを含む鉛フリーはんだ
JP2013014790A (ja) * 2011-06-30 2013-01-24 Mitsui Mining & Smelting Co Ltd 焼結型導電性ペースト用銀粉

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198154A (en) * 1990-03-19 1993-03-30 Asahi Kasei Kogyo Kabushiki Kaisha High temperature baking paste
US5302557A (en) * 1991-12-03 1994-04-12 E. I. Du Pont De Nemours And Company Automotive glass thick film conductor paste
JPH08127829A (ja) * 1994-10-28 1996-05-21 Matsushita Electric Works Ltd 電気接点材料及びその製造方法
CA2426861C (en) * 2000-10-25 2008-10-28 Yorishige Matsuba Conductive metal paste
EP1266975A1 (de) 2001-06-12 2002-12-18 ESEC Trading SA Bleifreies Lötmittel
CN1240862C (zh) * 2003-12-05 2006-02-08 昆明贵金属研究所 铜基合金导电粉末材料
US7494607B2 (en) 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US7833439B2 (en) 2007-07-24 2010-11-16 Ferro Corporation Ultra low-emissivity (ultra low E) silver coating
EP2185304B1 (en) 2007-09-07 2013-07-17 E. I. du Pont de Nemours and Company Method for the production of a multi-element alloy powder containing silver and at least two non-silver containing elements
US8840700B2 (en) 2009-11-05 2014-09-23 Ormet Circuits, Inc. Preparation of metallurgic network compositions and methods of use thereof
JP5754090B2 (ja) * 2010-06-29 2015-07-22 旭硝子株式会社 ガラスフリット、およびこれを用いた導電性ペースト、電子デバイス
WO2012157704A1 (ja) * 2011-05-18 2012-11-22 戸田工業株式会社 銅粉末、銅ペースト、導電性塗膜の製造方法及び導電性塗膜
WO2012160921A1 (ja) * 2011-05-26 2012-11-29 株式会社 村田製作所 導電性ペースト及び太陽電池
US8993159B2 (en) 2012-12-13 2015-03-31 24M Technologies, Inc. Semi-solid electrodes having high rate capability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227204A (ja) * 2007-03-14 2008-09-25 Sumitomo Electric Ind Ltd ビア充填用導電性ペースト
JP2010123681A (ja) * 2008-11-18 2010-06-03 Hitachi Metals Ltd 配線基板用金属球
JP2011036901A (ja) * 2009-08-17 2011-02-24 Tamura Seisakusho Co Ltd はんだ接合剤組成物
JP2012125791A (ja) * 2010-12-15 2012-07-05 Asahi Kasei E-Materials Corp 金属フィラー及びこれを含む鉛フリーはんだ
JP2013014790A (ja) * 2011-06-30 2013-01-24 Mitsui Mining & Smelting Co Ltd 焼結型導電性ペースト用銀粉

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698283B2 (en) 2013-06-20 2017-07-04 PLANT PV, Inc. Core-shell nickel alloy composite particle metallization layers for silicon solar cells
US20150060742A1 (en) * 2013-09-03 2015-03-05 E I Du Pont De Nemours And Company Conductive paste used for a solar cell electrode
US10550291B2 (en) 2015-08-25 2020-02-04 Hitachi Chemical Co., Ltd. Core-shell, oxidation-resistant, electrically conducting particles for low temperature conductive applications
US10418497B2 (en) 2015-08-26 2019-09-17 Hitachi Chemical Co., Ltd. Silver-bismuth non-contact metallization pastes for silicon solar cells
CN107039539A (zh) * 2015-11-24 2017-08-11 普兰特光伏有限公司 形成具有烧结多层薄膜堆叠的太阳能电池的方法
US9741878B2 (en) 2015-11-24 2017-08-22 PLANT PV, Inc. Solar cells and modules with fired multilayer stacks
US10000645B2 (en) 2015-11-24 2018-06-19 PLANT PV, Inc. Methods of forming solar cells with fired multilayer film stacks
US10233338B2 (en) 2015-11-24 2019-03-19 PLANT PV, Inc. Fired multilayer stacks for use in integrated circuits and solar cells
US10696851B2 (en) 2015-11-24 2020-06-30 Hitachi Chemical Co., Ltd. Print-on pastes for modifying material properties of metal particle layers

Also Published As

Publication number Publication date
CN105142824B (zh) 2018-05-25
JP2014214340A (ja) 2014-11-17
CN105142824A (zh) 2015-12-09
KR20160003766A (ko) 2016-01-11
JP6184731B2 (ja) 2017-08-23
US20160040271A1 (en) 2016-02-11
SG11201508728YA (en) 2015-12-30
TW201442961A (zh) 2014-11-16
US10458004B2 (en) 2019-10-29
TWI635051B (zh) 2018-09-11
KR102236907B1 (ko) 2021-04-06

Similar Documents

Publication Publication Date Title
JP6184731B2 (ja) 銀−ビスマス粉末、導電性ペースト及び導電膜
TWI442984B (zh) 導電性糊膏用銅粉及導電性糊膏
EP2650263A1 (en) Low silver content paste composition and method of making a conductive film therefrom
JPS6016041B2 (ja) 厚膜導電体形成用ペ−スト
WO2014061765A1 (ja) 導電性ペースト
JPWO2005015573A1 (ja) 導電性ペースト
CN108430671B (zh) 银合金粉末及其制造方法
KR102430857B1 (ko) 은 분말 및 그의 제조 방법
JP5932638B2 (ja) 導電性ペースト用銅粉及び導電性ペースト
WO2016002362A1 (ja) 導電性ペースト、及びガラス物品
JP6408695B2 (ja) 銅含有導電性ペースト、及び銅含有導電性ペーストから作製された電極
JP2018104820A (ja) 銀被覆合金粉末及びその製造方法、導電性ペースト及びその製造方法、電子部品、並びに電子機器
JP6564024B2 (ja) 銅電極を有する太陽電池を製造する方法
JP2018123427A (ja) 銀合金粉末およびその製造方法
JPH06215617A (ja) 焼成用導電性ペースト
TWI755565B (zh) 銀粉及其製造方法
JP2017199544A (ja) 導電性組成物及び端子電極の製造方法
CN113782251A (zh) 一种电极膏体和电极厚膜及其制备方法
WO2017115462A1 (ja) 銀合金粉末およびその製造方法
CN109365825B (zh) 可锡焊的覆银镍导电层的制备方法及自动丝印覆银装置
JP2016125117A (ja) 複合銅粒子
JP2019165155A (ja) 窒化アルミニウム回路基板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023351.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157033524

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14787965

Country of ref document: EP

Kind code of ref document: A1