WO2014167960A1 - 透明導電性フィルム - Google Patents

透明導電性フィルム Download PDF

Info

Publication number
WO2014167960A1
WO2014167960A1 PCT/JP2014/057395 JP2014057395W WO2014167960A1 WO 2014167960 A1 WO2014167960 A1 WO 2014167960A1 JP 2014057395 W JP2014057395 W JP 2014057395W WO 2014167960 A1 WO2014167960 A1 WO 2014167960A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
resin
layer
film
Prior art date
Application number
PCT/JP2014/057395
Other languages
English (en)
French (fr)
Inventor
成夫 上拾石
利典 長岡
Original Assignee
長岡産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長岡産業株式会社 filed Critical 長岡産業株式会社
Priority to CN201480017718.XA priority Critical patent/CN105051832B/zh
Priority to KR1020157029223A priority patent/KR101774423B1/ko
Publication of WO2014167960A1 publication Critical patent/WO2014167960A1/ja
Priority to US14/874,567 priority patent/US20160023444A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present invention relates to a capacitive sensor represented by, for example, a capacitive touch panel, and a transparent conductive film used as an electrode and a substrate in an organic EL element.
  • a conductive film and conductive sheet having conductivity and transparency including both, hereinafter referred to as “transparent conductive film”). Is used).
  • transparent conductive films having conductivity and transparency are used not only for touch panels but also for solar panels, organic electroluminescence (hereinafter referred to as “organic EL”) displays, LED lighting, and the like. .
  • this transparent conductive film is formed, for example, by forming a conductive layer of indium tin oxide on a synthetic resin film / sheet.
  • the transparent conductive film is formed by dispersing inorganic particles such as nano metal particles, nano metal wires, or carbon nanotubes in a resin binder in a synthetic resin film sheet, and forming a conductive layer by coating. ing.
  • the transparent conductive film described in Patent Document 1 has a center line average roughness (Ra) of 0.11 to 0.18 ⁇ m, a maximum height (Ry) of 0.9 to 1.6 ⁇ m, and a local peak.
  • Ra center line average roughness
  • Ry maximum height
  • S average interval
  • Patent Document 1 the transparent conductive film described in Patent Document 1 is not optimized for higher transparency than required, although it suppresses the occurrence of Neutling and ensures visibility. There was a problem that it was difficult to deal with.
  • an object of the present invention is to provide a transparent conductive film capable of ensuring both higher conductivity and higher transparency.
  • the present invention is a transparent conductive film comprising a base material having transparency and flexibility, and a conductive layer formed by laminating a conductive resin on at least one surface of the base material.
  • the surface of the layer has a center line average roughness (Ra 75 ) of 0.002 ⁇ m to 0.02 ⁇ m, a maximum height (Rz) of 0.03 ⁇ m to 0.10 ⁇ m, and a ten-point average roughness (Rz JIS94 ). Is 0.02 ⁇ m or more and 0.05 ⁇ m or less.
  • the substrate can be in the form of a film or a sheet.
  • the centerline average roughness is JIS The center line average roughness Ra 75 defined in the attached standard of B0601 (center line average roughness Ra in the old JIS standard) can be used.
  • the maximum height is JIS The maximum height Rz defined in B0601 (maximum height Ry in the old JIS standard) can be used.
  • the above ten-point average roughness is JIS The ten-point average roughness Rz JIS94 (ten-point average roughness Rz in the old JIS standard) defined in the attached standard of B0601 can be used.
  • the surface of the conductive layer has a center line average roughness (Ra 75 ) of 0.002 ⁇ m to 0.02 ⁇ m, a maximum height (Rz) of 0.03 ⁇ m to 0.10 ⁇ m, and a 10-point average roughness.
  • Ra 75 center line average roughness
  • Rz maximum height
  • the transparent conductive film improves the smoothness of the surface of the conductive layer and suppresses the variation in resistance value caused by the surface roughness. can do. For this reason, the transparent conductive film can stably secure a uniform and lower resistance conductive layer.
  • the transparent conductive film can further suppress glare caused by irregular reflection of light and ensure high transparency. That is, when any one of the center line average roughness (Ra 75 ), the maximum height (Rz), and the ten-point average roughness (Rz JIS94 ) exceeds the above-mentioned very narrow range, the transparent conductive film Since the smoothness on the surface of the conductive layer is lowered, it is not possible to ensure both high conductivity and transparency.
  • the center line average roughness (Ra 75 ) is greater than 0.02 ⁇ m, the maximum height (Rz) is greater than 0.10 ⁇ m, or the ten-point average roughness (Rz JIS94 ) is greater than 0.05 ⁇ m,
  • the smoothness on the surface of the layer may be reduced, and high conductivity and transparency may not be ensured at the same time. Therefore, the center line average roughness (Ra 75 ) is 0.002 ⁇ m or more and 0.02 ⁇ m or less, the maximum height (Rz) is 0.03 ⁇ m or more and 0.10 ⁇ m or less, and the ten-point average roughness (Rz JIS94 ). Is preferably 0.02 ⁇ m or more and 0.05 ⁇ m or less.
  • the transparent conductive film is formed by simultaneously limiting the center line average roughness (Ra 75 ), the maximum height (Rz), and the ten-point average roughness (Rz JIS94 ) within a very narrow range. It is optimized and can ensure both higher conductivity and higher transparency.
  • the conductive layer may include 30% or more of a polythiophene resin having conductive particles having an average particle diameter of 20 nm or more and 60 nm or less at 90% of the standard deviation.
  • the polythiophene-based resin may be PEDOT / PSS having conductivity.
  • the transparent conductive film can ensure more stable conductivity because conductive particles having a small particle diameter are present in the conductive layer in a certain ratio or more.
  • the average particle diameter is less than 20 nm, it becomes difficult to suppress the surface resistivity of the conductive layer, and when the particles are pulverized to a desired particle diameter by adding energy such as ultrasonic waves, pulverization becomes more difficult, In some cases, the time required for pulverization increases and the conductive layer cannot be formed efficiently.
  • the transparent conductive film can secure more stable conductivity by finely limiting the particle diameter and content of the conductive particles contained in the conductive layer.
  • the conductive layer containing the polythiophene resin can have a thickness of 100 nm to 500 nm. According to this invention, since the transparent conductive film can restrict the variation in the cross-sectional area in the conductive layer through the thickness of the conductive layer, the variation in the resistance value can be suppressed. For this reason, the transparent conductive film can stably secure a uniform and lower resistance conductive layer.
  • the thickness of the conductive layer is less than 100 nm, the formation of the conductive layer becomes more difficult, and the strength of the conductive layer may be reduced.
  • the thickness of the conductive layer is larger than 500 nm, the transparency becomes low, There exists a possibility that the flexibility of a transparent conductive film may become low because the thickness of a transparent conductive film becomes thick.
  • the thickness of the conductive layer is preferably 100 nm or more and 500 nm or less. Therefore, the transparent conductive film can secure more stable conductivity by limiting the thickness of the conductive layer within a narrow range.
  • the surface resistivity of the conductive layer containing the polythiophene resin can be 50 ⁇ / sq or more and 400 ⁇ / sq or less.
  • the transparent conductive film can secure more stable conductivity by limiting the surface resistivity of the conductive layer within a narrow range.
  • the light transmittance of the said transparent conductive film can be 70% or more and 90% or less.
  • the transparent conductive film can transmit more light from the light emitting layer when applied to, for example, an organic EL display. For this reason, the transparent conductive film can make a high-quality image or video visible more clearly.
  • the light transmittance is less than 70%, the transparency may be lowered and the visibility may be lowered. If the light transmittance is greater than 90%, high transparency can be obtained, but a transparent conductive film is formed. Therefore, it is difficult to ensure stable quality and the cost may increase. For this reason, the light transmittance is desirably 70% or more and 90% or less. Therefore, the transparent conductive film has high conductivity and transparency by limiting the light transmittance within a narrow range, and can improve visibility.
  • a transparent resin thin film made of a synthetic resin having transparency, and a transparent coating layer having transparency formed by laminating at least the conductive layer side surface of the resin thin film
  • the transparent coating layer can be composed of any one of a leveling layer containing a leveling material, an adhesion improving layer containing an adhesion improving material, or a cured resin layer.
  • the synthetic resin may be a polyester resin having a light transmittance of 80% or more, a polycarbonate resin, a transparent polyimide resin, a cycloolefin resin, or the like.
  • the cured resin layer may be an acrylic resin or an epoxy resin.
  • the transparent conductive film can ensure more stable transparency.
  • the surface of the substrate can be made smoother, and thus the transparent conductive film can further improve the transparency.
  • the adhesion improving layer is provided, the adhesion of the conductive layer to the base material is improved. Therefore, when the transparent conductive film is curved, the conductive layer is peeled off from the base material and is transparent. And it can prevent that electroconductivity falls.
  • the transparent conductive film can ensure both higher conductivity and transparency by the base material constituted by the resin thin film and the transparent coating layer.
  • a transparent metal film or semi-metal film formed by vapor deposition or sputtering can be provided on at least one surface of the substrate.
  • the metal film or metalloid film may be a metal or metalloid film, a metal or metalloid oxide film, a metal or metalloid nitride film, or the like.
  • the transparent conductive film can improve gas barrier properties.
  • a resin thin film made of synthetic resin is more permeable to moisture and oxygen than a glass-based substrate. For this reason, for example, when using a resin thin film as an alternative to a glass-based substrate in an organic EL element, it is necessary to improve the gas barrier property of the substrate so that a light-emitting layer that is easily deteriorated by moisture or oxygen does not come into contact with moisture or oxygen. is there.
  • the transparent conductive film can form a gas barrier layer with a metal film or a semi-metal film, and can prevent moisture and oxygen that have passed through the resin thin film from reaching the light emitting layer. Therefore, the transparent conductive film can secure high conductivity and transparency, and can secure gas barrier properties.
  • Sectional drawing which shows the structure in an organic EL element in a cross section Sectional drawing which shows the structure in a transparent conductive film in a cross section.
  • the expanded sectional view which shows the state of the electroconductive particle in a conductive layer.
  • Sectional drawing which shows the structure in another transparent conductive film in a cross section Sectional drawing which shows the structure in another transparent conductive film in a cross section.
  • FIG. 1 shows a cross-sectional view of the structure of the organic EL element 1
  • FIG. 2 shows a cross-sectional view of the structure of the transparent conductive film 10
  • FIG. 3 shows an enlarged cross-section of the state of the conductive particles 13a in the conductive layer 13. The figure is shown.
  • the transparent conductive film 10 is applied as a positive electrode and a base material in the flexible organic EL element 1, for example, as shown in FIG.
  • the organic EL element 1 includes an organic EL light emitting layer 2 including a hole transport layer, a light emitting layer, and an electron transport layer, a negative electrode 3, and an organic EL light emitting layer on one surface of the transparent conductive film 10. 2 and a sealing layer 4 for sealing the negative electrode 3 are laminated in this order.
  • the transparent conductive film 10 applied to the organic EL element 1 is formed by controlling the light transmittance to be 70% or more and 90% or less, and is formed in a film shape having flexibility and conductivity. is doing.
  • the transparent conductive film 10 is configured by laminating a semimetal film 12 and a conductive layer 13 in this order on a base material 11.
  • the base material 11 includes a resin thin film 11a made of synthetic resin having transparency and flexibility, and a cured resin layer 11b laminated on the surface of the resin thin film 11a on the conductive layer 13 side.
  • the resin thin film 11a is made of, for example, a PET film in which a polyester resin is formed into a thin film having a predetermined thickness.
  • the resin thin film 11a may be any appropriate material as long as it is a thin film having a predetermined thickness and is a synthetic resin material having transparency and flexibility.
  • synthetic resin materials polycarbonate resins, transparent polyimide resins, cycloolefin resins, acrylic resins, acetylcellulose resins, fluorine resins, and the like may be used.
  • the cured resin layer 11b is formed by applying an acrylic resin with a predetermined thickness to the resin thin film 11a.
  • the cured resin layer 11b is a material which can prevent oligomer precipitation from the resin thin film 11a, you may use an appropriate material.
  • urethane resin or epoxy resin may be used as the other cured resin layer 11b.
  • the formation method of the cured resin layer 11b is performed by an appropriate method according to the material of the cured resin layer 11b and the material of the resin thin film 11a, such as a coater method, a spray method, and a spin coat method.
  • the metalloid film 12 is formed by laminating a metalloid oxide on the base material 11 by vacuum deposition or sputtering.
  • the conductive layer 13 is made of a conductive resin containing 30% or more of a polythiophene resin having conductive particles having an average particle diameter of 20 nm or more and 60 nm or less at 90% of the standard deviation so that the thickness thereof is 100 nm or more and 500 nm or less. It is formed by being laminated on the surface of the semimetal film 12 in a controlled manner.
  • the surface of the conductive layer 13 has a center line average roughness Ra 75 of 0.002 ⁇ m to 0.02 ⁇ m, a maximum height Rz of 0.03 ⁇ m to 0.10 ⁇ m, and a ten-point average roughness Rz JIS94 of 0.
  • the surface resistivity is controlled to be 50 ⁇ / sq to 400 ⁇ / sq.
  • the center line average roughness Ra 75 , the maximum height Rz, and the ten-point average roughness Rz JIS94 on the surface of the conductive layer 13 are JIS, respectively. It shall conform to B0601.
  • the formation method of this conductive layer 13 is not particularly limited, and using the above-described conductive resin, center line average roughness Ra 75 , maximum height Rz, ten-point average roughness Rz JIS94 , surface resistivity, As long as the thickness can be controlled, an appropriate method may be used.
  • the conductive layer forming coating solution is applied to the semimetal film 12 and dried to form the conductive layer 13.
  • a commercially available PEDOT / PSS aqueous dispersion having PEDOT / PSS or the like is used as the conductive layer forming coating solution.
  • PEDOT poly (3,4-ethylenedioxinthiophene)
  • PSS polystyrene sulfonic acid
  • the conductive layer forming coating solution is applied to the semimetal film 12 formed on the substrate 11, heated at an appropriate temperature to dry the conductive layer forming coating solution, and a conductive layer having a thickness of 100 nm to 500 nm. 13 is formed.
  • the conductive layer 13 thus formed has irregularities formed on the surface of the conductive layer 13 with conductive particles 13 a having a desired particle diameter.
  • the unevenness of the surface of the conductive layer 13 has a center line average roughness Ra 75 of 0.002 ⁇ m or more and 0.02 ⁇ m or less, a maximum height Rz of 0.03 ⁇ m or more and 0.10 ⁇ m or less, and a ten-point average roughness.
  • Rz JIS94 is limited to 0.02 ⁇ m or more and 0.05 ⁇ m or less.
  • Table 1 shows Example 1 to Example 5 and Comparative Example 1 to Comparative Example 5 of the transparent conductive film 10 formed as described above.
  • the center line average roughness Ra 75 , the maximum height Rz, and the ten-point average roughness Rz JIS94 in Examples 1 to 5 and Comparative Examples 1 to 5 are shapes manufactured by Keyence Corporation. Measurement was performed at a magnification of 12000 to 2400 using a laser microscope VK-X100 / X200.
  • the surface resistivity of the conductive layer is 50 ⁇ / sq or more and 400 ⁇ / sq or less, and the light transmittance of the transparent conductive film is 70% or more and 90% or less, and the conductivity and transparency are good.
  • “ ⁇ ” indicating that the conductive layer has a surface resistivity of 50 ⁇ / sq or more and 150 ⁇ / sq or less, and the light transmittance of the transparent conductive film is 85% or more and 90% or less. was judged to be “ ⁇ ”indicating that it was better.
  • the surface resistivity and the light transmittance satisfy the condition of the determination “ ⁇ ”, but the average particle diameter of the conductive particles at 90% of the standard deviation, the content of the polythiophene resin, the thickness of the conductive layer, the conductive layer
  • the center line average roughness (Ra 75 ), maximum height (Rz), or ten-point average roughness (Rz JIS94 ) is a value that may cause a problem in practice. It was determined.
  • the surface resistivity of the conductive layer is 50 ⁇ / sq or more and 400 ⁇ / sq or less, or the light transmittance of the transparent conductive film is 70% or more and 90% or less, or both are not satisfied. It was determined.
  • Examples 1 to 5 in Table 1 are conductive resins containing 30% or more of a polythiophene-based resin having conductive particles having an average particle diameter of 20 nm or more and 60 nm or less at a standard deviation of 90%, and a thickness of 100 nm or more.
  • the transparent conductive film 10 in which the light transmittance is limited to 70% or more and 90% or less by the conductive layer 13 whose surface resistivity is limited to 50 ⁇ / sq or more and 400 ⁇ / sq or less is shown.
  • each of Comparative Examples 1 to 5 in Table 1 is a polythiophene resin having conductive particles, the average particle diameter at 90% of the standard deviation, the content of the polythiophene resin, the thickness, and the centerline average roughness.
  • ra 75 indicates the maximum height Rz, and a transparent conductive film composed of conductive layers having different ten-point average roughness Rz JIS94.
  • At least the center line average roughness Ra 75 is a polythiophene resin having conductive particles having an average particle diameter larger than 60 nm and has a thickness limited to 100 nm or more and 500 nm or less.
  • the maximum height Rz was large, that is, the surface roughness was rough, so that a transparent conductive film having a large surface resistivity or a low light transmittance was obtained.
  • the center line average roughness was reduced by a conductive layer containing 30% or more of a polythiophene-based resin having conductive particles having an average particle diameter of 20 nm or more and 60 nm or less, and the thickness was limited to less than 100 nm.
  • a transparent conductive film having a high surface resistivity and a low conductivity was obtained while the light transmittance was relatively good with respect to the values of the thickness Ra 75 and the maximum height Rz.
  • Comparative Example 4 is a conductive resin containing less than 30% polythiophene resin having conductive particles having an average particle diameter of 20 nm or more and 60 nm or less, a thickness greater than 500 nm, and a ten-point average roughness Rz JIS94.
  • a relatively good transparent conductive film having a surface resistivity of 50 ⁇ / sq or more and 400 ⁇ / sq or less and a light transmittance of 70% or more and 90 or less was obtained by the conductive layer larger than 0.05 ⁇ m.
  • the transparent conductive film of Comparative Example 4 has a possibility that a crack or the like may occur when the transparent conductive film is bent because of its low flexibility.
  • Ra 75 is 0.002 ⁇ m or more and 0.02 ⁇ m or less
  • maximum height Rz is 0.03 ⁇ m or more and 0.10 ⁇ m or less
  • ten-point average roughness Rz JIS94 is 0.02 ⁇ m or more and 0.05 ⁇ m or less
  • Example 1 to Comparative Example 5 the conductive resin containing 30% or more of a polythiophene resin having conductive particles having an average particle diameter of 20 nm or more and 60 nm or less at 90% of the standard deviation, , Center line average roughness Ra 75 , maximum height Rz, ten-point average roughness Rz JIS94 , and conductive layer 13 with limited surface resistivity, stable light transmittance compared to Comparative Examples 1 to 5
  • the transparent conductive film 10 secured was obtained. That is, it can be said that the transparent conductive film 10 of Example 1 to Example 5 is superior in transparency and conductivity to the conductive film of Comparative Example 1 to Comparative Example 5.
  • Example 1 and Example 2 became the transparent conductive film 10 with very favorable transparency and electroconductivity.
  • the center line average roughness Ra 75 is 0.002 ⁇ m or more and 0.02 ⁇ m or less
  • the maximum height Rz is 0.03 ⁇ m or more and 0.10 ⁇ m or less
  • the ten-point average roughness Rz JIS94 is 0.02 ⁇ m or more and 0.05 ⁇ m.
  • the transparent conductive film 10 having the above configuration can ensure both higher conductivity and higher transparency.
  • the surface of the conductive layer 13 has a center line average roughness Ra 75 of 0.002 ⁇ m or more and 0.02 ⁇ m or less, a maximum height Rz of 0.03 ⁇ m or more and 0.10 ⁇ m or less, and a ten-point average roughness Rz JIS94. Is limited to 0.02 ⁇ m or more and 0.05 ⁇ m or less, the transparent conductive film 10 can improve the smoothness of the surface of the conductive layer 13 and suppress the variation in resistance value due to the surface roughness. it can. For this reason, the transparent conductive film 10 can stably ensure a uniform and lower resistance conductive layer 13.
  • the transparent conductive film 10 can ensure high transparency by further suppressing glare due to irregular reflection of light.
  • the transparent conductive film 10 becomes the conductive layer 13.
  • the smoothness of the surface of the film decreases, and high conductivity and transparency cannot be ensured at the same time.
  • the transparent conductive film 10 is optimized by simultaneously controlling three of the center line average roughness Ra 75 , the maximum height Rz, and the ten-point average roughness Rz JIS94 within a very narrow range, Both high conductivity and high transparency can be secured at the same time.
  • the transparent conductive film 10 has constant conductive particles having a small particle size. Since it exists in the conductive layer 13 more than the ratio, more stable conductivity can be ensured.
  • the transparent conductive film 10 can ensure more stable conductivity by finely controlling the particle diameter and content of the conductive particles contained in the conductive layer 13.
  • the transparent conductive film 10 can limit the variation of the cross-sectional area in the conductive layer 13 through the thickness of the conductive layer 13, and thus the variation of the resistance value is reduced. Can be suppressed. For this reason, the transparent conductive film 10 can stably ensure a uniform and lower resistance conductive layer 13.
  • the transparent conductive film 10 can ensure more stable conductivity by limiting the thickness of the conductive layer 13 within a narrow range.
  • the transparent conductive film 10 can ensure more stable conductivity.
  • the transparent conductive film 10 when the light transmittance of the transparent conductive film 10 is set to 70% or more and 90% or less, the transparent conductive film 10 can apply light from the organic EL light emitting layer 2 when applied to, for example, an organic EL display. More can be transmitted. For this reason, the transparent conductive film 10 can make a high-quality image and video visible more clearly. Therefore, the transparent conductive film 10 has high conductivity and transparency by limiting the light transmittance within a narrow range, and can improve visibility.
  • the transparent conductive film 10 since the base material 11 is composed of the resin thin film 11a and the cured resin layer 11b, the transparent conductive film 10 has a low molecular weight component such as an oligomer when the base material 11 or the transparent conductive film 10 is heated. Can be prevented from being deposited from the resin thin film 11a. For this reason, the transparent conductive film 10 can prevent whitening of the resin thin film 11a due to oligomer precipitation. Therefore, the transparent conductive film 10 can ensure both higher conductivity and transparency by the base material 11 constituted by the resin thin film 11a and the cured resin layer 11b.
  • the transparent conductive film 10 can improve the gas barrier property by providing the semi-metal film 12 on the surface of the substrate 11 on the conductive layer 13 side.
  • the resin thin film 11a made of synthetic resin is more permeable to moisture and oxygen than a glass-based substrate. For this reason, for example, when the resin thin film 11a is used as an alternative to the glass-based substrate in the organic EL element 1, the gas barrier of the substrate 11 prevents the organic EL light-emitting layer 2 that easily deteriorates due to moisture or oxygen from coming into contact with moisture or oxygen. It is necessary to improve the performance.
  • the transparent conductive film 10 forms a gas barrier layer with the semi-metal film 12 and can prevent moisture and oxygen transmitted through the resin thin film 11 a from reaching the organic EL light emitting layer 2. Therefore, the transparent conductive film 10 can ensure high electrical conductivity and transparency and gas barrier properties.
  • the metalloid film 12 is formed on the surface of the base material 11 on the conductive layer 13 side.
  • the present invention is not limited to this, and the metalloid film or metalloid of metalloid or metalloid nitride is not limited thereto.
  • a metal film made of metal oxide or metal nitride may be used.
  • a metal film or a semi-metal film may be formed on the opposite surface of the resin thin film 11a on the conductive layer 13 side. Or according to the use of the transparent conductive film 10, you may make a metal film or a semi-metal film unnecessary.
  • the base material 11 was comprised with the resin thin film 11a and the cured resin layer 11b, it is not limited to this, You may comprise only the resin thin film 11a. Or you may comprise the base material 11 by the resin thin film 11a and the leveling layer 11c containing a leveling material like FIG. 4 which shows sectional drawing of the structure in another transparent conductive film 10. FIG. Thereby, since the surface of the base material 11 can be made smoother, the transparent conductive film 10 can improve transparency more.
  • the leveling layer 11c in FIG. 4 may be an adhesive improvement layer containing an adhesive improvement material.
  • the adhesiveness of the conductive layer 13 with respect to the base material 11 to improve, when the transparent conductive film 10 curves the transparent conductive film 10, the conductive layer 13 peels off from the base material 11, and transparency. It can prevent that electroconductivity falls.
  • the cured resin layer 11b was formed in the surface at the side of the conductive layer 13 in the resin thin film 11a, it is not limited to this, As shown in FIG. 5 which shows sectional drawing of the structure in another transparent conductive film 10, resin thin film It is good also as the base material 11 which formed the cured resin layer 11b on both surfaces of 11a. Thereby, it can prevent more reliably that an oligomer precipitates from the resin thin film 11a by heating. For this reason, the transparent conductive film 10 can ensure higher transparency.
  • the cured resin layer 14 is formed on the surface of the transparent conductive film 10 on the conductive layer 13 side, that is, the cured resin layers 11 b and 14 are formed on both surfaces of the transparent conductive film 10. May be.
  • the transparent conductive film 10 can prevent precipitation of oligomers from the resin thin film 11a, and can improve wear resistance and scratch resistance.
  • the transparent coating layer of the present invention corresponds to the leveling layer 11c, the adhesion improving layer, and the cured resin layer 11b of the embodiment.
  • the present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.
  • the transparent conductive film of the present invention can be applied to touch panels, organic EL displays, solar panels, LED lighting, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)

Abstract

 本発明は、より高い導電性と高い透明性とを両立して確保することできる透明導電性フィルム10を提供することを目的とする。 透明性及び可撓性を有する基材11と、基材11の少なくとも一方の面に導電性樹脂を積層して形成した導電層13とを備えた透明導電性フィルム10であって、導電層13の表面を、中心線平均粗さRa75が0.002μm以上0.02μm以下、最大高さRzが0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94が0.02μm以上0.05μm以下としたことを特徴とする。

Description

透明導電性フィルム
 この発明は、例えば静電容量式タッチパネルなどに代表される静電容量式センサーや、有機EL素子における電極及び基材として用いられるような透明導電性フィルムに関する。
 携帯情報端末や自動取引装置などのタッチパネルにおいて、利用者の指押しを検知するセンサーとして、導電性と透明性を有する導電性フィルムや導電性シート(両者を含めて、以下、「透明導電性フィルム」という)が用いられている。昨今、導電性と透明性を有する透明導電性フィルムは、タッチパネルだけでなく、太陽光パネル、有機エレクトロルミネッセンス(以下、「有機EL」と呼ぶ。)ディスプレイ、あるいはLED照明などにも用いられている。
 この透明導電性フィルムは、導電性を確保するため、例えば、合成樹脂製のフィルム・シートに、酸化インジウムスズの導電層を形成して構成している。もしくは、透明導電性フィルムは、合成樹脂製のフィルム・シートに、ナノ金属粒子、ナノ金属ワイヤ、またはカーボンナノチューブなどの無機系粒子を樹脂バインダに分散させ、コーティングによって導電層を形成して構成している。
 ところで、タッチパネルなどにおける透明導電性フィルムでは、例えば利用者が指押しすると、縞状のニュートリングが発生して、視認性が悪化することがあった。そこで、導電層の表面粗さを制限することで、ニュートリングの発生を抑制する技術が提案されている。
 例えば、特許文献1に記載の透明導電性フィルムは、中心線平均粗さ(Ra)を0.11~0.18μm、最大高さ(Ry)を0.9~1.6μm、かつ局部山頂の平均間隔(S)を0.05~0.11mmとする表面を有する透明導電性薄膜を形成することで、ニュートリングの発生を抑制することができる。
 しかしながら、昨今、携帯情報端末などにおいて強化ガラスを介して指押しをする、あるいはハードコートフィルムなどを介して指押しすることが増加したため、透明導電性フィルムに対してより高い導電性が要求されている。さらに、タッチパネルのディスプレイ部分に表示される画像や映像の高画質化、文字の鮮明化、あるいはディスプレイ部分の高解像度化に伴い、透明導電性フィルムに対してより高い透明性が要求されている。
 ところが、特許文献1に記載の透明導電性フィルムは、ニュートリングの発生を抑制して視認性を確保しているものの、要求されるより高い透明性に対して最適化されていないため、これに対応することが困難であるという問題があった。
特開2007-103348号公報
 本発明は、上述の問題に鑑み、より高い導電性と高い透明性とを両立して確保することできる透明導電性フィルムを提供することを目的とする。
 この発明は、透明性及び可撓性を有する基材と、該基材の少なくとも一方の面に導電性樹脂を積層して形成した導電層とを備えた透明導電性フィルムであって、前記導電層の表面を、中心線平均粗さ(Ra75)が0.002μm以上0.02μm以下、最大高さ(Rz)が0.03μm以上0.10μm以下、かつ十点平均粗さ(RzJIS94)が0.02μm以上0.05μm以下としたことを特徴とする。
 上記基材は、フィルム状、あるいはシート状などとすることができる。 
 上記中心線平均粗さは、JIS
B0601の付属規格で定義された中心線平均粗さRa75(旧JIS規格における中心線平均粗さRa)とすることができる。 
 上記最大高さは、JIS
B0601で定義された最大高さRz(旧JIS規格における最大高さRy)とすることができる。 
 上記十点平均粗さは、JIS
B0601の付属規格で定義された十点平均粗さRzJIS94(旧JIS規格における十点平均粗さRz)とすることができる。
 この発明により、より高い導電性と高い透明性とを両立して確保することできる。 
 具体的には、導電層の表面を中心線平均粗さ(Ra75)が0.002μm以上0.02μm以下、最大高さ(Rz)が0.03μm以上0.10μm以下、かつ十点平均粗さ(RzJIS94)が0.02μm以上0.05μm以下に制限したことにより、透明導電性フィルムは、導電層における表面の平滑性を向上して、表面粗さに起因する抵抗値のバラツキを抑制することができる。このため、透明導電性フィルムは、均一でより低抵抗な導電層を安定して確保することができる。
 さらに、導電層における表面の平滑性を向上することで、透明導電性フィルムは、光の乱反射によるギラツキなどをより抑制して高い透明性を確保することができる。 
 つまり、中心線平均粗さ(Ra75)、最大高さ(Rz)、及び十点平均粗さ(RzJIS94)のいずれか1つでも上述した非常に狭い範囲を超えた場合、透明導電性フィルムは、導電層の表面における平滑性が低下し、高い導電性と透明性とを両立して確保することができない。
 詳しくは、中心線平均粗さ(Ra75)が0.002μm未満、最大高さ(Rz)が0.03μm未満、あるいは十点平均粗さ(RzJIS94)が0.02μm未満では、平滑性が向上するものの、導電層を容易に形成することが難しくなり、形成に要する工数やコストが増大するおそれがある。
 一方、中心線平均粗さ(Ra75)が0.02μmより大きい、最大高さ(Rz)が0.10μmより大きい、あるいは十点平均粗さ(RzJIS94)が0.05μmより大きいと、導電層の表面における平滑性が低下し、高い導電性と透明性とを両立して確保することができないおそれがある。このため、中心線平均粗さ(Ra75)としては0.002μm以上0.02μm以下、最大高さ(Rz)としては0.03μm以上0.10μm以下、十点平均粗さ(RzJIS94)としては0.02μm以上0.05μm以下が望ましい。
 従って、透明導電性フィルムは、中心線平均粗さ(Ra75)、最大高さ(Rz)、及び十点平均粗さ(RzJIS94)の3つを非常に狭い範囲内で同時に制限することによって最適化され、より高い導電性と高い透明性とを両立して確保することができる。
 この発明の態様として、前記導電層を、標準偏差の90%における平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する構成とすることができる。 
 上記ポリチオフェン系樹脂は、導電性を有するPEDOT/PSSなどとすることができる。
 この発明により、透明導電性フィルムは、粒子径が小さい導電性粒子が一定割合以上、導電層に存在するため、より安定した導電性を確保することができる。 
 なお、平均粒子径が20nm未満では、導電層の表面抵抗率を低く抑えにくくなり、かつ超音波などのエネルギーを加えて所望する粒子径に粒子を粉砕する際、粉砕がより困難になるとともに、粉砕に要する時間が増加して効率的に導電層を形成できないそれがある。
 一方、平均粒子径が60nmより大きいと、導電層における中心線平均粗さ(Ra75)、最大高さ(Rz)、及び十点平均粗さ(RzJIS94)の3つを非常に狭い範囲内で同時に制限することが困難となるおそれがある。このため、平均粒子径としては、20nm以上60nm以下が望ましい。 
 従って、透明導電性フィルムは、導電層に含有する導電性粒子の粒子径及び含有率を細かく制限することで、より安定した導電性を確保することができる。
 また、この発明の態様として、前記ポリチオフェン系樹脂を含有する前記導電層における厚みを、100nm以上500nm以下とすることができる。 
 この発明により、透明導電性フィルムは、導電層の厚みを介して導電層における断面積のバラツキを制限できるため、抵抗値のバラツキを抑制することができる。このため、透明導電性フィルムは、均一でより低抵抗な導電層を安定して確保することができる。
 なお、導電層の厚みが100nm未満では、導電層の形成がより困難になるとともに、導電層の強度が低くなるおそれがあり、導電層の厚みが500nmより大きいと、透明性が低くなるとともに、透明導電性フィルムの厚みが厚くなることで透明導電性フィルムの可撓性が低くなるおそれがある。
 例えば、透明導電性フィルムをロール状に巻き付けた際、クラックなどが生じて導電性を確保できないおそれがある。このため、導電層の厚みとしては、100nm以上500nm以下が望ましい。 
 従って、透明導電性フィルムは、導電層の厚みを狭い範囲で制限することで、より安定した導電性を確保することができる。
 また、この発明の態様として、前記ポリチオフェン系樹脂を含有する前記導電層の表面抵抗率を、50Ω/sq以上400Ω/sq以下とすることができる。 
 この発明により、透明導電性フィルムは、導電層の表面抵抗率を狭い範囲内で制限することによって、より安定した導電性を確保することができる。
 また、この発明の態様として、前記透明導電性フィルムの光線透過率を、70%以上90%以下とすることができる。 
 この発明により、透明導電性フィルムは、例えば、有機ELディスプレイなどに適用した場合、発光層からの光をより多く透過することができる。このため、透明導電性フィルムは、高画質な画像や映像をより鮮明に視認可能にすることができる。
 なお、光線透過率が70%未満では、透明性が低下して視認性の低くなるおそれがあり、光線透過率が90%より大きいと、高い透明性を得られる反面、透明導電性フィルムの形成がより困難となるため、安定した品質の確保が困難になるとともに、コストが増大するおそれがある。このため、光線透過率としては、70%以上90%以下が望ましい。 
 従って、透明導電性フィルムは、光線透過率を狭い範囲内で制限することによって、高い導電性と透明性とを有して、視認性を向上することができる。
 また、この発明の態様として、前記基材を、透明性を有する合成樹脂製の樹脂薄膜と、該樹脂薄膜の少なくとも前記導電層側の面に積層して形成した透明性を有する透明被覆層とで構成し、該透明被覆層を、レベリング材を含有するレベリング層、接着性向上材を含有する接着性向上層、あるいは硬化樹脂層のいずれかで構成することができる。 
 上記合成樹脂は、光線透過率が80%以上のポリエステル系樹脂、ポリカーボネート系樹脂、透明ポリイミド系樹脂、あるいはシクロ環オレフィン樹脂系などとすることができる。 
 上記硬化樹脂層は、アクリル系樹脂やエポキシ系樹脂などとすることができる。
 この発明により、透明導電性フィルムは、より安定した透明性を確保することができる。 
 例えば、レベリング層を備えた場合、基材の表面をより平滑にすることができるため、透明導電性フィルムは、透明性をより向上することができる。 
 また、接着性向上層を備えた場合、基材に対する導電層の密着性が向上するため、透明導電性フィルムは、透明導電性フィルムを湾曲させた際、基材から導電層が剥がれて透明性、及び導電性が低下することを防止できる。
 さらにまた、硬化樹脂層を備えた場合、基材あるいは透明導電性フィルムに熱が加わった際、オリゴマーなどの低分子量成分が樹脂薄膜から析出することを阻止でき、透明導電性フィルムは、オリゴマー析出による樹脂薄膜の白濁化を防止することができる。 
 従って、透明導電性フィルムは、樹脂薄膜と透明被覆層とで構成した基材によって、より高い導電性と透明性とを両立して確保することができる。
 また、この発明の態様として、前記基材における少なくとも一方の面に、蒸着あるいはスパッタリングによって形成した透明性を有する金属皮膜また半金属皮膜を備えることができる。 
 上記金属皮膜または半金属皮膜は、金属または半金属の皮膜、金属または半金属の酸化物の皮膜、金属または半金属の窒化物の皮膜などとすることができる。
 この発明により、透明導電性フィルムは、ガスバリア性を向上することができる。詳しくは、合成樹脂製である樹脂薄膜は、ガラス系基材と比べて水分や酸素を透過し易い。このため、例えば、有機EL素子におけるガラス系基材の代替として樹脂薄膜を用いる場合、水分や酸素によって劣化し易い発光層が水分や酸素と触れ合わないように基材のガスバリア性を向上する必要がある。
 そこで、透明導電性フィルムは、金属皮膜または半金属皮膜によってガスバリア層を構成して、樹脂薄膜を透過した水分や酸素が発光層に到達することを防止できる。 
 従って、透明導電性フィルムは、高い導電性と透明性を確保するとともに、ガスバリア性を確保することができる。
 本発明により、より高い導電性と高い透明性とを両立して確保できる透明導電性フィルムを提供することができる。
有機EL素子における構成を断面で示す断面図。 透明導電性フィルムにおける構成を断面で示す断面図。 導電層内における導電性粒子の状態を示す拡大断面図。 別の透明導電性フィルムにおける構成を断面で示す断面図。 別の透明導電性フィルムにおける構成を断面で示す断面図。
 この発明の一実施形態を以下図面と共に説明する。 
 なお、図1は有機EL素子1における構成の断面図を示し、図2は透明導電性フィルム10おける構成の断面図を示し、図3は導電層13内における導電性粒子13aの状態の拡大断面図を示している。
 透明導電性フィルム10は、例えば、図1に示すように、フレキシブルな有機EL素子1における陽電極及び基材として適用されている。詳しくは、有機EL素子1は、透明導電性フィルム10の一方の面に、正孔輸送層、発光層、及び電子輸送層からなる有機EL発光層2と、陰電極3と、有機EL発光層2及び陰電極3を封止する封止層4とをこの順に積層して構成している。
 この有機EL素子1に適用されるような透明導電性フィルム10は、光線透過率が70%以上90%以下となるよう制御して形成するとともに、可撓性及び導電性を有するフィルム状に形成している。
 具体的には、透明導電性フィルム10は、図2に示すように、基材11に対して、半金属皮膜12、及び導電層13をこの順番で積層して構成している。 
 基材11は、透明性及び可撓性を有する合成樹脂製の樹脂薄膜11aと、樹脂薄膜11aにおける導電層13側の面に積層した硬化樹脂層11bとで構成している。
 樹脂薄膜11aは、例えば、ポリエステル系樹脂を所定の厚みを有する薄膜状に形成したPETフィルムで構成している。なお、樹脂薄膜11aは、所定の厚みを有する薄膜状のフィルムであって、透明性及び可撓性を有する合成樹脂材であれば、適宜の材質を使用してよい。例えば、その他の合成樹脂材として、ポリカーボネート系樹脂、透明ポリイミド系樹脂、シクロ環オレフィン樹脂系、アクリル系樹脂、アセチルセルロース系樹脂、フッ素系樹脂などを使用してもよい。
 硬化樹脂層11bは、樹脂薄膜11aに対して、アクリル系樹脂を所定の厚みで塗布して形成している。なお、硬化樹脂層11bは、樹脂薄膜11aからのオリゴマー析出を防止できる材質であれば、適宜の材料を使用してよい。例えば、その他の硬化樹脂層11bとして、ウレタン系樹脂、あるいはエポキシ系樹脂などを使用してもよい。また、硬化樹脂層11bの形成方法は、例えば、コーター法、スプレー法、スピンコート法など、硬化樹脂層11bの材質、及び樹脂薄膜11aの材質に応じた適宜の方法で行う。
 半金属皮膜12は、基材11に対して、半金属の酸化物を真空蒸着法あるいはスパッタリング法によって積層して形成している。 
 導電層13は、標準偏差の90%における平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する導電性樹脂を、その厚みが100nm以上500nm以下となるように制御して、半金属皮膜12の表面に積層して形成している。
 さらに、導電層13の表面は、中心線平均粗さRa75が0.002μm以上0.02μm以下、最大高さRzが0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94が0.02μm以上0.05μm以下となるように制御して形成するとともに、その表面抵抗率が50Ω/sq以上400Ω/sq以下となるように制御して形成している。なお、導電層13の表面における中心線平均粗さRa75、最大高さRz、及び十点平均粗さRzJIS94は、それぞれJIS
B0601に準ずるものとする。
 この導電層13の形成方法は、特に限定するものでなく、上述の導電性樹脂を用いて、中心線平均粗さRa75、最大高さRz、十点平均粗さRzJIS94、表面抵抗率、及び厚みが制御できる方法であれば適宜の方法でよい。 
 例えば、導電層形成用塗布液を半金属皮膜12に塗布して乾燥し、導電層13を形成する。この際、導電層形成用塗布液は、PEDOT/PSSを有した市販のPEDOT/PSS水分散体などを用いる。
 より詳しくは、PEDOT(ポリ(3,4-エチレンジオキシンチオフェン))と、ドーパントとして溶解性を高めるためにPSS(ポリスチレンスルホン酸)とが用いられたPEDOT/PSS水分散体に超音波などのエネルギーを加えて粒子や凝縮体を破砕したのち、イオン交換水を加水する。
 その後、所望する粒子径より大きな粒子や凝縮体を遠心分離、あるいはろ過して除去したPEDOT/PSS水分散体に、ポリエステル系の水溶性バインダが溶解しているアルコールを加えて攪拌、混合する。このようなPEDOT/PSS水分散体とアルコールとの混合液に対して、所望する粒子径より大きな粒子や凝縮体をろ過して、導電層形成用塗布液を取得する。
 この導電層形成用塗布液を、基材11に形成した半金属皮膜12に塗布し、適宜の温度で加熱して導電層形成用塗布液を乾燥させて、100nm以上500nm以下の厚みの導電層13を形成する。このように形成した導電層13は、例えば、図3に示すように、所望する粒子径の導電性粒子13aによって、導電層13の表面に凹凸を形成している。
 この導電層13における表面の凹凸は、上述したように中心線平均粗さRa75が0.002μm以上0.02μm以下、最大高さRzが0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94が0.02μm以上0.05μm以下に制限している。なお、導電層13の表面を適宜の方法によって研磨するなどして、所望する中心線平均粗さRa75、最大高さRz、十点平均粗さRzJIS94、及び厚みに形成してもよい。
 引き続き、上述のようにして形成した透明導電性フィルム10の実施例1から実施例5と、比較例1から比較例5とを表1に示す。なお、実施例1から実施例5、及び比較例1から比較例5における中心線平均粗さRa75、最大高さRz、及び十点平均粗さRzJIS94は、(株)キーエンス社製の形状測定レーザーマイクロスコープVK-X100/X200を用いて拡大倍率12000~2400倍で計測した。
 なお、表1の総合判定欄において、導電層の表面抵抗率が50Ω/sq以上400Ω/sq以下、かつ透明導電性フィルムの光線透過率が70%以上90%以下を導電性及び透明性が良好であることを示す「○」とし、このうち導電層の表面抵抗率が50Ω/sq以上150Ω/sq以下、かつ透明導電性フィルムの光線透過率が85%以上90%以下を導電性及び透明性がより良好であることを示す「◎」と判定した。
 さらに、表面抵抗率、及び光線透過率が判定「○」の条件を満足するが、標準偏差の90%における導電性粒子の平均粒子径、ポリチオフェン系樹脂の含有率、導電層の厚み、導電層の中心線平均粗さ(Ra75)、最大高さ(Rz)、あるいは十点平均粗さ(RzJIS94)のいずれか1つが、実用上、問題が生じるおそれがある値の場合を「△」と判定した。
 加えて、導電層の表面抵抗率が50Ω/sq以上400Ω/sq以下、または透明導電性フィルムの光線透過率が70%以上90%以下のいずれか一方、あるいは両方を満足しない場合を「×」と判定した。
Figure JPOXMLDOC01-appb-T000001
 表1における実施例1から実施例5は、標準偏差の90%における平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する導電性樹脂で、厚さ100nm以上500nm以下、中心線平均粗さRa75を0.002μm以上0.02μm以下、最大高さRzを0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94を0.02μm以上0.05μm以下、表面抵抗率を50Ω/sq以上400Ω/sq以下の範囲に制限した導電層13で、光線透過率を70%以上90%以下に制限した透明導電性フィルム10を示している。
 一方、表1における比較例1から比較例5は、いずれも導電性粒子を有するポリチオフェン系樹脂で、標準偏差の90%における平均粒子径、ポリチオフェン系樹脂の含有率、厚み、中心線平均粗さRa75、最大高さRz、及び十点平均粗さRzJIS94を異ならせた導電層で構成した透明導電性フィルムを示している。
 詳しくは、比較例1及び比較例2では、平均粒子径が60nmより大きい導電性粒子を有するポリチオフェン系樹脂で、厚さ100nm以上500nm以下に制限した導電層によって、少なくとも中心線平均粗さRa75、及び最大高さRzが大きく、すなわち表面粗さが粗くなることで、表面抵抗率が大きい、あるいは光線透過率が低い透明導電性フィルムが得られた。
 また、比較例3では、平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する導電性樹脂で、厚さ100nm未満に制限した導電層によって、中心線平均粗さRa75、及び最大高さRzの値に対して光線透過率が比較的良好ながら、表面抵抗率が大きく導電性の低い透明導電性フィルムが得られた。
 また、比較例4では、平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%未満含有する導電性樹脂で、厚さ500nmより大きく、かつ十点平均粗さRzJIS94が0.05μmより大きい導電層によって、表面抵抗率が50Ω/sq以上400Ω/sq以下、及び光線透過率が70%以上90以下の比較的良好な透明導電性フィルムが得られた。しかしながら、比較例4の透明導電性フィルムは、その厚みから可撓性が低くなることで、湾曲させた際にクラックなど生じるおそれがある。
 また、比較例5では、平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する導電性樹脂で、厚さ100nm以上500nm以下に制限するとともに、中心線平均粗さRa75を0.002μm以上0.02μm以下、最大高さRzを0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94を0.02μm以上0.05μm以下に制限した導電層によって、光線透過率が良好であるものの表面抵抗率が大きく、導電性の低い透明導電性フィルムが得られた。
 一方、実施例1から比較例5に示すように、標準偏差の90%における平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する導電性樹脂で、厚さ、中心線平均粗さRa75、最大高さRz、十点平均粗さRzJIS94、及び表面抵抗率を制限した導電層13によって、比較例1から比較例5に比べて高い光線透過率を安定して確保した透明導電性フィルム10が得られた。すなわち、実施例1から実施例5の透明導電性フィルム10は、比較例1から比較例5の導電性フィルムに比べて透明性及び導電性に優れているといえる。
 特に、実施例1及び実施例2は、透明性及び導電性が非常に良好な透明導電性フィルム10となった。このことから、標準偏差の90%における平均粒子径がおおよそ40nmの導電性粒子を有するポリチオフェン系樹脂を40%以上60%以下含有する導電性樹脂で、厚さを250nm以上350nm以下に制限した導電層を形成することが好ましい。この際、中心線平均粗さRa75を0.002μm以上0.02μm以下、最大高さRzを0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94を0.02μm以上0.05μm以下に制限することで、表面抵抗率が50Ω/sq以上150Ω/sq以下、光線透過率が85%以上90%以下の良好な透明導電性フィルム10を得ることができる。
 以上のような構成の透明導電性フィルム10は、より高い導電性と高い透明性とを両立して確保することができる。 
 具体的には、導電層13の表面を中心線平均粗さRa75が0.002μm以上0.02μm以下、最大高さRzが0.03μm以上0.10μm以下、かつ十点平均粗さRzJIS94が0.02μm以上0.05μm以下に制限したことにより、透明導電性フィルム10は、導電層13における表面の平滑性を向上して、表面粗さに起因する抵抗値のバラツキを抑制することができる。このため、透明導電性フィルム10は、均一でより低抵抗な導電層13を安定して確保することができる。
 さらに、導電層13における表面の平滑性を向上することで、透明導電性フィルム10は、光の乱反射によるギラツキなどをより抑制して高い透明性を確保することができる。 
 つまり、中心線平均粗さRa75、最大高さRz、及び十点平均粗さRzJIS94のいずれか1つでも上述した非常に狭い範囲を超えた場合、透明導電性フィルム10は、導電層13の表面における平滑性が低下し、高い導電性と透明性とを両立して確保することができない。
 従って、透明導電性フィルム10は、中心線平均粗さRa75、最大高さRz、及び十点平均粗さRzJIS94の3つを非常に狭い範囲内で同時に制御することによって最適化され、より高い導電性と高い透明性とを両立して確保することができる。
 また、標準偏差の90%における平均粒子径が20nm以上60nm以下のポリチオフェン系樹脂を30%以上含有する導電層13としたことにより、透明導電性フィルム10は、粒子径が小さい導電性粒子が一定割合以上、導電層13に存在するため、より安定した導電性を確保することができる。
 より好ましくは、標準偏差の90%における平均粒子径をおおよそ40%程度のポリチオフェン系樹脂を40%以上60%以下含有する導電層13とすることで、より高い透明性及び導電性を確保することができる。 
 従って、透明導電性フィルム10は、導電層13に含有する導電性粒子の粒子径及び含有率を細かく制御することで、より安定した導電性を確保することができる。
 また、導電層13の厚みを100nm以上500nm以下としたことにより、透明導電性フィルム10は、導電層13の厚みを介して導電層13における断面積のバラツキを制限できるため、抵抗値のバラツキを抑制することができる。このため、透明導電性フィルム10は、均一でより低抵抗な導電層13を安定して確保することができる。
 より好ましくは、導電層13の厚みを250nm以上350nm以下とすることで、より高い透明性及び導電性を確保することができる。 
 従って、透明導電性フィルム10は、導電層13の厚みを狭い範囲内で制限することで、より安定した導電性を確保することができる。
 また、導電層13の表面抵抗率を50Ω/sq以上400Ω/sq以下と狭い範囲内で制限することによって、透明導電性フィルム10は、より安定した導電性を確保することができる。
 また、透明導電性フィルム10の光線透過率を70%以上90%以下としたことにより、透明導電性フィルム10は、例えば、有機ELディスプレイなどに適用した場合、有機EL発光層2からの光をより多く透過することができる。このため、透明導電性フィルム10は、高画質な画像や映像をより鮮明に視認可能にすることができる。 
 従って、透明導電性フィルム10は、光線透過率を狭い範囲内で制限することによって、高い導電性と透明性とを有して、視認性を向上することができる。
 また、樹脂薄膜11aと硬化樹脂層11bとで基材11を構成したことにより、透明導電性フィルム10は、基材11あるいは透明導電性フィルム10に熱が加わった際、オリゴマーなどの低分子量成分が樹脂薄膜11aから析出することを阻止できる。このため、透明導電性フィルム10は、オリゴマー析出による樹脂薄膜11aの白濁化を防止することができる。 
 従って、透明導電性フィルム10は、樹脂薄膜11aと硬化樹脂層11bとで構成した基材11によって、より高い導電性と透明性とを両立して確保することができる。
 また、基材11における導電層13側の面に半金属皮膜12を備えたことにより、透明導電性フィルム10は、ガスバリア性を向上することができる。詳しくは、合成樹脂製である樹脂薄膜11aは、ガラス系基材と比べて水分や酸素を透過し易い。このため、例えば、有機EL素子1におけるガラス系基材の代替として樹脂薄膜11aを用いる場合、水分や酸素によって劣化し易い有機EL発光層2が水分や酸素と触れ合わないように基材11のガスバリア性を向上する必要がある。
 そこで、透明導電性フィルム10は、半金属皮膜12によってガスバリア層を構成して、樹脂薄膜11aを透過した水分や酸素が有機EL発光層2に到達することを防止できる。 
 従って、透明導電性フィルム10は、高い導電性と透明性を確保するとともに、ガスバリア性を確保することができる。
 なお、上述の実施形態において、基材11の導電層13側の面に半金属皮膜12を形成したが、これに限定せず、半金属、あるいは半金属の窒化物による半金属膜、もしくは金属、金属の酸化物、あるいは金属の窒化物による金属皮膜としてもよい。さらに、樹脂薄膜11aにおける導電層13側の逆の面に金属皮膜また半金属皮膜を形成してもよい。もしくは、透明導電性フィルム10の用途に応じて、金属皮膜または半金属皮膜を不要にしてもよい。
 また、基材11を樹脂薄膜11aと硬化樹脂層11bとで構成したが、これに限定せず、樹脂薄膜11aのみで構成してもよい。 
 あるいは、別の透明導電性フィルム10における構成の断面図を示す図4のように、樹脂薄膜11aとレベリング材を含有するレベリング層11cとで基材11を構成してもよい。これにより、基材11の表面をより平滑にすることができるため、透明導電性フィルム10は、透明性をより向上することができる。
 もしくは、図4におけるレベリング層11cを、接着性向上材を含有する接着性向上層としてもよい。これにより、基材11に対する導電層13の密着性が向上するため、透明導電性フィルム10は、透明導電性フィルム10を湾曲させた際、基材11から導電層13が剥がれて透明性、及び導電性が低下することを防止できる。
 また、樹脂薄膜11aにおける導電層13側の面に硬化樹脂層11bを形成したが、これに限定せず、別の透明導電性フィルム10における構成の断面図を示す図5のように、樹脂薄膜11aの両面に硬化樹脂層11bを形成した基材11としてもよい。これにより、加熱によって樹脂薄膜11aからオリゴマーが析出することをより確実に阻止できる。このため、透明導電性フィルム10は、より高い透明性を確保することができる。
 さらに、図5に示すように、透明導電性フィルム10における導電層13側の面に、硬化樹脂層14を形成する、すなわち、透明導電性フィルム10の両面に硬化樹脂層11b,14を形成してもよい。これにより、透明導電性フィルム10は、樹脂薄膜11aからオリゴマーの析出を防止するとともに、耐摩耗性及び耐擦傷性の向上を図ることができる。
 この発明の構成と、上述の実施形態との対応において、
この発明の透明被覆層は、実施形態のレベリング層11c、接着性向上層、硬化樹脂層11bに対応するが、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
 本発明の透明導電性フィルムは、タッチパネル、有機ELディスプレイ、太陽光パネル、あるいはLED照明などに適用することができる。
10…透明導電性フィルム
11…基材
11a…樹脂薄膜
11b…硬化樹脂層
11c…レベリング層
12…半金属皮膜
13…導電層
13a…導電性粒子

Claims (7)

  1.  透明性及び可撓性を有する基材と、
    該基材の少なくとも一方の面に導電性樹脂を積層して形成した導電層とを備えた透明導電性フィルムであって、
    前記導電層の表面を、
    中心線平均粗さ(Ra75)が0.002μm以上0.02μm以下、
    最大高さ(Rz)が0.03μm以上0.10μm以下、かつ
    十点平均粗さ(RzJIS94)が0.02μm以上0.05μm以下とした
    透明導電性フィルム。
  2.  前記導電層を、
    標準偏差の90%における平均粒子径が20nm以上60nm以下の導電性粒子を有するポリチオフェン系樹脂を30%以上含有する構成とした
    請求項1に記載の透明導電性フィルム。
  3.  前記ポリチオフェン系樹脂を含有する前記導電層における厚みを、100nm以上500nm以下とした
    請求項2に記載の透明導電性フィルム。
  4.  前記ポリチオフェン系樹脂を含有する前記導電層の表面抵抗率を、50Ω/sq以上400Ω/sq以下とした
    請求項2または請求項3に記載の透明導電性フィルム。
  5.  前記透明導電性フィルムの光線透過率を、70%以上90%以下とした
    請求項1から請求項4のいずれか1つに記載の透明導電性フィルム。
  6.  前記基材を、
    透明性を有する合成樹脂製の樹脂薄膜と、
    該樹脂薄膜の少なくとも前記導電層側の面に積層して形成した透明性を有する透明被覆層とで構成し、
    該透明被覆層を、
    レベリング材を含有するレベリング層、接着性向上材を含有する接着性向上層、あるいは硬化樹脂層のいずれかで構成した
    請求項1から請求項5のいずれか1つに記載の透明導電性フィルム。
  7.  前記基材における少なくとも一方の面に、
    蒸着あるいはスパッタリングによって形成した透明性を有する金属皮膜また半金属皮膜を備えた
    請求項1から請求項6のいずれか1つに記載の透明導電性フィルム。
PCT/JP2014/057395 2013-04-09 2014-03-18 透明導電性フィルム WO2014167960A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480017718.XA CN105051832B (zh) 2013-04-09 2014-03-18 透明导电薄膜
KR1020157029223A KR101774423B1 (ko) 2013-04-09 2014-03-18 투명 도전성 필름
US14/874,567 US20160023444A1 (en) 2013-04-09 2015-10-05 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-081211 2013-04-09
JP2013081211A JP5719864B2 (ja) 2013-04-09 2013-04-09 透明導電性フィルム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/874,567 Continuation US20160023444A1 (en) 2013-04-09 2015-10-05 Transparent conductive film

Publications (1)

Publication Number Publication Date
WO2014167960A1 true WO2014167960A1 (ja) 2014-10-16

Family

ID=51689373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057395 WO2014167960A1 (ja) 2013-04-09 2014-03-18 透明導電性フィルム

Country Status (6)

Country Link
US (1) US20160023444A1 (ja)
JP (1) JP5719864B2 (ja)
KR (1) KR101774423B1 (ja)
CN (1) CN105051832B (ja)
TW (1) TWI595513B (ja)
WO (1) WO2014167960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110442275A (zh) * 2015-04-02 2019-11-12 株式会社大赛璐 透明叠层膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119518B2 (ja) 2013-02-12 2017-04-26 ソニー株式会社 センサ装置、入力装置及び電子機器
CN105190492B (zh) 2013-03-18 2019-09-27 索尼公司 传感器装置、输入装置和电子设备
JP6142745B2 (ja) * 2013-09-10 2017-06-07 ソニー株式会社 センサ装置、入力装置及び電子機器
JP2015190859A (ja) 2014-03-28 2015-11-02 ソニー株式会社 センサ装置、入力装置及び電子機器
JP2016085653A (ja) * 2014-10-28 2016-05-19 凸版印刷株式会社 タッチパネル及び表示装置
JP5995152B2 (ja) * 2014-10-31 2016-09-21 大日本印刷株式会社 中間基材フィルム、導電性フィルムおよびタッチパネルセンサ
JP6459729B2 (ja) * 2015-04-02 2019-01-30 新日鐵住金株式会社 塗装基材の製造方法
JP7430480B2 (ja) * 2018-04-27 2024-02-13 日東電工株式会社 保護フィルム付き導電性フィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286418A (ja) * 2005-03-31 2006-10-19 Tdk Corp 透明導電体
JP2007287450A (ja) * 2006-04-14 2007-11-01 Nippon Soda Co Ltd 透明導電性基材
JP2008021605A (ja) * 2006-07-14 2008-01-31 Dainippon Printing Co Ltd 透明導電膜付きフィルム、およびこの透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイならびに有機el素子
JP2010205532A (ja) * 2009-03-03 2010-09-16 Konica Minolta Holdings Inc 透明電極の製造方法、透明電極および有機エレクトロルミネッセンス素子
WO2011105148A1 (ja) * 2010-02-24 2011-09-01 コニカミノルタホールディングス株式会社 透明導電膜、および有機エレクトロルミネッセンス素子
JP2011175601A (ja) * 2010-02-25 2011-09-08 Daicel Chemical Industries Ltd 透明導電性膜及びタッチパネル
WO2013061967A1 (ja) * 2011-10-27 2013-05-02 コニカミノルタホールディングス株式会社 透明導電膜及び有機エレクトロルミネッセンス素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646949A (zh) * 2002-04-25 2005-07-27 日东电工株式会社 光扩散片、光学元件以及图像显示装置
JP2005037739A (ja) * 2003-07-16 2005-02-10 Fuji Photo Film Co Ltd 反射防止膜、偏光板、及びそれを用いた画像表示装置
JP4324684B2 (ja) * 2003-09-19 2009-09-02 日本ミクロコーティング株式会社 平坦な表面の透明導電性フィルムの製造方法
US8531406B2 (en) * 2005-09-12 2013-09-10 Nitto Denko Corporation Transparent conductive film, electrode sheet for use in touch panel, and touch panel
JP4943091B2 (ja) * 2005-09-12 2012-05-30 日東電工株式会社 透明導電性フィルム、タッチパネル用電極板およびタッチパネル
KR101441714B1 (ko) * 2006-12-28 2014-09-17 엠지시 휠시트 가부시키가이샤 폴리머 필름
US8304984B2 (en) * 2008-09-19 2012-11-06 Konica Minolta Holdings, Inc. Organic electroluminescent element
WO2011093286A1 (ja) * 2010-01-27 2011-08-04 ダイセル化学工業株式会社 ガスバリアフィルムとその製造方法、およびそれを用いたデバイス
TWI425530B (zh) * 2010-09-30 2014-02-01 Far Eastern New Century Corp 具有高光穿透度之透明導電膜及其製備方法
US9655252B2 (en) * 2012-06-01 2017-05-16 Suzhou Nuofei Nano Science And Technology Co., Ltd. Low haze transparent conductive electrodes and method of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286418A (ja) * 2005-03-31 2006-10-19 Tdk Corp 透明導電体
JP2007287450A (ja) * 2006-04-14 2007-11-01 Nippon Soda Co Ltd 透明導電性基材
JP2008021605A (ja) * 2006-07-14 2008-01-31 Dainippon Printing Co Ltd 透明導電膜付きフィルム、およびこの透明導電膜付きフィルムからなるディスプレイ用基板、ディスプレイならびに有機el素子
JP2010205532A (ja) * 2009-03-03 2010-09-16 Konica Minolta Holdings Inc 透明電極の製造方法、透明電極および有機エレクトロルミネッセンス素子
WO2011105148A1 (ja) * 2010-02-24 2011-09-01 コニカミノルタホールディングス株式会社 透明導電膜、および有機エレクトロルミネッセンス素子
JP2011175601A (ja) * 2010-02-25 2011-09-08 Daicel Chemical Industries Ltd 透明導電性膜及びタッチパネル
WO2013061967A1 (ja) * 2011-10-27 2013-05-02 コニカミノルタホールディングス株式会社 透明導電膜及び有機エレクトロルミネッセンス素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110442275A (zh) * 2015-04-02 2019-11-12 株式会社大赛璐 透明叠层膜

Also Published As

Publication number Publication date
TW201443927A (zh) 2014-11-16
US20160023444A1 (en) 2016-01-28
JP2014203775A (ja) 2014-10-27
JP5719864B2 (ja) 2015-05-20
KR20150127275A (ko) 2015-11-16
CN105051832A (zh) 2015-11-11
KR101774423B1 (ko) 2017-09-04
CN105051832B (zh) 2017-10-24
TWI595513B (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
JP5719864B2 (ja) 透明導電性フィルム
JP5230788B2 (ja) 透明導電性フィルム
JP5397377B2 (ja) 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
WO2012074059A1 (ja) 透明導電性フィルムおよびタッチパネル
JP2009059666A (ja) 透明導電層付フィルムとフレキシブル機能性素子、およびそれらの製造方法
WO2010018733A1 (ja) 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
TW201525808A (zh) 光學用片材及導電性片材、以及具備該光學用片材之顯示裝置
JP4969479B2 (ja) 透明導電膜付基板の製造方法
CN1474949A (zh) 低反射高透射触板膜
JP2008520463A (ja) 可撓性の、機械的に補償された透明積層物質を調製する方法
CN105204674B (zh) 一种触控显示模组
KR20130026921A (ko) 투명 도전성 필름, 그 제조방법 및 그것을 구비한 터치 패널
CN105144045A (zh) 导电结构及其制造方法
JP2014022158A (ja) 有機elデバイス、および、有機elデバイスの製造方法
JP6322031B2 (ja) 透明導電層付き積層体の製造方法
JP2005288851A (ja) 透明ガス遮断性フィルム、並びにそれを用いるディスプレイ基板及びディスプレイ。
KR102298165B1 (ko) 매립형 투명 전극 기판 및 이의 제조방법
JP5826199B2 (ja) 透明導電性フィルム
TWI327736B (en) Transparent conductive film, transparent conductive sheet, and touch panel
CN107660279B (zh) 导电结构体及其制造方法
WO2014020656A1 (ja) 透明導電フィルム及びタッチパネル
CN105224150B (zh) 触控面板
TW201528291A (zh) 透明導電性積層體及觸控面板
CN205202351U (zh) 光学复合层结构
KR101705642B1 (ko) 투명 도전성 필름

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017718.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157029223

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14783296

Country of ref document: EP

Kind code of ref document: A1